EP0823537B1 - Vorrichtung und Verfahren zum Stabilisieren eines Bohrloches - Google Patents

Vorrichtung und Verfahren zum Stabilisieren eines Bohrloches Download PDF

Info

Publication number
EP0823537B1
EP0823537B1 EP97305817A EP97305817A EP0823537B1 EP 0823537 B1 EP0823537 B1 EP 0823537B1 EP 97305817 A EP97305817 A EP 97305817A EP 97305817 A EP97305817 A EP 97305817A EP 0823537 B1 EP0823537 B1 EP 0823537B1
Authority
EP
European Patent Office
Prior art keywords
tool
housing
well bore
drill string
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97305817A
Other languages
English (en)
French (fr)
Other versions
EP0823537A1 (de
Inventor
Krishna M. Ravi
Henry E. Rogers
Robert M. Beirute
Dick A. Murray
Alan B. Duell
Earl D. Webb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/692,868 external-priority patent/US5711375A/en
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP0823537A1 publication Critical patent/EP0823537A1/de
Application granted granted Critical
Publication of EP0823537B1 publication Critical patent/EP0823537B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • E21B34/142Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools unsupported or free-falling elements, e.g. balls, plugs, darts or pistons

Definitions

  • the present invention relates to systems and methods for stabilizing wells, and more particularly relates to systems and methods for enlarging and placing a cementitious material in a well bore which passes through an unstable subterranean zone or formation during drilling.
  • weight is applied to the drill string (a string of connected drill pipe sections) while the drill bit is rotated.
  • a fluid often referred to as drilling fluid or drilling mud, is circulated through the drill string, through the drill bit and upwardly to the surface through the annulus between the drill string and the walls of the well bore.
  • the drilling fluid cools the drill bit, removes cuttings from the well bore and maintains hydrostatic pressure on pressurized subterranean formations.
  • the well bore may penetrate and pass through incompetent or otherwise unstable subterranean zones or formations such as unconsolidated sands or shales.
  • unstable zones or formations can have very high permeabilities whereby severe drilling fluid losses occur into the zones or formations.
  • the zones or formations can cave in, slough off or wash out due to the flow of drilling fluid through the well bore which causes the well bore to enlarge. This, in turn, can cause the drill string to become stuck as well as a variety of other severe problems.
  • the zones or formations can also be charged with a fluid, e.g., water or gas, which flows into the well bore making drilling difficult.
  • the portion of the well bore passing through the zone or formation has heretofore been enlarged and filled with cementitious material.
  • the well bore has been drilled through the cementitious material leaving a cementitious sheath in the well bore for preventing fluid influx, fluid losses, cave-ins, etc. While such techniques have been utilized successfully, they have heretofore required the use of many different tools, the necessity of making many trips in and out of the well bore, and a great deal of time and expense to complete.
  • One such tool is disclosed in FR-A-2450937.
  • the tool includes a central passage and a number of ducts or chokes arranged radially and connected thereto.
  • the tool is lowered into a wellbore which traverses an argillaceous zone and a pressurized fluid is communicated to the ducts. On leaving the ducts the fluid forms hydraulic jets for cutting of the argillaceous zone. A cavity formed in the zone by the hydraulic cutting operation is then cemented using standard techniques.
  • the well stabilization systems and methods of the present invention can be used to stabilize an unstable zone or formation encountered in the drilling of a well bore without removing the drill string and drill bit from the well bore or only doing so a minimum of times. That is, one well stabilization tool for use in this invention can be connected in a drill string adjacent the drill bit before the well bore is drilled. The drilling of the well bore can then proceed in the normal manner until an unstable zone or formation is encountered. The well stabilization system is then activated and used to enlarge the portion of the well bore which passes through the unstable zone or formation and to fill the enlarged well bore with a hardenable cementitious material.
  • washout or other well bore enlargement has already occurred, it may be unnecessary to enlarge the portion of the well bore which passes through the unstable zone or formation prior to filling it with a hardenable cementitious material.
  • the hardenable cementitious material is placed in the same manner as described herein with respect to the enlarged portions. After the cementitious material has hardened, the well bore is drilled through the hardened material and nonnal drilling operations are resumed.
  • a well stabilization system for enlarging and placing a hardenable cementitious material in an unstable subterranean zone or formation passed through by a well bore adapted to be connected in a drill string having a drill bit at the end thereof, which system comprises a well stabilization tool selectively connectible to a source of cement and a source of fluid, the well stabilization tool comprising: a tubular housing having a longitudinal fluid flow passage extending therethrough, having one or more outwardly extending enlarged portions formed thereon whereby the outer surfaces of said enlarged portions are positioned in close proximity to the walls of the well bore drilled with the drill string and drill bit and having one or more lateral fluid jet forming ports extending from said fluid flow passage through said enlarged portions of said housing to the exterior thereof; and a valve sleeve releasably and slidably disposed within said fluid flow passage of said housing and being moveable between a first position whereby said fluid jet forming ports are closed by said valve s
  • the system is activated by an activator plug which is flowed through the drill string into the housing where it releasably engages and plugs the valve sleeve causing it to move from the first position to the second position whereby fluid pumped through the drill string is forced through the fluid jet forming ports of the tool.
  • an activator plug which is flowed through the drill string into the housing where it releasably engages and plugs the valve sleeve causing it to move from the first position to the second position whereby fluid pumped through the drill string is forced through the fluid jet forming ports of the tool.
  • the valve sleeve is pulled back to the first position so that fluid again flows through the tool.
  • valve sleeve is prevented from moving past said second position by an annular shoulder extending into said fluid flow passage of said housing.
  • said valve sleeve is releasably retained in said first position by a radially outwardly extending collet connected to said valve sleeve which engages a groove in said housing.
  • said valve sleeve is releasably engaged with said activator plug by said collet which is forced inwardly by the surfaces of said housing fluid flow passage into engagement with a groove in said activator plug when said valve sleeve is moved from said first position to said second position by said activator plug.
  • said enlarged portions of said tubular housing are comprised of two or more outwardly extending ribs formed thereon.
  • said one or more lateral fluid jet forming ports are positioned radially in said housing.
  • a method of using the above described tool basically comprises the steps of
  • the hardenable cementitious material is selected from the group consisting of hydraulic materials, resins, and polymers.
  • the hardenable cementitious material is selected from the group consisting of Portland cement, high alumina cement, slag, fly ash with lime, fly ash with free lime, condensed silica fume with lime, gypsum cement, epoxy resins, furan resins, acrylamide polymer gels, and mixtures thereof.
  • said valve of said tool is a valve sleeve slidably disposed in said fluid flow passage of said tool which is movable between said first and second positions.
