EP0820529B1 - Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel - Google Patents

Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel Download PDF

Info

Publication number
EP0820529B1
EP0820529B1 EP96907260A EP96907260A EP0820529B1 EP 0820529 B1 EP0820529 B1 EP 0820529B1 EP 96907260 A EP96907260 A EP 96907260A EP 96907260 A EP96907260 A EP 96907260A EP 0820529 B1 EP0820529 B1 EP 0820529B1
Authority
EP
European Patent Office
Prior art keywords
temperature
process according
deformation
rolling
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96907260A
Other languages
German (de)
French (fr)
Other versions
EP0820529A1 (en
Inventor
Heinz Kron
Karlheinz Kutzenberger
Günther Manig
Gustav Zouhar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0820529A1 publication Critical patent/EP0820529A1/en
Application granted granted Critical
Publication of EP0820529B1 publication Critical patent/EP0820529B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Definitions

  • the invention relates to a method for producing a hot-made elongated product, in particular rod or tube made of high alloy or hypereutectoid steel according to the generic concept of the main claim.
  • High-alloy or hypereutectic steels especially rolling bearing steel such as B. 100Cr6 form when cooling from high temperatures (1100 to 1250 ° C) Grain boundary carbides and pearlitic structural components. These worsen one mechanical workability and hardenability as well as non-cutting forming.
  • the Suitable structures with spherical cementite can only be processed after long annealing processes (GKZ annealing) of 16 hours and more can be set. There have been a lot of considerations in the past on how to do this Shorten the duration of the soft annealing or even completely replace the soft annealing can.
  • thermomechanically treated structure shows such a finely dispersed distribution of the carbides that the limits of the resolving power of the light microscope are reached.
  • the more favorable distribution is justified by an increase in the dislocation density and the sub-grain boundaries resulting from the dislocations, which creates new nucleation sites for the carbides.
  • From DE-PS 2361330 is a process for the production of cylindrical Rolling elements made of steel with 0.7 to 1.2 mass percent in percent carbon known.
  • the steel wire hot-rolled at 1000 ° C quickly becomes cooled to a temperature corresponding to its lower pearlite level, then isothermally converted and hardness by cold drawing without intermediate annealing brought by 50 HRC.
  • the rapid cooling of the wire as well as the Subsequent isothermal transformation becomes a structure with fine lamellar pearlite achieved, which makes it possible to close the wire after descaling and phosphating pull without the need for an intermediate annealing.
  • the object of the present invention is a particularly inexpensive method for the production of a hot-formed elongated product in particular Rod or tube made of high-alloy steel or hypereutectoid steel in particular Rolling steel to specify, in which a structure is created that without a previous one Soft annealing such as B. Annealing on spherical cementite (GKZ) for a chipless Further processing and a final heat treatment is very suitable.
  • Another The task is to create a structure that is without a previous one Soft annealing for subsequent machining with a final one Final heat treatment is also suitable.
  • the coordinated process steps make it possible to produce the desired structure, with a Brinell hardness of less than or equal to 280 HB30, preferably less than 250 HB30, being achieved in the case of rolling bearing steel.
  • This structure also makes it possible, for example, to supply hot-worked pipes directly to processing without soft annealing.
  • the optimized manufacturing process is particularly cost-effective because the soft annealing and the associated transport and work steps are eliminated.
  • the processing of the elongated products which are hot-produced according to the invention can be cold drawing or cold vocationalage or cold rolls or transverse rolls. The method steps which contribute significantly to the success of the method according to the invention are explained in detail below.
  • a first process step is the controlled heating or cooling in the sense of temperature compensation over the length and extent of the rolling stock having a different temperature, the controlled compensation temperature being below the predetermined temperature in the reheating furnace.
  • the above-mentioned measure has the purpose, on the one hand, of being able to set the temperature of the rolling stock very precisely, taking into account the control options of the reheating furnace. Furthermore, this measure is intended to ensure that the most exact and reproducible conditions are possible for the temperature-dependent measurement of the wall thickness in the pipe before it enters the reducing mill.
  • the measure to be taken, ie heating or cooling, depends on the thickness of the material to be rolled.
  • the temperature of the tube after the first forming, punching, elongation and impacting will be above 700 ° C.
  • temperature compensation is achieved by controlled cooling to a predetermined compensation temperature in a temperature range between 650 ° and 700 ° C.
  • the temperature is frequently below 650 ° so that the temperature compensation must then take place via controlled heating to a predetermined compensation temperature in the previously mentioned range between 650 and 700 ° C.
  • the Ac 1 or Ac ma temperature is primarily dependent on the carbon content of the material quality used and on the forming history.
  • the former temperature range corresponds to the two-phase region ⁇ + Fe 3 C in the continuous time-temperature conversion diagram (ZTU), the latter to the two-phase region ⁇ + Fe 3 C.
  • Another measure for the proposed combination of coordinated process steps relates to the final continuous rolling process, preferably in the stretch-reducing mill.
  • the intervention possibilities in this fast-running continuous rolling process are low.
  • it is important for the proposed method that, on the one hand, a minimum partial deformation per extension in the reducing mill is expressed as the elongation ⁇ RW ⁇ 1.03 and, on the other hand, a minimum degree of elongation for the total deformation ⁇ ⁇ 1.5.
  • the total stretch can even be somewhat lower, ie ⁇ ⁇ 1.4.
  • the temperature increase resulting during the rolling due to the dissipation work or a temperature drop resulting due to excessive cooling should be as small as possible.
  • the method according to the invention is generally known for all Pipe production processes applicable, which end up with a reduction mill or without train or sizing mill.
  • this can be a procedure a Rohrkonti Avenue, Stopfen Avenue or an Asselwalzwerk. All it is particularly suitable for the push bench process for the production of seamless tubes Rolling steel suitable.
  • a feedstock for the process of the invention block casting (forged or rolled) or continuous casting (square or round) come in Question, the continuous casting material in a known manner before rolling use is deformed and annealed.
  • the method is special is to be used advantageously if the chemical analysis of the known Rolling steel is modified. This affects the sulfur and Phosphorus content and on the other hand the ratio of chromium to carbon.
  • the sulfur and phosphorus content should not exceed 0.005 percent by mass amount to possible melting at the grain boundaries with increasing Forming speed taking into account the ratio of manganese to Avoid sulfur by suppressing FeS. This is a risk of melting through the required high forming temperature in the first forming steps given when the strain rates are such that they become one lead to a corresponding temperature increase. For this reason, the The rate of deformation in the first forming stages was chosen so that the Temperature inside the rolling stock, d. H. not at the worst point 1170 ° C exceeds. In addition, low levels of S and P may have a beneficial effect following chipless forming processes.
  • the lowered S and P levels are also beneficial in secondary metallurgy to set a low oxygen content in the melt, which leads to a Improvement in the oxide purity leads.
  • the chromium to carbon ratio is said to be in the range between 1.35 and 1.52 preferably 1.45.
  • the carbon content is then, for example, 0.94 Mass fractions in percent and the chromium content about 1.36 mass fractions in percent. This ratio can have a positive effect on the undesired carbide rate become.
  • Another improvement is the cooling process after the last one Forming process.
  • the rolling stock After leaving the rolling mill, the rolling stock is in still air or cooled to a temperature by means of an air shower, which is shown in the ZTU diagram corresponds to a structure above the martensite point and below the nose of the bainite.
  • the formed material is isothermal for several hours in this area held.
  • This practice has been aimed at reducing the Internal stresses found to be favorable. This can be done in the way take place that the cooling bed at a suitable location, for example, insulating covered or the rolling stock is fed to a temperature compensation or tempering furnace becomes.
  • a hot tube of 40.9 mm outer diameter x 4.8 mm wall thickness made of 100Cr6 is to be produced on a pipe ram bench system.
  • Insert blocks with a length of approx. 850 mm are cut from a continuous casting rod with a diameter of 220 mm and a length of 11000 mm.
  • the 100Cr6 insert blocks are in the as-cast state, ie they are neither heat-treated nor pre-deformed.
  • the cut blocks are placed in a rotary hearth furnace and heated to approx. 1140 ° C. After a total heating time of 150 minutes, the blocks are removed individually from the furnace and, after descaling the press water, fed to the punch press.
  • the first forming into a perforated piece takes place in the punch press.
  • the hole piece has the following dimensions Outside diameter 223 mm Inner diameter 121 mm Wall thickness 51 mm.
  • the strain rate in this example is 0.45 s -1 and affects the optimal temperature window.
  • Another punching process follows the punch press, namely elongation in a shoulder mill. This deformation creates a sleeve with an outer diameter of 192 mm, an inner diameter of 112 mm and a wall thickness of 40 mm.
  • the third forming step is followed by bumping on the push bench.
  • a bench bench blank is manufactured with an outside diameter of 122.8 mm, an inside diameter of 112 mm and a wall thickness of 5.4 mm. After pushing through a number of stands, the blanks are released from the rod as an internal tool in a release roller mill.
  • the temperature of the slug drops further until the pull-out duo and in the aforementioned case reaches a level in the range of 650 to 700 ° C. After pulling out the bumper, the slug bottom is scooped.
  • the slug bottom is scooped prior to the entry of the slug into the reheating device.
  • it is subjected to controlled cooling in order to achieve a uniform temperature distribution in the range between 650 ° C. and 700 ° C.
  • a temperature level of approx. 670 ° C is aimed for.
  • the slugs are held for a certain time by means of a heat-insulated buffer, so that heat can flow from the areas of the slug with a higher temperature level to the areas with a low temperature level.
  • the thermal insulation ensures that the overall level of the bobbin temperature does not drop below the specified target value.
  • the temperature of the reheating furnace is set so that the temperature of the material to be formed is approximately 740 ° C.
  • the billet enters a stretch-reducing mill. This consists of a large number of three-roll stands, which are each offset by 120 ° in a rolling line. 19 frames are used for the selected example with the final dimensions of 40.9 x 4.8 mm.
  • the partial forming in the basic scaffolding is estimated to be between 7.1 and 8.1% decrease in cross-section. The total deformation is 72.7% corresponding to an elongation ⁇ of 3.66.
  • the forming conditions are chosen such.
  • the tube made of 100Cr6 rolled in this way has, after cooling, a structure that approximates the GKZ structure.
  • the finely dispersed structure consists of molded cementite with minor pearlite residues.
  • the Brinell hardness of the tube thus produced is less than 250 HB30.
  • the spread of hardness values is low.
  • the structure is finer than after conventional GKZ annealing as the comparison of Figure 1 with Figure 2 shows.
  • the same final dimension is 40.9 mm outer Diameter x 4.8 mm wall thickness made of 100Cr6 also rolled in the usual way been.
  • the hardness determined on these tubes is 328 HB30 with one adjustment of the reheating oven to 1000 ° C. This hardness is so high that before a Further processing a GKZ annealing is required.
  • the cooling according to the ZTU diagram is advantageous to control the cooling according to the ZTU diagram so that above the martensite point but below the bainite nose isothermal Hold time is introduced.
  • the temperature range is preferably between 240 and 300 ° C. After holding in this temperature area for more than 3.5 hours can be cooled to room temperature.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines warmgefertigten langgestreckten Erzeugnisses insbesondere Stab oder Rohr aus hochlegiertem oder übereutektoidem Stahl gemäß dem Gattungsbegriff des Hauptanspruches.The invention relates to a method for producing a hot-made elongated product, in particular rod or tube made of high alloy or hypereutectoid steel according to the generic concept of the main claim.

