EP0819175A1 - Novel promoters for expressing proteins of interest in yeast - Google Patents

Novel promoters for expressing proteins of interest in yeast

Info

Publication number
EP0819175A1
EP0819175A1 EP96912075A EP96912075A EP0819175A1 EP 0819175 A1 EP0819175 A1 EP 0819175A1 EP 96912075 A EP96912075 A EP 96912075A EP 96912075 A EP96912075 A EP 96912075A EP 0819175 A1 EP0819175 A1 EP 0819175A1
Authority
EP
European Patent Office
Prior art keywords
sequence
nucleotide
nucleic acid
gene
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96912075A
Other languages
German (de)
French (fr)
Inventor
Valérie NACKEN
Tilman Achstetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transgene SA
Original Assignee
Transgene SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transgene SA filed Critical Transgene SA
Publication of EP0819175A1 publication Critical patent/EP0819175A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Definitions

  • the present invention relates to the field of biotechnology, in particular to an improvement brought to the production of a polypeptide of commercial or therapeutic interest in yeast and, in particular, in Saccharomyces cerevisiae. It relates, firstly, to new nucleic acid fragments isolated from the genomic DNA of Saccharomyces cerevisiae and exhibiting transcriptional promoter activity and, secondly, to expression cassettes, expression vectors and host cells. containing as well as their use for the production of polypeptides of interest.
  • the yeast Saccharomyces cerevisiae is considered one of the preferred hosts for the production of recombinant proteins for many reasons.
  • this organism is non-pathogenic and it is commonly used in the food industry.
  • it can be grown on a large scale and at high density in a relatively inexpensive environment and can be easily adapted to an industrial environment.
  • it has been particularly studied so that multiple data concerning its genetics and physiology are available.
  • it is capable of carrying out certain typically eukaryotic modifications (glycosylation, disulfide bridges, etc.).
  • PGK genes (3-phosphoglycerate kinase; Hitzeman et al., 1983, Science, 219, 620-625), TDH coding for GAPDH (glyceraldehyde phosphate dehydrogenase; Holland and Holland, 1979, J. Biol Chem., 254, 9839-9845), TEF1 (Elongation factor 1; Cottrelle et al., 1985, J. Biol. Chem., 260, 3090-3096), MF al (precursor of the sexual pheromone a; Inokuchi et al., 1987, Mol. Cell.
  • a promoter region is located in the 5 ′ region of the genes and comprises all of the elements allowing the transcription of a DNA fragment placed under their dependence, in particular:
  • a so-called minimal promoter region comprising the TATA box and the transcription initiation site, which determines the position of the initiation site as well as the basal level of transcription.
  • the length of the minimum promoter region is relatively variable. Indeed, the exact location of the TATA box varies from one gene to another and can be from -40 to -120 nucleotides upstream of the initiation site (Chen and Struhl, 1985, EMBO J .; 4, 3273-3280)
  • sequences located upstream of the TATA box (immediately upstream of up to several hundred nucleotides) which make it possible to ensure an efficient level of transcription either constitutively (relatively constant level of transcription throughout the cell cycle , whatever the culture conditions) is in a controllable manner (activation of transcription in the presence of an activator and / or repression in the presence of a repressor).
  • modulators can be of several types: activator, inhibitor, enhancer, inducible, repressible and respond to various cellular factors or culture conditions.
  • the subject of the present invention is an isolated nucleic acid fragment comprising all or part of a nucleotide sequence homologous to the sequence shown in the sequence identifier NO: 1, 2 or 3 or homologous to its complement, said fragment exhibiting transcriptional promoter activity.
  • nucleic acid fragment is meant a polymer of nucleotides which may be of DNA or RNA type. These terms are defined in all basic molecular biology works.
  • a nucleic acid fragment according to the invention is a double stranded DNA fragment.
  • nucleic acid fragment In general, all or part of one of the nucleotide sequences specified in SEQ ID NO: 1, 2 and 3, its complement or one of its homologs can be used in the context of the present invention.
  • the term “part” designates a fragment comprising a portion of at least 17 continuous nucleotides identical to a portion of equivalent length of one of the nucleotide sequences indicated in the sequence identifiers or of its complement. But, of course, a The nucleic acid fragment according to the invention is not limited to the sequences described and can extend beyond this.
  • homologous means a sequence capable of hybridizing under stringent conditions with all or part of the sequence reported in SEQ ID NO: 1, 2 or 3. It more particularly refers to any nucleic acid retaining the promoter function and having one or more sequence modification (s) with respect to one of these sequences. These modifications can be obtained by mutation, deletion and / or addition of one or more nucleotide (s) relative to the native sequence. They can be introduced in particular to improve the promoter activity, to suppress a region inhibiting transcription, to make a constitutive promoter regulable or vice versa, to introduce a restriction site facilitating the subsequent cloning steps, to eliminate the sequences not essential to the activity. transcriptional ...
  • a nucleic acid fragment according to the invention is identical to all or part of one of the nucleotide sequences shown in the sequence identifier NO: 1, 2 or 3 or of its complement.
  • nucleic acid fragment having a sequence as shown in:
  • sequence identifier NO: 1 starting at the nucleotide at position 197 and ending at the nucleotide at position 1016, or (iii) the sequence identifier NO: 3, starting at the nucleotide at position 5 and ending at nucleotide at position 523.
  • a nucleic acid fragment according to the invention can be constituted by the assembly of elements of various origins to form a so-called hybrid promoter functional in the host cell considered.
  • a hybrid promoter can comprise:
  • nucleic acid fragment according to the invention comprising a minimum promoter region; said minimal promoter region being placed downstream of one or more modulating sequence (s) heterologous to said minimal promoter region, or (ii) a nucleic acid fragment according to the invention, comprising at least one modulating sequence; said modulator sequence being placed upstream of a minimal promoter region heterologous to said modulator sequence.
  • Regulatory modulator sequences will preferably be chosen which make it possible to vary the transcription as a function of the culture conditions or of the growth phase.
  • such sequences are derived from or derive from regulable genes and are known to those skilled in the art.
  • these sequences can comprise modifications (mutation, deletion and / or substitution of one or more nucleotides) compared to the native sequence, as long as they do not alter their modulatory function drastically.
  • nucleic acid fragment according to the invention can be used as a bi-directional promoter capable of exercising its function independently of its orientation with respect to the gene to be transcribed (in a sense orientation of 5 ' towards 3 'as indicated in the SEQ IDs or reversed).
  • a nucleic acid fragment according to the invention can be obtained by any technique used in the art, for example by cloning, hybridization using an appropriate probe, by PCR (Polymerase Chain Reaction) using suitable primers or by chemical synthesis.
  • a nucleic acid fragment according to the invention is intended to allow the expression of a gene of interest in a host cell and, for this purpose, is linked in an operational manner to it in an expression cassette. This is why the present invention also extends to an expression cassette comprising a nucleic acid fragment according to the invention and a gene of interest placed under its control.
  • an expression cassette according to the invention can contain several genes of interest, either in the context of a multicistronic cassette (shown schematically by the arrangement "promoter-gene 1-gene 2 ") in which the different genes are placed downstream of a nucleic acid fragment according to the invention and are separated from each other by suitable sequences, such as the elements IRES (for Internai Ribosome Entry Site in English) allowing the reinitiation of translation or in the context of a bidirectional cassette ("gene 1 -promotor-gene 2”) in which a nucleic acid fragment according to the invention is inserted between two genes of interest to simultaneously govern their expression.
  • a multicistronic cassette shown schematically by the arrangement "promoter-gene 1-gene 2 "
  • suitable sequences such as the elements IRES (for Internai Ribosome Entry Site in English) allowing the reinitiation of translation or in the context of a bidirectional cassette (“gene 1 -promotor-gene 2”) in which a nucleic acid fragment according to
  • a gene of interest can be derived from a eukaryotic, prokaryotic organism or from a virus. It can be isolated by any conventional molecular biology technique or can be synthesized chemically. Furthermore, it can code for a protein of interest (i) intracellular, (ii) membrane or anchored to the cell membrane or (iii) secreted into the culture medium. It can therefore include additional elements such as, for example, a sequence coding for a secretion signal.
  • the signal sequence BGL2 (EP 0 423 302), the pre or pre-pro sequences MF al (Kurjan and Herskowitz, 1982, Cell, 30, 933-943) and also the pro sequence of the defensin A (EP 0 607 080).
  • Endogenous secretion signals of the gene in question can also be used.
  • the choice of secretion signals possible in the context of the present invention is within the reach of ordinary skill in the art.
  • a gene of interest can code for a polypeptide of interest corresponding to all or part of a protein as found in nature (native or truncated protein). It may also be a chimeric protein, for example originating from the fusion of polypeptides of various origins or a mutant exhibiting improved and / or modified biological properties. Such a mutant can be obtained by conventional molecular biology techniques.
  • cytokines and in particular interleukins IL-2, 4, 5, 6, 12 ...), interferons ⁇ , ⁇ and ⁇ , colony stimulating factors (GM-CSF, C-CSF, M-CSF); - growth factors (growth hormone, erythropoietin, insulin, etc.) or cellular or nuclear receptors; - the anticoagulants, preferably hirudin and, in particular the hirudin variants described in European application EP 273 800 and, most preferably the variant HV2 Lys47; - enzymes (trypsin, ribonucleases, P450 cytochromes, lipases, amylases, etc.); - structural proteins (albumin, etc.); - enzyme inhibitors (cc-1 antitrypsin, antithrombin III, inhibitors of viral proteases ...); - polypeptides capable of inhibiting the initiation or progression of tumors, or cancer
  • an expression cassette according to the invention can, in addition, comprise additional elements necessary for the expression of the gene of interest (intronic sequence, transcription terminator sequence, etc.) or even for its maintenance in the host cell considered (origin of replication such as ARS or 2 ⁇ , gene coding for a phenotypic selection marker such as URA3 or LEU2, gene coding for a product conferring resistance to an antibiotic for example to hygromycin, cycloheximide, neomycin, phleomycin .).
  • additional elements necessary for the expression of the gene of interest intraonic sequence, transcription terminator sequence, etc.
  • a phenotypic selection marker such as URA3 or LEU2
  • gene coding for a product conferring resistance to an antibiotic for example to hygromycin, cycloheximide, neomycin, phleomycin are known to those skilled in the art.
  • the invention also relates to an expression vector comprising one or more expression cassette (s) according to the invention. It can be a multicopy or centromeric plasmid vector, a cosmid or a YAC type vector. Finally, it can be integrative or self-replicating.
  • the present invention also relates to a host cell comprising an expression cassette or a vector according to the invention. It can be generated by any method allowing the introduction of foreign DNA into a cell (transformation, transfection, microinjection, electroporation, liposomes, etc.). It is indicated that any host cell, eukaryotic or prokaryotic, can be used in the context of the present invention insofar as it has the appropriate factors to enable a nucleic acid fragment according to the invention to exercise its promoter function . It is within the reach of the skilled person to verify whether a particular cell can be used as a host by measuring promoter activity as indicated above.
  • a host cell according to the invention can be derived from an animal cell (CHO, Vero, BHK, etc.) or from a bacterium such as Escherichia coli, but it is preferable to use a lower eukaryote and, in particular, a yeast.
  • yeast of the genus Saccharomyces, Schizosaccharomyces, Pichia, Kluyveromyces, Hansemtla, Phaffia or Yarrowia is chosen from the species Schizosaccharomyces pombe, Pichia pastons, Kluy ⁇ 'eromyces lactis, Hansenula po / ymorpha, Yarrowia hpolylica and, preferably, Saccharomyces cerevisiae. It is particularly preferred to use a yeast deficient in protease (s) such as TGY73 4 or that described in European application EP 390 676. A large number of these strains are available commercially in organizations such as the AFRC (Agriculture and Food Research Council, Norfolk, UK) and ATCC (Rockville, MA, USA).
  • the present invention also relates to a process for producing a polypeptide of interest comprising the culture of a host cell according to the invention under appropriate culture conditions allowing the production of said polypeptide of interest and its recovery in cell culture It is preferable to use a defined culture medium comprising glucose as carbon source
  • this method is preferably applicable to the production of a protein of therapeutic interest and, in particular hirudin, in a yeast Saccharomyces cerevisiae.
  • the protein can be recovered directly from the culture medium or after lysis of the cells according to the conventional methodology. It can be purified by applying standard techniques known to a person skilled in the art, for example ion exchange chromatography, differential precipitation, immunopurification or else filtration on gel at high or low pressure.
  • Figure 1 is a schematic representation of the vector pTG9852 for the selection of DNA fragments exhibiting transcriptional promoter activity. It includes the URA3-d gene, a multiple cloning site (from M13tgl31; Kieny et al., 1983, Gene, 26, 91-99), the ble gene conferring resistance to phleomycin, the transcription terminator of the gene PGK (PGKt), a fragment of pBR322 carrying an origin of bacterial replication and the Amp gene conferring resistance to ampicillin and the origin of replication 2 ⁇ (indicated 2 m).
  • URA3-d gene includes the URA3-d gene, a multiple cloning site (from M13tgl31; Kieny et al., 1983, Gene, 26, 91-99), the ble gene conferring resistance to phleomycin, the transcription terminator of the gene PGK (PGKt), a fragment of pBR322 carrying an origin of bacterial replication and the Amp gene confer
  • Figure 2 is a schematic representation of the vector pTG 10231 (multicopy vector) comprising the URA 3-d gene, the promoter of the CYCl gene (pCYCl), the coding part of the GUS gene, the PGK terminator, a fragment of pBR322 and the origins phage replication F.ori and yeast 2 ⁇ .
  • Figure 3 is a schematic representation of the vector pTG8795 (single-copy vector) similar to pTG10231, except that the marker gene consists of the complete URA3 gene and that the origin ARSH4-CEN6 replaces most of the 2 ⁇ fragment included in this vector.
  • Figure 4 is a diagram schematizing the promoter activities of the inserts D64, R13, J1, and their subfragments (J1.2, R13.2 and R13.3) compared to the promoter of the KEX2 gene. The bars represent the level of activity of the GUS protein in the Saccharomyces cerevisiae TGY74.3 strain tested in a multicopy system.
  • Figure 5 is a diagram schematizing the promoter activities of the inserts D64, R13, J1, and their subfragments (J1.2, R13.2 and R13.3) compared to the promoters of the genes KEX2, PGK, MF al (pMF1 ) and CYCl. The bars represent the level of activity of the GUS protein in the Saccharomyces cerevisiae TGY74.3 strain tested in a single-copy system.
  • Figure 6 is a diagram showing the influence of the culture medium on the promoter activities of the inserts D64, J1.2, R13 and, as a control, of the TEF1 promoter. The values indicated represent an average of two samples taken during the growth phase.
  • FIG. 7 is a schematic representation of the R13 subfragments generated by deletion of the 5 ′ region and of the GUS activity measured for each of them in a single-copy expression system and at the start of growth.
  • the techniques described below are carried out according to the general techniques of genetic engineering and molecular cloning detailed in Maniatis et al. (1989, Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or as recommended by the manufacturer when using a commercial kit.
  • the stages of cloning into bacteria are carried out in the strain Escherichia coli (E. coli) 5K (Hubacek and Glover, 1970, J. Mol. Biol., 50, 11-1127).
  • Amplification techniques by PCR are known to those skilled in the art (see for example PCR Protocols, A Guide to Methods and Applications, 1990, ed Innis, Gelfand, Sninsky and White, Académie Press Inc).
  • the technique used consists of filling the protruding 5 ′ ends with the large fragment of DNA polymerase I from E. coli (Klenow).
  • the non-transformed yeasts are generally cultivated at 28 ° C. in a non-selective YPG medium (Yeast Extract 1%, Bactopeptone 1% and Glucose 2%) while the transformed cells are maintained in selective conditions according to the nature of the selection gene contained in the construction.
  • a non-selective YPG medium Yeast Extract 1%, Bactopeptone 1% and Glucose 26%
  • the culture is carried out in YEG medium (Yeast Extract 0.5%, Glucose 2%) buffered at pH7 by addition of 0.1 M MOPS and in the presence of phleomycin at a minimum concentration of 50 ⁇ g / ml.
  • YEG medium Yeast Extract 0.5%, Glucose 2%) buffered at pH7 by addition of 0.1 M MOPS and in the presence of phleomycin at a minimum concentration of 50 ⁇ g / ml.
  • URA3 or URA 3-d gene complementing urotac auxotrophy
  • the culture medium is composed of YNBG + cases (Yeast nitrogen base 0.675%, Glucose 1% and casamino acids 0.5 %).
  • EXAMPLE 1 Cloning of yeast DNA fragments exhibiting promoter activity.
  • a DNA library enriched in DNA fragments originating from chromosome IX is constituted from the yeast Saccharomyces cerevisiae TGY73.4 (MA T ⁇ , ura3, his3, pra1, prb1, prc1, cps1) treated by the so-called agarose technique solid (Rose et al; 1990, supra, Preparation of chromosome-size yeast DNA molecules in so ⁇ d agarose). Briefly, the yeasts treated with zymolyase are included in agarose which is then solidified.