  • said valve sleeve is moved from said first position to said second position in accordance with step (c) by flowing an activator plug through the drill string into said tool and into releasable engagement with said valve sleeve whereby said activator plug and valve sleeve are moved by fluid pressure to said second position.
  • said valve sleeve is moved back to said first position in accordance with step (e) by retrieving said activator plug from said tool and drill string whereby said valve sleeve is pulled from said second position to said first position prior to when said activator plug disengages from said valve sleeve.
  • said activator plug includes a fishing neck and is retrieved by a fishing tool.
  • the fishing tool may be suspended within the drill string by a wire line, a slick line or a work string.
  • said tool has one or more outwardly extending enlarged portions comprised of two or more, preferably three or four, outwardly extending ribs formed thereon.
  • said tool includes three or more, preferably six or more, lateral fluid jet forming ports.
  • the method further comprises the step of pumping fluid through said jet forming ports at a rate while moving said tool through the portion of the well bore in the unstable zone or formation whereby the diameter of the well bore is enlarged by fluid jet erosion.
  • the method further comprises the step of moving the drill string and drill bit to a position in the well bore above said enlarged portion of the well bore filled with hardenable cementitious material after step (d) and prior to step (e).
  • An alternate well stabilization system of this invention for enlarging and placing a cementitious material in an unstable subterranean zone or formation passed through by a well bore requires only a minimum number of trips in and out of the well bore. That is, after a well bore penetrates and passes through an unstable zone or formation, the drill string is removed from the well bore, the drill bit is replaced with the well stabilization tool and the tool and drill string are placed back in the well bore. The tool is used to enlarge when necessary and to place a hardenable cementitious material in the unstable zone or formation whereupon the drill string is removed from the well bore and the well stabilization tool is replaced with the drill bit. After the drill string and drill bit have been placed back in the well bore, the well bore is drilled through the hardened cementitious material and normal drilling operations are resumed.
  • a well stabilization system is basically comprised of a well stabilization tool selectively connectable to a source of cement and a source of fluid, the well stabilization tool comprising: a tubular housing having a longitudinal fluid flow passage extending therethrough, having a threaded drill string connection at the upper end thereof, having a plurality of lateral openings extending from said fluid flow passage to the exterior of said housing and having an annular shoulder extending into said flow passage below said lateral openings for receiving an activating plug; and a plurality of tubular arm members connected within said lateral openings in said housing having fluid flow passages therethrough and having fluid jet forming ports communicated with said fluid flow passages at the exterior ends thereof, said arm members being of lengths such that said fluid jet forming ports at the exterior ends thereof are positioned in close proximity to the walls of the well bore when said tool is connected to the drill string and placed in the well bore.
  • the tubular arm members have fluid flow passages extending therethrough and have fluid jet forming ports communicating with the passages at their exterior ends.
  • the arm members are of lengths such that the fluid jet forming ports at the exterior ends thereof are positioned in close proximity to the walls of the well bore.
  • a further feature of this tool is that the tool can be made up using different sizes of arm members to conform the tool to varying well bore sizes.
  • a method according to claim 14 of stabilizing an unstable subterranean zone or formation passed through by a well bore during the drilling of the well bore with a drill bit connected to a drill string comprising:
  • tubular arm members are threadedly connected within said openings of said housing of said tool and are present in a number less than the number of openings in said housing , and said tool further comprises one or more plugs threadedly connected within the openings which do not have arm members connected therein.
  • said housing of said tool includes seven of said lateral openings therein, four of said openings being equally spaced around the periphery of said housing in a first position on said housing and three of said openings beings equally spaced around the periphery of said housing in a second position on said housing.
  • seven of said tubular arm members are threadedly connected in said openings.
  • four of said tubular arm members are threadedly connected in said four openings in said first position on said housing, and said tool further comprises three plugs threadedly connected in said three openings in said second position.
  • three of said tubular arm members are threadedly connected in said three openings in said second position, and said tool further comprises four plugs threadedly connected in said four openings in said first position.
  • two of said tubular arm members are threadedly connected in two opposite of said four openings in said first position on said housing, and said tool further comprises two plugs threadedly connected in two opposite of said four openings in said first position and three plugs threadedly connected in said three openings in said second position.
  • the hardenable material may be as described above.
  • step (b) prior to connecting said well stabilization tool to the drill string in accordance with step (b), it is desirable to adjust the lengths of said tubular arm members connected to said housing of said tool as necessary to position the fluid jet forming ports at the exterior ends thereof in close proximity to the walls of the well bore when said tool is placed therein.
  • a drill string centralizer is connected in the drill string near said well stabilizer tool connected to the drill string in accordance with step (b).
  • FIGURE 1 is a side partially sectional view of an embodiment of a well stabilization tool for use in the present invention.
  • FIGURE 2 is a side cross-sectional view of the tool of FIG. 1 after an activator plug has engaged a valve sleeve in the tool.
  • FIGURE 4 is a side cross-sectional view of the tool of FIG. 1 after a fishing tool has engaged the fishing neck of the activator plug within the tool.
  • FIGURE 5 is a cross-sectional view of the tool of FIG. 1 after the activator plug and valve sleeve have been moved upwardly within the tool as the activator plug is being retrieved therefrom.
  • FIGURE 6 is a side cross-sectional view of the valve sleeve of the tool of FIG. 1.
  • FIGURE 7 is a top view of the valve sleeve of FIG. 6.
  • FIGURES 8 - 13 are sequential schematic illustrations of a well bore drilled through an unstable zone or formation and the stabilization of the well bore using the tool of FIG. 1 and the method of the present invention.
  • FIGURE 14 is a schematic illustration of an alternative embodiment of a well stabilization tool for use in the invention in a well bore which passes through an unstable zone or formation.
  • FIGURE 15 is a side partially cross-sectional view of the tool illustrated in FIG. 14 having additional arm members connected thereto.
  • FIGURE 16 is a cross-sectional view taken along line 16-16 of FIG. 15.
  • FIGURE 17 is a cross-sectional view taken along line 17-17 of FIG. 15.
  • the tool 10 is comprised of a tubular housing 12 having a longitudinal fluid flow passage 14 extending therethrough.
  • the housing 12 includes a conventional female threaded connection 16 at the upper end thereof for threaded connection to a drill string 18.
  • the drill string 18 is made up of a plurality of drill pipe sections threadedly connected end to end.
  • a complimentary male threaded connection 20 is provided at the lower end of the housing 12 for connecting the tool 10 to a drill pipe section, a drill collar or the drill bit (not shown).
  • the housing 12 includes four outwardly extending enlarged rib portions 22 which are positioned in close proximity to the walls of a well bore drilled with the drill string 18 and a drill bit (not shown) connected below the tool 10.
  • the housing 12 can include a single cylindrical enlarged portion or two or more enlarged rib portions 22 as desired.