Hochlegierte oder übereutektiode Stähle insbesondere Wälzlagerstahl wie z. B. 100Cr6 bilden bei Abkühlung von hohen Temperaturen (1100 bis 1250° C) Korngrenzenkarbide und perlitische Gefügebestandteile. Diese verschlechtern eine mechanische Bearbeitbarkeit und Härtbarkeit sowie eine spanlose Umformung. Das zur Weiterverarbeitung geeignete Gefüge mit kugeligem Zementit kann nur nach langen Glühprozessen (GKZ-Glühung) von 16 Stunden und mehr eingestellt werden. In der Vergangenheit hat es eine Vielzahl von Überlegungen gegeben, wie man die Dauer der Weichglühung verkürzen oder sogar die Weichglühung völlig substituieren kann.High-alloy or hypereutectic steels, especially rolling bearing steel such as B. 100Cr6 form when cooling from high temperatures (1100 to 1250 ° C) Grain boundary carbides and pearlitic structural components. These worsen one mechanical workability and hardenability as well as non-cutting forming. The Suitable structures with spherical cementite can only be processed after long annealing processes (GKZ annealing) of 16 hours and more can be set. There have been a lot of considerations in the past on how to do this Shorten the duration of the soft annealing or even completely replace the soft annealing can.

F. Mladen und E. Hornbogen haben den Einfluß einer thermomechanischen Behandlung auf die mechanischen Eigenschaften des Stahls 100Cr6 untersucht (Archiv Eisenhüttenwesen 49 (1978) Nr. 2, Seiten 449 bis 453). Das Austenitisieren erfolgte bei einer Temperatur oberhalb der Grenztemperatur zur vollständigen Auflösung von Fe3C, die bei einem C-Gehalt von 0,99 Massenanteile in Prozent bei etwas weniger als 1100° C liegt. Das Warmwalzen wurde beginnend bei 1100° C bei gleichzeitiger Abkühlung bis auf 720° C durchgeführt. Die Abkühlung von 720° C auf Raumtemperatur erfolgte durch Wasserabschrecken. Einzelheiten der Umformabfolge sind in dieser Abhandlung nicht erwähnt. Das thermomechanisch behandelte Gefüge zeigt eine so feindisperse Verteilung der Karbide, daß die Grenzen des Auflösungsvermögens des Lichtmikroskops erreicht werden. Begründet wird die günstigere Verteilung durch eine Erhöhung der Versetzungsdichte und die aus den Versetzungen entstehenden Subkorngrenzen, wodurch neue Keimbildungsstellen für die Karbide geschaffen werden.F. Mladen and E. Hornbogen have examined the influence of a thermomechanical treatment on the mechanical properties of the steel 100Cr6 (Archive Eisenhüttenwesen 49 (1978) No. 2, pages 449 to 453). The austenitizing was carried out at a temperature above the limit temperature for the complete dissolution of Fe 3 C, which is at a C content of 0.99 parts by mass in percent at a little less than 1100 ° C. Hot rolling was carried out starting at 1100 ° C while cooling down to 720 ° C. The cooling from 720 ° C to room temperature was carried out by water quenching. Details of the forming sequence are not mentioned in this paper. The thermomechanically treated structure shows such a finely dispersed distribution of the carbides that the limits of the resolving power of the light microscope are reached. The more favorable distribution is justified by an increase in the dislocation density and the sub-grain boundaries resulting from the dislocations, which creates new nucleation sites for the carbides.