  • the chromosomes are separated by electrophoresis in pulsed fields (CHEF-DRII, Biorad) on 1% agarose gel (Biorad chromosomal grade agarose) in 0.5x TBE buffer (45 mM Tris-HCl, 45 mM Borate and EDTA 2 mM).
  • the electrophoresis takes place for a total duration of 24 hours (h) by applying the following parameters: 40 sec pulses for 16 h then 90 sec for 8 h with a voltage of 200 volts. These conditions are optimal for the separation of small chromosomes (I, VI, III and IX).
  • the band corresponding to chromosome IX (the fourth from the bottom) is cut from the gel and the DNA extracted from the agarose (Gene Clean kit, Bio 101 Inc). It was necessary to carry out several electrophoreses of this type in order to be able to have approximately 1 ⁇ g of chromosomal DNA.
  • the preparation enriched in chromosome IX is partially digested with the enzyme Sau 3A (10 digests of 100 ng of DNA per 0.2 unit of enzyme for 1 h at 37 ° C. in a reaction volume of 50 ⁇ l).
  • the enzymatic reaction is stopped by adding 1 ⁇ l of 0.5 M EDTA at pH8.
  • After alcoholic precipitation the fragments of a size between 0.5 and 1.5 kb are isolated on 1% LMP agarose gel (Low Melting Point, BRL) and eluted by the Gene Clean method.
  • the isolated fragments are cloned into the plasmid pTG9852 ( Figure 1) linearized with BamHI and treated with alkaline calf phosphatase (Boehringer).
  • the latter derives from plasmids pTG6888 and pUT332 (Gatignol et al., 1987, Mol. Gen. Genêt., 207, 342-348).
  • the first corresponds to the vector pTG3828 (Achstetter et al., 1992, Gene, 110, 25-31) modified by deletion of the Xbal site contained in the 2 ⁇ origin (by partial Xbal digestion and Klenow treatment).
  • the coding part of the ble gene is purified from pUT332 in the form of a BamHI-EcoRI fragment which is subjected to the action of Klenow before being introduced into the BglI I site (made blunt by treatment with Klenow ) of the vector pTG6888.
  • the insertion of DNA fragments into pTG9852 at the unique BamHI site placed upstream of the coding sequences of the ble gene, will make it possible to select those which have transcriptional promoter activity (by selection of yeasts transformed with phleomycin).
  • the amplification In the absence of an insert (parental vector pTG9852), the amplification generates a band of 269 bp. On the other hand, after insertion of a yeast fragment, the size of the amplified band is increased by the size of the insert. The results indicate an insertion frequency of 90% and an average size of the inserts close to 700 bp.
  • a library is created by extracting the plasmid content of all of the clones generated.
  • C Selection of potential functional promoters in the yeast Saccharomyces cerevisiae.
  • the bank obtained in the previous step is transformed into the yeast strain
  • the electroporated cells are spread in parallel on two different media in order to evaluate, on the one hand, if they are transformed (spreading on YNBG medium + case for the selection of the Ura + phenotype) and, on the other hand, if the insert has transcriptional promoter activity (spreading on YEG medium supplemented with 250 ⁇ g / ml of phleomycin). It is indicated that the untransformed strain TGY73.4 or transformed by the vector pTG9852 (carrying the ble gene devoid of promoter) is incapable of growing beyond a phleomycin concentration of 20 ⁇ g / ml.
  • the vector pTG9851 comprising a functional expression cassette for the ble gene (under the control of the TEF1 promoter) can resist an antibiotic concentration of 2 mg / ml. This is obtained by introduction of the BamHI fragment isolated from the vector pUT332 in the BglII site of pTG6888
  • the promoter used is weak (pTG9895 comprising the ble gene under the control of the promoter of the KEX2 gene, see example 2)
  • the cells grow up to 50 ⁇ g / ml.
  • the retained concentration of 250 ⁇ g / ml is intermediate in order to be able to select promoter fragments of variable force.
  • 9300 transformants (Ura + ) are generated, of which approximately 1% exhibit resistance to a phleomycin concentration of 250 ⁇ g / ml (106 clones) PCR analysis with the previous primers indicates an insert frequency of 80%, their size varying from 0.5 to 1.6 kb with an average of 0.7-0.8 kb.
  • Replicas of these 106 candidates were carried out on selective medium with increasing phleomycin concentration and 20 clones resist 2 mg / ml
  • the plasmid content of the 20 transformants selected is electroduct in E. coli 5K (Nacken et al., 1994, Nucleic, Acids Res., 22, 1509-1510) before being reintroduced into the yeast TGY73.4.
  • Four clones still have a band amplifiable by PCR and a growth capacity in the presence of phleomycin. Three of them have been characterized. These are the clones transformed by the plasmids pTG8732, pTG8733 and pTG8734 carrying the inserts D64, R13 and J1 respectively.
  • ORF putative reading frames
  • EXAMPLE 2 Vector for expression of the GUS gene under the control of the preceding inserts.
  • the activity of transcriptional promoter is evaluated with respect to the GUS gene, the expression product of which is easily measurable. Indeed, its enzymatic activity can be detected by colorimetry, fluorometric assay on cellular extracts (Jefferson et al., 1987, Molecular Biology Reporter, 5, 387-405) or by histochemical test on Nylon filters (Hirt, 1991, Current Genetics , 20, 437-439).
  • the inserts are isolated by PCR from the vectors pTG8732 (carrying D64), pTG8733 (R13) and pTG8734 (J1) and using primers provided with a ClaI restriction site in 5 ′ of the sense primer and Dirty in 5 'of the antisense. These are indicated in the sequence identifiers 6 to 9 (oTG6302 and oTG6293 for D64; oTG6292 and oTG6293 for R13 and oTG6298 and oTG6293 for J 1).
  • R13 Characterization of sound-fragments of selected registrants.
  • the insert R13 exceeding 1 kb, it may be useful to have sub-fragments of reduced size therefore more easily manipulated and nevertheless retaining a transcriptional promoter activity.
  • the 5 'and 3' regions of R13 are isolated from pTG8733 using the primers oTG6292 and oTG6294 (SEQ ID NO: 10) and oTG6301 (SEQ ID NO: 11) and oTG6293 respectively.
  • the 416 bp fragment covering the 5 ′ part is designated R13.2 while that corresponding to the 3 ′ half with a length of 599 bp is designated R13.3.
  • Other subfragments were created by progressive deletion of the 5 'region (see example 5 below).
  • the insert is deleted at 3 ′ in order to eliminate the putative 25 aa ORF and, in particular, its initiating ATG capable of interfering with the translation of the protein of interest.
  • a 547 bp fragment (J1.2) lacking putative coding sequences is isolated by amplification from pTG8374 and the primers oTG6298 and oTG6299 (SEQ ID NO: 12).
  • the basic vector designated pTG10231 ( Figure 2, Degryse et al., Yeast, in press) is derived from pTG3828 (Achstetter et al., 1992, supra). It includes three origins of replication, yeast (2 ⁇ ), bacterial (ori) and finally phage (f.ori allowing the production of single-stranded DNA) as well as two selection markers
  • URA3-d and Amp genes As an indication, the URA3-d gene corresponds to the gene
  • URA3 deleted from its promoter thereby ensuring a large number of copies of plasmid in the cell. Finally, it carries an expression cassette in which the sequences coding for the GUS protein (Jefferson et al., 1986, Proc. Natl. Acad.
  • the vector pTG10231 is digested with ClaI and SalI in order to eliminate the fragment carrying the CYCl promoter.
  • the amplified fragments (corresponding to the inserts and their respective sub-fragments) are cloned into the linearized vector.
  • Clones having plasmids with a correct restriction profile are selected, respectively named pTG8784 (carrying D64), pTG8781 (R13), pTG8785 (J1), pTG8782 (R13.2), pTG8783 (R13.3) and pTG8786 (J1.2 ).
  • a negative control is generated by digestion of pTG 10231 with Clal and SalI, Klenow treatment and religation. This control lacking a promoter is designated pTG8793.
  • promoter sequences of the present invention are also useful to compare with other promoters, either deemed strong like those of the MF al and PGK genes or weaker like the promoter of the KEX2 gene (Fuller et al., 1989, Proc. Natl Acad. Sci. USA, 86, 1434-1438).
  • the corresponding sequences are obtained by PCR: for the promoter of the KEX2 gene: amplification of a 524 bp fragment from pTG9895 and the primers oTG6304 (SEQ ID NO: 13) and oTG6293.
  • pTG9895 is obtained by insertion into the BamHI site of pTG9852 (Example 1) of a PCR fragment carrying the promoter of the KEX2 gene.
  • the latter is amplified from the matrix pTG4812 (described in EP 396 436) and oligonucleotides oTG5739 and oTG5740 (SEQ ID NO: 14 and 15), for the promoter of the MF al gene: amplification of a fragment from 974 bp to from a genomic DNA preparation of the yeast strain FL 100 (ATCC 28383) and the primers oTG6929 and oTG6930 (SEQ ID NO: 16 and 17), and for the promoter of the PGK gene: amplification of a fragment of 779 bp from a genomic DNA preparation of the yeast strain FL 100 and the primers oTG7002 and oTG6928 (SEQ ID NO: 18 and 19).
  • the amplified fragments are then inserted between the ClaI and SalI sites of the vector pTG10231 in place of the CYCl promoter, to give pTG8780 (KEX2), pTG8789 (MFa 1) and pTG8791 (PGK), respectively.
  • pTG8780 KEX2
  • MFa 1 pTG8789
  • PGK pTG8791
  • the vector pTG8795 ( Figure 3) is the equivalent of the vector pTG10231 except that it comprises an autonomous replication unit ARSH6-CEN4 (Sikorski and Hieter, 1989, Genetics, 122, 19-27) in place of the origin 2 ⁇ and the UPA3 gene in place of UM3-d.
  • ARSH6-CEN4 autonomous replication unit
  • the promoter fragments are introduced into pTG8795 by homologous recombination in replacement of the CYCl promoter.
  • the E. coli strain BJ5183 endA, sbcBC, galK, met, thi-1, bioT, hsdR, strR
  • one of the plasmids obtained in the previous step (donor plasmids pTG8781 to pTG8786) digested with Scal and, on the other hand, the base vector pTG8795 (recipient plasmid) linearized by NotI.
  • a first analysis of the restriction profile is made on the clones generated in order to select those with the expected profile (designated pTG9704 (D64), pTG9701 (R13), pTG9705 (J1), pTG9702 (R13.2), pTG9703 (R13.3 ) and pTG9706 (J1.2)). Their plasmid content is then transferred to the 5K strain in order to obtain higher quantities of plasmid DNA.
  • Example 2C and D are used to transform the strain TGY73.4 or W303a (MATa, ura3, leu2, his3, trp1, ade2; Crivellone et al., 1988, J. Biol. Chem., 263, 14323 -14333).
  • the expression of the GUS gene can be evaluated directly on the colonies resulting from the transformation by a semi-quantitative technique described by Hirt (1991, supra), the protocol of which has been modified as indicated below. A portion of colony is taken with a toothpick and deposited on a Nylon N membrane (Amersham).
  • the colonies are thawed on 3M Whatman paper soaked in Na 2 HPO 4 buffer 50 mM pH7 containing reagent 5-bromo-4-chloro-3-indolylglucuronide (X-gluc) at 50 ⁇ g / ml (dilution of a stock solution to 5 mg / ml in DMSO, dimethylsulfoxide). The reaction takes place in the dark at 37 ° C. The colonies producing the GUS protein appear in blue, the intensity and the speed of appearance of the coloration being all the stronger the higher the level of expression. In order to have more quantitative measurements, the transformed yeasts are cultivated in a liquid medium (YNBG + case) at 28 ° C.
  • YNBG + case liquid medium
  • a culture sample (10 ml) is taken during growth, the cells are recovered by centrifugation and taken up in 500 ⁇ l of GUS extraction buffer supplemented with 1 mM Pefabloc (Jefferson et al., 1987, supra), before being ground for 15 min (Retsch mill). The ground material is then centrifuged for 10 min at 10,000 rpm at 4 ° C. The protein concentration is measured on the supernatant (Biorad kit) and the enzymatic activity of the GUS protein determined by fluorimetry using the methyl umbelliferyl ⁇ -glucuronide substrate. There is generally a difference in the protein extraction yields between the strains TGY73.4 and W303 ⁇ . However, the GUS activities reduced to the amount of protein are comparable in the two strains.
  • Figure 4 shows the activity levels of the GUS protein produced in the TGY73.4 strain transformed by the multicopy vectors of Example 2C.
  • the samples are taken in the stationary growth phase and GUS activity is given in nmoles of methyl umbelliferone (MU) produced per min and mg of protein.
  • the insert R13 has a promoter activity clearly superior to that measured with all the fragments tested as well as the promoter KEX2 (factor 58).
  • the D64 insert can also be considered as a strong promoter in view of the levels of GUS protein produced under its control (28 times greater than those obtained with the KEX2 promoter).
  • the promoter capacities of the complete insert J 1 are of the same order of magnitude as KEX2 (to within a factor of 2).
  • the deletion of the 25 aa ORF located at its 3 ′ end proves to be advantageous since the promoter activity of the J 1.2 subfragment is clearly improved.
  • the R13.3 sub-fragment retains a significant promoter activity although it is less than the complete insert from which it derives, while the R13.2 sub-fragment constitutes a very weak promoter.
  • no GUS activity is measured with the negative controls (strain TGY73.4 not transformed or transformed by the plasmid pTG8793).
  • Figure 5 summarizes the data concerning the single-copy vectors of example 2D (sampling at an OD600nm of approximately 1). There is a roughly comparable profile.
  • the GUS activity levels obtained under the control of the complete R13 insert greatly exceed those produced from the clones tested as well as from the PGK and MF al promoters pondered to be strong.
  • the promoter activity of the inserts D64 and J 1.2 is of the same order of magnitude as that of the reference promoters PGK and MF al.
  • the transcriptional capacity of R13.3 although notable, is lower than that determined with the complete insert.
  • the low activity of the CYCl promoter is explained by the large amount of glucose in the culture medium because the samples are taken in the exponential phase.
  • the characterization of the GUS protein produced by the various transformed yeasts was carried out by 7.5% SDS PAGE gel (mini-protean II dual slab cell system, Biorad). Is highlighted in yeasts containing pTG8784, pTG8781 and pTG8786, after staining with Comassie blue, a band of expected molecular weight (68 kDa) corresponding to the expression product of the GUS gene, which represents approximately 5% of the total proteins of the extract.
  • the regulatory capacity of these promoter fragments can be studied as a function of growth and culture conditions (measurement of the activity at different culture times, addition of specific nutrients in the culture medium, such as glucose, thiamine, etc. .).
  • the level of GUS activity produced by TGY73.4 strains transformed by the monocopy vectors was determined as a function of the growth of yeasts in minimum medium.
  • the insert R13 is active at the very start of the exponential phase and its activity decreases as the OD 600 nm increases.
  • the J.12 subfragment exhibits similar behavior. With regard to D64, its promoter activity is also less in the stationary phase but the profile observed is slightly different in the sense that the maximum activity is located in the middle of the exponential phase (bell-shaped profile). In contrast, the promoter activity of the R13.3 subfragment is increased in the stationary phase (as observed with the CYCl promoter).
  • the single-copy vectors pTG9704 (D64), pTG9706 (J1.2) and pTG9701 (R13) were cultivated in 3 different media, in parallel with the plasmid pTG9707 equivalent to the previous ones except that it is the TEF1 promoter (Cottrelle et al. ., 1985, supra) which directs the expression of the GUS gene.
  • the study is carried out on defined medium YNBG + glucose-based case, rich medium YPG and defined oxidative medium YNBGly + case whose carbon source is glycerol. Two samples are taken in the exponential growth phase (OD 600 ⁇ 1). GUS activities are measured in fluorimetry on the acellular protein extracts of each sample ( Figure 6).
  • the protein extracts of the clones corresponding to the three promoter inserts of the invention all have a GUS activity reduced by 50% on YNBGly + case medium, in comparison with the glucose medium YNBG + case
  • the GUS activity controlled by pTEFl is identical on YNBG + case and YNBGly + case media, confirming that this promoter is effective on the two carbon sources contained in these culture media.
  • the GUS activity is less on YPG than on YNBG + cases.
  • the optimal activity of the promoter fragments D64, J1 .2 and R13 seems to be obtained in a defined medium with glucose as a carbon source. However, as indicated previously (example 3), the activity decreases regularly during the growth as the glucose disappears from the culture medium, (reduction of the level of GUS production by a factor 2 in the stationary phase) . It is indicated that on a defined glycerol medium (YNBGly + case), such activity variation is not observed during cell growth (constant GUS level).
  • the RI 39 fragment is amplified by PCR from pTG9701 (Example 2D) using oTG 7659 and 7234 (SEQ ID No 20 and 21) and makes it possible to generate pTG9754 after cloning in the form of a ClaI-SalI fragment in the monocopy expression vector of the GUS gene.
  • R1329 corresponds to R13 deleted by 80 bp in 5 '
  • the insert R13.5 is also amplified by PCR from the pTG9701 matrix using the oligonucleotides oTG7422 (SEQ ID No: 22) and oTG7234, and gives rise to the vector GUS pTG9719 expression.
  • R13.5 corresponds to a 190 bp deletion in 5 'of the insert R13.
  • the sub-fragment R13.6 which is obtained using the primers oTG7423 (SEQ ID NO: 23) and oTG7234 results from a deletion of 300 bp in 5 ′ of R13. Its cloning into the GUS monocopy expression plasmid generates pTG9720.
  • the fragment R13.3 already described, comprises a deletion of 450 bp in 5 ′ of R13.
  • the yeasts TGY73.4 are cultured in defined medium YNBG + cases and collected at OD 600 ⁇ 1.
  • Figure 7 represents the GUS activities corresponding to the means of fluorimetric measurements at OD 600 ⁇ 1 (three clones tested by contruction).
  • the original RI 3 insert has a GUS activity of 225 U / mg in the exponential growth phase.
  • the deletion of approximately 100 bp in 5 ′ generating R13.9 is accompanied by a loss of activity of approximately 40% (140 U / mg).
  • the promoter activity significantly increases after an additional deletion of approximately 100 bp (R13.5) (GUS activity of 290 U / mg exceeding that obtained with R13 and R13.9), which suggests that the deleted region includes a potential element of downregulation of gene expression.
  • additional 5 'deletions (R13.6 and R13.3) considerably reduce the promoter activity (95% loss compared to RI 3.5).
  • the deleted zone contains the consensus sequence motifs for binding the activator / repressor product encoded by the RAP1 gene from S. cerevisiae.
  • the R13.5 fragment exhibits maximum promoter activity which can be used for the expression of the gene of interest.