  • the housing 12 further includes a plurality of fluid jet forming passages or ports 24 formed therein extending from the fluid flow passage 14 of the housing 12 through the enlarged rib portions 22 thereof to the exterior of the housing 12.
  • the lateral ports 24 are arranged in two groups of three or four equally spaced ports 24 (two groups of four ports 24 are illustrated in the drawings).
  • the ports 24 preferably intersect enlarged counter bores 26 in the housing 12 adjacent the exterior thereof and include fluid jet forming nozzles 28 threadedly connected therein.
  • the nozzles 28 may extend through the full length of the lateral ports 24 to the fluid passage 14 for preventing erosion of the housing 12 and to increase the fluid jetting efficiency therefrom.
  • some of the ports 24 can include plugs instead of nozzles 28, and the sizes of the flow passages through the nozzles 28 can be varied as required to produce the desired number and velocities of the fluid jets issuing from the tool 10.
  • the tool 10 includes a valve sleeve 30 releasably and slidably disposed within the fluid flow passage 14 of the housing 12.
  • the valve sleeve 30 includes an elongated cylindrical body portion 32 having a pair of longitudinally spaced grooves 34 formed in the exterior surface thereof with conventional O-ring seals 36 disposed therein. As shown in FIGS. 1, 2 and 5, the grooves 34 in the valve sleeve 30 are spaced a distance apart whereby the O-ring seals bracket the lateral fluid jet forming ports 24 when the valve sleeve is in its first position as shown in FIGS 1, 2 and 5.
  • the upper end portion of the valve sleeve 30 includes an internal activator plug receiving seat 38 and a collet 40 comprised of a plurality of collet fingers 42 extending upwardly from the receiving seat 38.
  • Each of the collet fingers 42 of the collet 40 have collet heads 44 at the upper ends thereof.
  • the collet heads 44 protrude radially outwardly and the external surfaces of the collet fingers 42 below the heads 44 are recessed whereby the lower surfaces 43 of the collet heads 44 are inclined (as shown in FIG. 6).
  • the collet heads 44 may include additional collet fingers (not shown) extending upwardly therefrom, wherein the collet fingers (not shown) are attached to one another at an end distant from the collet heads 44.
  • the valve sleeve 30 When the valve sleeve 30 is in its first position within the housing 12 as illustrated in FIGS. 1, 2 and 5, the collet heads 44 of the collet 40 extend within a complimentary groove 46 in the housing 12 whereby the valve sleeve 30 is releasably retained in the first position.
  • an activator plug 50 is flowed through the drill string 18 and housing 12 into releasable engagement with the valve sleeve 30 as illustrated in FIG. 2.
  • the activator plug 50 includes an elongated nose portion 52 which is of an external size slightly smaller than the internal diameter of the valve sleeve 30.
  • the nose portion 52 includes an O-ring groove 54 with an O-ring 56 disposed therein for providing a seal between the external surface of the nose portion 52 and the internal surface of the valve sleeve 30.
  • an enlarged portion 58 which forms an annular shoulder or seat 60 on the activator plug 50 complimentary to the annular seat 38 within the valve sleeve 30.
  • An annular groove 62 is formed in the enlarged portion 58 of the activator plug 50 which is positioned to receive the collet heads 44 of the collet 40 as will be described hereinbelow.
  • the activator plug 50 includes a reduced diameter upwardly extending fishing neck 64 connected to the enlarged portion 58.
  • the seat 60 of the activator plug 50 lands on the seat 38 of the valve sleeve 30 thereby plugging the interior of the valve sleeve 30 and moving it to a second position as shown in FIG. 3. That is, the activator plug 50 seals the interior of the valve sleeve 30 whereby fluid pressure produced by drilling fluid pumped through the drill string and into the housing 12 forces the activator plug 50 and valve sleeve 30 to move downwardly in the passage 14 of the housing 12.
  • the collet heads 44 of the collet 40 are pulled out of the annular groove 46 in the housing 12 whereby the valve sleeve 30 is released from its first position. Simultaneously, the collet heads 44 are deformed into the annular groove 62 in the enlarged portion 58 of the activator plug 50 as illustrated in FIGS. 3 and 4 whereby the valve sleeve 30 is releasably engaged by the activator plug 50.
  • the downward movement of the activator plug 50 and valve sleeve 30 is terminated when the valve sleeve reaches its second position by an annular shoulder 66 extending into the fluid flow passage 14 of the housing 12.
  • the annular shoulder 66 is formed by a snap ring 68 disposed within a groove 70 in the housing 12.
  • a fishing tool 72 is lowered through the drill string 18 by means of a wire line, a slick line or a working string into the flow passage 14 of the housing 12 whereby the fishing neck 64 of the activator plug 50 is engaged by the fishing tool 72 as shown in FIG. 4. Thereafter, the fishing tool 72 and activator plug 50 are raised whereby they are moved upwardly within the housing 12.
  • the valve sleeve 30 As the activator plug is moved upwardly, the valve sleeve 30 is pulled with it since the collet heads 44 of the collet 40 of the valve sleeve 30 extend into the annular groove 62 of the activator plug 50 and are engaged thereby.
  • the collet heads 44 of the valve sleeve 30 spring back into the annular groove 46 in the housing 12 and out of the annular groove 62 in the activator plug 50. This releases the activator plug 50 from the valve sleeve 30 whereby the continued upward movement of the fishing tool 72 and activator plug 50 removes the activator plug 50 from the tool 10.
  • the fishing tool 72 and activator plug 50 are then lifted to the surface and removed from the drill string.
  • FIGS. 8-13 various preferred steps involved in stabilizing an unstable subterranean zone or formation passed through by a well bore during its drilling using the well stabilization tool 10 are schematically illustrated.
  • a well bore 80 which has been drilled through an unstable subterranean zone or formation 82 with a drill string 84 having the tool 10 and a drill bit 86 connected thereto is illustrated.
  • the well stabilization tool 10 is placed in the drill string prior to the commencement of drilling with the valve sleeve 30 in its first position whereby drilling fluid pumped into the drill string 84 during drilling flows through the flow passage 14 of the housing 12 of the tool 10 and through the interior of the valve sleeve 30, through the drill bit 86 and upwardly through the annulus between the drill string 84 and well bore 80.
  • the well bore 80 has been drilled to a depth whereby it has passed through the unstable zone or formation 82, the drilling of the well bore is stopped and the activator plug 50 is placed into the drill string 84 at the surface.
  • the unstable zone or formation is already sufficiently enlarged due to washout etc., it may be unnecessary to pump drilling fluid through the ports 24 and to jet the well bore 80 for enlarging the zone or formation.
  • jetting the well bore 80 to enlarge a portion thereof may not be necessary when a sufficient amount of hardenable cementitious material can be placed in the unstable zone or formation to provide the desired well bore stabilization.
  • a hardenable cementitious material is pumped through the drill string 84 and through the jet forming ports 24 of the tool 10 at a rate while moving the tool 10 through the enlarged portion of the well bore 80 whereby the enlarged portion of the well bore is filled with a quantity 90 of cementitious material as shown in FIGS. 11 and 12.
  • the drill string 84, the tool 10 and drill bit 86 are moved to a position in the well bore 80 above the enlarged portion containing the cementitious material and the cementitious material is allowed to harden.
  • the activator plug 50 is removed from the tool 10 and drill string 84 which closes the ports 24 of the tool 10. Thereafter, the well bore 80 is redrilled through the hardened cementitious material as shown in FIG. 13 and normal drilling operations are resumed.
  • the cement sheath 91 which remains in the unstable zone or formation stabilizes the well bore passing therethrough and prevents such problems as excessive, fluid influx, fluid loss, cave ins, wash outs, etc.