Aus der DE-PS 2361330 ist ein Verfahren zur Herstellung von zylindrischen Wälzkörpern aus einem Stahl mit 0,7 bis 1,2 Massenanteile in Prozent Kohlenstoff bekannt. Bei diesem Verfahren wird der bei 1000° C warmgewalzte Stahldraht rasch auf eine seiner unteren Perlitstufe entsprechende Temperatur abgekühlt, anschließend isotherm umgewandelt und durch Kaltziehen ohne Zwischenglühung auf eine Härte von 50 HRC gebracht. Durch das rasche Abkühlen des Drahtes sowie die anschließende isotherme Umwandlung wird ein Gefüge mit feinlamellarem Perlit erzielt, welches es ermöglicht, nach dem Entzundern und Phosphatieren den Draht zu ziehen, ohne daß eine zwischengeschaltete Glühung erforderlich wäre.From DE-PS 2361330 is a process for the production of cylindrical Rolling elements made of steel with 0.7 to 1.2 mass percent in percent carbon known. In this process, the steel wire hot-rolled at 1000 ° C quickly becomes cooled to a temperature corresponding to its lower pearlite level, then isothermally converted and hardness by cold drawing without intermediate annealing brought by 50 HRC. By the rapid cooling of the wire as well as the Subsequent isothermal transformation becomes a structure with fine lamellar pearlite achieved, which makes it possible to close the wire after descaling and phosphating pull without the need for an intermediate annealing.

Aufgabe der vorliegenden Erfindung ist es, ein besonders kostengünstiges Verfahren zur Herstellung eines warmgefertigten langgestreckten Erzeugnisses insbesondere Stab oder Rohr aus hochlegiertem Stahl oder übereutektoidem Stahl insbesondere Wälzlagerstahl anzugeben, bei dem ein Gefüge erzeugt wird, das ohne eine vorherige Weichglühung wie z. B. Glühung auf kugeligen Zementit (GKZ) für eine spanlose Weiterverarbeitung und eine Endwärmebehandlung bestens geeignet ist. Eine weitere Aufgabe besteht darin, ein Gefüge zu erzeugen, das ohne eine vorherige Weichglühung für eine spanende Weiterverarbeitung mit einer abschließenden Endwärmebehandlung ebenfalls geeignet ist.The object of the present invention is a particularly inexpensive method for the production of a hot-formed elongated product in particular Rod or tube made of high-alloy steel or hypereutectoid steel in particular Rolling steel to specify, in which a structure is created that without a previous one Soft annealing such as B. Annealing on spherical cementite (GKZ) for a chipless Further processing and a final heat treatment is very suitable. Another The task is to create a structure that is without a previous one Soft annealing for subsequent machining with a final one Final heat treatment is also suitable.

Diese Aufgabe wird mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen sind Bestandteil von Unteransprüchen.This object is with the specified in the characterizing part of claim 1 Features resolved. Advantageous further developments are part of subclaims.

Die aufeinander abgestimmten Verfahrensschritte ermöglichen es, das gewünschte Gefüge zu erzeugen, wobei im Fall des Wälzlagerstahles eine Brinellhärte kleiner gleich 280 HB30 vorzugsweise kleiner 250 HB30 erreicht wird. Dieses Gefüge ermöglicht es auch, beispielsweise warmgefertigte Rohre unter Verzicht einer Weichglühung direkt einer Bearbeitung zuzuführen. Der optimierte Fertigungsprozeß ist besonders kostengünstig, da die Weichglühung wie auch die damit verbundenen Transport- und Arbeitsgänge entfallen. Die Bearbeitung der erfindungsgemäß warmgefertigten langgestreckten Erzeugnisse kann ein Kaltziehen oder Kaltpilgern oder Kaltrollen bzw. Querwalzen sein.
Nachfolgend sind die Verfahrensschritte im einzelnen erläutert, die wesentlich zum Erfolg des erfindungsgemäßen Verfahrens beitragen. Nach den ersten Umformungen und vor der Wiedererwärmung für den nachfolgenden kontinuierlichen Walzprozeß ist ein erster Verfahrensschritt das geregelte Erwärmen oder Abkühlen im Sinne eines Temperaturausgleichs über Länge und Umfang des eine unterschiedliche Temperatur aufweisenden Walzgutes, wobei die angesteuerte Ausgleichstemperatur unterhalb der vorgegebenen Temperatur im Wiedererwärmungsofen liegt. Die vorgenannte Maßnahme hat zum einen den Zweck, die Temperatur des Walzgutes sehr genau auch unter Berücksichtigung der Regelungsmöglichkeiten des Wiedererwärmungsofens einstellen zu können. Weiterhin soll mit dieser Maßnahme erreicht werden, daß für die temperaturabhängige Wanddickenmessung beim Rohr vor Einlauf in das Reduzierwalzwerk möglichst exakte und reproduzierbare Bedingungen gegeben sind. Die wahlweise zu treffende Maßnahme, d. h. das Erwärmen oder Abkühlen, ist abhängig von der Dicke des zu walzenden Gutes. Bei dickwandigen Rohren wird beispielsweise bei einer Rohrstoßbankanlage die Temperatur des Rohres nach den ersten Umformungen Lochen, Elongieren und Stoßen oberhalb 700° C liegen. In einem solchen Fall wird ein Temperaturausgleich über ein geregeltes Abkühlen auf eine vorgegebene Ausgleichstemperatur in einen Temperaturbereich zwischen 650° und 700° C erreicht. Bei dünnwandigen Rohren, die sehr schnell an Temperatur verlieren, liegt häufig die Temperatur unterhalb 650°, so daß dann der Temperaturausgleich über ein geregeltes Erwärmen auf eine vorgegebene Ausgleichstemperatur in den zuvor genannten Bereich zwischen 650 und 700° C erfolgen muß.
The coordinated process steps make it possible to produce the desired structure, with a Brinell hardness of less than or equal to 280 HB30, preferably less than 250 HB30, being achieved in the case of rolling bearing steel. This structure also makes it possible, for example, to supply hot-worked pipes directly to processing without soft annealing. The optimized manufacturing process is particularly cost-effective because the soft annealing and the associated transport and work steps are eliminated. The processing of the elongated products which are hot-produced according to the invention can be cold drawing or cold pilgrimage or cold rolls or transverse rolls.
The method steps which contribute significantly to the success of the method according to the invention are explained in detail below. After the first transformations and before reheating for the subsequent continuous rolling process, a first process step is the controlled heating or cooling in the sense of temperature compensation over the length and extent of the rolling stock having a different temperature, the controlled compensation temperature being below the predetermined temperature in the reheating furnace. The above-mentioned measure has the purpose, on the one hand, of being able to set the temperature of the rolling stock very precisely, taking into account the control options of the reheating furnace. Furthermore, this measure is intended to ensure that the most exact and reproducible conditions are possible for the temperature-dependent measurement of the wall thickness in the pipe before it enters the reducing mill. The measure to be taken, ie heating or cooling, depends on the thickness of the material to be rolled. In the case of thick-walled tubes, for example in a tube ram bench system, the temperature of the tube after the first forming, punching, elongation and impacting will be above 700 ° C. In such a case, temperature compensation is achieved by controlled cooling to a predetermined compensation temperature in a temperature range between 650 ° and 700 ° C. In the case of thin-walled tubes which lose their temperature very quickly, the temperature is frequently below 650 ° so that the temperature compensation must then take place via controlled heating to a predetermined compensation temperature in the previously mentioned range between 650 and 700 ° C.