Abstract

Novel nucleic acid fragments isolated from the genomic DNA of yeast and having transcription promoter activity, as well as expression cassettes, vectors and host cells containing same, are disclosed. The use of said fragments for producing commercially or therapeutically useful polypeptides is also disclosed.

Description

NOUVEAUX PROMOTEURS POUR L'EXPRESSION DE PROTEINES NOVEL PROMOTERS FOR PROTEIN EXPRESSION
D'INTÉRÊT DANS LA LEVURE OF INTEREST IN YEAST
La présente invention se rapporte au domaine des biotechnologies, notamment à un perfectionnement apporté à la production d'un polypeptide d'intérêt commercial ou thérapeutique dans la levure et, en particulier, dans Saccharomyces cerevisiae. Elle concerne, en premier lieu, de nouveaux fragments d'acide nucléique isolés de l'ADN génomique de Saccharomyces cerevisiae et présentant une activité de promoteur transcriptionnel et, en second lieu, des cassettes d'expression, vecteurs d'expression et cellules hôtes les contenant ainsi que leur utilisation pour la production de polypeptides d'intérêt. The present invention relates to the field of biotechnology, in particular to an improvement brought to the production of a polypeptide of commercial or therapeutic interest in yeast and, in particular, in Saccharomyces cerevisiae. It relates, firstly, to new nucleic acid fragments isolated from the genomic DNA of Saccharomyces cerevisiae and exhibiting transcriptional promoter activity and, secondly, to expression cassettes, expression vectors and host cells. containing as well as their use for the production of polypeptides of interest.
La levure Saccharomyces cerevisiae est considérée comme l'un des hôtes préférés pour la production de protéines recombinantes pour de nombreuses raisons. D'une part, cet organisme est non pathogène et il est couramment utilisé dans l'industrie agroalimentaire. D'autre part, il peut être cultivé à grande échelle et à haute densité dans un milieu relativement bon marché et peut être facilement adapté à un environnement industriel. De plus, il a été particulièrement étudié de sorte que de multiples données concernant sa génétique et sa physiologie sont disponibles. Enfin, il est capable d'effectuer certaines modifications typiquement eucaryotes (glycosylation, ponts disulfure...). Bien que de nombreux promoteurs transcriptionnels fonctionnels dans les levures aient été décrits dans la littérature, seuls quelques uns d'entre eux s'avèrent efficaces pour la production de polypeptides par voie recombinante. On peut citer notamment les promoteurs des gènes PGK (3-phosphoglycérate kinase ; Hitzeman et al., 1983, Science, 219, 620-625), TDH codant pour la GAPDH (glycéraldéhyde phosphate deshydrogénase ; Holland et Holland, 1979, J. Biol. Chem., 254, 9839- 9845), TEF1 (Facteur d'élongation 1 ; Cottrelle et al. , 1985, J. Biol. Chem., 260, 3090-3096), MF al (précurseur de la phéromone sexuelle a ; Inokuchi et al., 1987, Mol. Cell. Biol., 7, 3185-3193) qui sont considérés comme des promoteurs constitutifs forts ou encore le promoteur régulable CYCl réprimé en présence de glucose (Guarente et Ptashne, 1981, Proc Natl. Acad. Sci . USA, 78, 2199-2203) ou PH05 régulable par la thiamine (Meyhack et al., 1982, EMBO J., 1, 675-680) Cependant, pour des raisons souvent inexpliquées, ils ne permettent pas toujours l'expression efficace des gènes qu'ils contrôlent et donc la production de polypeptides à des niveaux importants. Dans ce contexte, il est toujours avantageux de pouvoir disposer de nouveaux promoteurs afin de générer de nouveaux systèmes hôtes/vecteurs efficaces pour la production de grande quantité de protéines d'intérêt De plus, avoir un choix de promoteurs efficaces dans une cellule donnée permet également d'envisager la production de multiples protéines dans cette même cellule (par exemple plusieurs enzymes d'une même chaîne métabolique) tout en évitant les problèmes de recombinaison entre séquences homologues. D'une manière générale, une région promotrice est située dans la région 5' des gènes et comprend l'ensemble des éléments permettant la transcription d'un fragment d'ADN placé sous leur dépendance, notamment : The yeast Saccharomyces cerevisiae is considered one of the preferred hosts for the production of recombinant proteins for many reasons. On the one hand, this organism is non-pathogenic and it is commonly used in the food industry. On the other hand, it can be grown on a large scale and at high density in a relatively inexpensive environment and can be easily adapted to an industrial environment. In addition, it has been particularly studied so that multiple data concerning its genetics and physiology are available. Finally, it is capable of carrying out certain typically eukaryotic modifications (glycosylation, disulfide bridges, etc.). Although numerous functional transcriptional promoters in yeasts have been described in the literature, only a few of them prove to be effective for the production of polypeptides by the recombinant route. Mention may in particular be made of the promoters of the PGK genes (3-phosphoglycerate kinase; Hitzeman et al., 1983, Science, 219, 620-625), TDH coding for GAPDH (glyceraldehyde phosphate dehydrogenase; Holland and Holland, 1979, J. Biol Chem., 254, 9839-9845), TEF1 (Elongation factor 1; Cottrelle et al., 1985, J. Biol. Chem., 260, 3090-3096), MF al (precursor of the sexual pheromone a; Inokuchi et al., 1987, Mol. Cell. Biol., 7, 3185-3193) which are considered to be strong constitutive promoters or else the regulatable promoter CYCl repressed in the presence of glucose (Guarente and Ptashne, 1981, Proc Natl. Acad Sci. USA, 78, 2199-2203) or PH05 regulatable by thiamine (Meyhack et al., 1982, EMBO J., 1, 675-680) However, for often unexplained reasons, they do not always allow the efficient expression of the genes they control and therefore the production of polypeptides at significant levels. In this context, it is always advantageous to be able to have new promoters in order to generate new efficient host / vector systems for the production of large quantities of proteins of interest. In addition, having a choice of effective promoters in a given cell also allows to consider the production of multiple proteins in this same cell (for example several enzymes of the same metabolic chain) while avoiding the problems of recombination between homologous sequences. In general, a promoter region is located in the 5 ′ region of the genes and comprises all of the elements allowing the transcription of a DNA fragment placed under their dependence, in particular:
(1 ) une région promotrice dite minimale comprenant la TATA box et le site d'initiation de la transcription, qui détermine la position du site d'initiation ainsi que le niveau basai de la transcription. Chez Saccharomyces cerevisiae, la longueur de la région promotrice minimale est relativement variable. En effet, la localisation exacte de la TATA box varie d'un gène à l'autre et peut se situer de -40 à -120 nucléotides en amont du site d'initiation (Chen et Struhl, 1985, EMBO J.; 4, 3273-3280) (1) a so-called minimal promoter region comprising the TATA box and the transcription initiation site, which determines the position of the initiation site as well as the basal level of transcription. At Saccharomyces cerevisiae, the length of the minimum promoter region is relatively variable. Indeed, the exact location of the TATA box varies from one gene to another and can be from -40 to -120 nucleotides upstream of the initiation site (Chen and Struhl, 1985, EMBO J .; 4, 3273-3280)
(2) des séquences situées en amont de la TATA box (immédiatement en amont jusqu'à plusieurs centaines de nucléotides) qui permettent d'assurer un niveau efficace de transcription soit de manière constitutive (niveau de transcription relativement constant tout au long du cycle cellulaire, quelles que soient les conditions de culture) soit de manière régulable (activation de la transcription en présence d'un activateur et/ou répression en présence d'un répresseur). Ces séquences désignées par la suite modulatrices, peuvent être de plusieurs types : activatrice, inhibitrice, enhancer, inductible, répressible et répondre à des facteurs cellulaires ou des conditions de culture variés. (2) sequences located upstream of the TATA box (immediately upstream of up to several hundred nucleotides) which make it possible to ensure an efficient level of transcription either constitutively (relatively constant level of transcription throughout the cell cycle , whatever the culture conditions) is in a controllable manner (activation of transcription in the presence of an activator and / or repression in the presence of a repressor). These sequences, which are subsequently designated as modulators, can be of several types: activator, inhibitor, enhancer, inducible, repressible and respond to various cellular factors or culture conditions.
On a maintenant isolé et caractérisé trois séquences génomiques de Saccharomyces cerevisiae et mis en évidence leur fonction de promoteur de la transcription. Placée en amont d'un gène reporteur (gène de la résistance à la phléomycine ou gène GUS codant pour la β-glucuronidase), chacune de ces séquences permet son expression chez la levure Saccharomyces cerevisiae et, dans le cas de deux d'entre elles, à un niveau élevé puisque supérieur ou à peu près équivalent à celui détecté avec des régions promotrices réputées fortes, comme celles des gènes PGK et MF al. La comparaison avec les banques de données indiquent que deux des séquences clonées sont nouvelles et ne figurent pas dans les banques de données accessibles au public (SEQ ID NO: 1 et 2). En ce qui concerne la troisième (SEQ ID NO: 3), eue correspond à une séquence localisée en 3' du gène de levure COX 4 dans une région où la présence d'un promoteur est inattendue La présente invention apporte une solution avantageuse au problème de la production de protéines d'intérêt par voie recombinante. Par conséquent, la présente invention a pour objet un fragment d'acide nucléique isolé comprenant tout ou partie d'une séquence nucléotidique homologue à la séquence montrée dans l'identificateur de séquence NO: 1, 2 ou 3 ou homologue à son complémentaire, ledit fragment présentant une activité de promoteur transcriptionnel . We have now isolated and characterized three genomic sequences of Saccharomyces cerevisiae and demonstrated their function as promoter of transcription. Placed upstream of a reporter gene (gene for resistance to phleomycin or GUS gene coding for β-glucuronidase), each of these sequences allows its expression in the yeast Saccharomyces cerevisiae and, in the case of two of them , at a high level since it is greater or approximately equivalent to that detected with promoter regions reputed to be strong, such as those of the PGK and MF al. The comparison with the databases indicates that two of the cloned sequences are new and do not appear in the databases accessible to the public (SEQ ID NO: 1 and 2). As regards the third (SEQ ID NO: 3), eue corresponds to a sequence located 3 ′ of the yeast gene COX 4 in a region where the presence of a promoter is unexpected The present invention provides an advantageous solution to the problem of the production of proteins of interest by recombinant route. Consequently, the subject of the present invention is an isolated nucleic acid fragment comprising all or part of a nucleotide sequence homologous to the sequence shown in the sequence identifier NO: 1, 2 or 3 or homologous to its complement, said fragment exhibiting transcriptional promoter activity.
Par "fragment d'acide nucléique", on entend un polymère de nucléotides pouvant être de type ADN ou ARN. Ces termes sont définis dans tous les ouvrages de base de biologie moléculaire. Préférentiellement, un fragment d'acide nucléique selon l'invention est un fragment d'ADN double brin. By "nucleic acid fragment" is meant a polymer of nucleotides which may be of DNA or RNA type. These terms are defined in all basic molecular biology works. Preferably, a nucleic acid fragment according to the invention is a double stranded DNA fragment.
D'une façon générale, tout ou partie de l'une des séquences nucléotidiques spécifiées dans les SEQ ID NO: 1, 2 et 3, son complémentaire ou un de ses homologues peut être utilisé dans le cadre de la présente invention. Le terme "partie" désigne un fragment comportant une portion d'au moins 17 nucléotides continus identiques à une portion d'une longueur équivalente de l'une des séquences nucléotidiques indiquées dans les identificateurs de séquence ou de son complémentaire Mais, bien entendu, un fragment d'acide nucléique selon l'invention n'est pas limité aux séquences décrites et peut s'étendre au délà. In general, all or part of one of the nucleotide sequences specified in SEQ ID NO: 1, 2 and 3, its complement or one of its homologs can be used in the context of the present invention. The term “part” designates a fragment comprising a portion of at least 17 continuous nucleotides identical to a portion of equivalent length of one of the nucleotide sequences indicated in the sequence identifiers or of its complement. But, of course, a The nucleic acid fragment according to the invention is not limited to the sequences described and can extend beyond this.
Le terme "homologue" signifie une séquence capable de s'hybrider dans des conditions stringentes avec tout ou partie de la séquence reportée dans la SEQ ID NO: 1, 2 ou 3. Il fait plus particulièrement référence à tout acide nucléique retenant la fonction promotrice et présentant une ou plusieurs modification(s) de séquence par rapport à une de ces séquences. Ces modifications peuvent être obtenues par mutation, délétion et/ou addition d'un ou plusieurs nucléotide(s) par rapport à la séquence native. Elles peuvent être introduites notamment pour améliorer l'activité promotrice, supprimer une région inhibitrice de la transcription, rendre un promoteur constitutif régulable ou vice versa, introduire un site de restriction facilitant les étapes de clonage ultérieures, éliminer les séquences non essentielles à l'activité transcriptionnelle...etc Dans ce contexte, on préférera un degré d'homologie de 70% par rapport à la séquence native, avantageusement de 80% et, de préférence, de 90%. L'homme du métier sait où effectuer les modifications afin de ne pas altérer de manière drastique la fonction de promoteur de la transcription et il évitera en particulier le site d'initiation de la transcription et la TATA box. Il connaît également les techniques permettant d'évaluer si l'homologue généré a une activité promotrice, par exemple par insertion en amont d'un gène reporter dont l'expression est facilement détectable (β-galactosidase, cathécholoxygénase, luciférase ou encore un gène conférant la résistance à un antibiotique). Mais tout autre technique conventionnelle peut également être employée. The term "homologous" means a sequence capable of hybridizing under stringent conditions with all or part of the sequence reported in SEQ ID NO: 1, 2 or 3. It more particularly refers to any nucleic acid retaining the promoter function and having one or more sequence modification (s) with respect to one of these sequences. These modifications can be obtained by mutation, deletion and / or addition of one or more nucleotide (s) relative to the native sequence. They can be introduced in particular to improve the promoter activity, to suppress a region inhibiting transcription, to make a constitutive promoter regulable or vice versa, to introduce a restriction site facilitating the subsequent cloning steps, to eliminate the sequences not essential to the activity. transcriptional ... etc In this context, we will prefer a degree 70% homology with respect to the native sequence, advantageously 80% and preferably 90%. A person skilled in the art knows where to make the modifications so as not to drastically alter the function of transcription promoter and he will in particular avoid the transcription initiation site and the TATA box. He also knows the techniques allowing to evaluate if the generated homolog has a promoter activity, for example by insertion upstream of a reporter gene whose expression is easily detectable (β-galactosidase, cathecholoxygenase, luciferase or even a conferring gene antibiotic resistance). But any other conventional technique can also be used.
Suivant un mode de réalisation préféré, un fragment d'acide nucléique selon l'invention est identique à tout ou partie de l'une des séquences nucléotidiques montrées dans l'identificateur de séquence NO: 1, 2 ou 3 ou de son complémentaire. According to a preferred embodiment, a nucleic acid fragment according to the invention is identical to all or part of one of the nucleotide sequences shown in the sequence identifier NO: 1, 2 or 3 or of its complement.
A titre d'exemples préférés mais non limitatifs, on peut envisager d'employer un fragment d'acide nucléique ayant une séquence telle que montrée dans : By way of preferred but nonlimiting examples, it is possible to envisage using a nucleic acid fragment having a sequence as shown in:
(i) l'identificateur de séquence NO: 1 , débutant au nucléotide en position 462 et se terminant au nucléotide en position 1016, ou(i) the sequence identifier NO: 1, starting at the nucleotide at position 462 and ending at the nucleotide at position 1016, or
(ii) l'identificateur de séquence NO: 1, débutant au nucléotide en position 197 et se terminant au nucléotide en position 1016, ou (iii) l'identificateur de séquence NO: 3, débutant au nucléotide en position 5 et se terminant au nucléotide en position 523. (ii) the sequence identifier NO: 1, starting at the nucleotide at position 197 and ending at the nucleotide at position 1016, or (iii) the sequence identifier NO: 3, starting at the nucleotide at position 5 and ending at nucleotide at position 523.
Aux fins de la présente invention, un fragment d'acide nucléique selon l'invention peut être constitué par l'assemblage d'éléments d'origines diverses pour former un promoteur dit hybride fonctionnel dans la cellule hôte considérée. En particulier, un tel promoteur hybride peut comprendre : For the purposes of the present invention, a nucleic acid fragment according to the invention can be constituted by the assembly of elements of various origins to form a so-called hybrid promoter functional in the host cell considered. In particular, such a hybrid promoter can comprise:
(i) un fragment d'acide nucléique selon l'invention, comprenant une région promotrice minimale ; ladite région promotrice minimale étant placée en aval d'une ou plusieurs séquence(s) modulatrice(s) hétérologue(s) à ladite région promotrice minimale, ou (ii) un fragment d'acide nucléique selon l'invention, comprenant au moins une séquence modulatrice ; ladite séquence modulatrice étant placée en amont d'une région promotrice minimale hétérologue à ladite séquence modulatrice. Selon un mode de réalisation de la première variante, on peut avoir recours à une ou plusieurs séquence(s) modulatrice(s) régulable(s) afin de générer un promoteur hybride régulable à partir duquel la transcription peut être induite ou réprimée selon les conditions mises en oeuvre. Ce mode de réalisation spécifique est particulièrement avantageux dans le cadre de la production de protéines d'intérêt présentant une certaine toxicité vis à vis de la cellule hôte. On choisira de préférence des séquences modulatrices régulables permettant de faire varier la transcription en fonction des conditions de culture ou de la phase de croissance. D'une manière générale, de telles séquences sont issues ou dérivent de gènes régulables et sont connues de l'homme de l'art. A titre indicatif, on peut citer celles issues du gène CYC/ régulable par le glucose, du gène PH05 régulable par la thiamine, ou des gènes GAL1 , GAL7 et GAL10 régulables par le galactose. Il va de soi que ces séquences peuvent comporter des modifications (mutation, délétion et/ou substitution d'un ou plusieurs nucléotides) par rapport à la séquence native, du moment qu'elles n'altèrent pas leur fonction modulatrice de manière drastique. (i) a nucleic acid fragment according to the invention, comprising a minimum promoter region; said minimal promoter region being placed downstream of one or more modulating sequence (s) heterologous to said minimal promoter region, or (ii) a nucleic acid fragment according to the invention, comprising at least one modulating sequence; said modulator sequence being placed upstream of a minimal promoter region heterologous to said modulator sequence. According to one embodiment of the first variant, one can use one or more regulatable modulator sequence (s) in order to generate a regulatable hybrid promoter from which transcription can be induced or repressed according to the conditions implemented. This specific embodiment is particularly advantageous in the context of the production of proteins of interest having a certain toxicity with respect to the host cell. Regulatory modulator sequences will preferably be chosen which make it possible to vary the transcription as a function of the culture conditions or of the growth phase. In general, such sequences are derived from or derive from regulable genes and are known to those skilled in the art. By way of indication, mention may be made of those derived from the CYC / glucose-regulatable gene, from the PH05 gene regulable by thiamine, or from the GAL1, GAL7 and GAL10 genes regulable by galactose. It goes without saying that these sequences can comprise modifications (mutation, deletion and / or substitution of one or more nucleotides) compared to the native sequence, as long as they do not alter their modulatory function drastically.
On indique également qu'un fragment d'acide nucléique selon l'invention peut être employé à titre de promoteur bi-directionnel capable d'exercer sa fonction indépendamment de son orientation vis à vis du gène à transcrire (dans une orientation sens de 5' vers 3' comme indiqué dans les SEQ ID ou inversée). It is also indicated that a nucleic acid fragment according to the invention can be used as a bi-directional promoter capable of exercising its function independently of its orientation with respect to the gene to be transcribed (in a sense orientation of 5 ' towards 3 'as indicated in the SEQ IDs or reversed).
Bien entendu, un fragment d'acide nucléique selon l'invention peut être obtenu par toute technique en usage dans le domaine de l'art, par exemple par clonage, hybridation à l'aide d'une sonde appropriée, par PCR (Polymerase Chain Reaction) à l'aide d'amorces adéquates ou encore par synthèse chimique. Conformément aux buts poursuivis par la présente invention, un fragment d'acide nucléique selon l'invention est destiné à permettre l'expression d'un gène d'intérêt dans une cellule hôte et, à cet effet, est lié d'une manière opérationnelle à celui-ci dans une cassette d'expression. C'est pourquoi la présente invention s'étend également à une cassette d'expression comprenant un fragment d'acide nucléique selon l'invention et un gène d'intérêt placé sous son contrôle. Il va de soi qu'une cassette d'expression selon l'invention peut contenir plusieurs gènes d'intérêt soit dans le cadre d'une cassette multicistronique (schématisée par l'agencement "promoteur-gène 1-gène 2...") dans laquelle les différents gènes sont placés en aval d'un fragment d'acide nucléique selon l'invention et sont séparés les uns des autres par des séquences adéquates, comme les éléments IRES (pour Internai Ribosome Entry Site en anglais) permettant la réinitiation de la traduction ou encore dans le cadre d'une cassette bidirectionnelle ("gène 1 -promoteur-gène 2") dans laquelle un fragment d'acide nucléique selon l'invention est inséré entre deux gènes d'intérêt pour gouverner simultanément leur expression. Of course, a nucleic acid fragment according to the invention can be obtained by any technique used in the art, for example by cloning, hybridization using an appropriate probe, by PCR (Polymerase Chain Reaction) using suitable primers or by chemical synthesis. In accordance with the aims pursued by the present invention, a nucleic acid fragment according to the invention is intended to allow the expression of a gene of interest in a host cell and, for this purpose, is linked in an operational manner to it in an expression cassette. This is why the present invention also extends to an expression cassette comprising a nucleic acid fragment according to the invention and a gene of interest placed under its control. It goes without saying that an expression cassette according to the invention can contain several genes of interest, either in the context of a multicistronic cassette (shown schematically by the arrangement "promoter-gene 1-gene 2 ...") in which the different genes are placed downstream of a nucleic acid fragment according to the invention and are separated from each other by suitable sequences, such as the elements IRES (for Internai Ribosome Entry Site in English) allowing the reinitiation of translation or in the context of a bidirectional cassette ("gene 1 -promotor-gene 2") in which a nucleic acid fragment according to the invention is inserted between two genes of interest to simultaneously govern their expression.
Aux fins de la présente invention, un gène d'intérêt peut être issu d'un organisme eucaryote, procaryote ou d'un virus. Il peut être isolé par toute technique conventionelle de biologie moléculaire ou peut être synthétisé par voie chimique. Par ailleurs, il peut coder pour une protéine d'intérêt (i) intracellulaire, (ii) membranaire ou ancrée à la membrane cellulaire ou (iii) sécrétée dans le milieu de culture. Il peut donc comprendre des éléments additionnels comme, par exemple, une séquence codant pour un signal de sécrétion. A titre d'exemples, on indique la séquence signal BGL2 (EP 0 423 302), les séquences pré ou pré-pro MF al (Kurjan et Herskowitz, 1982, Cell, 30, 933-943) et encore la séquence pro de la défensine A (EP 0 607 080). On peut également avoir recours aux signaux de sécrétion endogènes du gène considéré. Le choix des signaux de sécrétion envisageables dans le cadre de la présente invention est à la portée de l'homme de l'art. For the purposes of the present invention, a gene of interest can be derived from a eukaryotic, prokaryotic organism or from a virus. It can be isolated by any conventional molecular biology technique or can be synthesized chemically. Furthermore, it can code for a protein of interest (i) intracellular, (ii) membrane or anchored to the cell membrane or (iii) secreted into the culture medium. It can therefore include additional elements such as, for example, a sequence coding for a secretion signal. By way of examples, the signal sequence BGL2 (EP 0 423 302), the pre or pre-pro sequences MF al (Kurjan and Herskowitz, 1982, Cell, 30, 933-943) and also the pro sequence of the defensin A (EP 0 607 080). Endogenous secretion signals of the gene in question can also be used. The choice of secretion signals possible in the context of the present invention is within the reach of ordinary skill in the art.
Par ailleurs, un gène d'intérêt peut coder pour un polypeptide d'intérêt correspondant à tout ou partie d'une protéine telle que trouvée dans la nature (protéine native ou tronquée). Il peut également s'agir d'une protéine chimérique, par exemple provenant de la fusion de polypeptides d'origines diverses ou d'un mutant présentant des propriétés biologiques améliorées et/ou modifiées. Un tel mutant peut être obtenu par les techniques conventionnelles de biologie moléculaire. Parmi les protéines ou polypeptides d'intérêt, on peut citer à titre d'exemples non limitatifs : - les cytokines et notamment les interleukines (IL-2, 4, 5, 6, 12...), les interférons α, β et γ, les facteurs de stimulation des colonies (GM-CSF, C- CSF, M-CSF) ; - les facteurs de croissance (hormone de croissance, érythropoïétine, insuline....) ou les récepteurs cellulaires ou nucléaires ; - les anticoagulants, de préférence l'hirudine et, notamment les variants de l'hirudine décrits dans la demande européenne EP 273 800 et, de manière tout à fait préférée le variant HV2 Lys47 ; - les enzymes (trypsine, ribonucléases, P450 cytochromes, lipases, amylases....) ; - les protéines de structure (albumine...) ; - les inhibiteurs d'enzymes (cc-1 antitrypsine, antithrombine III, inhibiteurs de protéases virales...) ; - les polypeptides capables d'inhiber l'initiation ou la progression de tumeurs ou cancers (inhibiteurs agissant au niveau de la division cellulaire ou des signaux de transduction, produits d'expression des gènes suppresseurs de tumeur, par exemple p53 ou Rb....) ; et - les polypeptides capables d'inhiber une infection virale, bactérienne ou parasitaire et/ou son développement (polypeptides antigéniques ayant des propriétés immunogènes, anticorps, variants trans-dominants susceptibles d'inhiber l'action de la protéine native par compétition..). Bien entendu, une cassette d'expression selon l'invention peut, en outre, comprendre des éléments additionnels nécessaires à l'expression du gène d'intérêt (séquence intronique, séquence terminatrice de la transcription...) ou encore à sa maintenance dans la cellule hôte considérée (origine de replication telle que ARS ou 2μ, gène codant pour un marqueur de sélection phénotypique tel que URA3 ou LEU2, gène codant pour un produit conférant une résistance à un antibiotique par exemple à l'hygromycine, la cycloheximide, la néomycine, la phléomycine....). De tels éléments sont connus de l'homme de l'art. Furthermore, a gene of interest can code for a polypeptide of interest corresponding to all or part of a protein as found in nature (native or truncated protein). It may also be a chimeric protein, for example originating from the fusion of polypeptides of various origins or a mutant exhibiting improved and / or modified biological properties. Such a mutant can be obtained by conventional molecular biology techniques. Among the proteins or polypeptides of interest, non-limiting examples that may be mentioned: - cytokines and in particular interleukins (IL-2, 4, 5, 6, 12 ...), interferons α, β and γ, colony stimulating factors (GM-CSF, C-CSF, M-CSF); - growth factors (growth hormone, erythropoietin, insulin, etc.) or cellular or nuclear receptors; - the anticoagulants, preferably hirudin and, in particular the hirudin variants described in European application EP 273 800 and, most preferably the variant HV2 Lys47; - enzymes (trypsin, ribonucleases, P450 cytochromes, lipases, amylases, etc.); - structural proteins (albumin, etc.); - enzyme inhibitors (cc-1 antitrypsin, antithrombin III, inhibitors of viral proteases ...); - polypeptides capable of inhibiting the initiation or progression of tumors, or cancers (inhibitors acting at the level of cell division or transduction signals, products of expression of tumor suppressor genes, for example p53 or Rb, etc.); and - polypeptides capable of inhibiting a viral, bacterial or parasitic infection and / or its development (antigenic polypeptides having immunogenic properties, antibodies, trans-dominant variants capable of inhibiting the action of the native protein by competition, etc.) . Of course, an expression cassette according to the invention can, in addition, comprise additional elements necessary for the expression of the gene of interest (intronic sequence, transcription terminator sequence, etc.) or even for its maintenance in the host cell considered (origin of replication such as ARS or 2 μ, gene coding for a phenotypic selection marker such as URA3 or LEU2, gene coding for a product conferring resistance to an antibiotic for example to hygromycin, cycloheximide, neomycin, phleomycin ....). Such elements are known to those skilled in the art.
L'invention concerne également un vecteur d'expression comprenant une ou plusieurs cassette(s) d'expression selon l'invention. II peut s'agir d'un vecteur plasmidique multicopie ou centromérique, d'un cosmide ou d'un vecteur de type YAC. Enfin, il peut être intégratif ou autoréplicatif. The invention also relates to an expression vector comprising one or more expression cassette (s) according to the invention. It can be a multicopy or centromeric plasmid vector, a cosmid or a YAC type vector. Finally, it can be integrative or self-replicating.
La présente invention a également trait à une cellule hôte comprenant une cassette d'expression ou un vecteur selon l'invention. Elle peut être générée par toute méthode permettant d'introduire un ADN étranger dans une cellule (transformation, transfection, microinjection, électroporation, liposomes....). On indique que toute cellule hôte, eucaryote ou procaryote, peut être utilisée dans le cadre de la présente invention dans la mesure où elle possède les facteurs appropriés pour permettre à un fragment d'acide nucléique selon l'invention d'exercer sa fonction de promoteur. Il est à la portée de l'homme de l'art de vérifier si une cellule particulière peut être employée comme hôte en mesurant l'activité promotrice comme indiqué précédemment. The present invention also relates to a host cell comprising an expression cassette or a vector according to the invention. It can be generated by any method allowing the introduction of foreign DNA into a cell (transformation, transfection, microinjection, electroporation, liposomes, etc.). It is indicated that any host cell, eukaryotic or prokaryotic, can be used in the context of the present invention insofar as it has the appropriate factors to enable a nucleic acid fragment according to the invention to exercise its promoter function . It is within the reach of the skilled person to verify whether a particular cell can be used as a host by measuring promoter activity as indicated above.
Une cellule hôte selon l'invention peut être dérivée d'une cellule animale (CHO, Véro, BHK..) ou d'une bactérie comme Escherichia coli mais on préférera avoir recours à un eucaryote inférieur et, notamment, une levure. A cet égard, on peut utiliser une levure du genre Saccharomyces, Schizosaccharomyces, Pichia, Kluyveromyces, Hansemtla, Phaffia ou Yarrowia Avantageusement, elle est choisie parmi les espèces Schizosaccharomyces pombe, Pichia pastons, Kluyλ'eromyces lactis, Hansenula po/ymorpha, Yarrowia hpolylica et, de manière préférée, Saccharomyces cerevisiae. On préfère tout particulièrement mettre en oeuvre une levure déficiente en protéase(s) comme TGY73 4 ou celle décrite dans la demande européenne EP 390 676. Un grand nombre de ces souches sont disponibles commercialement dans des organismes tels que l'AFRC (Agriculture and Food Research Council, Norfolk, UK) et l'ATCC (Rockville, MA, USA). A host cell according to the invention can be derived from an animal cell (CHO, Vero, BHK, etc.) or from a bacterium such as Escherichia coli, but it is preferable to use a lower eukaryote and, in particular, a yeast. In this respect, it is possible to use a yeast of the genus Saccharomyces, Schizosaccharomyces, Pichia, Kluyveromyces, Hansemtla, Phaffia or Yarrowia Advantageously, it is chosen from the species Schizosaccharomyces pombe, Pichia pastons, Kluyλ'eromyces lactis, Hansenula po / ymorpha, Yarrowia hpolylica and, preferably, Saccharomyces cerevisiae. It is particularly preferred to use a yeast deficient in protease (s) such as TGY73 4 or that described in European application EP 390 676. A large number of these strains are available commercially in organizations such as the AFRC (Agriculture and Food Research Council, Norfolk, UK) and ATCC (Rockville, MA, USA).
Enfin, la présente invention a également pour objet un procédé de production d'un polypeptide d'intérêt comprenant la culture d'une cellule hôte selon l'invention dans des conditions de culture appropriées permettant la production dudit polypeptide d'intérêt et sa récupération dans la culture cellulaire On utilise de préférence un milieu de culture défini comprenant du glucose comme source de carbone Finally, the present invention also relates to a process for producing a polypeptide of interest comprising the culture of a host cell according to the invention under appropriate culture conditions allowing the production of said polypeptide of interest and its recovery in cell culture It is preferable to use a defined culture medium comprising glucose as carbon source
Dans le cadre de la présente invention, ce procédé est de préférence applicable à la production d'une protéine d'intérêt thérapeutique et, notamment de l'hirudine, dans une levure Saccharomyces cerevisiae. La protéine peut être récupérée directement dans le milieu de culture ou après lyse des cellules selon la méthodologie classique. Elle peut être purifiée en appliquant les techniques standards connues de l'homme de l'art, par exemple la chromatographie échangeuse d'ions, la précipitation différentielle, l'immunopurification ou encore la filtration sur gel à haute ou basse pression. EXEMPLES In the context of the present invention, this method is preferably applicable to the production of a protein of therapeutic interest and, in particular hirudin, in a yeast Saccharomyces cerevisiae. The protein can be recovered directly from the culture medium or after lysis of the cells according to the conventional methodology. It can be purified by applying standard techniques known to a person skilled in the art, for example ion exchange chromatography, differential precipitation, immunopurification or else filtration on gel at high or low pressure. EXAMPLES