  • hardenable cementitious materials can be utilized in accordance with this invention for stabilizing an unstable subterranean zone or formation.
  • hydraulic cementitious materials which form hard impermeable masses in the presence of water can be utilized such as Portland cement, high alumina cement, slag and/or fly ash (ASTM Class F fly ash) and lime, fly ash which includes free lime (ASTM Class C fly ash), condensed silica fume with lime, gypsum cement (calcium sulfate hemihydrate) and mixtures of the foregoing materials.
  • Hardenable cementitious materials which are not hydraulic such as hardenable resins, polymers and the like can also be used.
  • cementitious material examples include epoxy resins, furan resins and acrylamide polymer gels.
  • the particular cementitious material used depends upon a variety of factors relating to the particular unstable zone or formation to be stabilized. Essentially, any pumpable cementitious material that will harden after being placed in a subterranean zone at the temperature, pressure and other conditions in the zone to provide stability thereto after the well bore has been drilled through the material can be utilized.
  • the method of stabilizing an unstable subterranean zone or formation passed through by a well bore during the drilling of the well bore with a drill bit connected to a drill string using the tool 10 basically comprises the following steps:
  • FIGS. 14-17 Another well stabilization tool for use in the invention for enlarging and placing a hardenable cementitious material in an unstable subterranean zone or formation passed through by a well bore is illustrated in FIGS. 14-17 and is generally designated by the numeral 100.
  • the well stabilization tool 100 does not include a valve and is adapted to be connected to a drill string in place of the drill bit. That is, when a well bore has been drilled through an unstable subterranean zone or formation utilizing a drill bit connected to a drill string, the drill string and drill bit are removed from the well bore and the drill bit is replaced with the tool 100.
  • the drill string does not already include a drill string centralizer, such a centralizer is placed in the drill string adjacent to or near the well stabilization tool 100.
  • the well stabilization tool 100 is utilized to enlarge, unless such portion is already sufficiently enlarged, the portion of the well bore passing through the unstable zone or formation and to fill the enlarged portion of the well bore with a cementitious material. While the cementitious material is setting, the drill string having the well stabilization tool connected thereto is pulled from the well bore, the well stabilization tool and drill string centralizer (if not left in the drill string) are removed from the drill string, the drill bit is replaced on the drill string and the drill string and drill bit are placed in the well bore. The drill string and drill bit are used to drill the well bore through the set cementitious material leaving a cementitious sheath in the unstable zone or formation which stabilizes the zone or formation. Thereafter, normal drilling operations are resumed.
  • Drill string centralizers are well known to those skilled in the art and function to maintain the drill string and tools connected thereto in a central position within the well bore.
  • the drill string centralizer illustrated in FIG. 14 is a typical bow spring type of centralizer which contacts the walls of the well bore and expands or compresses as required.
  • the centralizer 106 can be a separate tool or an integral part of the well stabilization tool 100.
  • the drill string 108 including the centralizer 106 and tool 100 are placed in the well bore 102 and lowered to the portion of the well bore 102 within the unstable zone or formation 104.
  • the tool 100 is utilized to enlarge the portion of the well bore 102 within the zone or formation 104 as shown in FIG. 14. Subsequently, the tool 100 is used to fill the enlarged portion with a cementitious material in the same manner as described above in connection with the well stabilization tool 10.
  • the centralizer 106 and the well stabilization tool 100 are removed from the drill string 108 while the cementitious material sets, and the drill string and drill bit are placed back in the well bore, used to drill the well bore through the set cementitious material and to continue drilling the well bore below the unstable zone or formation.
  • the tool 100 basically comprises a tubular housing 110 having a longitudinal fluid flow passage 112 extending therethrough.
  • a threaded connection 114 is provided at the upper end of the housing 110 for connecting the tool 100 to the drill string, and a plurality of lateral threaded openings 116 extending from the fluid flow passage 112 to the exterior of the housing 110 are formed in the housing 110.
  • An annular seating surface 118 is provided within the fluid flow passage 112 of the housing 110 below the lateral threaded openings 116 therein for receiving an activator plug 120 (as shown in FIG. 15).
  • the activator plug 120 which can be in the form of a ball, is flowed by drilling fluid to within the flow passage 112 of the housing 110 of the tool 100 and lands on the seat 118.
  • the activator plug 120 plugs the passage 112 whereby drilling fluid is forced to flow through the lateral threaded openings 116 of the tool 100.
  • a plurality of tubular threaded arm members 122 are threadedly connected within the threaded openings 116 in the housing 110.
  • Each of the threaded arm members 122 includes a flow passage 123 therethrough and a fluid jet forming port 124 formed in the end thereof.
  • the fluid jet forming ports 124 of the tubular threaded arm members 122 can include nozzles 126 threadedly connected thereto which can be varied in size to vary the velocities and other aspects of the fluid jets formed.
  • tubular threaded arm members 122 Prior to using the well stabilization tool 100 for enlarging and placing a hardenable cementitious material in a well bore passing through an unstable zone or formation, tubular threaded arm members 122 are threadedly connected in the lateral threaded openings 116 of the tool 10.
  • the tubular threaded arm members 122 have lengths such that the fluid jet forming ports 24 at the exterior ends of the threaded arm members 122 are positioned in close proximity to the walls of the well bore in which the tool is to be used.
  • various lengths of tubular threaded arm members 122 can be made available for installation in the housing 110, or arm members 122 which are too long can be shortened by cutting portions therefrom at the interior ends thereof.
  • the tool 100 can include a number of tubular threaded arm members 122 less than the number of lateral threaded openings 116 in the housing 110.
  • the openings which do not have tubular threaded arm members 122 connected thereto can be plugged by threaded plugs 130.
  • the well stabilization tool 100 preferably includes seven lateral threaded openings 116 therein with four of the openings 116 being equally spaced around the periphery of the housing 110 at a first upper position on the housing 110 and three of the threaded openings 116 being equally spaced around the periphery of the housing 110 at a second lower position on the housing 110 as shown in FIGS. 15-17.
  • the tool 100 can include seven tubular threaded arm members 122 as illustrated in FIGS. 15-17, or less than seven threaded arm members 122 can be utilized as mentioned above. Preferably, when less than seven arm members 122 are utilized, they are either two, three or four in number.
  • threaded arm members 122 When two or four threaded arm members 122 are used they are connected within two opposite or all four of the four equally spaced threaded openings 116 in the upper position on the housing 110 with two threaded openings in the upper position and/or the threaded openings 116 in the lower position being plugged. When three threaded arm members 122 are used they are threadedly connected within the three threaded openings 116 in the lower position on the housing 110 with the threaded openings 116 in the upper position being plugged.
  • the method of stabilizing an unstable subterranean zone or formation passed through by a well bore during the drilling of the well bore with a rotary drill bit connected to a drill string utilizing the well stabilization tool 100 basically comprises the following steps:

Claims (20)

  1. Ein Bohrlochstabilisierungssystem zum Vergrößern und Einführen eines verfestigungsfähigen zementösen Stoffes in eine unbeständige unterirdische Zone oder Formation (82), durch die ein Bohrloch (80) verläuft, ausgeführt zum Verbinden mit einer Bohrkette (84) mit einer Bohrkrone (86) an ihrem Ende, wobei sich das System aus einem Bohrlochstabilisierungswerkzeug (10) zusammensetzt, das wahlweise an eine Zement- und Flüssigkeitsquelle angeschlossen werden kann. Dabei setzt sich das Bohrlochstabilisierungswerkzeug (10) wie folgt zusammen: aus einem rohrförmigen Gehäuse (12) mit einem dadurch der Länge nach laufen Flußweg (14) mit einem oder mehreren nach außen gehenden vergrößerten Bereich/en (22), wobei die vergrößerten Bereiche in die Nähe der Wände des mit der Bohrkette (84) und der Bohrkrone (86) gebohrten Bohrlochs (80) kommen. Das Gehäuse weist eine oder mehrere seitliche Flüssigkeitsstrahlen bildende Öffnungen (24) auf, die vom Flußweg (14) durch die vergrößerten Bereiche (22) des Gehäuses (12) an dessen Außenseite gehen. Weiter sieht das Gehäuse eine im Flußweg (14) ausgeführte lösbare und verschiebbare Ventilhülse (30) vor, die zwischen einer ersten Stellung, in der die Flüssigkeitsstrahlen bildenden Öffnungen (24) durch die Ventilhülse (30) verschlossen werden und die durch die Bohrkette gepumpte Flüssigkeit ungehindert durch den Innenraum der Ventilhülse (30) des Gehäuses (12) strömen kann und einer zweiten Stellung bewegt werden kann, wobei die Flüssigkeitsstrahlen bildenden Öffnungen (24) geöffnet sind. Dabei kann die Ventilhülse (30) aus der ersten Stellung in die zweite Stellung bewegt werden, indem ein Betätigungsstöpsel (50) lösbar in die Hülse eingreift und diese verstopft, wenn der Betätigungsstöpsel (50) durch die Bohrkette (84) in das Gehäuse (12) geströmt wird, wodurch die durch die Bohrkette (84) gepumpte Flüssigkeit durch die Flüssigkeitsstrahlen bildenden Öffnungen (24) geleitet wird. Danach wird die Ventilhülse (30) aus der zweiten Stellung in die erste Stellung zurückgezogen, wenn der Betätigungsstöpsel (50) aus dem Gehäuse (12) entfernt wird.
  2. Ein Bohrlochstabilisierungssystem nach Anspruch 1, bei dem die Ventilhülse durch einen ringförmigen Ansatz (66) vom Bewegen an der zweiten Stellung vorbei gehindert wird. Dieser Ansatz erstreckt sich in den Flußweg (14) des Gehäuses (12). Die Ventilhülse (39) wird durch ein sich radial nach außen ausdehnendes Spannfutter (40), das mit der Ventilhülse (30) verbunden ist, lösbar in der ersten Stellung gehalten. Dieses Spannfutter (40) greift in eine Rille (46) im Gehäuse (12) ein. Die vergrößerten Bereiche (22) des rohrförmigen Gehäuses (12) setzten sich aus zwei oder mehreren darauf ausgeführten und sich nach außen ausdehnenden Rippen (22) zusammen. Und/oder die seitlichen Flüssigkeitsstrahlen bildenden Öffnungen (24) sind radial im Gehäuse (12) ausgebildet.
  3. Ein Bohrlochstabilisierungssystem nach Anspruch 2, bei dem die Ventilhülse (30) durch das Spannfutter (40) lösbar mit dem Betätigungsstöpsel (50) verbunden wird, das durch die Oberflächen des Flußweges des Gehäuses (14) nach innen in den Eingriff in eine Rille (62) im Betätigungsstöpsel (50) getrieben wird, wenn die Ventilhülse (30) durch den Betätigungsstöpsel (50) aus der ersten Stellung in die zweite Stellung getrieben wird.
  4. Eine Vorgehensweise der Stabilisierung einer unbeständigen unterirdischen Zone oder Formation (82), durch die beim Bohren eines Bohrlochs mit einer Bohrkrone (86) ein Bohrloch (80) verläuft, wobei die Bohrkrone mit einer Bohrkette (84) verbunden ist und sich die Vorgehensweise aus den folgenden Schritten zusammensetzt:
    (a) dem Einbauen eines Bohrlochstabilisierungswerkzeugs (10) in die Bohrkette (84) in der Nähe der Bohrkrone (86), wobei ein der Länge nach durch das Werkzeug verlaufender (10) Flußweg (14) vorgesehen ist, der eine oder mehrere seitliche Flüssigkeitsstrahlen bildende Öffnungen (24) aufweist und ein internes Ventil (30) vorsieht, das wahlweise zwischen einer ersten Stellung, bei der die durch die Bohrkette (84) gepumpte Flüssigkeit durch den Flußweg (14) des Werkzeugs (10) und die Bohrkrone (86) strömt und einer zweiten Stellung bewegt werden kann, bei der die Flüssigkeit durch die seitlichen Flüssigkeitsstrahlen bildenden Öffnungen (24) des Werkzeugs (10) strömt;
    (b) dem Bohren des Bohrlochs (80), wobei sich das Ventil (30) im Werkzeug (10) in der ersten Stellung befindet, bis das Bohrloch (80) durch die unbeständige unterirdische Zone oder Formation (82) gebohrt wurde;
    (c) dem Bewegen des Ventils (30) des Werkzeugs (10) aus der ersten in die zweite Stellung;
    (d) dem Pumpen eines verfestigungsfähigen zementösen Stoffes durch die Bohrkette (84) und durch die strahlenbildenden Öffnungen (24) des Werkzeugs (10) mit gewisser Rate, während das Werkzeug (10) durch den vergrößerten Bereich des Bohrlochs (80) in einer unbeständigen Zone oder Formation (82) bewegt wird, währenddessen der vergrößerte Bereich des Bohrlochs (80) mit dem verfestigungsfähigen zementösen Stoff gefüllt wird;
    (e) dem Bewegen des Ventils (30) des Werkzeugs (10) zurück in die erste Stellung, währenddessen sich der zementöse Stoff härten kann und
    (f) dem Bohren des Bohrlochs (80) durch den gehärteten zementösen Stoff.
  5. Eine Vorgehensweise nach Anspruch 4, wobei das Ventil (30) des Werkzeugs (10) eine Ventilhülse (30) ist, die gleitend im Flußweg (14) des Werkzeugs (10) ausgeführt ist und zwischen ersten und zweiten Stellungen bewegt werden kann. Vorzugsweise wird die Ventilhülse (30) durch Strömen eines Bestätigungsstöpsels (50) durch die Bohrkette (84) in das Werkzeug (10) in den lösbaren Eingriff mit der Ventilhülse (30) aus der ersten in die zweite Stellung nach Schritt (c) bewegt. Dabei werden der Betätigungsstöpsel (50) und die Ventilhülse (30) durch den Flüssigkeitsdruck in die zweite Stellung bewegt. Vorzugsweise wird die Ventilhülse (30) nach Schritt (e) aus der zweiten wieder in die erste Stellung zurückversetzt, indem der Betätigungsstöpsel (50) aus dem Werkzeug (10) und der Bohrkette (84) entfernt wird. Dabei wird die Ventilhülse (30) aus der zweiten in die erste Stellung zurückgezogen, wenn der Betätigungsstöpsel (50) sich aus dem Eingriff mit der Ventilhülse (30) löst.