Die eigentliche Wiedererwärmung erfolgt auf eine Temperatur entweder unterhalb Ac1 jedoch oberhalb 650° C oder oberhalb Ac1 jedoch unterhalb Acma (a = Anfang des Gebietes der Karbidauflösung). Dabei ist zu berücksichtigen, daß wie bekannt, die Ac1- bzw. Acma-Temperatur in erster Linie vom Kohlenstoffgehalt der eingesetzten Werkstoffgüte und von der Umformgeschichte abhängig ist. Der erstgenannte Temperaturbereich entspricht im kontinuierlichen Zeit-Temperatur-Umwandlungsschaubild (ZTU) dem Zweiphasengebiet α + Fe3C, der zweitgenannte dem Zweiphasengebiet γ +Fe3C. The actual reheating takes place at a temperature either below Ac 1 but above 650 ° C. or above Ac 1 but below Ac ma (a = beginning of the area of carbide dissolution). It should be borne in mind that, as is known, the Ac 1 or Ac ma temperature is primarily dependent on the carbon content of the material quality used and on the forming history. The former temperature range corresponds to the two-phase region α + Fe 3 C in the continuous time-temperature conversion diagram (ZTU), the latter to the two-phase region γ + Fe 3 C.

Eine weitere Maßnahme für die vorgeschlagene Kombination von abgestimmten Verfahrensschritten betrifft den abschließenden kontinuierlichen Walzprozeß vorzugsweise im Streckreduzierwalzwerk. Im Unterschied zu anderen Walzverfahren sind die Eingriffsmöglichkeiten bei diesem schnell ablaufenden kontinuierlichen Walzprozeß gering. Trotzdem ist für das vorgeschlagene Verfahren von Bedeutung, daß zum einen im Reduzierwalzwerk pro Gerüst eine Mindest-Teilumformung ausgedrückt als Streckung λ RW ≥ 1,03 und zum anderen ein Mindeststreckgrad für die Gesamtumformung λ ≥ 1,5 eingehalten werden. In Sonderfällen kann die Gesamtstreckung sogar noch etwas tiefer d. h. bei λ ≥ 1,4 liegen. Außerdem soll die während des Walzens aufgrund der Verlustarbeit sich ergebende Temperaturerhöhung bzw. ein infolge zu starker Kühlung sich ergebender Temperaturabfall so gering wie möglich sein. In jedem Fall muß sichergestellt werden, daß die Walzung im jeweiligen Zweiphasengebiet erfolgt und auch bei Verlassen des letzten Gerüstes das Walzgut eine dem jeweiligen Gebiet entsprechende Temperatur aufweist. Bei der bevorzugten Walzung im γ + Fe3C Gebiet bedeutet dies, daß die Temperatur des Walzgutes Acma nicht übersteigen darf. Die Einhaltung dieses engen Temperaturbereiches ist über eine gesteuerte Kühlmittelregelung in Sonderfällen eine Wärmezufuhr mittels einer externen Wärmeeinrichtung sowie über die Variation der Walzengeometrie, der Walzgeschwindigkeit und der Stichabnahme möglich. Bei der Walzengeometrie kommt insbesondere der gedrückten Länge eine besondere Bedeutung zu.Another measure for the proposed combination of coordinated process steps relates to the final continuous rolling process, preferably in the stretch-reducing mill. In contrast to other rolling processes, the intervention possibilities in this fast-running continuous rolling process are low. Nevertheless, it is important for the proposed method that, on the one hand, a minimum partial deformation per extension in the reducing mill is expressed as the elongation λ RW ≥ 1.03 and, on the other hand, a minimum degree of elongation for the total deformation λ ≥ 1.5. In special cases, the total stretch can even be somewhat lower, ie λ ≥ 1.4. In addition, the temperature increase resulting during the rolling due to the dissipation work or a temperature drop resulting due to excessive cooling should be as small as possible. In any case, it must be ensured that the rolling takes place in the respective two-phase area and that the rolling stock has a temperature corresponding to the respective area even when it leaves the last stand. With the preferred rolling in the γ + Fe 3 C region, this means that the temperature of the rolling stock must not exceed A cma . This narrow temperature range can be maintained by means of a controlled coolant control in special cases, heat supply by means of an external heating device, and by varying the roller geometry, the roller speed and the stitch take-off. With the roller geometry, the pressed length is of particular importance.

Das erfindungsgemäße Verfahren ist generell für alle bekannten Rohrerzeugungsverfahren anwendbar, die am Ende ein Reduzierwalzwerk mit oder ohne Zug bzw. Maßwalzwerk aufweisen. Beispielsweise kann dies ein Verfahren auf einer Rohrkontistraße, Stopfenstraße oder einem Asselwalzwerk sein. Ganz besonders ist es für das Stoßbankverfahren zur Herstellung von nahtlosen Rohren aus Wälzlagerstahl geeignet. Als Einsatzmaterial für das erfindungsgemäße Verfahren kommen Blockguß (geschmiedet oder gewalzt) oder Strangguß (vierkant oder rund) in Frage, wobei das Stranggußmaterial in bekannter Weise vor dem Walzeinsatz verformt und geglüht wird. Versuche haben ergeben, daß das Verfahren besonders vorteilhaft anzuwenden ist, wenn die chemische Analyse des an sich bekannten Wälzlagerstahles modifiziert wird. Dies betrifft zum einen den Schwefel- und Phosphorgehalt und zum anderen das Verhältnis von Chrom zu Kohlenstoff. Der Schwefel- und Phosphorgehalt soll maximal je 0,005 Massenanteil in Prozent betragen, um mögliche Aufschmelzungen an den Korngrenzen bei steigender Umformgeschwindigkeit unter Berücksichtigung des Verhältnisses Mangan zu Schwefel durch die Unterdrückung von FeS zu vermeiden. Diese Aufschmelzgefahr ist durch die erforderliche hohe Umformtemperatur bei den ersten Umformschritten dann gegeben, wenn die Formänderungsgeschwindigkeiten derart sind, daß sie zu einer entsprechenden Temperaturerhöhung führen. Aus diesem Grunde wird die Formänderungsgeschwindigkeit in den ersten Umformstufen so gewählt, daß die Temperatur im Inneren des Walzgutes, d. h. an der ungünstigsten Stelle 1170° C nicht übersteigt. Außerdem wirken sich niedrige Gehalte an S und P günstig auf eventuell folgende spanlose Umformvorgänge aus.The method according to the invention is generally known for all Pipe production processes applicable, which end up with a reduction mill or without train or sizing mill. For example, this can be a procedure a Rohrkontistraße, Stopfenstraße or an Asselwalzwerk. All it is particularly suitable for the push bench process for the production of seamless tubes Rolling steel suitable. As a feedstock for the process of the invention block casting (forged or rolled) or continuous casting (square or round) come in Question, the continuous casting material in a known manner before rolling use is deformed and annealed. Experiments have shown that the method is special is to be used advantageously if the chemical analysis of the known Rolling steel is modified. This affects the sulfur and Phosphorus content and on the other hand the ratio of chromium to carbon. The The sulfur and phosphorus content should not exceed 0.005 percent by mass amount to possible melting at the grain boundaries with increasing Forming speed taking into account the ratio of manganese to Avoid sulfur by suppressing FeS. This is a risk of melting through the required high forming temperature in the first forming steps given when the strain rates are such that they become one lead to a corresponding temperature increase. For this reason, the The rate of deformation in the first forming stages was chosen so that the Temperature inside the rolling stock, d. H. not at the worst point 1170 ° C exceeds. In addition, low levels of S and P may have a beneficial effect following chipless forming processes.

Die abgesenkten S- und P-Gehalte sind auch von Vorteil in der Sekundärmetallurgie zur Einstellung eines niedrigen Sauerstoffgehaltes in der Schmelze, was zu einer Verbesserung des oxidischen Reinheitsgrades führt.The lowered S and P levels are also beneficial in secondary metallurgy to set a low oxygen content in the melt, which leads to a Improvement in the oxide purity leads.