Les exemples ci-après permettront de mettre en évidence d'autres caractéristiques et avantages de la présente invention. Ces exemples sont illustrés par référence aux figures suivantes : The examples below will make it possible to demonstrate other characteristics and advantages of the present invention. These examples are illustrated with reference to the following figures:
La Figure 1 est une représentation schématique du vecteur pTG9852 pour la sélection de fragments d'ADN présentant une activité de promoteur transcriptionnel. Il comprend le gène URA3-d, un site multiple de clonage (issu de M13tgl31 ; Kieny et al., 1983, Gène, 26, 91-99), le gène ble conférant la résistance à la phléomycine, le terminateur de transcription du gène PGK (PGKt), un fragment de pBR322 portant une origine de replication bactérienne et le gène Amp conférant la résistance à l'ampicilline et l'origine de replication 2μ (indiquée 2m). Figure 1 is a schematic representation of the vector pTG9852 for the selection of DNA fragments exhibiting transcriptional promoter activity. It includes the URA3-d gene, a multiple cloning site (from M13tgl31; Kieny et al., 1983, Gene, 26, 91-99), the ble gene conferring resistance to phleomycin, the transcription terminator of the gene PGK (PGKt), a fragment of pBR322 carrying an origin of bacterial replication and the Amp gene conferring resistance to ampicillin and the origin of replication 2 μ (indicated 2 m).
La Figure 2 est une représentation schématique du vecteur pTG 10231 (vecteur multicopie) comprenant le gène URA 3-d, le promoteur du gène CYCl (pCYCl), la partie codante du gène GUS, le terminateur PGK, un fragment de pBR322 et les origines de replication phagique F.ori et de levure 2μ. Figure 2 is a schematic representation of the vector pTG 10231 (multicopy vector) comprising the URA 3-d gene, the promoter of the CYCl gene (pCYCl), the coding part of the GUS gene, the PGK terminator, a fragment of pBR322 and the origins phage replication F.ori and yeast 2μ.
La Figure 3 est une représentation schématique du vecteur pTG8795 (vecteur monocopie) similaire à pTG10231, mis à part que le gène marqueur est constitué par le gène URA3 complet et que l'origine ARSH4-CEN6 remplace la plus grande partie du fragment 2μ inclu dans ce vecteur. Figure 3 is a schematic representation of the vector pTG8795 (single-copy vector) similar to pTG10231, except that the marker gene consists of the complete URA3 gene and that the origin ARSH4-CEN6 replaces most of the 2μ fragment included in this vector.
La Figure 4 est un diagramme schématisant les activités promotrices des inserts D64, R13, J1, et leurs sous-fragments (J1.2, R13.2 et R13.3) par rapport au promoteur du gène KEX2. Les barres représentent le niveau d'activité de la protéine GUS dans la souche Saccharomyces cerevisiae TGY74.3 testée en système multicopie. La Figure 5 est un diagramme schématisant les activités promotrices des inserts D64, R13, J1, et leurs sous-fragments (J1.2, R13.2 et R13.3) par rapport aux promoteurs des gènes KEX2, PGK, MF al (pMF1) et CYCl. Les barres représentent le niveau d'activité de la protéine GUS dans la souche Saccharomyces cerevisiae TGY74.3 testée en système monocopie. Figure 4 is a diagram schematizing the promoter activities of the inserts D64, R13, J1, and their subfragments (J1.2, R13.2 and R13.3) compared to the promoter of the KEX2 gene. The bars represent the level of activity of the GUS protein in the Saccharomyces cerevisiae TGY74.3 strain tested in a multicopy system. Figure 5 is a diagram schematizing the promoter activities of the inserts D64, R13, J1, and their subfragments (J1.2, R13.2 and R13.3) compared to the promoters of the genes KEX2, PGK, MF al (pMF1 ) and CYCl. The bars represent the level of activity of the GUS protein in the Saccharomyces cerevisiae TGY74.3 strain tested in a single-copy system.
La Figure 6 est un diagramme schématisant l'influence du milieu de culture sur les activités promotrices des inserts D64, J1.2, R13 et, à titre de contrôle, du promoteur TEF1. Les valeurs indiquées représentent une moyenne de deux prélèvements effectués en phase de croissance. Figure 6 is a diagram showing the influence of the culture medium on the promoter activities of the inserts D64, J1.2, R13 and, as a control, of the TEF1 promoter. The values indicated represent an average of two samples taken during the growth phase.
La Figure 7 est une représentation schématique des sous-fragments R13 générés par délétion de la région 5' et de l'activité GUS mesurée pour chacun d'entre eux en système d'expression monocopie et en début de croissance. FIG. 7 is a schematic representation of the R13 subfragments generated by deletion of the 5 ′ region and of the GUS activity measured for each of them in a single-copy expression system and at the start of growth.
Les techniques décrites ci-après sont réalisées selon les techniques générales de génie génétique et de clonage moléculaire détaillées dans Maniatis et al. (1989, Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) ou selon les recommandations du fabriquant lorsqu'on utilise un kit commercial. Les étapes de clonage en bactérie sont effectuées dans la souche Escherichia coli (E. coli) 5K (Hubacek et Glover, 1970, J. Mol. Biol., 50, 1 11- 127). Les techniques d'amplification par PCR sont connues de l'homme de l'art (voir par exemple PCR Protocols, A Guide to Methods and Applications, 1990, ed Innis, Gelfand, Sninsky et White, Académie Press Inc). S'agissant de la réparation des sites de restriction, la technique employée consiste en un remplissage des extrémités 5' protubérantes à l'aide du grand fragment de l'ADN polymérase I d'E. coli (Klenow ). The techniques described below are carried out according to the general techniques of genetic engineering and molecular cloning detailed in Maniatis et al. (1989, Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or as recommended by the manufacturer when using a commercial kit. The stages of cloning into bacteria are carried out in the strain Escherichia coli (E. coli) 5K (Hubacek and Glover, 1970, J. Mol. Biol., 50, 11-1127). Amplification techniques by PCR are known to those skilled in the art (see for example PCR Protocols, A Guide to Methods and Applications, 1990, ed Innis, Gelfand, Sninsky and White, Académie Press Inc). With regard to the repair of restriction sites, the technique used consists of filling the protruding 5 ′ ends with the large fragment of DNA polymerase I from E. coli (Klenow).
En ce qui concerne la technologie appliquée aux levures, celle-ci est abondamment décrite dans Rose et al. (1990, Methods in Yeast Genetics : A Laboratory CourseAs regards the technology applied to yeasts, this is extensively described in Rose et al. (1990, Methods in Yeast Genetics: A Laboratory Course
Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Les souches de Saccharomyces cerevisiae sont transformées par électroporation. Mais toute autre technique standard peut être utilisée. Quant aux conditions de culture, les levures non transformées sont généralement cultivées à 28°C en milieu YPG non sélectif (Yeast Extract 1%, Bactopeptone 1% et Glucose 2%) alors que les cellules transformées sont maintenues en conditions sélectives selon la nature du gène de sélection contenu dans la construction. Par exemple lorsque le marqueur de sélection est constitué par le gène ble conférant la résistance à la phléomycine, la culture est effectuée en milieu YEG (Yeast Extract 0,5%, Glucose 2%) tamponné à pH7 par addition de MOPS 0, 1 M et en présence de phléomycine à une concentration minimale de 50 μg/ml. Lorsqu'on utilise le gène URA3 ou URA 3-d (complémentation de l'auxotrophie à l'uracile), le milieu de culture est composé par du YNBG+cas (Yeast nitrogen base 0,675%, Glucose 1% et casaminoacides 0,5%). Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). The Saccharomyces cerevisiae strains are transformed by electroporation. But any other standard technique can be used. As for the culture conditions, the non-transformed yeasts are generally cultivated at 28 ° C. in a non-selective YPG medium (Yeast Extract 1%, Bactopeptone 1% and Glucose 2%) while the transformed cells are maintained in selective conditions according to the nature of the selection gene contained in the construction. For example when the selection marker consists of the ble gene conferring resistance to phleomycin, the culture is carried out in YEG medium (Yeast Extract 0.5%, Glucose 2%) buffered at pH7 by addition of 0.1 M MOPS and in the presence of phleomycin at a minimum concentration of 50 μg / ml. When using the URA3 or URA 3-d gene (complementing urotac auxotrophy), the culture medium is composed of YNBG + cases (Yeast nitrogen base 0.675%, Glucose 1% and casamino acids 0.5 %).
EXEMPLE 1 : Clonage de fragments d'ADN de levure présentant une activité promoteur. EXAMPLE 1: Cloning of yeast DNA fragments exhibiting promoter activity.
A. Préparation d'ADN chromosomique IX. A. Preparation of chromosomal DNA IX.
Une banque d'ADN enrichie en fragments d'ADN provenant du chromosome IX est constituée à partir de la levure Saccharomyces cerevisiae TGY73.4 (MA Tα, ura3, his3, pra1, prb1, prc1, cps1) traitée par la technique dite en agarose solide (Rose et al; 1990, supra, Préparation of chromosome-size yeast DNA molécules in soϋd agarose). Brièvement les levures traitées à la zymolyase sont incluses dans de l'agarose qui est ensuite solidifié. Puis, les chromosomes sont séparés par électrophorèse en champs puisés (CHEF-DRII, Biorad) sur gel d'agarose 1% (Biorad chromosomal grade agarose) dans du tampon TBE 0,5x (Tris-HCl 45 mM, Borate 45 mM et EDTA 2 mM). L'électrophorèse se déroule pendant une durée totale de 24 heures (h) en appliquant les paramètres suivants : puises de 40 sec pendant 16 h puis de 90 sec pendant 8 h avec un voltage de 200 volts. Ces conditions sont optimales pour la séparation des chromosomes de petite taille (I, VI, III et IX). La bande correspondant au chromosome IX (le quatrième en partant du bas) est découpée du gel et l'ADN extrait de l'agarose (kit Gène Clean, Bio 101 Inc). Il a été nécessaire de réaliser plusieurs éléctrophorèses de ce type afin de pouvoir disposer d'environ 1 μg d'ADN chromosomique. A DNA library enriched in DNA fragments originating from chromosome IX is constituted from the yeast Saccharomyces cerevisiae TGY73.4 (MA Tα, ura3, his3, pra1, prb1, prc1, cps1) treated by the so-called agarose technique solid (Rose et al; 1990, supra, Preparation of chromosome-size yeast DNA molecules in soϋd agarose). Briefly, the yeasts treated with zymolyase are included in agarose which is then solidified. Then, the chromosomes are separated by electrophoresis in pulsed fields (CHEF-DRII, Biorad) on 1% agarose gel (Biorad chromosomal grade agarose) in 0.5x TBE buffer (45 mM Tris-HCl, 45 mM Borate and EDTA 2 mM). The electrophoresis takes place for a total duration of 24 hours (h) by applying the following parameters: 40 sec pulses for 16 h then 90 sec for 8 h with a voltage of 200 volts. These conditions are optimal for the separation of small chromosomes (I, VI, III and IX). The band corresponding to chromosome IX (the fourth from the bottom) is cut from the gel and the DNA extracted from the agarose (Gene Clean kit, Bio 101 Inc). It was necessary to carry out several electrophoreses of this type in order to be able to have approximately 1 μg of chromosomal DNA.
L'analyse par Southern (Southern, 1974, J. Mol. Biol., 98, 503-517) en testant une aliquote marquée de cette préparation (kit DIG DNA labelling and détection, Boehringer) sur une réplique du gel de chromosomes de levure confirme l'enrichissement en chromosome IX. Analysis by Southern (Southern, 1974, J. Mol. Biol., 98, 503-517) by testing a labeled aliquot of this preparation (DIG DNA labeling and detection kit, Boehringer) on a replica of the yeast chromosome gel confirms the enrichment in chromosome IX.
B. Construction d'une banque d'ADN chromosomique IX de levure. B. Construction of a yeast chromosomal IX DNA library.
La préparation enrichie en chromosome IX est digérée partiellement par l'enzyme Sau 3A (10 digestions de 100 ng d'ADN par 0,2 unité d'enzyme pendant 1 h à 37°C dans un volume réactionnel de 50 μl). La réaction enzymatique est arrêtée par addition de 1 μl d'EDTA 0,5 M à pH8. Après précipitation alcoolique, les fragments d'une taille comprise entre 0,5 et 1 ,5 kb sont isolés sur gel d'agarose LMP 1% (Low Melting Point, BRL) et élues par la méthode du Gène Clean. The preparation enriched in chromosome IX is partially digested with the enzyme Sau 3A (10 digests of 100 ng of DNA per 0.2 unit of enzyme for 1 h at 37 ° C. in a reaction volume of 50 μl). The enzymatic reaction is stopped by adding 1 μl of 0.5 M EDTA at pH8. After alcoholic precipitation, the fragments of a size between 0.5 and 1.5 kb are isolated on 1% LMP agarose gel (Low Melting Point, BRL) and eluted by the Gene Clean method.
Les fragments isolés sont clones dans le plasmide pTG9852 (Figure 1) linéarisé par BamHl et traité par la phosphatase alcaline de veau (Boehringer). Ce dernier dérive des plasmides pTG6888 et pUT332 (Gatignol et al., 1987, Mol. Gen. Genêt., 207, 342-348). Le premier correspond au vecteur pTG3828 (Achstetter et al., 1992, Gène, 110, 25-31) modifié par suppression du site Xbal contenu dans l'origine 2μ (par digestion partielle Xbal et traitement à la Klenow). En parallèle, la partie codante du gène ble est purifiée de pUT332 sous forme d'un fragment BamHl- EcoRI lequel est soumis à l'action de la Klenow avant d'être introduit dans le site BglI I (rendu franc par traitement à la Klenow) du vecteur pTG6888. L'insertion de fragments d'ADN dans pTG9852 au niveau du site BamHl unique placé en amont des séquences codantes du gène ble, permettra de sélectionner ceux qui présentent une activité de promoteur transcriptionnel (par sélection des levures transformées sur phléomycine). The isolated fragments are cloned into the plasmid pTG9852 (Figure 1) linearized with BamHI and treated with alkaline calf phosphatase (Boehringer). The latter derives from plasmids pTG6888 and pUT332 (Gatignol et al., 1987, Mol. Gen. Genêt., 207, 342-348). The first corresponds to the vector pTG3828 (Achstetter et al., 1992, Gene, 110, 25-31) modified by deletion of the Xbal site contained in the 2μ origin (by partial Xbal digestion and Klenow treatment). In parallel, the coding part of the ble gene is purified from pUT332 in the form of a BamHI-EcoRI fragment which is subjected to the action of Klenow before being introduced into the BglI I site (made blunt by treatment with Klenow ) of the vector pTG6888. The insertion of DNA fragments into pTG9852 at the unique BamHI site placed upstream of the coding sequences of the ble gene, will make it possible to select those which have transcriptional promoter activity (by selection of yeasts transformed with phleomycin).
Quinze séries de transformations par électroporation de la souche E. coli 5K ont été réalisées et ont permis de générer 10930 clones résistants à l'ampicilline donc transformés. Etant donné la taille des inserts sélectionnés (0,5 à 1,5 kb) et la taille du chromosome IX (450 kb), le nombre de clones obtenus est largement représentatif de la banque d'ADN (facteur d'environ 20 fois). Un échantillon de colonies est analysé par PCR. On met en oeuvre les amorces oTG5427 et oTG5428 (SEQ ID NO: 4 et 5) dans les conditions suivantes (30 cycles : dénaturation 30 sec à 90°C, hybridation 2 min à 54°C et élongation 2 min à 72°C). En absence d'insert (vecteur parental pTG9852), l'amplification génère une bande de 269 pb. En revanche, après insertion d'un fragment de levure, la taille de la bande amplifiée est augmentée de la taille de l'insert. Les résultats indiquent une fréquence d'insertion de 90% et une taille moyenne des inserts voisine de 700 pb. Fifteen sets of transformations by electroporation of the E. coli 5K strain were carried out and made it possible to generate 10930 clones resistant to ampicillin therefore transformed. Given the size of the inserts selected (0.5 to 1.5 kb) and the size of chromosome IX (450 kb), the number of clones obtained is largely representative of the DNA library (factor of approximately 20 times) . A sample of colonies is analyzed by PCR. The primers oTG5427 and oTG5428 (SEQ ID NO: 4 and 5) are used under the following conditions (30 cycles: denaturation 30 sec at 90 ° C, hybridization 2 min at 54 ° C and elongation 2 min at 72 ° C) . In the absence of an insert (parental vector pTG9852), the amplification generates a band of 269 bp. On the other hand, after insertion of a yeast fragment, the size of the amplified band is increased by the size of the insert. The results indicate an insertion frequency of 90% and an average size of the inserts close to 700 bp.
Une banque est constituée par extraction du contenu plasmidique de l'ensemble des clones générés. C. Sélection de promoteurs potentiels fonctionnels dans la levure Saccharomyces cerevisiae. A library is created by extracting the plasmid content of all of the clones generated. C. Selection of potential functional promoters in the yeast Saccharomyces cerevisiae.
La banque obtenue à l'étape précédente est transformée dans la souche de levureThe bank obtained in the previous step is transformed into the yeast strain
TGY74.3 par électroporation dans des cuves de 2 mm d'interface (système Cellject, Eurogentec ; voltage 1000 V, résistance 412Ω et capacité 40μF en puise unique). TGY74.3 by electroporation in tanks with a 2 mm interface (Cellject system, Eurogentec; voltage 1000 V, resistance 412Ω and capacity 40μF in single well).