  6. Eine Vorgehensweise nach Ansprüchen 4 oder 5, wobei der Betätigungsstöpsel (50) einen Laschenhals (64) beinhaltet und durch ein Laschenwerkzeug (72) entfernt wird. Vorzugsweise hängt das Laschenwerkzeug (72) in der Bohrkette (84) an einer Drahtleine, einer Slickleine oder einer Arbeitskette.
  7. Eine Vorgehensweise nach Ansprüchen 4 bis 6, bei der die Ventilhülse (30) des Bohrlochstabilisierungswerkzeugs (10) durch einen ringförmigen Ansatz (66), der in den Flußweg (14) vorsteht, am Bewegen über die zweite Stellung hinaus gehindert wird. Die Ventilhülse (30) des Bohrlochstabilisierungswerkzeugs (10) wird durch ein sich radial nach außen ausdehnendes Spannfutter (40), das mit der Ventilhülse (30) verbunden ist, in der ersten Stellung arretiert, wo das Spannfutter (40) in eine Rille (46) im Werkzeug (10) eingreift. Das Werkzeug (10) hat einen oder mehrere sich nach außen ausdehnende/n vergrößerte/n Bereich/e (22), der/die sich aus zwei oder mehr und vorzugsweise drei oder vier nach außen streckenden Rippen (22) zusammensetzt/zusammensetzen, die auf dem Werkzeug gebildet sind. Und/oder das Werkzeug (10) beinhaltet weiter drei oder mehr und vorzugsweise sechs oder mehr seitliche Flüssigkeitsstrahlen bildende Öffnungen (24).
  8. Eine Vorgehensweise nach Anspruch 7, bei der die Ventilhülse (30) des Bohrlochstabilisierungswerkzeugs (10) durch das Spannfutter (40) lösbar mit dem Betätigungsstöpsel (50) verbunden wird. Dabei wird das Spannfutter (40) durch die Oberflächen des Flußweges (14) des Gehäuses (12) in den Eingriff in eine Rille (62) im Betätigungsstöpsel (50) getrieben, wenn die Ventilhülse (30) durch den Betätigungsstöpsel (50) aus der ersten Stellung in die zweite Stellung bewegt wird.
  9. Eine Vorgehensweise nach Ansprüchen 4 bis 8, weiter bestehend aus dem Schritt des Bewegens der Bohrkette (84) und der Bohrkrone (86) nach Schritt (d) und vor Schritt (e) an eine Stelle im Bohrloch (80) über dem vergrößerten Bereich des Bohrlochs (80), der mit dem verfestigungsfähigen zementösen Stoff gefüllt ist.
  10. Ein Bohrlochstabilisierungssystem zum Vergrößern und Einführen eines verfestigungsfähigen zementösen Stoffes in eine unbeständige unterirdische Zone oder Formation, durch die ein Bohrloch verläuft, ausgeführt zum Verbinden mit einer Bohrkette anstelle der zum Bohren des Bohrlochs verwendeten Bohrkrone, bestehend aus einem Bohrlochstabilisierungswerkzeug (100), das wahlweise mit einer Zement- und einer Flüssigkeitsquelle verbunden werden kann, wobei das Bohrlochstabilisierungswerkzeug (100) aus folgendem besteht: einem rohrförmigen Gehäuse (110) mit der Länge nach dadurch verlaufendem Flußweg (112), das an seinem oberen Ende ein Gewinde (114) zur Verbindung mit einer Bohrkette und mehrere seitliche Öffnungen (116) aufweist, die vom Flußweg (112) bis zur Außenseite des Gehäuses (110) verlaufen. Weiter beinhaltet das Gehäuse einen ringförmigen Ansatz (118), der unterhalb der seitlichen Öffnungen (116) in den Flußweg (112) vorsteht und dem Landen des Betätigungsstöpsels (120) dient sowie mehrere rohrförmige Arme (122), mit denen die seitlichen Öffnungen (124) und der Flußweg (123) an dessen Außenseite verbunden sind. Dabei sind die Arme (122) so lang, daß die Flüssigkeitsstrahlen bildenden Öffnungen (124) an den externen Enden der Arme (122) sich in der Nähe der Wände des Bohrlochs befinden, wenn das Werkzeug (100) mit der Bohrkette verbunden und in das Bohrloch eingeführt ist.
  11. Ein Bohrlochstabilisierungssystem nach Anspruch 10, weiter bestehend aus einem Bohrlochzentralisiergerät, das in der Nähe des Werkzeugs in die Bohrkette eingebaut wird.
  12. Ein Bohrlochstabilisierungssystem nach den Ansprüchen 10 oder 11, bei dem die rohrförmigen Arme (122) in die seitlichen Öffnungen (116) des Gehäuses (110) des Werkzeugs (100) eingeschraubt und in einer Anzahl vorhanden sind, die geringer ist als die Anzahl der Öffnungen (116) im Gehäuse (110), wobei das Werkzeug (100) weiter eine oder mehrere Verschlußschrauben (130) beinhaltet, die mit den Öffnungen (116) verschraubt sind, in die keine Arme (122) eingeschraubt sind.
  13. Ein Bohrlochstabilisierungssystem nach den Ansprüchen 10 oder 11, bei dem das Gehäuse (110) des Werkzeugs (100) sieben seitliche Öffnungen (116) aufweist, wovon sich vier im gleichen Abstand um die Peripherie des Gehäuses (110) auf einer ersten Ebene des Gehäuses (110) und drei Öffnungen (116) im gleichen Abstand um die Peripherie des Gehäuses (110) auf einer zweiten Ebene des Gehäuses (110) befinden. Bevorzugt wird, daß sieben rohrförmige Arme (122) in die seitlichen Öffnungen (116) eingeschraubt werden. Alternativ werden vier rohrförmige Arme (122) in die vier Öffnungen (116) auf der ersten Ebene des Gehäuses (110) eingeschraubt. Weiter umfaßt das Werkzeug (100) drei Verschlußschrauben (130), die in die drei Öffnungen (116) auf der zweiten Ebene eingeschraubt werden. Alternativ werden drei rohrförmige Arme (122) in die drei Öffnungen auf der zweiten Ebene eingeschraubt. Das Werkzeug umfaßt dann vier Verschlußschrauben (130), die in die vier Öffnungen (116) auf der ersten Ebene eingeschraubt werden.
  14. Eine Vorgehensweise der Stabilisierung einer unbeständigen unterirdischen Zone oder Formation, durch die während der Bohrung eines Bohrlochs mit einer Bohrkrone ein Bohrloch geht und die Bohrkrone mit einer Bohrkette verbunden ist, bestehend aus den folgenden Schritten:
    (a) dem Entfernen der Bohrkette mit der -krone aus dem Bohrloch;