Das Chrom- zu Kohlenstoffverhältnis soll im Bereich zwischen 1,35 und 1,52 vorzugsweise bei 1,45 liegen. Der Kohlenstoffgehalt beträgt dann beispielsweise 0,94 Massenanteile in Prozent und der Chromgehalt etwa 1,36 Massenanteile in Prozent. Über dieses Verhältnis kann die nicht gewünschte Karbidzeiligkeit positiv beeinflußt werden.The chromium to carbon ratio is said to be in the range between 1.35 and 1.52 preferably 1.45. The carbon content is then, for example, 0.94 Mass fractions in percent and the chromium content about 1.36 mass fractions in percent. This ratio can have a positive effect on the undesired carbide rate become.

Der Kostenvorteil, der sich aus dem Wegfall der ansonsten erforderlichen Weichglühung ergibt, kann noch gesteigert werden, wenn man im Falle von Wälzlagerstahl als Einsatzmaterial einen Stranggußstab ohne jegliche Vorverformung, d. h. im Gußzustand und ohne vorherige Wärmebehandlung (Diffusion) verwendet.The cost advantage resulting from the elimination of the otherwise required Soft annealing results can be increased if one in the case of Rolling steel as a feedstock a continuous casting rod without any pre-deformation, d. H. used in the as-cast state and without prior heat treatment (diffusion).

Eine weitere verbessernde Maßnahme betrifft den Abkühlvorgang nach dem letzten Umformvorgang. Nach Auslauf aus dem Walzwerk wird das Walzgut an ruhender Luft bzw. mittels einer Luftdusche auf eine Temperatur abgekühlt, die im ZTU-Schaubild einem Gefüge entspricht, das oberhalb des Martensitpunktes und unterhalb der Nase des Bainits liegt. Das Umformgut wird in diesem Gebiet mehrere Stunden isotherm gehalten. Diese Verfahrensweise hat sich im Hinblick auf die Verringerung der Eigenspannungen als günstig herausgestellt. Anlagenmäßig kann dies in der Weise erfolgen, daß das Kühlbett an geeigneter Stelle beispielsweise wärmedämmend abgedeckt oder das Walzgut einem Temperaturausgleichs- oder Anlaßofen zugeführt wird.Another improvement is the cooling process after the last one Forming process. After leaving the rolling mill, the rolling stock is in still air or cooled to a temperature by means of an air shower, which is shown in the ZTU diagram corresponds to a structure above the martensite point and below the nose of the bainite. The formed material is isothermal for several hours in this area held. This practice has been aimed at reducing the Internal stresses found to be favorable. This can be done in the way take place that the cooling bed at a suitable location, for example, insulating covered or the rolling stock is fed to a temperature compensation or tempering furnace becomes.

Um das Härten des einzelnen Fertigerzeugnisses nach dem spanenden Bearbeiten einzusparen, wird weiterhin vorgeschlagen, das Walzgut nach dem Abkühlen auf 600 bis 700° C zu erwärmen, abzukühlen und anschließend bei 180 bis 210° C anzulassen. Danach weist das Walzgut eine entsprechende Härte auf, die der geforderten Endhärte des Fertigerzeugnisses entspricht.To harden the individual finished product after machining it is also proposed to save the rolled stock after cooling to 600 heat to 700 ° C, cool and then at 180 to 210 ° C to start. After that, the rolling stock has a corresponding hardness that the the required final hardness of the finished product.

Die vorgeschlagene neue Verfahrenstechnologie zur Herstellung von warmgefertigten langgestreckten Erzeugnissen, insbesondere Stäben oder Rohren aus Wälzlagerstahl, hat folgende Vorteile:

  • a) Einsparung der Investitionsmittel für einen speziellen Glühofen und der Betriebskosten für die langzeitige GKZ-Glühung.
  • b) Einsparung von Transport- und Arbeitsgängen (Glühen, Richten) und die damit verringerten Fehlermöglichkeiten führen bei kürzeren Betriebsdurchlaufzeiten zu einem kostengünstigeren warmgefertigten Erzeugnis bzw. zu einem preiswerteren Vormaterial für weitere Umformvorgänge.
  • c) Bessere Materialausnutzung durch Verkürzung der Arbeitsfolgen und durch geringe Entkohlungstiefen aufgrund des Wegfalls der oxidierenden Glühung. Dadurch ergeben sich geringe Aufmaße und damit kleinere Zerspanungsvolumina sowie für den Kunden die Möglichkeit, seine Spannzangenmaße beibehalten zu können.
  • d) Das aus dem Walzwerk auslaufende Walzgut hat wegen der abgesenkten Umformtemperatur eine höhere Steifigkeit und wird auf dem Kühlbett ausreichend gerade. Ein Richten kann deshalb im Regelfall entfallen.
  • e) Das erzeugte Gefüge ist ausgesprochen feinkörnig. Dies führt bei der Vergütung zu einer höheren und homogeneren Härte sowie zu einer besseren Zähigkeit. Das wirkt sich positiv auf die spätere Lebensdauer des Fertigerzeugnisses, z. B. Wälzlager, aus.
  • f) Das durch die neue Verfahrenstechnologie erzielte Gefüge kann ohne zusätzliche Wärmebehandlung einem Kaltumformvorgang wie z. B. Kaltziehen, Kaltpilgern, Kaltrollen bzw. Querwalzen unterzogen werden. Kaltgezogene Rohre weisen nach einem Spannungsarmglühen die gleichen Eigenschaftsmerkmale wie kaltgepilgerte Rohre auf.
  • g) Die abgesenkten S- und P-Gehalte sowie die auf die Untergrenze gelegten Cr- und C-Gehalte wirken sich bei der Schmelzenerstellung kosteneinsparend aus. Die Minimierung der Karbidzeiligkeit und die Verbesserung des oxidischen Reinheitsgrades wirken sich steigernd auf die Gebrauchseigenschaften des Fertigerzeugnisses aus.
  • The proposed new process technology for the production of hot-worked elongated products, in particular rods or tubes made of bearing steel, has the following advantages:
  • a) Saving the investment funds for a special annealing furnace and the operating costs for long-term GKZ annealing.
  • b) Saving on transport and work steps (annealing, straightening) and the resulting reduced possibility of errors lead to a cheaper, hot-made product or a cheaper raw material for further forming processes with shorter operating times.
  • c) Better material utilization by shortening the work sequence and by lower decarburization depths due to the elimination of the oxidizing annealing. This results in small oversizes and thus smaller cutting volumes, as well as the possibility for the customer to maintain his collet dimensions.
  • d) The rolling stock running out of the rolling mill has a higher rigidity due to the reduced forming temperature and becomes sufficiently straight on the cooling bed. Straightening can therefore generally be omitted.
  • e) The structure produced is extremely fine-grained. This leads to a higher and more homogeneous hardness as well as better toughness. This has a positive effect on the later life of the finished product, e.g. B. rolling bearings.
  • f) The structure achieved by the new process technology can be a cold forming process such as. B. Cold drawing, cold pilgrimage, cold rolling or cross rolling. Cold drawn tubes have the same properties after stress relief annealing as cold piled tubes.
  • g) The reduced S and P contents as well as the Cr and C contents placed on the lower limit have a cost-saving effect when producing the melt. The minimization of the carbide line and the improvement of the oxide purity increase the usage properties of the finished product.
  • Anhand eines Ausführungsbeispieles wird das erfindungsgemäße Verfahren näher erläutert. Hergestellt werden soll auf einer Rohrstoßbankanlage ein warmfertiges Rohr der Abmessung 40,9 mm äußerer Durchmesser x 4,8 mm Wanddicke aus dem Werkstoff 100Cr6. Aus einem Stranggußstab mit 220 mm Durchmesser und 11000 mm Länge werden Einsatzblöcke von ca. 850 mm Länge geschnitten. Die Einsatzblöcke aus 100Cr6 liegen im Gußzustand vor, d. h. sie sind weder wärmebehandelt noch vorverformt. Die geschnittenen Blöcke werden in einen Drehherdofen eingesetzt und auf ca. 1140° C erwärmt. Nach einer Gesamtwärmzeit von 150 Minuten werden die Blöcke einzeln dem Ofen entnommen und nach einer Preßwasserentzunderung der Lochpresse zugeführt. In der Lochpresse findet die erste Umformung zum Lochstück statt. Für dieses Ausführungsbeispiel weist das Lochstück die folgenden Abmessungen auf
       Außendurchmesser 223 mm
       Innendurchmesser 121 mm
       Wanddicke 51 mm.
    The method according to the invention is explained in more detail using an exemplary embodiment. A hot tube of 40.9 mm outer diameter x 4.8 mm wall thickness made of 100Cr6 is to be produced on a pipe ram bench system. Insert blocks with a length of approx. 850 mm are cut from a continuous casting rod with a diameter of 220 mm and a length of 11000 mm. The 100Cr6 insert blocks are in the as-cast state, ie they are neither heat-treated nor pre-deformed. The cut blocks are placed in a rotary hearth furnace and heated to approx. 1140 ° C. After a total heating time of 150 minutes, the blocks are removed individually from the furnace and, after descaling the press water, fed to the punch press. The first forming into a perforated piece takes place in the punch press. For this embodiment, the hole piece has the following dimensions
    Outside diameter 223 mm
    Inner diameter 121 mm
    Wall thickness 51 mm.