Les cellules électroporées sont étalées en parallèle sur deux milieux différents afin d'évaluer, d'une part, si elles sont transformées (étalement sur milieu YNBG + cas pour la sélection du phénotype Ura+) et, d'autre part, si l'insert présente une activité de promoteur transcriptionnel (étalement sur milieu YEG additionné de 250 μg/ml de phléomycine). On indique que la souche TGY73.4 non transformée ou transformée par le vecteur pTG9852 (portant le gène ble dépourvu de promoteur) est incapable de croître au delà d'une concentration en phléomycine de 20 μg/ml. A titre de comparaison, le vecteur pTG9851 comprenant une cassette d'expression fonctionnelle du gène ble (sous le contrôle du promoteur TEF1) peut résister à une concentration en antibiotique de 2 mg/ml Celui-ci est obtenu par introduction du fragment BamHl isolé du vecteur pUT332 dans le site BglII de pTG6888 Par contre, lorsque le promoteur utilisé est faible (pTG9895 comportant le gène ble sous le contrôle du promoteur du gène KEX2 , voir exemple 2), les cellules poussent jusqu'à 50 μg/ml. Ainsi la concentration retenue de 250 μg/ml est intermédiaire afin de pouvoir sélectionner des fragments promoteurs de force variable. The electroporated cells are spread in parallel on two different media in order to evaluate, on the one hand, if they are transformed (spreading on YNBG medium + case for the selection of the Ura + phenotype) and, on the other hand, if the insert has transcriptional promoter activity (spreading on YEG medium supplemented with 250 μg / ml of phleomycin). It is indicated that the untransformed strain TGY73.4 or transformed by the vector pTG9852 (carrying the ble gene devoid of promoter) is incapable of growing beyond a phleomycin concentration of 20 μg / ml. By way of comparison, the vector pTG9851 comprising a functional expression cassette for the ble gene (under the control of the TEF1 promoter) can resist an antibiotic concentration of 2 mg / ml. This is obtained by introduction of the BamHI fragment isolated from the vector pUT332 in the BglII site of pTG6888 On the other hand, when the promoter used is weak (pTG9895 comprising the ble gene under the control of the promoter of the KEX2 gene, see example 2), the cells grow up to 50 μg / ml. Thus, the retained concentration of 250 μg / ml is intermediate in order to be able to select promoter fragments of variable force.
On génère 9300 transformants (Ura+) dont environ 1% présentent une résistance a une concentration de phléomycine de 250 μg/ml (106 clones) L'analyse par PCR avec les amorces précédentes indique une fréquence d'inserts de 80%, leur taille variant de 0,5 à 1 ,6 kb avec une moyenne vers 0,7-0,8 kb. 9300 transformants (Ura + ) are generated, of which approximately 1% exhibit resistance to a phleomycin concentration of 250 μg / ml (106 clones) PCR analysis with the previous primers indicates an insert frequency of 80%, their size varying from 0.5 to 1.6 kb with an average of 0.7-0.8 kb.
Des répliques de ces 106 candidats ont été réalisées sur milieu sélectif à concentration croissante en phléomycine et 20 clones résistent a 2 mg/ml Afin de vérifier que leur résistance n'est pas due a une mutation spontanée, le contenu plasmidique des 20 transformants retenus est électroducte dans E. coli 5K (Nacken et al. , 1994, Nucleic, Acids Res., 22, 1509-1510) avant d'être reintroduit dans la levure TGY73.4. Quatre clones présentent encore une bande amplifiable par PCR et une capacité de croissance en présence de phléomycine Trois d'entre eux ont été caractérisés. II s'agit des clones transformés par les plasmides pTG8732, pTG8733 et pTG8734 portant respectivement les inserts D64, R13 et J1. Replicas of these 106 candidates were carried out on selective medium with increasing phleomycin concentration and 20 clones resist 2 mg / ml In order to verify that their resistance is not due to a spontaneous mutation, the plasmid content of the 20 transformants selected is electroduct in E. coli 5K (Nacken et al., 1994, Nucleic, Acids Res., 22, 1509-1510) before being reintroduced into the yeast TGY73.4. Four clones still have a band amplifiable by PCR and a growth capacity in the presence of phleomycin. Three of them have been characterized. These are the clones transformed by the plasmids pTG8732, pTG8733 and pTG8734 carrying the inserts D64, R13 and J1 respectively.
L'analyse par Southern d'une réplique d'un gel de chromosomes de levure (exemple 1A) à l'aide des inserts marqués indique que R13 est issu du chromosome IX . Southern analysis of a replica of a gel of yeast chromosomes (Example 1A) using the labeled inserts indicates that R13 is derived from chromosome IX.
D. Analyse des inserts sélectionnés. Leur séquence a été déterminée directement sur les plasmides double brin selon la technique de Sanger et al. (1977, Proc. Natl. Acad. Sci. USA, 74, 5463-5467). L'analyse des données montre la présence d'éléments consensus transcriptionnels (voir Tableau 1). D. Analysis of the selected inserts. Their sequence was determined directly on the double-stranded plasmids according to the technique of Sanger et al. (1977, Proc. Natl. Acad. Sci. USA, 74, 5463-5467). Analysis of the data shows the presence of transcriptional consensus elements (see Table 1).
La comparaison avec les séquences de la banque de données Genbank montre que les inserts D64 et R13 portent une séquence jusqu'alors non répertoriée. En ce qui concerne J1, il correspond à des séquences situées en 3' du gène COX4 de Saccharomyces cerevisiae, dans une région où la présence d'un promoteur est inattendue puisque située en aval de séquences codantes. The comparison with the sequences of the Genbank database shows that the inserts D64 and R13 carry a sequence hitherto unlisted. As regards J1, it corresponds to sequences located 3 ′ of the COX4 gene of Saccharomyces cerevisiae, in a region where the presence of a promoter is unexpected since it is located downstream of coding sequences.
S'agissant de rechercher les cadres de lecture putatifs (ORF), on note la présence d'un ORF de 96 acides aminés (aa) dans la première moitié 5' de D64 et de deux ORFs de petite taille (57 et 25 aa) couvrant respectivement les extrémités 5' et 3' de J1. Regarding the search for putative reading frames (ORF), we note the presence of an ORF of 96 amino acids (aa) in the first 5 'half of D64 and two small ORFs (57 and 25 aa) covering respectively the 5 'and 3' ends of J1.
EXEMPLE 2 : Vecteur d'expression du gène GUS sous le contrôle des inserts précédents. L'activité de promoteur transcriptionnel est évaluée vis à vis du gène GUS dont le produit d'expression est facilement mesurable. En effet, son activité enzymatique peut être détectée par colorimétrie, dosage fluorométrique sur des extraits cellulaires (Jefferson et al., 1987, Molecular Biology Reporter, 5, 387-405) ou par test histochimique sur filtres Nylon (Hirt, 1991,Current Genetics, 20, 437-439). EXAMPLE 2 Vector for expression of the GUS gene under the control of the preceding inserts. The activity of transcriptional promoter is evaluated with respect to the GUS gene, the expression product of which is easily measurable. Indeed, its enzymatic activity can be detected by colorimetry, fluorometric assay on cellular extracts (Jefferson et al., 1987, Molecular Biology Reporter, 5, 387-405) or by histochemical test on Nylon filters (Hirt, 1991, Current Genetics , 20, 437-439).
A. Isolement des inserts sélectionnés. A. Isolation of the selected inserts.
Les inserts sont isolés par PCR à partir des vecteurs pTG8732 (portant D64), pTG8733 (R13) et pTG8734 (J1) et à l'aide d'amorces munies d'un site de restriction Clal en 5' de l'amorce sens et Sali en 5' de l'antisens. Celles-ci sont indiquées dans les identificateurs de séquence 6 à 9 (oTG6302 et oTG6293 pour D64 ; oTG6292 et oTG6293 pour R13 et oTG6298 et oTG6293 pour J 1). The inserts are isolated by PCR from the vectors pTG8732 (carrying D64), pTG8733 (R13) and pTG8734 (J1) and using primers provided with a ClaI restriction site in 5 ′ of the sense primer and Dirty in 5 'of the antisense. These are indicated in the sequence identifiers 6 to 9 (oTG6302 and oTG6293 for D64; oTG6292 and oTG6293 for R13 and oTG6298 and oTG6293 for J 1).
B. Caractérisât ion de sons-fragments des inscris sélectionnés. L'insert R13 dépassant 1 kb, il peut être utile de disposer de sous-fragments de taille réduite donc plus facilement manipulables et retenant néanmoins une activité de promoteur transcriptionnel. Les régions 5' et 3' de R13 sont isolées de pTG8733 à l'aide des amorces oTG6292 et oTG6294 (SEQ ID NO: 10) et oTG6301 (SEQ ID NO: 1 1) et oTG6293 respectivement. Le fragment de 416 pb recouvrant la partie 5' est désigné R13.2 alors que celui correspondant à la moitié 3' d'une longueur de 599 pb est nommé R13.3. D'autres sous-fragments ont été crées par délétion progressive de la région 5' (voir exemple 5 ci-après). B. Characterization of sound-fragments of selected registrants. The insert R13 exceeding 1 kb, it may be useful to have sub-fragments of reduced size therefore more easily manipulated and nevertheless retaining a transcriptional promoter activity. The 5 'and 3' regions of R13 are isolated from pTG8733 using the primers oTG6292 and oTG6294 (SEQ ID NO: 10) and oTG6301 (SEQ ID NO: 11) and oTG6293 respectively. The 416 bp fragment covering the 5 ′ part is designated R13.2 while that corresponding to the 3 ′ half with a length of 599 bp is designated R13.3. Other subfragments were created by progressive deletion of the 5 'region (see example 5 below).
Dans le cas de J1, l'insert est délété en 3' afin d'éliminer l'ORF putatif de 25 aa et, notamment, son ATG initiateur susceptible d'interférer avec la traduction de la protéine d'intérêt. On isole un fragment de 547 pb (J1.2) dépourvu de séquences codantes putatives par amplification à partir de pTG8374 et des amorces oTG6298 et oTG6299 (SEQ ID NO: 12). In the case of D1, the insert is deleted at 3 ′ in order to eliminate the putative 25 aa ORF and, in particular, its initiating ATG capable of interfering with the translation of the protein of interest. A 547 bp fragment (J1.2) lacking putative coding sequences is isolated by amplification from pTG8374 and the primers oTG6298 and oTG6299 (SEQ ID NO: 12).
C. Vecteurs d'expression multicopies C. Multicopy expression vectors
Le vecteur de base désigné pTG10231 (Figure 2 , Degryse et al., Yeast, sous presse) est issu de pTG3828 (Achstetter et al., 1992, supra). Il comprend trois origines de replication, de levure (2μ), bactérienne (ori) et enfin phagique (f.ori permettant la production d'ADN simple brin) ainsi que deux marqueurs de sélectionThe basic vector designated pTG10231 (Figure 2, Degryse et al., Yeast, in press) is derived from pTG3828 (Achstetter et al., 1992, supra). It includes three origins of replication, yeast (2μ), bacterial (ori) and finally phage (f.ori allowing the production of single-stranded DNA) as well as two selection markers
(gènes URA3-d et Amp). A titre indicatif, le gène URA3-d correspond au gène(URA3-d and Amp genes). As an indication, the URA3-d gene corresponds to the gene
URA3 délété de son promoteur assurant de ce fait un grand nombre de copies de plasmide dans le cellule. Enfin, il porte une cassette d'expression dans laquelle les séquences codant pour la protéine GUS (Jefferson et al., 1986, Proc. Natl. Acad.URA3 deleted from its promoter thereby ensuring a large number of copies of plasmid in the cell. Finally, it carries an expression cassette in which the sequences coding for the GUS protein (Jefferson et al., 1986, Proc. Natl. Acad.
Sci. USA, 83, 8447-8451) sont placées sous le contrôle du promoteur du gèneSci. USA, 83, 8447-8451) are placed under the control of the gene promoter
CYCl et du terminateur PGK (Hitzeman et al., 1983, supra). Il est à la portée de l'homme de l'art de générer un tel vecteur à partir des données de la littérature. CYCl and the PGK terminator (Hitzeman et al., 1983, supra). It is within the reach of those skilled in the art to generate such a vector from data in the literature.
Le vecteur pTG10231 est digéré par Clal et Sali afin d'éliminer le fragment portant le promoteur CYCl. Les fragments amplifiés (correspondant aux inserts et leurs sous-fragments respectifs) sont clones dans le vecteur linéarisé. On sélectionne des clones présentant des plasmides ayant un profil de restriction correct nommés respectivement pTG8784 (portant D64), pTG8781 (R13), pTG8785 (J1), pTG8782 (R13.2), pTG8783 (R13.3) et pTG8786 (J1.2). The vector pTG10231 is digested with ClaI and SalI in order to eliminate the fragment carrying the CYCl promoter. The amplified fragments (corresponding to the inserts and their respective sub-fragments) are cloned into the linearized vector. Clones having plasmids with a correct restriction profile are selected, respectively named pTG8784 (carrying D64), pTG8781 (R13), pTG8785 (J1), pTG8782 (R13.2), pTG8783 (R13.3) and pTG8786 (J1.2 ).
Un témoin négatif est généré par digestion de pTG 10231 par Clal et SalI, traitement à la Klenow et religation. Ce témoin dépourvu de promoteur est désigné pTG8793. A negative control is generated by digestion of pTG 10231 with Clal and SalI, Klenow treatment and religation. This control lacking a promoter is designated pTG8793.
Il est également utile de comparer les séquences promotrices de la présente invention à d'autres promoteurs, soit réputés forts comme ceux des gènes MF al et PGK ou plus faibles comme le promoteur du gène KEX2 (Fuller et al., 1989, Proc. Natl. Acad. Sci. USA, 86, 1434-1438). Les séquences correspondantes sont obtenues par PCR : pour le promoteur du gène KEX2 : amplification d'un fragment de 524 pb à partir de pTG9895 et des amorces oTG6304 (SEQ ID NO: 13) et oTG6293. A titre indicatif, pTG9895 est obtenu par insertion dans le site BamHl de pTG9852 (exemple 1 ) d'un fragment PCR portant le promoteur du gène KEX2. Ce dernier est amplifié à partir de la matrice pTG4812 (décrite dans EP 396 436) et des oligonucléotides oTG5739 et oTG5740 (SEQ ID NO: 14 et 15), pour le promoteur du gène MF al : amplification d'un fragment de 974 pb à partir d'une préparation d'ADN génomique de la souche de levure FL 100 (ATCC 28383) et des amorces oTG6929 et oTG6930 (SEQ ID NO: 16 et 17), et pour le promoteur du gène PGK : amplification d'un fragment de 779 pb à partir d'une préparation d'ADN génomique de la souche de levure FL 100 et des amorces oTG7002 et oTG6928 (SEQ ID NO: 18 et 19). Les fragments amplifiés sont ensuite insérés entre les sites Clal et SalI du vecteur pTG10231 à la place du promoteur CYCl, pour donner respectivement pTG8780 (KEX2), pTG8789 (MFa 1) et pTG8791 (PGK). D. Vecteurs d'expression monocopies. It is also useful to compare the promoter sequences of the present invention with other promoters, either deemed strong like those of the MF al and PGK genes or weaker like the promoter of the KEX2 gene (Fuller et al., 1989, Proc. Natl Acad. Sci. USA, 86, 1434-1438). The corresponding sequences are obtained by PCR: for the promoter of the KEX2 gene: amplification of a 524 bp fragment from pTG9895 and the primers oTG6304 (SEQ ID NO: 13) and oTG6293. As an indication, pTG9895 is obtained by insertion into the BamHI site of pTG9852 (Example 1) of a PCR fragment carrying the promoter of the KEX2 gene. The latter is amplified from the matrix pTG4812 (described in EP 396 436) and oligonucleotides oTG5739 and oTG5740 (SEQ ID NO: 14 and 15), for the promoter of the MF al gene: amplification of a fragment from 974 bp to from a genomic DNA preparation of the yeast strain FL 100 (ATCC 28383) and the primers oTG6929 and oTG6930 (SEQ ID NO: 16 and 17), and for the promoter of the PGK gene: amplification of a fragment of 779 bp from a genomic DNA preparation of the yeast strain FL 100 and the primers oTG7002 and oTG6928 (SEQ ID NO: 18 and 19). The amplified fragments are then inserted between the ClaI and SalI sites of the vector pTG10231 in place of the CYCl promoter, to give pTG8780 (KEX2), pTG8789 (MFa 1) and pTG8791 (PGK), respectively. D. Monocopy expression vectors.
Le vecteur pTG8795 (Figure 3) est l'équivalent du vecteur pTG10231 mis à part qu'il comprend une unité de replication autonome ARSH6-CEN4 (Sikorski et Hieter, 1989, Genetics, 122, 19-27) à la place de l'origine 2μ et le gène UPA3 à la place de UM3-d. The vector pTG8795 (Figure 3) is the equivalent of the vector pTG10231 except that it comprises an autonomous replication unit ARSH6-CEN4 (Sikorski and Hieter, 1989, Genetics, 122, 19-27) in place of the origin 2μ and the UPA3 gene in place of UM3-d.
Les fragments promoteurs sont introduits dans pTG8795 par recombinaison homologue en remplacement du promoteur CYCl. Pour ce faire, la souche E. coli BJ5183 (endA, sbcBC, galK, met, thi-1, bioT, hsdR, strR) est co-transformée par un des plasmides obtenus à l'étape précédente (plasmides donneurs pTG8781 à pTG8786) digérés par Scal et, d'autre part, le vecteur de base pTG8795 (plasmide receveur) linéarisé par Notl. Une première analyse du profil de restriction est faite sur les clones générés afin de sélectionner ceux présentant le profil attendu (désignés pTG9704 (D64), pTG9701 (R13), pTG9705 (J1), pTG9702 (R13.2), pTG9703 (R13.3) et pTG9706 (J1.2)). Leur contenu plasmidique est ensuite transféré dans la souche 5K afin d'obtenir des quantités supérieures d'ADN plasmidique. The promoter fragments are introduced into pTG8795 by homologous recombination in replacement of the CYCl promoter. To do this, the E. coli strain BJ5183 (endA, sbcBC, galK, met, thi-1, bioT, hsdR, strR) is co-transformed with one of the plasmids obtained in the previous step (donor plasmids pTG8781 to pTG8786) digested with Scal and, on the other hand, the base vector pTG8795 (recipient plasmid) linearized by NotI. A first analysis of the restriction profile is made on the clones generated in order to select those with the expected profile (designated pTG9704 (D64), pTG9701 (R13), pTG9705 (J1), pTG9702 (R13.2), pTG9703 (R13.3 ) and pTG9706 (J1.2)). Their plasmid content is then transferred to the 5K strain in order to obtain higher quantities of plasmid DNA.
On procède de même pour générer les témoins positifs en utilisant les vecteurs témoins précédents (pTG8780...) à titre de vecteurs donneurs. On génère pTG9700 (KΕX2), pTG8799 (PGK) et pTG971 1 (MFα). Le témoin négatif pTG9713 provient de pTG8795 clivé par les enzymes Clal et Sali, traité par la Klenow et religué sur lui-même. The same procedure is used to generate the positive controls using the preceding control vectors (pTG8780 ...) as donor vectors. PTG9700 (KΕX2), pTG8799 (PGK) and pTG971 1 (MFα) are generated. The negative control pTG9713 comes from pTG8795 cleaved by the enzymes Clal and Sali, treated with Klenow and religated on itself.