    (b) dem Einbauen eines Bohrlochstabilisierungswerkzeugs (100) in eine Bohrkette anstelle einer Bohrkrone, wobei sich das Bohrlochstabilisierungswerkzeug (100) aus folgenden zusammensetzt: einem rohrförmigen Gehäuse (110) mit einem der Länge nach dadurch verlaufenden Flußweg (112), an dessen oberem Ende sich ein Gewinde (114) zur Verbindung mit einer Bohrkette befindet sowie mehreren seitlichen Öffnungen (116), die vom Flußweg (112) bis zur Außenseite des Gehäuses (110) verlaufen. Weiter beinhaltet das Werkzeug (100) unterhalb der seitlichen Öffnungen (116) einen ringförmigen Sitz (118), der sich in dem Flußweg (122) bildet, der der Aufnahme eines Betätigungsstöpsels (120) dient sowie mehrere rohrförmige Arme (124), die mit den Öffnungen (116) des Gehäuses (110) verbunden sind und durch die Flußwege (123) verlaufen, mit denen Flüssigkeitsstrahlen bildende Öffnungen (124) an der Außenseite des Flußweges (123) verbunden sind. Dabei sind die Arme so lang, daß die Flüssigkeitsstrahlen bildenden Öffnungen (124) an den äußeren Enden der Arme in der Nähe der Wände des Bohrlochs positioniert sind, wenn das Werkzeug (100) mit der Bohrkette verbunden und in das Bohrloch eingeführt ist;
    (c) dem Einführen der Bohrkette und des Bohrlochstabilisierungssystems (100) in das Bohrloch, wobei das Werkzeug (100) in dem Bereich des Bohrlochs in der unbeständigen Zone oder Formation positioniert ist:
    (d) dem Einströmen des Betätigungsstöpsels (120) mit der durch die Bohrkette in das Gehäuse (110) des Werkzeugs (100) gepumpten Flüssigkeit, wodurch der Betätigungsstöpsel (120) auf dem ringförmigen Ansatz (118) im Gehäuse (110) landet und die Flüssigkeit durch die rohrförmigen Arme (122) des Werkzeugs (100) und deren Flüssigkeitsstrahlen bildende Öffnungen (124) geleitet wird;
    (e) dem Pumpen des verfestigungsfähigen zementösen Stoffes durch die Bohrkette und die flüssigkeitsstrahlenden Öffnungen (124) mit gewisser Rate, während das Werkzeug durch den vergrößerten Bereich des Bohrlochs in der unbeständigen Zone oder Formation bewegt wird. Dadurch füllt sich der vergrößerte Bereich des Bohrlochs mit dem verfestigungsfähigen zementösen Stoff;
    (f) dem Entfernen der Bohrkette und des Bohrlochstabilisierungswerkzeugs (100) aus dem Bohrloch, während sich der zementöse Stoff härtet;
    (g) dem erneuten Verbinden der Bohrkrone mit der Bohrkette und dem Einführen der Bohrkette mit der Bohrkrone in das Bohrloch und
    (h) dem Bohren des Bohrlochs durch den gehärteten zementösen Stoff.
  15. Eine Vorgehensweise nach Anspruch 14, bei der die rohrförmigen Arme (122) in die Öffnungen (116) des Gehäuses (110) des Werkzeugs (100) eingeschraubt sind und in einer Anzahl geringer als die Anzahl der Öffnungen (116) im Gehäuse (110) vorhanden sind, während das Werkzeug (100) weiter eine oder mehrere Verschlußschrauben (130) aufweist, die in die Öffnungen (116) eingeschraubt sind, in denen kein Arm (122) eingeschraubt ist.
  16. Eine Vorgehensweise nach Anspruch 14, bei der das Gehäuse (110) des Werkzeugs (100) sieben seitliche Öffnungen (116) aufweist, wovon vier im gleichen Abstand zueinander um die Peripherie des Gehäuses (110) auf einer ersten Ebene des Gehäuses (110) und drei der Öffnungen (116) im gleichen Abstand zueinander um die Peripherie des Gehäuses (110) auf einer zweiten Ebene des Gehäuses (1 10) ausgeführt sind. Dabei wird bevorzugt, daß sieben der rohrförmigen Arme (122) mit den Öffnungen (116) verschraubt sind. Alternativ werden vier der rohrförmigen Arme (122) in die vier Öffnungen (116) auf der ersten Ebene des Gehäuses (110) geschraubt, während das Werkzeug (100) drei weitere Verschlußschrauben (130) umfaßt, die in die drei Öffnungen (116) auf der zweiten Ebene eingeschraubt sind. Oder es werden drei rohrförmige Arme (122) in die drei Öffnungen (116) auf der zweiten Ebene eingeschraubt, während das Werkzeug (110) weiter vier Verschlußschrauben (130) beinhaltet, die in die vier Öffnungen (116) auf der zweiten Ebene geschraubt werden. Alternativ können zwei rohrförmige Arme in zwei sich gegenüberliegende der vier Öffnungen (116) auf der ersten Ebene des Gehäuses (100) eingeschraubt werden, während das Werkzeug (100) weiter zwei Verschlußschrauben (130) vorsieht, die in die zwei sich gegenüberliegenden Öffnungen (116) auf der ersten Ebene geschraubt werden und drei Verschlußschrauben (130) aufweist, die in die drei Öffnungen (116) auf der zweiten Ebene eingeschraubt werden.
  17. Eine Vorgehensweise nach Anspruch 14 bis 16, weiter bestehend aus dem folgenden Schritt: dem Einstellen der Länge der rohrförmigen Arme (122) vor dem Verbinden des Bohrlochstabilisierungswerkzeugs (100) mit der Bohrkette gemäß Schritt (b), wobei die Arme mit dem Gehäuse (110) des Werkzeugs (100) je nach Bedarf verbunden sind, um die Flüssigkeitsstrahlen bildenden Öffnungen (124) an deren Außenseite in die Nähe der Wände des Bohrlochs zu bringen, wenn das Werkzeug (100) darin eingeführt wird.
  18. Eine Vorgehensweise nach Anspruch 14 bis 17, weiter bestehend aus dem folgenden Schritt: dem Einbauen des Bohrkettenzentralisiergeräts in die Bohrkette in der Nähe des Bohrlochstabilisierungswerkzeugs (100), das mit der Bohrkette gemäß Schritt (b) verbunden ist.
  19. Eine Vorgehensweise nach den Ansprüchen 4 bis 9 oder 14 bis 18, wobei der härtbare zementöse Stoff, der gehärtet werden kann ein oder mehrere hydraulische/r Stoff/e, ein Kunstharz oder ein Polymer ist/sind. Vorgezogen wird/werden ein oder mehrere Portlandzemente, Zement mit hohem Aluminiumoxidgehalt, Schlacke, Flugasche mit Kalk, Flugasche mit freiem Kalk, kondensierter Silikastaub mit Kalk, Gipszement, Epoxidharz, Furanharz, Acrylamidpolymergels.
  20. Eine Vorgehensweise nach den Ansprüchen 4 bis 9 oder 14 bis 19, weiter bestehend aus dem zusätzlichen Schritt des Pumpens von Flüssigkeit durch die strahlenbildenden Öffnungen (24) mit gewisser Rate, während das Werkzeug (10) durch den Bereich des Bohrlochs (80) in der unbeständigen Zone oder Formation (82) bewegt wird, um dadurch den Durchmesser des Bohrlochs (80) durch Flüssigkeitsspritzerosion zu vergrößern.
EP97305817A 1996-08-02 1997-08-01 Vorrichtung und Verfahren zum Stabilisieren eines Bohrloches Expired - Lifetime EP0823537B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US692868 1991-04-29
US08/692,868 US5711375A (en) 1996-08-02 1996-08-02 Well stabilization tools and methods
US692665 1996-08-06
US08/692,665 US5823273A (en) 1996-08-02 1996-08-06 Well stabilization tools and methods

Publications (2)

Publication Number Publication Date
EP0823537A1 EP0823537A1 (de) 1998-02-11
EP0823537B1 true EP0823537B1 (de) 2000-01-05

Family

ID=27105009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97305817A Expired - Lifetime EP0823537B1 (de) 1996-08-02 1997-08-01 Vorrichtung und Verfahren zum Stabilisieren eines Bohrloches

Country Status (4)

Country Link
EP (1) EP0823537B1 (de)
CA (1) CA2212198C (de)
DE (1) DE69701072T2 (de)
NO (1) NO318594B1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564867B2 (en) 1996-03-13 2003-05-20 Schlumberger Technology Corporation Method and apparatus for cementing branch wells from a parent well
AU1627999A (en) * 1997-12-12 1999-07-05 Schlumberger Technology Corporation Tubing plug for operating a downhole device
US5957206A (en) * 1998-11-24 1999-09-28 Schlumberger Technology Corporation Plug for operating a downhole device using tubing pressure
GB2366816B (en) * 2000-07-11 2005-02-16 Schlumberger Holdings Method and apparatus for cementing branch wells from a parent well.
BRPI0722074A2 (pt) * 2006-12-27 2014-04-08 Prad Res & Dev Ltd Problemas de perda de circulação em uma zona de um furo de poço, e dispositivo
CN108678671B (zh) * 2018-07-24 2019-04-23 西南石油大学 一种海底天然气水合物采掘滑套式喷射回收装置
CN109057759B (zh) * 2018-09-03 2024-04-30 中国石油天然气集团有限公司 海相可燃冰水力开发装置
AU2021277744A1 (en) * 2021-12-03 2023-06-22 Manja, Feras MR Implementation of soiled consolidation treatment / fluids in newly drilled CSG / CBM wells.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999545A (en) * 1957-06-03 1961-09-12 Baker Oil Tools Inc Retrievable plug
FR2450937A1 (fr) * 1979-03-09 1980-10-03 Commissariat Energie Atomique Procede et dispositif de forage
GB2066874B (en) * 1980-01-02 1983-07-27 Shell Int Research Method of driling a borehole through cavernous underground formations
US4709760A (en) * 1981-10-23 1987-12-01 Crist Wilmer W Cementing tool
US4487263A (en) * 1982-12-27 1984-12-11 William Jani Cement staging apparatus for wells and including well casing and a process therefor

Also Published As

Publication number Publication date
NO318594B1 (no) 2005-04-18
CA2212198A1 (en) 1998-02-02
NO973553D0 (no) 1997-08-01
DE69701072D1 (de) 2000-02-10
EP0823537A1 (de) 1998-02-11
NO973553L (no) 1998-02-03
DE69701072T2 (de) 2000-12-14
CA2212198C (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US5823273A (en) Well stabilization tools and methods
US5944105A (en) Well stabilization methods
US5375661A (en) Well completion method
US9376878B2 (en) Apparatus and method for setting a cementitious material plug
US6513598B2 (en) Drillable floating equipment and method of eliminating bit trips by using drillable materials for the construction of shoe tracks
US5343968A (en) Downhole material injector for lost circulation control
AU2016423788B2 (en) Systems and methods for controlling fluid flow in a wellbore using a switchable downhole crossover tool with rotatable sleeve
US10060210B2 (en) Flow control downhole tool
US20020023754A1 (en) Method for drilling multilateral wells and related device
EP0823537B1 (de) Vorrichtung und Verfahren zum Stabilisieren eines Bohrloches
US6712144B2 (en) Method for drilling multilateral wells with reduced under-reaming and related device
CN211422619U (zh) 双分支井选择生产工艺管柱和双分支井
AU2016423793B2 (en) Switchable crossover tool with rotatable chamber
AU2016423795B2 (en) Methods for cementing a well using a switchable crossover device
AU2016423784B2 (en) Systems and methods for controlling fluid flow in a wellbore using a switchable downhole crossover tool
RU2152507C1 (ru) Способ изоляции водопроявляющих пластов
GB2600351A (en) Systems and methods for controlling fluid flow in a wellbore using a switchable downhole crossover tool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBB, EARL D.

Inventor name: DUELL, ALAN B.

Inventor name: MURRAY, DICK A.

Inventor name: BEIRUTE, ROBERT M.

Inventor name: ROGERS, HENRY E.

Inventor name: RAVI, KRISHNA M.

17P Request for examination filed

Effective date: 19980204

17Q First examination report despatched

Effective date: 19980429

AKX Designation fees paid

Free format text: DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 69701072

Country of ref document: DE

Date of ref document: 20000210

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050727

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050728

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050803

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050809

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801