    Diese Umformung entspricht einer Querschnittsabnahme von 29,4 % bzw. einer Streckung von λ = 1,42. Die Formänderungsgeschwindigkeit beträgt in diesem Beispiel 0,45 s-1 und beeinflußt das optimale Temperaturfenster. Nach der Lochpresse erfolgt ein weiterer Umformvorgang, nämlich das Elongieren in einem Schulterwalzwerk. Bei dieser Umformung entsteht eine Hülse mit einem Außendurchmesser von 192 mm, einem Innendurchmesser von 112 mm und einer Wanddicke von 40 mm. Die Querschnittsabnahme beträgt 30,7 % bzw. die Streckung λ = 1,44. In dieser Umformstufe entstehen beim Walzen hohe Temperaturen an der Innenoberfläche. Deshalb ist an dieser Stelle besonders darauf zu achten, daß die Temperatur an der Hülseninnenoberfläche 1170° C nicht übersteigt, da ansonsten durch Korngrenzenaufschmelzungen mit Innenoberflächenfehlern zu rechnen ist. Als Regelgrößen können Änderungen in der Walzendrehzahl sowie im Transportwinkel genutzt werden. Als dritter Umformschritt schließt sich das Stoßen auf der Stoßbank an. Für die gewählte Endabmessung wird eine Stoßbankluppe mit einem Außendurchmesser von 122,8 mm, einem Innendurchmesser von 112 mm und einer Wanddicke von 5,4 mm gefertigt. Nach dem Stoßen durch eine Anzahl von Gerüsten wird die Luppe in einem Lösewalzwerk von der Stange als Innenwerkzeug gelöst. Dabei sinkt die Temperatur der Luppe bis zum Ausziehduo weiter ab und erreicht im vorbezeichneten Fall ein Niveau im Bereich von 650 bis 700° C. Nach dem Ausziehen der Stoßstange wird der Luppenboden geschopft. Erfindungsgemäß wird vor Eintritt der Luppe in die Wiedererwärmungseinrichtung diese einer geregelten Abkühlung unterworfen, um eine gleichmäßige Temperaturverteilung im Bereich zwischen 650° C und 700° C zu erreichen. Für diesen Fall wird ein Temperaturniveau von ca. 670° C angestrebt. Mittels eines wärmegedämmten Puffers werden die Luppen für eine gewisse Zeit gehalten, so daß von den Bereichen der Luppe mit einem höheren Temperaturniveau Wärme zu den Bereichen mit einem niedrigen Temperaturniveau fließen kann. Die Wärmedämmung sorgt dafür, daß das Gesamtniveau der Luppentemperatur nicht unterhalb des vorgegebenen Sollwertes absinkt. Die Temperatur des Wiedererwärmungsofens wird in diesem Beispiel so eingestellt, daß sich am Umformgut eine Temperatur von etwa 740° C ergibt. Mit dieser Temperatur läuft die Luppe in ein Streckreduzierwalzwerk ein. Dieses besteht aus einer größeren Anzahl von Drei-Walzen-Gerüsten, die jeweils um 120° versetzt in einer Walzlinie angeordnet sind. Für das gewählte Beispiel mit der Endabmessung 40,9 x 4,8 mm werden 19 Gerüste eingesetzt. Die Teilumformung in den Grundgerüsten wird zwischen 7,1 und 8,1 % Querschnittsabnahme angesetzt. Die Gesamtumformung beträgt 72,7 % entsprechend einer Streckung λ von 3,66. Die Umformbedingungen werden so gewählt, z. B. durch die Wahl der Kalibrierung und Walzgeschwindigkeit sowie der Einstellung der Kühlung, daß eine geringe Temperaturerhöhung bis auf 760°C zugelassen wird. Damit wird sichergestellt, daß die Umformung im Streckreduzierwalzwerk vollständig im Zweiphasengebiet γ + Fe3C abläuft. Das so gewalzte Rohr aus 100Cr6 weist nach der Abkühluhg ein dem GKZ-Gefüge nahekommendes Gefüge auf. Das feindisperse Gefüge besteht aus eingeformtem Zementit mit geringen Perlitresten. Die Brinellhärte des so hergestellten Rohres liegt unter 250 HB30. Die Streuung der Härtewerte ist gering. Das Gefüge ist feiner ausgebildet als nach einer üblichen GKZ-Glühung wie der Vergleich der Abbildung 1 mit Abbildung 2 zeigt.This deformation corresponds to a cross-sectional decrease of 29.4% or an elongation of λ = 1.42. The strain rate in this example is 0.45 s -1 and affects the optimal temperature window. Another punching process follows the punch press, namely elongation in a shoulder mill. This deformation creates a sleeve with an outer diameter of 192 mm, an inner diameter of 112 mm and a wall thickness of 40 mm. The decrease in cross-section is 30.7% or the elongation λ = 1.44. In this forming stage, high temperatures arise on the inner surface during rolling. For this reason, special care must be taken at this point to ensure that the temperature on the inside surface of the sleeve does not exceed 1170 ° C, since otherwise internal surface defects can be expected due to melting of the grain boundaries. Changes in the roller speed and in the transport angle can be used as control variables. The third forming step is followed by bumping on the push bench. For the selected final dimension, a bench bench blank is manufactured with an outside diameter of 122.8 mm, an inside diameter of 112 mm and a wall thickness of 5.4 mm. After pushing through a number of stands, the blanks are released from the rod as an internal tool in a release roller mill. The temperature of the slug drops further until the pull-out duo and in the aforementioned case reaches a level in the range of 650 to 700 ° C. After pulling out the bumper, the slug bottom is scooped. According to the invention, prior to the entry of the slug into the reheating device, it is subjected to controlled cooling in order to achieve a uniform temperature distribution in the range between 650 ° C. and 700 ° C. In this case, a temperature level of approx. 670 ° C is aimed for. The slugs are held for a certain time by means of a heat-insulated buffer, so that heat can flow from the areas of the slug with a higher temperature level to the areas with a low temperature level. The thermal insulation ensures that the overall level of the bobbin temperature does not drop below the specified target value. In this example, the temperature of the reheating furnace is set so that the temperature of the material to be formed is approximately 740 ° C. At this temperature, the billet enters a stretch-reducing mill. This consists of a large number of three-roll stands, which are each offset by 120 ° in a rolling line. 19 frames are used for the selected example with the final dimensions of 40.9 x 4.8 mm. The partial forming in the basic scaffolding is estimated to be between 7.1 and 8.1% decrease in cross-section. The total deformation is 72.7% corresponding to an elongation λ of 3.66. The forming conditions are chosen such. B. by the choice of calibration and rolling speed and the setting of the cooling that a slight temperature increase up to 760 ° C is allowed. This ensures that the forming in the stretch-reducing mill takes place completely in the two-phase region γ + Fe 3 C. The tube made of 100Cr6 rolled in this way has, after cooling, a structure that approximates the GKZ structure. The finely dispersed structure consists of molded cementite with minor pearlite residues. The Brinell hardness of the tube thus produced is less than 250 HB30. The spread of hardness values is low. The structure is finer than after conventional GKZ annealing as the comparison of Figure 1 with Figure 2 shows.