EXEMPLE 3 : Evaluation de l'expression du gène GUS. Les constructions de l'exemple 2C et D sont utilisées pour transformer la souche TGY73.4 ou W303a (MATa, ura3, leu2, his3, trp1, ade2 ; Crivellone et al., 1988, J. Biol. Chem., 263, 14323-14333). On peut évaluer l'expression du gène GUS directement sur les colonies résultant de la transformation par une technique semiquantitative décrite par Hirt ( 1991, supra) dont le protocole a été modifié comme indiqué ci-après. Une portion de colonie est prélevée au cure-dent et déposée sur membrane Nylon N (Amersham). Après congélation 10 min à -80°C, les colonies sont décongelées sur papier 3M Whatman imbibé de tampon Na2HPO4 50 mM pH7 contenant du réactif 5-bromo-4-chloro-3-indolylglucuronide (X-gluc) à 50 μg/ml (dilution d'une solution stock à 5 mg/ml dans du DMSO, diméthylsulfoxide). La réaction se déroule dans l'obscurité à 37°C. Les colonies produisant la protéine GUS apparaissent en bleu, l'intensité et la rapidité d'apparition de la coloration étant d'autant plus fortes que le niveau d'expression est élevé. Afin de disposer de mesures plus quantitatives, les levures transformées sont cultivées en milieu liquide (YNBG + cas) à 28°C. On prélève un échantillon de culture (10 ml) au cours de la croissance, les cellules sont récupérées par centrifugation et reprises dans 500 μl de tampon d'extraction GUS additionné de 1 mM de Péfabloc (Jefferson et al., 1987, supra), avant d'être broyées pendant 15 min (broyeur Retsch). Le broyât est ensuite centrifugé 10 min à 10000 rpm à 4°C. La concentration protéique est dosée sur le surnageant (kit Biorad) et l'activité enzymatique de la protéine GUS déterminée par fluorimétrie en utilisant le substrat méthyl umbelliferyl β-glucuronide. On note généralement une différence dans les rendements d'extraction en protéines entre les souches TGY73.4 et W303α. Cependant les activités GUS ramenées à la quantité de protéines sont comparables dans les deux souches. EXAMPLE 3 Evaluation of the expression of the GUS gene. The constructs of Example 2C and D are used to transform the strain TGY73.4 or W303a (MATa, ura3, leu2, his3, trp1, ade2; Crivellone et al., 1988, J. Biol. Chem., 263, 14323 -14333). The expression of the GUS gene can be evaluated directly on the colonies resulting from the transformation by a semi-quantitative technique described by Hirt (1991, supra), the protocol of which has been modified as indicated below. A portion of colony is taken with a toothpick and deposited on a Nylon N membrane (Amersham). After freezing for 10 min at -80 ° C, the colonies are thawed on 3M Whatman paper soaked in Na 2 HPO 4 buffer 50 mM pH7 containing reagent 5-bromo-4-chloro-3-indolylglucuronide (X-gluc) at 50 μg / ml (dilution of a stock solution to 5 mg / ml in DMSO, dimethylsulfoxide). The reaction takes place in the dark at 37 ° C. The colonies producing the GUS protein appear in blue, the intensity and the speed of appearance of the coloration being all the stronger the higher the level of expression. In order to have more quantitative measurements, the transformed yeasts are cultivated in a liquid medium (YNBG + case) at 28 ° C. A culture sample (10 ml) is taken during growth, the cells are recovered by centrifugation and taken up in 500 μl of GUS extraction buffer supplemented with 1 mM Pefabloc (Jefferson et al., 1987, supra), before being ground for 15 min (Retsch mill). The ground material is then centrifuged for 10 min at 10,000 rpm at 4 ° C. The protein concentration is measured on the supernatant (Biorad kit) and the enzymatic activity of the GUS protein determined by fluorimetry using the methyl umbelliferyl β-glucuronide substrate. There is generally a difference in the protein extraction yields between the strains TGY73.4 and W303α. However, the GUS activities reduced to the amount of protein are comparable in the two strains.
La Figure 4 présente les niveaux d'activité de la protéine GUS produite dans la souche TGY73.4 transformée par les vecteurs multicopies de l'exemple 2C. A titre indicatif, les prélèvements sont effectués en phase stationnaire de croissance et l'activité GUS est donnée en nmoles de méthyl umbelliférone (MU) produite par min et mg de protéine. L'insert R13 a une activité promotrice nettement supérieure à celle mesuré avec tous les fragments testés ainsi que le promoteur KEX2 (facteur 58). L'insert D64 peut également être considéré comme un promoteur fort aux vues des niveaux de protéine GUS produits sous son contrôle (28 fois supérieurs à ceux obtenus avec le promoteur KEX2). En revanche, les capacités promotrices de l'insert complet J 1 sont du même ordre de grandeur que KEX2 (à un facteur 2 près). Cependant la délétion de l'ORF de 25 aa situé en son extrémité 3' s'avère avantageuse puisque l'activité promotrice du sous-fragment J 1.2 est nettement améliorée. Quant au sous fragment R13.3, il conserve une activité promotrice importante bien qu'inférieure à l'insert complet dont il dérive alors que le sous- fragment R13.2 constitue un promoteur très faible. Bien que les données ne soient pas représentées, aucune activité GUS n'est mesurée avec les témoins négatifs (souche TGY73.4 non transformée ou transformée par le plasmide pTG8793). Figure 4 shows the activity levels of the GUS protein produced in the TGY73.4 strain transformed by the multicopy vectors of Example 2C. As an indication, the samples are taken in the stationary growth phase and GUS activity is given in nmoles of methyl umbelliferone (MU) produced per min and mg of protein. The insert R13 has a promoter activity clearly superior to that measured with all the fragments tested as well as the promoter KEX2 (factor 58). The D64 insert can also be considered as a strong promoter in view of the levels of GUS protein produced under its control (28 times greater than those obtained with the KEX2 promoter). On the other hand, the promoter capacities of the complete insert J 1 are of the same order of magnitude as KEX2 (to within a factor of 2). However, the deletion of the 25 aa ORF located at its 3 ′ end proves to be advantageous since the promoter activity of the J 1.2 subfragment is clearly improved. As for the R13.3 sub-fragment, it retains a significant promoter activity although it is less than the complete insert from which it derives, while the R13.2 sub-fragment constitutes a very weak promoter. Although the data are not shown, no GUS activity is measured with the negative controls (strain TGY73.4 not transformed or transformed by the plasmid pTG8793).
La Figure 5 résume les données concernant les vecteurs monocopies de l'exemple 2D (prélèvement à une DO600nm d'environ 1). On retrouve un profil à peu près comparable. Les niveaux d'activité GUS obtenus sous le contrôle de l'insert R13 complet dépassent largement ceux produits à partir des clones testés ainsi que des promoteurs PGK et MF al réputés forts. L'activité promotrice des inserts D64 et J 1.2 est du même ordre de grandeur que celle des promoteurs de référence PGK et MF al. Enfin, la capacité transcriptionnelle de R13.3, bien que notable, est inférieure à celle déterminée avec l'insert complet. Dans cette expérience, la faible activité du promoteur CYCl s'explique par la quantité importante de glucose dans le milieu de culture car les prélèvements sont effectués en phase exponentielle. Figure 5 summarizes the data concerning the single-copy vectors of example 2D (sampling at an OD600nm of approximately 1). There is a roughly comparable profile. The GUS activity levels obtained under the control of the complete R13 insert greatly exceed those produced from the clones tested as well as from the PGK and MF al promoters reputed to be strong. The promoter activity of the inserts D64 and J 1.2 is of the same order of magnitude as that of the reference promoters PGK and MF al. Finally, the transcriptional capacity of R13.3, although notable, is lower than that determined with the complete insert. In this experiment, the low activity of the CYCl promoter is explained by the large amount of glucose in the culture medium because the samples are taken in the exponential phase.
La caractérisation de la protéine GUS produite par les différentes levures transformées a été réalisée par gel SDS PAGE 7,5% (système mini-protéan II dual slab cell, Biorad). On met en évidence dans les levures contenant pTG8784, pTG8781 et pTG8786, après coloration au bleu de Comassie, une bande d'un poids moléculaire attendu (68 kDa) correspondant au produit d'expression du gène GUS, qui représente environ 5% des protéines totales de l'extrait. The characterization of the GUS protein produced by the various transformed yeasts was carried out by 7.5% SDS PAGE gel (mini-protean II dual slab cell system, Biorad). Is highlighted in yeasts containing pTG8784, pTG8781 and pTG8786, after staining with Comassie blue, a band of expected molecular weight (68 kDa) corresponding to the expression product of the GUS gene, which represents approximately 5% of the total proteins of the extract.
La capacité de régulation de ces fragments promoteurs peut être étudiée en fonction des conditions de croissance et de culture (mesure de l'activité à différents temps de culture, addition de nutriments spécifiques dans le milieu de culture, comme le glucose, la thiamine...). En particulier, le niveau d'activité GUS produit par des souches TGY73.4 transformées par les vecteurs monocopies a été déterminé en fonction de la croissance des levures en milieu minimum. L'insert R13 est actif en tout début de phase exponentielle et son activité décroit au fur et à mesure que la DO 600 nm augmente. Le sous-fragment J.12 présente un comportement similaire. S'agissant de D64, son activité promotrice est également moindre en phase stationnaire mais le profil observé est légèrement différent dans le sens où l'activité maximale se situe au milieu de la phase exponentielle (profil en cloche). Par contre, l'activité promotrice du sous-fragment R13.3 est augmentée en phase stationnaire (comme cela est observé avec le promoteur CYCl). The regulatory capacity of these promoter fragments can be studied as a function of growth and culture conditions (measurement of the activity at different culture times, addition of specific nutrients in the culture medium, such as glucose, thiamine, etc. .). In particular, the level of GUS activity produced by TGY73.4 strains transformed by the monocopy vectors was determined as a function of the growth of yeasts in minimum medium. The insert R13 is active at the very start of the exponential phase and its activity decreases as the OD 600 nm increases. The J.12 subfragment exhibits similar behavior. With regard to D64, its promoter activity is also less in the stationary phase but the profile observed is slightly different in the sense that the maximum activity is located in the middle of the exponential phase (bell-shaped profile). In contrast, the promoter activity of the R13.3 subfragment is increased in the stationary phase (as observed with the CYCl promoter).
En conclusion, ces expériences ont permis d'isoler et de caractériser des promoteurs de levure de force et de régulation variables capables de promouvoir l'expression de gènes hétérologues In conclusion, these experiments made it possible to isolate and characterize yeast promoters of variable strength and regulation capable of promoting the expression of heterologous genes
EXEMPLE 4 : Influence du milieu de culture sur les activités promotrices EXAMPLE 4 Influence of the culture medium on the promoter activities
Les vecteurs monocopies pTG9704 (D64), pTG9706 (J1.2) et pTG9701 (R13) ont été cultivés dans 3 milieux différents, en parallèle avec le plasmide pTG9707 équivalent aux précédents mis à part que c'est le promoteur TEF1 (Cottrelle et al., 1985, supra) qui dirige l'expression du gène GUS. L'étude est réalisée sur milieu défini YNBG+cas à base de glucose, milieu riche YPG et milieu défini oxydatif YNBGly+cas dont la source de carbone est le glycerol. Deux prélèvements sont effectués en phase exponentielle de croissance (DO600~ 1). Les activités GUS sont mesurées en fluorimétrie sur les extraits protéiques acellulaires de chaque échantillon (Figure 6). The single-copy vectors pTG9704 (D64), pTG9706 (J1.2) and pTG9701 (R13) were cultivated in 3 different media, in parallel with the plasmid pTG9707 equivalent to the previous ones except that it is the TEF1 promoter (Cottrelle et al. ., 1985, supra) which directs the expression of the GUS gene. The study is carried out on defined medium YNBG + glucose-based case, rich medium YPG and defined oxidative medium YNBGly + case whose carbon source is glycerol. Two samples are taken in the exponential growth phase (OD 600 ~ 1). GUS activities are measured in fluorimetry on the acellular protein extracts of each sample (Figure 6).
Les extraits protéiques des clones correspondant aux trois inserts promoteurs de l'invention présentent tous une activité GUS réduite de 50% sur milieu YNBGly+cas, en comparaison avec le milieu glucose YNBG+cas En revanche, l'activité GUS contrôlée par le pTEFl est identique sur les milieux YNBG+cas et YNBGly+cas, confirmant que ce promoteur est efficace sur les deux sources de carbone contenues dans ces milieux de culture. En outre, indépendamment de la construction (y compris pTG9707), l'activité GUS est moindre sur YPG que sur YNBG+cas. The protein extracts of the clones corresponding to the three promoter inserts of the invention all have a GUS activity reduced by 50% on YNBGly + case medium, in comparison with the glucose medium YNBG + case On the other hand, the GUS activity controlled by pTEFl is identical on YNBG + case and YNBGly + case media, confirming that this promoter is effective on the two carbon sources contained in these culture media. In addition, independently of the construction (including pTG9707), the GUS activity is less on YPG than on YNBG + cases.
L'activité optimale des fragments promoteurs D64, J1 .2 et R13 semble être obtenue en milieu défini avec du glucose comme source de carbone. Cependant, comme indiqué précédemment (exemple 3), l'activité décroît régulièrement au cours de la croissance au fur et à mesure que le glucose disparait du milieu de culture, (réduction du niveau de production GUS d'un facteur 2 en phase stationnaire). On indique que sur milieu défini glycerole (YNBGly+cas), une telle vaπation d'activité n'est pas observée durant la croissance cellulaire (niveau GUS constant). The optimal activity of the promoter fragments D64, J1 .2 and R13 seems to be obtained in a defined medium with glucose as a carbon source. However, as indicated previously (example 3), the activity decreases regularly during the growth as the glucose disappears from the culture medium, (reduction of the level of GUS production by a factor 2 in the stationary phase) . It is indicated that on a defined glycerol medium (YNBGly + case), such activity variation is not observed during cell growth (constant GUS level).
EXEMPLE 5 : Etude de sous-fragments de l'insert R13 EXAMPLE 5 Study of R13 insert subfragments
Des délétions progressives en 5' ont été réalisées à partir du fragment R13 dans le but d'identifier un insert promoteur de taille minimale et d'activité optimale. Le fragment RI 3 9 est amplifié par PCR à partir du pTG9701 (Exemple 2D) à l'aide des oTG 7659 et 7234 (SEQ ID No 20 et 21) et permet de générer pTG9754 après clonage sous forme d'un fragment Clal-Sall dans le vecteur d'expression monocopie du gène GUS. R1329 correspond à R13 délété de 80 pb en 5' L'insert R13.5 est également amplifié par PCR à partir de la matrice pTG9701 à l'aide des oligonucléotides oTG7422 (SEQ ID No: 22) et oTG7234, et donne lieu au vecteur d'expression GUS pTG9719. R13.5 correspond à une délétion de 190 pb en 5' de l'insert R13. Le sous-fragment R13.6, qui est obtenu à l'aide des amorces oTG7423 (SEQ ID NO: 23) et oTG7234 résulte d'une délétion de 300 pb en 5' du R13. Son clonage dans le plasmide d'expression monocopie GUS génère pTG9720. Enfin, le fragment R13.3, déjà décrit, comprend une délétion de 450 pb en 5' de R13. Progressive deletions in 5 ′ were carried out from the R13 fragment in order to identify a promoter insert of minimum size and optimal activity. The RI 39 fragment is amplified by PCR from pTG9701 (Example 2D) using oTG 7659 and 7234 (SEQ ID No 20 and 21) and makes it possible to generate pTG9754 after cloning in the form of a ClaI-SalI fragment in the monocopy expression vector of the GUS gene. R1329 corresponds to R13 deleted by 80 bp in 5 'The insert R13.5 is also amplified by PCR from the pTG9701 matrix using the oligonucleotides oTG7422 (SEQ ID No: 22) and oTG7234, and gives rise to the vector GUS pTG9719 expression. R13.5 corresponds to a 190 bp deletion in 5 'of the insert R13. The sub-fragment R13.6, which is obtained using the primers oTG7423 (SEQ ID NO: 23) and oTG7234 results from a deletion of 300 bp in 5 ′ of R13. Its cloning into the GUS monocopy expression plasmid generates pTG9720. Finally, the fragment R13.3, already described, comprises a deletion of 450 bp in 5 ′ of R13.
Les levures TGY73.4, respectivement transformées par les plasmides pTG9701 (R13), pTG9754 (R13.9), pTG9719 (R13.5), pTG9720 (R13.6) et pTG9703 (R13.3), sont cultivées en milieu défini YNBG+cas et récoltées à DO600~ 1. La Figure 7 représente les activités GUS correspondant aux moyennes des mesures fluorimétriques à DO600~ 1 (trois clones testés par contruction). The yeasts TGY73.4, respectively transformed by the plasmids pTG9701 (R13), pTG9754 (R13.9), pTG9719 (R13.5), pTG9720 (R13.6) and pTG9703 (R13.3), are cultured in defined medium YNBG + cases and collected at OD 600 ~ 1. Figure 7 represents the GUS activities corresponding to the means of fluorimetric measurements at OD 600 ~ 1 (three clones tested by contruction).
L'insert d'origine RI 3 présente une activité GUS de 225 U/mg en phase exponentielle de croissance. La délétion d'environ 100 pb en 5' générant R13.9 s'accompagne d'une perte d'activité d'environ 40% (140 U/mg). Par contre, l'activité promotrice augmente de manière significative après une délétion supplémentaire d'environ 100 pb (R13.5) (activité GUS de 290 U/mg dépassant celle obtenue avec R13 et R13.9), ce qui laisse supposer que la région délétée comprend un élément potentiel de régulation négative de l'expression génique. Enfin, des delétions supplémentaires en 5' (R13.6 et R13.3) réduisent considérablement l'activité promotrice (95% de perte par rapport à RI 3.5). En effet, la zone délétée contient les motifs de séquences consensus de fixation du produit activateur / répresseur codé par le gène RAP1 de S. cerevisiae. En conclusion, le fragment R13.5 présente une activité promotrice maximale qui peut être utilisée pour l'expression du gène d'intérêt. The original RI 3 insert has a GUS activity of 225 U / mg in the exponential growth phase. The deletion of approximately 100 bp in 5 ′ generating R13.9 is accompanied by a loss of activity of approximately 40% (140 U / mg). On the other hand, the promoter activity significantly increases after an additional deletion of approximately 100 bp (R13.5) (GUS activity of 290 U / mg exceeding that obtained with R13 and R13.9), which suggests that the deleted region includes a potential element of downregulation of gene expression. Finally, additional 5 'deletions (R13.6 and R13.3) considerably reduce the promoter activity (95% loss compared to RI 3.5). In fact, the deleted zone contains the consensus sequence motifs for binding the activator / repressor product encoded by the RAP1 gene from S. cerevisiae. In conclusion, the R13.5 fragment exhibits maximum promoter activity which can be used for the expression of the gene of interest.

Claims

Revendications claims
1. Fragment d'acide nucléique isolé comprenant tout ou partie d'une séquence nucléotidique homologue à la séquence montrée dans l'identificateur de séquence NO: 2 ou une partie seulement de la séquence nucléotidique montrée dans l'identificateur de séquence NO: 1 ou 3, ou homologue à son complémentaire, ledit fragment présentant une activité de promoteur transcriptionnel. 1. Isolated nucleic acid fragment comprising all or part of a nucleotide sequence homologous to the sequence shown in the sequence identifier NO: 2 or only part of the nucleotide sequence shown in the sequence identifier NO: 1 or 3, or homologous to its complement, said fragment exhibiting transcriptional promoter activity.
2. Fragment d'acide nucléique isolé selon la revendication 1, comprenant tout ou partie d'une séquence nucléotidique telle que montrée dans l'identificateur de séquence NO: 2 ou une partie seulement de la séquence nucléotidique montrée dans l'identificateur de séquence NO: 1 ou 3 ou son complémentaire. 2. Isolated nucleic acid fragment according to claim 1, comprising all or part of a nucleotide sequence as shown in the sequence identifier NO: 2 or only part of the nucleotide sequence shown in the sequence identifier NO : 1 or 3 or its complement.
3. Fragment d'acide nucléique isolé selon la revendication 1 ou 2, ayant une séquence telle que montrée dans : 3. Isolated nucleic acid fragment according to claim 1 or 2, having a sequence as shown in:
(i) l'identificateur de séquence NO: 1, débutant au nucléotide en position 462 et se terminant au nucléotide en position 1016, ou (ii) l'identificateur de séquence NO: 1, débutant au nucléotide en position 197 et se terminant au nucléotide en position 1016, ou (i) the sequence identifier NO: 1, starting at the nucleotide at position 462 and ending at the nucleotide at position 1016, or (ii) the sequence identifier NO: 1, starting at the nucleotide at position 197 and ending at nucleotide at position 1016, or
(iii) l'identificateur de séquence NO: 3, débutant au nucléotide en position 5 et se terminant au nucléotide en position 523. (iii) the sequence identifier NO: 3, starting at the nucleotide at position 5 and ending at the nucleotide at position 523.
4. Fragment d'acide nucléique d'origine hybride, caractérisé en ce qu'il comprend 4. Nucleic acid fragment of hybrid origin, characterized in that it comprises
(i) un fragment d'acide nucléique selon l'une des revendications 1 à 3, comprenant une région promotrice minimale ; ladite région promotrice minimale étant placée en aval d'une ou plusieurs séquence(s) modulatrice(s) hétérologue(s) à ladite région promotrice minimale, ou (ii) un fragment d'acide nucléique selon l'une des revendications 1 à 3, comprenant au moins une séquence modulatrice ; ladite séquence modulatrice étant placée en amont d'une région promotrice minimale hétérologue à ladite séquence modulatrice. (i) a nucleic acid fragment according to one of claims 1 to 3, comprising a minimal promoter region; said minimal promoter region being placed downstream of one or more modulating sequence (s) heterologous to said minimal promoter region, or (ii) a nucleic acid fragment according to one of claims 1 to 3, comprising at least one modulator sequence; said modulator sequence being placed upstream of a minimal promoter region heterologous to said modulator sequence.
5. Cassette d'expression comprenant un gène d'intérêt placé sous le contrôle dudit fragment d'acide nucléique selon l'une des revendications 1 à 4 ou un fragment d'acide nucléique comprenant la totalité de la séquence nucléotidique montrée dans l'identificateur de séquence NO: 1 ou 3 ou d'une séquence homologue ou complémentaire ou homologue de son complémentaire.. 5. Expression cassette comprising a gene of interest placed under the control of said nucleic acid fragment according to one of claims 1 to 4 or a nucleic acid fragment comprising the entire nucleotide sequence shown in the identifier of sequence NO: 1 or 3 or of a sequence which is homologous or complementary or homologous to its complementary.
6. Cassette d'expression selon la revendication 5, caractérisée en ce que le gène d'intérêt code pour un produit d'expression sélectionné parmi les cytokines, facteurs de croissance, récepteurs, anticoagulants, enzymes ou leurs inhibiteurs, hormones, anticorps, polypeptides possédant des propriétés immunogènes, protéines structurales et marqueur de sélection. 6. Expression cassette according to claim 5, characterized in that the gene of interest codes for an expression product selected from cytokines, growth factors, receptors, anticoagulants, enzymes or their inhibitors, hormones, antibodies, polypeptides with immunogenic properties, structural proteins and selection marker.
7. Vecteur d'expression comprenant une cassette d'expression selon la revendication 5 ou 6. 7. An expression vector comprising an expression cassette according to claim 5 or 6.
8. Vecteur plasmidique selon la revendication 7, multicopie ou centromérique. 8. Plasmid vector according to claim 7, multicopy or centromeric.
9. Cellule hôte comprenant une cassette d'expression selon la revendication 5 ou 6 ou un vecteur selon la revendication 7 ou 8. 9. Host cell comprising an expression cassette according to claim 5 or 6 or a vector according to claim 7 or 8.
10. Cellule hôte eucaryote inférieure selon la revendication 9. 10. Lower eukaryotic host cell according to claim 9.
1 1. Levure hôte selon la revendication 10. 1 1. Host yeast according to claim 10.
12. Cellule hôte selon la revendication 11, sélectionnée parmi les levures du genre Saccharomyces, Schizosaccharomyces, Pichia, Kluyveromyces, Hansenula, Phaffia et Yarrowia. 12. Host cell according to claim 11, selected from yeasts of the genus Saccharomyces, Schizosaccharomyces, Pichia, Kluyveromyces, Hansenula, Phaffia and Yarrowia.
13. Cellule hôte selon la revendication 12, caractérisée en ce qu'il s'agit de Saccharomyces cerevisiae. 13. Host cell according to claim 12, characterized in that it is Saccharomyces cerevisiae.
14. Procédé de production d'un polypeptide d'intérêt comprenant (i) la culture d'une cellule hôte selon l'une des revendications 9 à 13, dans des conditions de culture appropriées permettant la production dudit polypeptide d'intérêt et (ii) la récupération dudit polypeptide d'intérêt dans la culture de ladite cellule hôte. 14. A method of producing a polypeptide of interest comprising (i) the culture of a host cell according to one of claims 9 to 13, under appropriate culture conditions allowing the production of said polypeptide of interest and (ii ) recovering said polypeptide of interest in the culture of said host cell.
15. Procédé de production selon la revendication 14, caractérisé en ce que la cellule hôte est une levure Saccharomyces cerevisiae. 15. The production method according to claim 14, characterized in that the host cell is a yeast Saccharomyces cerevisiae.
16. Procédé de production selon la revendication 14 ou 15, caractérisé en ce que la culture de la cellule hôte est effectuée dans un milieu de culture défini comprenant du glucose comme source de carbone. 16. Production method according to claim 14 or 15, characterized in that the culture of the host cell is carried out in a defined culture medium comprising glucose as a carbon source.
EP96912075A 1995-04-07 1996-04-05 Novel promoters for expressing proteins of interest in yeast Withdrawn EP0819175A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9504171 1995-04-07
FR9504171A FR2732691B1 (en) 1995-04-07 1995-04-07 NEW PROMOTERS FOR THE EXPRESSION OF PROTEINS OF INTEREST IN YEAST
PCT/FR1996/000523 WO1996031611A1 (en) 1995-04-07 1996-04-05 Novel promoters for expressing proteins of interest in yeast

Publications (1)

Publication Number Publication Date
EP0819175A1 true EP0819175A1 (en) 1998-01-21

Family

ID=9477880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96912075A Withdrawn EP0819175A1 (en) 1995-04-07 1996-04-05 Novel promoters for expressing proteins of interest in yeast

Country Status (6)

Country Link
US (1) US5952195A (en)
EP (1) EP0819175A1 (en)
JP (1) JPH11503318A (en)
CA (1) CA2218405A1 (en)
FR (1) FR2732691B1 (en)
WO (1) WO1996031611A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053265B2 (en) 2000-10-02 2006-05-30 The Board Of Trustees Operating Michigan State University Application of bi-directional promoters for modification of gene expression
US8008459B2 (en) * 2001-01-25 2011-08-30 Evolva Sa Concatemers of differentially expressed multiple genes
US20080311612A1 (en) * 2007-06-15 2008-12-18 Pioneer Hi-Bred International, Inc. Functional Expression of Higher Plant Nitrate Transporters in Pichia Pastoris
WO2011146833A1 (en) 2010-05-20 2011-11-24 Evolva Inc. Method of producing isoprenoid compounds in yeast
CN112626104A (en) * 2020-12-24 2021-04-09 长沙中科晶博生物科技有限公司 Method for producing plectasin by using pichia pastoris
CN114657197B (en) * 2022-04-06 2023-07-21 暨南大学 Application of Gsm1p as positive control factor in improving protein expression in host cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9631611A1 *

Also Published As

Publication number Publication date
JPH11503318A (en) 1999-03-26
FR2732691B1 (en) 1997-06-20
US5952195A (en) 1999-09-14
WO1996031611A1 (en) 1996-10-10
CA2218405A1 (en) 1996-10-10
FR2732691A1 (en) 1996-10-11

Similar Documents

Publication Publication Date Title
Doel et al. The dominant PNM2-mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene.
Jarvis et al. Identification of a DNA segment that is necessary and sufficient for α-specific gene control in Saccharomyces cerevisiae: implications for regulation of α-specific and a-specific genes
EP2250270B1 (en) Method for the targeted integration of multiple copies of a gene of interest in a yarrowia strain
EP0329501A1 (en) ARS sequence useful for Yarrowia lipolytics, and its preparation
Nishi et al. The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein
EP0749489B1 (en) Expression cassette comprising a promoter derived from gene pho4 of Schizosaccharomyces pombe
EP0994192B1 (en) Transformation cassette for yeast
EP0652964B1 (en) K. lactis transaldolase gene promoter and use thereof
EP0819175A1 (en) Novel promoters for expressing proteins of interest in yeast
WO1993004176A1 (en) Yeast promoter and use thereof
US5068185A (en) Trains of yeast for the expression of heterologous genes
EP0584166B1 (en) Yeast promoter and use thereof
EP0651810B1 (en) K. lactis pyruvate-decarboxylase promoter gene and use thereof
EP0651811B1 (en) K. lactis rp28 ribosomal protein gene promoter and use thereof
EP1108043B1 (en) Method for non-homologous transformation of yarrowia lipolytica
EP0435776B1 (en) Artificial promoter for protein expression in yeast
EP1163350A1 (en) Polynucleotides for mutagenesis in fungus comprising a functional gene in magnaporthe and an impala tranposon
JPH0832241B2 (en) Novel gene, vector, transformant using the same, and use thereof
EP0703986A1 (en) Yeast promotor and use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000411

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030525