    Das nach der erfindungsgemäßen Verfahrensweise hergestellte Rohr kann ohne eine zusätzliche Wärmebehandlung spanlos oder spanend weiterverarbeitet werden. Beispielsweise kann dies ein Kaltziehen sein. Durch die gewählte Verfahrensweise

    • gezielte Temperaturführung vor dem Eintritt in den Wiedererwärmungsofen
    • abgesenkte Temperatur des Wiedererwärmungsofens im Vergleich zur üblichen Fahrweise
    • Walzen im Zweiphasengebiet
    • Entfall der GKZ-Glühung von mehr als 16 Stunden
    erzielt man gegenüber dem bekannten Stand der Technik eine viel dünnere entkohlte Schicht. Die für die spanende Bearbeitung erforderlichen Rohraufmaße können deshalb verringert werden. Trotz eines Spannungsarmglühens nach dem Richten weisen kaltgezogene Rohre, die ein entsprechend der erfindungsgemäßen Verfahrensweise erzielbares Gefüge aufweisen, die gleichen Eigenschaftsmerkmale wie kaltgepilgerte Rohre auf.The tube produced according to the procedure according to the invention can be further processed without cutting or without additional heat treatment. For example, this can be cold drawing. By the chosen procedure
    • targeted temperature control before entering the reheating furnace
    • Lower temperature of the reheating furnace compared to the normal driving style
    • Rolling in the two-phase area
    • No more than 16 hours of GKZ annealing
    one achieves a much thinner decarburized layer compared to the known prior art. The pipe allowances required for machining can therefore be reduced. Despite stress relief annealing after straightening, cold-drawn tubes which have a structure which can be achieved in accordance with the procedure according to the invention have the same properties as cold-piled tubes.

    Um den Unterschied der neuen Verfahrenstechnologie zum bekannten Stand der Technik deutlich zu machen, ist die gleiche Endabmessung 40,9 mm äußerer Durchmesser x 4,8 mm Wanddicke aus 100Cr6 auch nach der üblichen Art gewalzt worden. Die ermittelte Härte an diesen Rohren beträgt 328 HB30 bei einer Einstellung des Wiedererwärmungsofens auf 1000° C. Diese Härte liegt so hoch, daß vor einer Weiterverarbeitung eine GKZ-Glühung erforderlich ist.To distinguish the new process technology from the known state of the art To make technology clear, the same final dimension is 40.9 mm outer Diameter x 4.8 mm wall thickness made of 100Cr6 also rolled in the usual way been. The hardness determined on these tubes is 328 HB30 with one adjustment of the reheating oven to 1000 ° C. This hardness is so high that before a Further processing a GKZ annealing is required.

    Bei der Fertigung von dickwandigeren Warmrohrabmessungen, beispielsweise 60,3 x 8,0 mm, ist es von Vorteil, die Abkühlung nach dem ZTU-Schaubild so zu steuern, daß oberhalb des Martensitpunktes jedoch unterhalb der Bainitnase eine isotherme Haltezeit eingeführt wird. Der Temperaturbereich liegt vorzugsweise zwischen 240 und 300° C. Nach einem Halten von mehr als 3,5 Stunden in diesem Temperaturgebiet kann die Abkühlung auf Raumtemperatur erfolgen.When manufacturing thick-walled hot pipe dimensions, for example 60.3 x 8.0 mm, it is advantageous to control the cooling according to the ZTU diagram so that above the martensite point but below the bainite nose isothermal Hold time is introduced. The temperature range is preferably between 240 and 300 ° C. After holding in this temperature area for more than 3.5 hours can be cooled to room temperature.

    Claims (10)

    1. A process for the production of a hot-manufactured elongate product, in particular a rod or tube of high-alloy or hypereutectoid steel, in which the feed length of the selected feedstock is heated to deformation temperature, after one or more shaping steps is re-heated to a temperature below the original deformation temperature, and is shaped into the final dimension by means of a multi-stand reducing mill by continuous rolling and is then cooled in still air,
      characterised in that
      after the first shaping steps and before the reheating, a temperature distribution which is uniform when viewed over the length and thickness of the intermediate product is produced by controlled heating or cooling to a predetermined temperature within a certain temperature range and the subsequent reheating to a temperature either below Ac1 but higher than 650°C or above Ac1 but below Acma takes place in the two-phase region and the shaping and cooling and also the optionally additional separate heating in the reducing mill are adjusted such that the temperature increase in the rolled stock relative to the initial temperature remains low and the rolled stock during the shaping in the reducing mill and on leaving the rolling mill is in the two-phase region in terms of temperature, the minimum deformation as elongation expressed for the total deformation λ being ≥ 1.5 and for the minimum partial deformation in the individual stand of the reducing mill λRM being ≥ 1.03.
    2. A process according to Claim 1, characterised in that the predetermined temperature for the temperature equalisation before reheating lies in a range between 650°C and 700°C.
    3. A process according to Claims 1 and 2, characterised in that the reheating of the rolled stock takes place to a temperature in a range of more than 650°C but less than 710°C or in a temperature range of more than 710°C but less than 880°C.
    4. A process according to Claims 1 to 3, characterised in that the temperature increase or the temperature drop of the rolled stock in the reducing mill by means of controlled adjustment of coolant in exceptional cases supply of heat by means of an external heat means and also by means of the variation of the roll geometry, the rolling speed and the reduction per pass is kept within narrow limits [sic].
    5. A process according to Claims 1 to 4, characterised in that when using a hypereutectoid steel, in particular anti-friction bearing steel, the sulphur and phosphorus contents are at most each 0.005 mass percent and a range between 1.35 and 1.52 is selected for the chromium/carbon ratio.
    6. A process according to Claim 5, characterised in that the Cr/C ratio is preferably 1.45.
    7. A process according to Claims 1 to 6, characterised in that a continuously-cast rod without any deformation, i.e. in the as-cast condition and without prior heat treatment (diffusion annealing) is used as feedstock.
    8. A process according to Claims 1 to 7, characterised in that the deformation rate in the first shaping steps before the temperature equalisation is selected such that the maximum temperature in the interior of the rolled stock does not exceed 1170°C.
    9. A process according to Claims 1 to 8, characterised in that the rolled stock after rolling to a temperature above the martensite temperature and beneath the bainite "nose" (continuous TTT diagram) is cooled and held for a relatively long time and then cooled to room temperature in known manner.
    10. A process according to Claims 1 to 9, characterised in that the finish-rolled product after cooling to a temperature between 650 and 700°C is heated and held for a predetermined time and then cooled again, and then tempering is effected at a temperature between 180 and 210°C with subsequent cooling in still air.
    EP96907260A 1995-04-03 1996-03-12 Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel Expired - Lifetime EP0820529B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19513314A DE19513314C2 (en) 1995-04-03 1995-04-03 Process for producing a hot-worked elongated product, in particular rod or tube, from hypereutectoid steel
    DE19513314 1995-04-03
    PCT/DE1996/000501 WO1996031628A1 (en) 1995-04-03 1996-03-12 Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel

    Publications (2)

    Publication Number Publication Date
    EP0820529A1 EP0820529A1 (en) 1998-01-28
    EP0820529B1 true EP0820529B1 (en) 2000-08-02

    Family

    ID=7759207

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96907260A Expired - Lifetime EP0820529B1 (en) 1995-04-03 1996-03-12 Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel

    Country Status (14)

    Country Link
    US (1) US5958158A (en)
    EP (1) EP0820529B1 (en)
    JP (1) JPH11503491A (en)
    KR (1) KR19980703575A (en)
    AR (1) AR001416A1 (en)
    BR (1) BR9604830A (en)
    CA (1) CA2217309C (en)
    CZ (1) CZ304797A3 (en)
    DE (2) DE19513314C2 (en)
    ES (1) ES2149455T3 (en)
    HU (1) HUP9800702A3 (en)
    PL (1) PL322598A1 (en)
    SK (1) SK134297A3 (en)
    WO (1) WO1996031628A1 (en)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE510447C2 (en) * 1998-03-16 1999-05-25 Ovako Steel Ab Ways for soft annealing of high carbon steel
    NL1007739C2 (en) * 1997-12-08 1999-06-09 Hoogovens Staal Bv Method and device for manufacturing a high strength steel strip.
    US6233500B1 (en) * 1997-06-19 2001-05-15 The United States Of America As Represented By The Secretary Of The Air Force Optimization and control of microstructure development during hot metal working
    DE19734563C1 (en) * 1997-08-04 1998-12-03 Mannesmann Ag Steel bearing race production
    WO2002004166A1 (en) * 2000-07-12 2002-01-17 Mannesmannröhren-Werke Ag Method for producing metallic, non-rotationally symmetrical rings with a constant wall thickness over their circumference
    DE10134776C2 (en) * 2000-07-12 2003-04-24 Mannesmann Roehren Werke Ag Process for the production of metallic non-rotationally symmetrical rings with constant wall thickness over the circumference, and device for carrying out the process
    DE102004011021A1 (en) * 2004-03-04 2005-09-29 Mannesmannröhren-Werke Ag Process for the preparation of a shaped article of hypereutekoid steel
    WO2007111131A1 (en) 2006-03-28 2007-10-04 Sumitomo Metal Industries, Ltd. Process for production of seamless pipes
    US9132567B2 (en) * 2007-03-23 2015-09-15 Dayton Progress Corporation Tools with a thermo-mechanically modified working region and methods of forming such tools
    US8968495B2 (en) * 2007-03-23 2015-03-03 Dayton Progress Corporation Methods of thermo-mechanically processing tool steel and tools made from thermo-mechanically processed tool steels
    CN101722190B (en) * 2009-11-12 2012-08-22 无锡西姆莱斯石油专用管制造有限公司 Process for treating hot-rolled capillary pipe
    DE102011051682B4 (en) * 2011-07-08 2013-02-21 Max Aicher Method and apparatus for treating a steel product and steel product
    PL232555B1 (en) * 2017-05-25 2019-06-28 Arcelormittal Poland Spolka Akcyjna Method for producing smooth and ribbed wire rod

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS6417820A (en) * 1987-07-13 1989-01-20 Kobe Steel Ltd Production of electric resistance welded steel tube for heat treatment
    JP3215891B2 (en) * 1991-06-14 2001-10-09 新日本製鐵株式会社 Manufacturing method of steel rod for cold working
    JP2544867B2 (en) * 1992-04-21 1996-10-16 新日本製鐵株式会社 Manufacturing method of hyper-eutectoid steel wire
    ATE192315T1 (en) * 1992-09-02 2000-05-15 Sulzer Orthopaedie Ag TWO-PIECE HIP JOINT POCKET

    Also Published As

    Publication number Publication date
    EP0820529A1 (en) 1998-01-28
    SK134297A3 (en) 1998-04-08
    US5958158A (en) 1999-09-28
    CA2217309C (en) 2000-11-21
    WO1996031628A1 (en) 1996-10-10
    BR9604830A (en) 1999-01-05
    DE59605681D1 (en) 2000-09-07
    CA2217309A1 (en) 1996-10-10
    CZ304797A3 (en) 1998-04-15
    KR19980703575A (en) 1998-11-05
    HUP9800702A3 (en) 1999-08-30
    PL322598A1 (en) 1998-02-02
    HUP9800702A2 (en) 1998-07-28
    ES2149455T3 (en) 2000-11-01
    DE19513314C2 (en) 1997-07-03
    DE19513314A1 (en) 1996-10-10
    AR001416A1 (en) 1997-10-22
    JPH11503491A (en) 1999-03-26

    Similar Documents

    Publication Publication Date Title
    DE19725434C2 (en) Process for rolling hot wide strip in a CSP plant
    DE1508416C3 (en) Process for the production of steel parts such as bolts, screws, pins and the like.
    EP2035587B1 (en) A method and a system for producing hot-rolled strip silicon steel based on thin slabs
    DE2649019B2 (en) Method of making seamless tubes
    WO2007122230A1 (en) Unit and method for reshaping metal blanks made of superior and supreme hardness steels
    EP0820529B1 (en) Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel
    DE2454163A1 (en) METHOD OF CONTROLLING THE TEMPERATURE OF STEEL DURING HOT ROLLING ON A CONTINUOUS HOT ROLLING DEVICE
    CH637162A5 (en) METHOD FOR REINFORCING STRENGTH OF CARBON STEEL AND LOW-ALLOY STEEL.
    DE3311629C2 (en) Process for the production of seamless steel tubes
    EP2157194B1 (en) Method and assembly for inline reforming, treatment and alignment of rod-shaped metal parts
    DE102006032617B4 (en) Process for the production of a sheet-metal semi-finished product suitable for molding
    EP1108072B1 (en) Method and installation for producing dual-phase steel
    EP3924526A1 (en) Method for producing thermo-mechanically produced hot-rolled strip products
    EP0648855A1 (en) Production method for seamless pipes of non-ferrous metals, in particular copper and copper alloys
    EP3206808B1 (en) Installation and method for producing heavy plate
    DE19950502C1 (en) Hot rolled low alloy low carbon steel strip production, especially for deep drawing quality cold rolled strip manufacture, by rapidly cooling and then air cooling continuously cast strand before reheating and hot rolling
    DE102006001198A1 (en) Method and device for setting specific property combinations in multiphase steels
    DE102020214427A1 (en) Method for producing a hot strip by means of a casting and rolling plant
    DE19628715C1 (en) Seamless steel pipe production
    DE3507124A1 (en) Oil-drilling pipe welded by electric resistance welding, and method for the manufacture thereof
    EP0067374B2 (en) Method for the thermo-mechanical treatment of hot rolled steel
    DE102018132901A1 (en) Process for the production of conventionally hot rolled hot rolled products
    EP0413163B2 (en) Process and installation for producing thermomecanically treated rolled steel pieces
    AT396073B (en) Method for hot rolling and heat-treating bar stock
    DE10003720A1 (en) Production of roller bearing elements comprises using a block of continuous cast material having a high degree of purity with fine carbide deposits and having a high fine granularity

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970918

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR IT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19991214

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR IT SE

    ITF It: translation for a ep patent filed

    Owner name: GUZZI E RAVIZZA S.R.L.

    REF Corresponds to:

    Ref document number: 59605681

    Country of ref document: DE

    Date of ref document: 20000907

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2149455

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010313

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20020411

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050312

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150320

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20150319

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20150319

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59605681

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG