EP0815393B1 - Process for processing domestic waste - Google Patents

Process for processing domestic waste Download PDF

Info

Publication number
EP0815393B1
EP0815393B1 EP96908081A EP96908081A EP0815393B1 EP 0815393 B1 EP0815393 B1 EP 0815393B1 EP 96908081 A EP96908081 A EP 96908081A EP 96908081 A EP96908081 A EP 96908081A EP 0815393 B1 EP0815393 B1 EP 0815393B1
Authority
EP
European Patent Office
Prior art keywords
pyrolysis
process according
melting furnace
gas
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96908081A
Other languages
German (de)
French (fr)
Other versions
EP0815393A1 (en
Inventor
John Rizzon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19522457A external-priority patent/DE19522457C2/en
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0815393A1 publication Critical patent/EP0815393A1/en
Application granted granted Critical
Publication of EP0815393B1 publication Critical patent/EP0815393B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0273Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/301Treating pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/302Treating pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/80Shredding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/103Combustion in two or more stages in separate chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/104Combustion in two or more stages with ash melting stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50214Separating non combustible matters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/102Intercepting solids by filters electrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/50Intercepting solids by cleaning fluids (washers or scrubbers)

Definitions

  • the present invention relates to a method and a Device for treating household waste.
  • Thermal waste treatment processes are used worldwide intensively researched and discussed. Numerous publications in the trade press are testimony to the great interest in this procedure. Already at the beginning of the 70s research into pyrolysis processes in many industrialized countries for waste treatment. The pyrolysis process should be considered as alternative procedures for the treatment of home and industrial waste, such as Plastic waste, used tires, Old cables etc. be used. It was in the Industrialized countries Japan, USA, Great Britain and Germany very much worked intensively on over 60 pyrolysis processes.
  • the object of the present invention is a environmentally friendly and economical treatment method to provide household waste.
  • the present invention provides a combined pyrolysis melting process ready for thermal treatment of waste.
  • the inventive method has the advantage that the Process pyrolysis and melting also operated decoupled can be.
  • the procedures can be carried out independently.
  • the decoupling gives you high availability.
  • At the Use of ordinary household garbage can be the procedure energy self-sufficient.
  • the ash components and Heavy metals are melted into one transferred leach-resistant melt granules that used becomes.
  • the combined process is wastewater-free Flue gas cleaning applied.
  • the combined procedure is operated under normal pressure. It is not a foreign or Additional heating required. Because of the high energy yield no technical oxygen is required for the individual processes be used. From Z .: "BWX Fuel Heat Power" 42 (1990) H.10, pp. R 26 to R 36 is a method of treatment of household waste, in which the material is pyrolyzed and the exhaust gas from pyrolysis and pyrolysis coke into one Melting furnace are directed.
  • Pyrolysis can various types of waste, such as household waste, special waste, used tires, Shredder residues etc. be used.
  • the Pyrolysis products such as coke, oil and gas can be separated stored, recycled or disposed of. Pyrolysis can flexible to qualitative and quantitative fluctuations in the Input materials can be set.
  • the coke is not ground during the melting process.
  • the melting plant can be started up and shut down more quickly.
  • high-calorific waste materials such as loaded HOK, dried sewage sludge and liquid special waste can be fed into the melting furnace.
  • the refractory material has a long service life. Flexible partial load procedures are possible. By staged combustion in the primary and secondary chamber, low NO x values are obtained in the exhaust gas. There is only a very small amount of residual dust in the exhaust gas.
  • a preferred embodiment of the invention is that Material is pretreated before pyrolysis. Through this Measure would receive good quality pyrolysis products.
  • a preferred embodiment of the invention is that Material before pyrolysis to a size ⁇ 1,000 mm crushed, pressed and over a shaft in the Pyrolysis reactor is abandoned. Through this measure, the Pyrolysis can be operated economically.
  • a preferred embodiment of the invention is that Material shredded to a size ⁇ 300 mm before pyrolysis and by means of a press screw in the pyrolysis reactor is abandoned. With this measure, pyrolysis can be very effective be carried out economically.
  • a preferred embodiment of the invention is that Material contains metal-containing substances before pyrolysis becomes.
  • the metal separation can be carried out very effectively become.
  • the metal separation causes a reduction in required capacity of the pyrolysis drum.
  • a preferred embodiment of the invention is that as Pyrolysis reactor an indirectly heated pyrolysis drum is used. Through this measure, the operating costs the pyrolysis is greatly reduced.
  • a preferred embodiment of the invention is that for Heating the pyrolysis reactor by the required heat the exhaust gas from the combustion according to process stage (b) and part of the waste gas from the smelting furnace is obtained. This measure makes the pyrolysis drum very operational economically.
  • a preferred embodiment of the invention is that the Dust removal from the pyrolysis gas in an oil quencher above the Dew point of the water occurs. Through these measures, the dust removal from the pyrolysis gas gives very good results reached. Dust removal in ceramic filters is also possible.
  • a preferred embodiment of the invention is that the Pyrolysis coke cooled, freed from metal-containing substances and is sieved, the fraction is crushed with a size> 50 mm and with the fine fraction ⁇ 50 mm in the melting furnace is initiated. This will make the furnace operated very economically.
  • a preferred embodiment of the invention is that Pyrolysis coke with a size ⁇ 50 mm and at least one of the Components such as dried sewage sludge, pyrolysis gas, Residues from the oil quench, heating oil, high-calorific waste, such as plastics, pasty, liquid and gaseous flammable Waste as well as loaded activated carbon and coke in the melting furnace be initiated.
  • the Components such as dried sewage sludge, pyrolysis gas, Residues from the oil quench, heating oil, high-calorific waste, such as plastics, pasty, liquid and gaseous flammable Waste as well as loaded activated carbon and coke in the melting furnace be initiated.
  • This measure will make others high-calorific substances used effectively as fuels, being economical and environmentally friendly with the are disposed of according to the method of the invention.
  • a preferred embodiment of the invention is that burned exhaust gas from the melting furnace into a boiler and / or Recuperator is initiated. Through this measure, the Exhaust gas energy can be used very useful.
  • a preferred embodiment of the invention is that the dust from the dust separation of the melting process in the Melting furnace is returned. Through this measure, the separated dust can be returned to the smelting and does not have to be disposed of costly.
  • the device for treating household waste consists of Pyrolysis reactor, dedusting, combustion chamber, pyrolysis coke cooling, Metal separation, crushing, melting furnace, afterburner, Use of heat and flue gas cleaning.
  • the method for thermal is advantageous Disposal and use of household waste with simultaneous generation of an eluate-proof reusable melting granulate.
  • the pyrolysis coke and / or pyrolysis dust treated in a melting furnace wherein Tertiary air into the primary chamber of the furnace is initiated.
  • the drained, molten material leaves with the flue gas flowing through the primary chamber Secondary chamber and is discharged as slag.
  • the temperature in the primary chamber is from 1,250 to 1,500 ° C.
  • the drawing consists of Fig.1 to Fig.5.
  • FIG. 2 shows a flow diagram of the method according to the invention.
  • Fig. 3 shows a flow diagram of the material flow diagram.
  • Fig. 4 shows a side view of the smelting furnace.
  • delivery vehicles deliver the household waste without the interposition of an external processing system in the waste bunker (11).
  • the material is reduced in size (13) to a size of 300 mm.
  • the shredded material is fed into the pyrolysis drum (2).
  • the pyrolysis drum (2) is continuously heated indirectly with the dedusted and afterburned pyrolysis gas via the outer wall.
  • the temperature of the afterburned pyrolysis gas is set so that the softening point of any entrained dust particles is not exceeded.
  • the cooled exhaust gas is sucked out of the drum wall by a fan and fed to a steam generator (3).
  • the pyrolysis coke is passed from the pyrolysis drum (2) at a temperature of about 500 ° C.
  • a pyrolysis coke cooling system (7) (wet slag remover), where the pyrolysis coke is cooled.
  • the wet deslagger (7) seals the outlet of the pyrolysis drum (2) against the atmosphere.
  • a metal deposition (8) non-ferrous metals and iron are separated from the cooled pyrolysis coke, which is then fed into the melting furnace (1).
  • the pyrolysis coke can be comminuted in a shredder (9) before being placed in the melting furnace (1).
  • the pyrolysis gas is dedusted in an oil quench (5) and afterburned in a combustion chamber (6). Excess pyrolysis gas can be burned in the melting furnace (1).
  • the oil from the oil quench (5) contains the condensed pyrolysis oil and the discharged dust.
  • An oil treatment device centrifuge or decanter, is used to separate the dust from the circulating oil.
  • the concentrated oil / dust fraction is introduced into the melting furnace (1) via lance burners.
  • Pyrolysis coke is introduced into the primary chamber (17) of the melting furnace (1) with a piece size of ⁇ 50 mm.
  • the combustion of the coke and the melting of the ash components is energy self-sufficient by means of preheated air.
  • the liquid slag flows from the primary chamber (17) through the central outlet (18) and drips through the secondary chamber (21) into the water bath of the wet slag remover (22).
  • the liquid slag solidifies to a glassy granulate.
  • the exhaust gases are adjusted in the secondary chamber (21) by adding air to an O 2 content of at least 6 vol%.
  • the exhaust gases from the melting furnace (1) and the cooled, burned pyrolysis gases from the pyrolysis drum (2) are fed together via the afterburning chamber (10) to the heat extraction, namely the boiler (3).
  • the boiler (3) consists of a radiation and convection section with an integrated luff.
  • the cooled exhaust gas goes into the subsequent flue gas cleaning (12).
  • flue gas cleaning HCl and SO 2 are removed from the dedusted flue gas in a two-stage wet wash.
  • the elementary mercury and traces of HCl, SO 2 and hydrocarbons are separated in the downstream mercury separation, which works according to the sorbalite, HOK or similar method.
  • the loaded activated carbon / Ca (OH) 2 mixture is introduced into the melting furnace (1).
  • the sink for Hg is then in the HCl wash.
  • the pyrolysis gas leaves the pyrolysis drum (2) at a temperature of 500 ° C.
  • the quantities of the harmful gases H 2 S, COS and HCl can be minimized by adding lime to the pyrolysis drum (2).
  • the pyrolysis gas consists of CO and CO 2 as well as higher hydrocarbons.
  • the dust load is 20 to 30 g / m 3 iN In the oil quench (5) the pyrophoric dust and the pyrolysis oils are separated.
  • pyrolysis gas burns in the combustion chamber (6) to a hot gas, which is introduced at 1,050 ° C to 1,250 ° C into the outer jacket of the pyrolysis drum (2), where the pyrolysis gas is cooled to a temperature of 550 ° C to 600 ° C takes place.
  • the remaining part of the pyrolysis gas is fed directly into the melting furnace (1).
  • Pyrolysis coke consists of approximately 18% to 20% by weight Carbon. The rest are ashes and non-ferrous as well Iron components.
  • the Pyrolysis drum (2) the Pyrolysis coke at a temperature of 500 ° C.
  • the downstream Wet purging (7) is the pyrolysis coke to about 60 ° C Cooled to 70 ° C.
  • the discharged pyrolysis coke will then subjected to a non-ferrous and Fe separation, whereby valuable materials be won.
  • the pyrolysis coke can be made with one piece size of ⁇ 50 mm are introduced into the melting furnace (1). Of the pyrolysis coke can be ground beforehand, which is common is not required.
  • the ash components are at one Temperature of about 1,350 ° C in the melting furnace (1) melted down.
  • the heavy metals are in a stable Integrated aluminum silicate matrix.
  • the exhaust gas leaves the Primary chamber (17) of the melting furnace (1) with a temperature of about 1,350 ° C.
  • In the secondary chamber (21) of the Melting furnace (1) is turned on by adding air Oxygen content adjusted from 6 vol% to 7 vol%.
  • the exhaust gas cools by adding air and evaporating water from the wet slag remover (22) to a temperature of 950 ° C to From 1,150 ° C.
  • the evaporated heavy metals and Alkali metal compounds from the primary chamber (17) condense and are discharged as residual spell.
  • the composition of the exhaust gas from the boiler (3) corresponds to about the composition of flue gases from one conventional grate firing.
  • the melting furnace (1) has: movable Oven cover (14), double pendulum flap (15), at least one Burner (16), primary chamber (17), slag discharge (18), hydraulic furnace drive (19), video furnace monitoring (20), Secondary chamber (21) and wet deslagger (22).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Incineration Of Waste (AREA)

Abstract

Proposed is a process in which the material in question undergoes pyrolysis, dust is removed from the pyrolysis gas, a portion of which is then burned and the remaining portion is fed into a furnace (1). Hot gas produced in the combustion process is used for heating the pyrolysis reactor (2); waste gas resulting from that heating operation and pyrolysis coke are fed into the furnace. Also proposed is a device for processing domestic waste, comprising a pyrolysis reactor (2), dust removal unit (5), combustion chamber (6), pyrolysis coke cooling unit (7), metal separation unit (8), shredding unit (9), melting furnace (1), secondary combustion chamber (10), heat recovery unit (11) and flue gas cleaning unit (12).

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Behandeln von Hausmüll.The present invention relates to a method and a Device for treating household waste.

Verfahren zur thermischen Abfallbehandlung werden weltweit intensiv erforscht und diskutiert. Zahlreiche Publikationen in der Fachpresse sind ein Zeugnis für das große Interesse an diesen Verfahren. Schon zu Beginn der 70er Jahre wurde in vielen Industriestaaten die Erforschung von Pyrolyseverfahren zur Abfallbehandlung vorangetrieben. Die Pyrolyseverfahren sollten als alternative Verfahren für die Behandlung von Haus- und Industriemüll, wie z.B. Kunststoffabfälle, Altreifen, Altkabel u.ä. verwendet werden. Dabei wurde in den Industriestaaten Japan, USA, Großbritannien und Deutschland sehr intensiv an über 60 Pyrolyseverfahren gearbeitet.Thermal waste treatment processes are used worldwide intensively researched and discussed. Numerous publications in the trade press are testimony to the great interest in this procedure. Already at the beginning of the 70s research into pyrolysis processes in many industrialized countries for waste treatment. The pyrolysis process should be considered as alternative procedures for the treatment of home and industrial waste, such as Plastic waste, used tires, Old cables etc. be used. It was in the Industrialized countries Japan, USA, Great Britain and Germany very much worked intensively on over 60 pyrolysis processes.

Aus DE-ZE: "Umwelt Technologie Aktuell", S. 232 - 234 (1993) ist eine Einschmelzanlage bekannt. Das Kernstück der Einschmelzanlage ist ein senkrechter Doppelmantelschmelzofen mit einem sich langsam drehenden Außenmantel, in dem ein zylindrischer Innenmantel konzentrisch eingehängt ist. Die in den Ringschacht zwischen den beiden Mänteln aufgegebenen Rückstände werden der Schmelzkammer zugeführt, in der ein öloder gasgefeuerter Hochtemperaturbrenner den Schmelzvorgang einleitet.From DE-ZE: "Umwelt Technologie Aktuell", pp. 232-234 (1993) a melting plant known. The heart of the Smelting plant is a vertical double jacket melting furnace with a slowly rotating outer jacket in which a cylindrical inner jacket is mounted concentrically. In the abandoned the ring shaft between the two jackets Residues are fed into the melting chamber, in which an oil or gas-fired high-temperature burner the melting process initiates.

Aufgabe der vorliegenden Erfindung ist es, ein umweltfreundliches und wirtschaftliches Verfahren zum Behandeln von Hausmüll bereitzustellen.The object of the present invention is a environmentally friendly and economical treatment method to provide household waste.

Die Aufgabe der vorliegenden Erfindung wird durch ein Verfahren zum Behandeln von Hausmüll gelöst, bei dem

  • a) das Material pyrolysiert wird,
  • b) Pyrolysegas entstaubt wird, ein Teil des entstaubten Pyrolysegases verbrannt und der restliche Teil in einen Schmelzofen (1) eingeleitet wird,
  • c) heißes Gas aus der Verbrennung zum Beheizen des Pyrolysereaktors (2) verwendet wird,
  • d) Abgas aus der Beheizung des Pyrolysereaktors und Pyrolysekoks in den Schmelzofen (1) eingeleitet werden.
  • The object of the present invention is achieved by a method for treating household waste, in which
  • a) the material is pyrolyzed,
  • b) pyrolysis gas is dedusted, part of the dedusted pyrolysis gas is burned and the remaining part is introduced into a melting furnace (1),
  • c) hot gas from the combustion is used to heat the pyrolysis reactor (2),
  • d) exhaust gas from the heating of the pyrolysis reactor and pyrolysis coke are introduced into the melting furnace (1).
  • Die vorliegende Erfindung stellt ein kombiniertes Pyrolyse-Schmelzverfahren zum thermischen Behandeln von Abfällen bereit. Das erfindungsgemäße Verfahren hat den Vorteil, daß die Verfahren Pyrolyse und Einschmelzung auch entkoppelt betrieben werden können. Die Verfahren können unabhängig gefahren werden. Sie haben durch die Entkopplung eine hohe Verfügbarkeit. Beim Einsatz von gewöhnlichem Hausmüll können die Verfahren energieautark gefahren werden. Die Aschebestandteile und Schwermetalle werden bei der Einschmelzung in ein laugungsresistentes Schmelzgranulat überführt, das verwendet wird. Bei dem kombinierten Verfahren wird abwasserfreie Rauchgasreinigung angewendet. Das kombinierte Verfahren wird unter Normaldruck betrieben. Es ist keine Fremd- oder Zusatzbeheizung erforderlich. Aufgrund der hohen Energieausbeute der einzelnen Verfahren muß kein technischer Sauerstoff eingesetzt werden. Aus Z.: "BWX Brennstoff Wärme Kraft" 42 (1990) H.10, S. R 26 bis R 36 ist ein Verfahren zum Behandeln von Hausmüll bekannt, bei dem das Material pyrolysiert wird und das Abgas aus der Pyrolyse und Pyrolysekoks in einen Schmelzofen geleitet werden.The present invention provides a combined pyrolysis melting process ready for thermal treatment of waste. The inventive method has the advantage that the Process pyrolysis and melting also operated decoupled can be. The procedures can be carried out independently. The decoupling gives you high availability. At the Use of ordinary household garbage can be the procedure energy self-sufficient. The ash components and Heavy metals are melted into one transferred leach-resistant melt granules that used becomes. The combined process is wastewater-free Flue gas cleaning applied. The combined procedure is operated under normal pressure. It is not a foreign or Additional heating required. Because of the high energy yield no technical oxygen is required for the individual processes be used. From Z .: "BWX Fuel Heat Power" 42 (1990) H.10, pp. R 26 to R 36 is a method of treatment of household waste, in which the material is pyrolyzed and the exhaust gas from pyrolysis and pyrolysis coke into one Melting furnace are directed.

    Bei der Pyrolyse wird keine Luft zugeführt, dadurch kann die Entwicklung von Dibenzodioxinen und Dibenzofuranen verhindert werden. Die Heizung der Pyrolysetrommel erfolgt mit verbrannten Pyrolysegasen. Bei der Pyrolyse können verschiedene Abfälle, wie Hausmüll, Sondermüll, Altreifen, Schredderrückstände u.ä. eingesetzt werden. Die Pyrolyseprodukte, wie Koks, Öl und Gas können getrennt gespeichert, verwertet oder entsorgt werden. Die Pyrolyse kann flexibel auf qualitative und quantitative Schwankungen bei den Einsatzstoffen eingestellt werden.No air is fed in during pyrolysis, which means that Development of dibenzodioxins and dibenzofurans prevented become. The pyrolysis drum is also heated burned pyrolysis gases. Pyrolysis can various types of waste, such as household waste, special waste, used tires, Shredder residues etc. be used. The Pyrolysis products such as coke, oil and gas can be separated stored, recycled or disposed of. Pyrolysis can flexible to qualitative and quantitative fluctuations in the Input materials can be set.

    Bei der Einschmelzung erfolgt keine Aufmahlung des Kokses. Die Einschmelzanlage kann schneller an- und abgefahren werden. Es können zusätzlich heizwertreiche Abfallstoffe, wie beladener HOK, getrockneter Klärschlamm und flüssige Sonderabfälle in den Einschmelzofen aufgegeben werden. Das Feuerfestmaterial weist eine lange Lebensdauer auf. Flexible Teillastverfahren sind möglich. Durch gestufte Verbrennung in der Primär- und Sekundärkammer werden niedrige NOx-Werte im Abgas erhalten. Im Abgas ist nur eine sehr geringe Reststaubmenge vorhanden.The coke is not ground during the melting process. The melting plant can be started up and shut down more quickly. In addition, high-calorific waste materials such as loaded HOK, dried sewage sludge and liquid special waste can be fed into the melting furnace. The refractory material has a long service life. Flexible partial load procedures are possible. By staged combustion in the primary and secondary chamber, low NO x values are obtained in the exhaust gas. There is only a very small amount of residual dust in the exhaust gas.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse vorbehandelt wird. Durch diese Maßnahme weraen qualitativ gute Pyrolyseprodukte erhalten.A preferred embodiment of the invention is that Material is pretreated before pyrolysis. Through this Measure would receive good quality pyrolysis products.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse auf eine Größe < 1.000 mm zerkleinert, gepreßt und über einen Schacht in den Pyrolysereaktor aufgegeben wird. Durch diese Maßnahme kann die Pyrolyse wirtschaftlich betrieben werden.A preferred embodiment of the invention is that Material before pyrolysis to a size <1,000 mm crushed, pressed and over a shaft in the Pyrolysis reactor is abandoned. Through this measure, the Pyrolysis can be operated economically.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse auf eine Größe < 300 mm zerkleinert und mittels einer Preßschnecke in den Pyrolysereaktor aufgegeben wird. Durch diese Maßnahme kann die Pyrolyse sehr wirtschaftlich durchgeführt werden. A preferred embodiment of the invention is that Material shredded to a size <300 mm before pyrolysis and by means of a press screw in the pyrolysis reactor is abandoned. With this measure, pyrolysis can be very effective be carried out economically.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse von metallhaltigen Stoffen befreit wird. Die Metallabtrennung kann sehr wirkungsvoll durchgeführt werden. Die Metallabtrennung bewirkt eine Verringerung der erforderlichen Kapazität der Pyrolysetrommel.A preferred embodiment of the invention is that Material contains metal-containing substances before pyrolysis becomes. The metal separation can be carried out very effectively become. The metal separation causes a reduction in required capacity of the pyrolysis drum.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß als Pyrolysereaktor eine indirekt beheizte Pyrolysetrommel verwendet wird. Durch diese Maßnahme werden die Betriebskosten der Pyrolyse stark herabgesetzt.A preferred embodiment of the invention is that as Pyrolysis reactor an indirectly heated pyrolysis drum is used. Through this measure, the operating costs the pyrolysis is greatly reduced.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß der zum Beheizen des Pyrolysereaktors erforderliche Wärmebedarf durch das Abgas aus der Verbrennung gemäß Verfahrensstufe (b) und einem Teil des Abgases des Einschmelzofens erhalten wird. Durch diese Maßnahme ist der Betrieb der Pyrolysetrommel sehr wirtschaftlich.A preferred embodiment of the invention is that for Heating the pyrolysis reactor by the required heat the exhaust gas from the combustion according to process stage (b) and part of the waste gas from the smelting furnace is obtained. This measure makes the pyrolysis drum very operational economically.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß die Entstaubung des Pyrolysegases in einer Öl-Quenche über dem Taupunkt des Wassers erfolgt. Durch diese Maßnahmen werden bei der Entstaubung des Pyrolysegases sehr gute Ergebnisse erreicht. Eine Entstaubung in Keramikfiltern ist auch möglich.A preferred embodiment of the invention is that the Dust removal from the pyrolysis gas in an oil quencher above the Dew point of the water occurs. Through these measures, the dust removal from the pyrolysis gas gives very good results reached. Dust removal in ceramic filters is also possible.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß der Pyrolysekoks gekühlt, von metallhaltigen Stoffen befreit und gesiebt wird, die Fraktion mit einer Größe > 50 mm zerkleinert und mit der Feinfraktion < 50 mm in den Schmelzofen eingeleitet wird. Durch diese Maßnahme wird der Schmelzofen sehr Wirtschaftlich betrieben. A preferred embodiment of the invention is that the Pyrolysis coke cooled, freed from metal-containing substances and is sieved, the fraction is crushed with a size> 50 mm and with the fine fraction <50 mm in the melting furnace is initiated. This will make the furnace operated very economically.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß Pyrolysekoks mit einer Größe < 50 mm und mindestens einer der Bestandteile, wie getrockneter Klärschlamm, Pyrolysegas, Reststoffe aus der Öl-Quenche, Heizöl, heizwertreiche Abfälle, wie Kunststoffe, pastöse, flüssige und gasförmige brennbare Abfälle sowie beladene Aktivkohle und Koks in den Schmelzofen eingeleitet werden. Durch diese Maßnahme werden andere heizwertreiche Stoffe wirkungsvoll als Brennstoffe verwendet, wobei sie wirtschaftlich und umweltfreundlich mit dem erfindungsgemäßen Verfahren entsorgt werden.A preferred embodiment of the invention is that Pyrolysis coke with a size <50 mm and at least one of the Components such as dried sewage sludge, pyrolysis gas, Residues from the oil quench, heating oil, high-calorific waste, such as plastics, pasty, liquid and gaseous flammable Waste as well as loaded activated carbon and coke in the melting furnace be initiated. This measure will make others high-calorific substances used effectively as fuels, being economical and environmentally friendly with the are disposed of according to the method of the invention.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß das verbrannte Abgas aus dem Schmelzofen in einen Kessel und/oder Rekuperator eingeleitet wird. Durch diese Maßnahme kann die Energie des Abgases sehr nützlich verwendet werden.A preferred embodiment of the invention is that burned exhaust gas from the melting furnace into a boiler and / or Recuperator is initiated. Through this measure, the Exhaust gas energy can be used very useful.

    Eine bevorzugte Ausgestaltung der Erfindung ist, daß der Staub aus der Staubabscheidung des Schmelzverfahrens in den Schmelzofen zurückgeleitet wird. Durch diese Maßnahme kann der abgeschiedene Staub in die Einschmelzung zurückgeführt werden und muß nicht kostenintensiv entsorgt werden.A preferred embodiment of the invention is that the dust from the dust separation of the melting process in the Melting furnace is returned. Through this measure, the separated dust can be returned to the smelting and does not have to be disposed of costly.

    Die Vorrichtung zum Behandeln von Hausmüll besteht aus Pyrolysereaktor, Entstaubung, Brennkammer, Pyrolysekokskühlung, Metallabscheidung, Zerkleinerung, Schmelzofen, Nachbrennkammer, Wärmenutzung und Rauchgasreinigung. The device for treating household waste consists of Pyrolysis reactor, dedusting, combustion chamber, pyrolysis coke cooling, Metal separation, crushing, melting furnace, afterburner, Use of heat and flue gas cleaning.

    In vorteilhafter Weise ist das Verfahren zur thermischen Entsorgung und Nutzung von Hausmüll bei gleichzeitiger Erzeugung eines eluatfesten wiederverwendbaren Schmelzgranulats geeignet.The method for thermal is advantageous Disposal and use of household waste with simultaneous generation of an eluate-proof reusable melting granulate.

    Im Rahmen der Ausgestaltung des Verfahrens wird der Pyrolysekoks und/oder Pyrolysestaub in einem Schmelzofen behandelt, wobei an der Ofendecke Tertiärluft in die Primärkammer des Schmelzofens eingeleitet wird. Das ablaufende, geschmolzene Material verläßt mit dem Rauchgas die Primärkammer, fließt durch die Sekundärkammer und wird als Schlacke ausgetragen.As part of the design of the process, the pyrolysis coke and / or pyrolysis dust treated in a melting furnace, wherein Tertiary air into the primary chamber of the furnace is initiated. The drained, molten material leaves with the flue gas flowing through the primary chamber Secondary chamber and is discharged as slag.

    In der Primärkammer herrscht eine Temperatur von 1.250 bis 1.500°C.The temperature in the primary chamber is from 1,250 to 1,500 ° C.

    Die Erfindung wird im folgenden anhand einer Zeichnung näher erläutert.The invention is described in more detail below with the aid of a drawing explained.

    Die Zeichnung besteht aus Fig.1 bis Fig.5.The drawing consists of Fig.1 to Fig.5.

    Fig.1 zeigt ein Verfahrensschema des erfindungsgemäßen Verfahrens. 1 shows a process diagram of the invention Procedure.

    Fig. 2 zeigt ein Fließschema des erfindungsgemäßen Verfahrens.2 shows a flow diagram of the method according to the invention.

    Fig. 3 zeigt ein Fließschema des Stoffflußplans.Fig. 3 shows a flow diagram of the material flow diagram.

    Fig. 4 zeigt eine Seitenansicht des Einschmelzofens.Fig. 4 shows a side view of the smelting furnace.

    Fig. 5 zeigt Eluatwerte aus Schmelzgranulaten in tabellarischer Form.5 shows eluate values from melt granules in tabular form.

    Nach dem in Fig. 1 dargestellten Verfahrensschema und dem in Fig. 2 dargestellten Fließschema liefern Anlieferfahrzeuge den Hausmüll ohne Zwischenschaltung einer externen Aufbereitungsanlage im Müllbunker (11) ab. Das Material wird in der Zerkleinerung (13) auf eine Stückgröße von 300 mm zerkleinert. Das zerkleinerte Material wird in die Pyrolysetrommel (2) aufgegeben. Die Pyrolysetrommel (2) wird kontinuierlich mit dem entstaubten und nachverbrannten Pyrolysegas indirekt über die Außenwand beheizt. Die Temperatur des nachverbrannten Pyrolysegases wird so eingestellt daß der Erweichungspunkt von eventuell mitgerissenen Staubteilchen nicht überschritten wird. Das abgekühlte Abgas wird von einem Ventilator aus der Trommelwand abgesaugt und einem Dampferzeuger (3) zugeführt. Der Pyrolysekoks wird aus der Pyrolysetrommel (2) mit einer Temperatur von etwa 500°C in eine Pyrolysekokskühlung (7) (Naßentschlacker) geleitet, wo der Pyrolysekoks abgekühlt wird. Der Naßentschlacker (7) dichtet den Auslauf der Pyrolysetrommel (2) gegen die Atmosphäre ab. Danach werden bei einer Metallabscheidung (8) NE-Metalle und Eisen aus dem gekühlten Pyrolysekoks abgetrennt, der dann in den Einschmelzofen (1) aufgegeben wird. Der Pyrolysekoks kann vor der Aufgabe in den Einschmelzofen (1) in einer Zerkleinerung (9) zerkleinert werden. Das Pyrolysegas wird in einer Öl-Quenche (5) entstaubt und in einer Brennkammer (6) nachverbrannt. Überschüssiges Pyrolysegas kann im Einschmelzofen (1) verbrannt werden. Das Öl aus der Öl-Quenche (5) enthält das auskondensierte Pyrolyseöl und den ausgetragenen Staub. Eine Ölaufbereitungsvorrichtung, Zentrifuge oder Dekanter, wird zum Abtrennen des Staubes aus dem Umlauföl verwendet. Die aufkonzentrierte Öl/Staubfraktion wird über Lanzenbrenner in den Einschmelzofen (1) eingeleitet. Pyrolysekoks wird mit einer Stückgröße < 50 mm in die Primärkamner (17) des Einschmelzofens (1) eingetragen. Die Verbrennung des Kokses und die Einschmelzung der Aschebestandteile verläuft energieautark mittels vorgewärmter Luft. Die flüssige Schlacke fließt aus der Primärkamner (17) durch den zentralen Auslauf (18) und tropft durch die Sekundärkammer (21) in das Wasserbad des Naßentschlackers (22). Die flüssige Schlacke erstarrt hierbei zu einem glasigen Granulat. Die Abgase werden in der Sekundärkammer (21) durch Zugabe von Luft auf einen O2-Gehalt von mindestens 6 vol% eingestellt. Die Abgase aus dem Einschmelzofen (1) und die abgekühlten verbrannten Pyrolysegase aus der Pyrolysetrommel (2) werden gemeinsam über die Nachbrennkammer (10) der Wärmeauskopplung, nämlich dem Kessel (3) zugeführt. Der Kessel (3) besteht aus einem Strahlungs- und Kozvektionsteil mit integriertem Luvo. Das abgekühlte Abgas gelangt in die anschließende Rauchgasreinigung (12). In der Rauchgasreinigung wird in einer zweistufigen Naßwäsche HCl und SO2 aus dem entstaubten Rauchgas entfernt. In der nachgeschalteten Hg-Abscheidung, die nach dem Sorbalit-, HOK- oder ähnlichem Verfahren funktioniert, werden das elementare Hg sowie Spuren von HCl, SO2 und Kohlenwasserstoffen abgeschieden. Beim Sorbalit-Verfahren wird das beladene Aktivkohle/Ca(OH)2-Gemisch in den Einschmelzofen (1) eingeführt. Die Senke für Hg befindet sich dann in der HCl-Wäsche.According to the process diagram shown in FIG. 1 and the flow diagram shown in FIG. 2, delivery vehicles deliver the household waste without the interposition of an external processing system in the waste bunker (11). The material is reduced in size (13) to a size of 300 mm. The shredded material is fed into the pyrolysis drum (2). The pyrolysis drum (2) is continuously heated indirectly with the dedusted and afterburned pyrolysis gas via the outer wall. The temperature of the afterburned pyrolysis gas is set so that the softening point of any entrained dust particles is not exceeded. The cooled exhaust gas is sucked out of the drum wall by a fan and fed to a steam generator (3). The pyrolysis coke is passed from the pyrolysis drum (2) at a temperature of about 500 ° C. into a pyrolysis coke cooling system (7) (wet slag remover), where the pyrolysis coke is cooled. The wet deslagger (7) seals the outlet of the pyrolysis drum (2) against the atmosphere. Thereafter, in a metal deposition (8), non-ferrous metals and iron are separated from the cooled pyrolysis coke, which is then fed into the melting furnace (1). The pyrolysis coke can be comminuted in a shredder (9) before being placed in the melting furnace (1). The pyrolysis gas is dedusted in an oil quench (5) and afterburned in a combustion chamber (6). Excess pyrolysis gas can be burned in the melting furnace (1). The oil from the oil quench (5) contains the condensed pyrolysis oil and the discharged dust. An oil treatment device, centrifuge or decanter, is used to separate the dust from the circulating oil. The concentrated oil / dust fraction is introduced into the melting furnace (1) via lance burners. Pyrolysis coke is introduced into the primary chamber (17) of the melting furnace (1) with a piece size of <50 mm. The combustion of the coke and the melting of the ash components is energy self-sufficient by means of preheated air. The liquid slag flows from the primary chamber (17) through the central outlet (18) and drips through the secondary chamber (21) into the water bath of the wet slag remover (22). The liquid slag solidifies to a glassy granulate. The exhaust gases are adjusted in the secondary chamber (21) by adding air to an O 2 content of at least 6 vol%. The exhaust gases from the melting furnace (1) and the cooled, burned pyrolysis gases from the pyrolysis drum (2) are fed together via the afterburning chamber (10) to the heat extraction, namely the boiler (3). The boiler (3) consists of a radiation and convection section with an integrated luff. The cooled exhaust gas goes into the subsequent flue gas cleaning (12). In flue gas cleaning, HCl and SO 2 are removed from the dedusted flue gas in a two-stage wet wash. The elementary mercury and traces of HCl, SO 2 and hydrocarbons are separated in the downstream mercury separation, which works according to the sorbalite, HOK or similar method. In the sorbalite process, the loaded activated carbon / Ca (OH) 2 mixture is introduced into the melting furnace (1). The sink for Hg is then in the HCl wash.

    Aus dem in Fig. 3 dargestellten Fließschema gehen der Stofffluß und die Verfahrensdaten des erfindungsgemäßen Verfahrens hervor. Das Pyrolysegas verläßt die Pyrolysetrommel (2) mit einer Temperatur von 500°C. Die Mengen der Schadgase H2S, COS und HCl können durch Zugabe von Kalk in die Pyrolysetrommel (2) minimiert werden. Das Pyrolysegas besteht außer dem verdampften Wasser aus CO und CO2 sowie höheren Kohlenwasserstoffen. Bei der Abkühlung in der Öl-Quenche (5) auf 150°C kondensieren etwa 40 kg Pyrolyseöl pro Tonne eingesetztem Müll aus. Die Staubbeladung liegt bei 20 bis 30 g/m3 i.N. In der Öl-Quenche (5) werden der pyrophore Staub und die Pyrolyseöle abgeschieden. Der größte Teil des Pyrolysegases verbrennt in der Brennkammer (6) zu einem Heißgas, das mit 1.050 °C bis 1.250°C in den Außenmantel der Pyrolysetrommel (2) eingeleitet wird, wo eine Abkühlung des Pyrolysegases auf eine Temperatur von 550°C bis 600°C erfolgt. Der restliche Teil des Pyrolysegases etwa 30 Vol% wird direkt in den einschmelzofen (1) eingeleitet.3 shows the material flow and the process data of the process according to the invention. The pyrolysis gas leaves the pyrolysis drum (2) at a temperature of 500 ° C. The quantities of the harmful gases H 2 S, COS and HCl can be minimized by adding lime to the pyrolysis drum (2). In addition to the evaporated water, the pyrolysis gas consists of CO and CO 2 as well as higher hydrocarbons. When cooling in the oil quench (5) to 150 ° C, about 40 kg of pyrolysis oil condense out per ton of waste used. The dust load is 20 to 30 g / m 3 iN In the oil quench (5) the pyrophoric dust and the pyrolysis oils are separated. Most of the pyrolysis gas burns in the combustion chamber (6) to a hot gas, which is introduced at 1,050 ° C to 1,250 ° C into the outer jacket of the pyrolysis drum (2), where the pyrolysis gas is cooled to a temperature of 550 ° C to 600 ° C takes place. The remaining part of the pyrolysis gas, about 30% by volume, is fed directly into the melting furnace (1).

    Pyrolysekoks besteht zu etwa 18 Gew% bis 20 Gew% aus Kohlenstoff. Der Rest sind Asche und Nichteisen- sowie Eisenbestandteile. In der Pyrolysetrommel (2) erreicht der Pyrolysekoks eine Temperatur von 500°C. Im nachgeschalteten Naßentschlacker (7) wird der Pyrolysekoks auf etwa 60°C bis 70°C abgekühlt. Der ausgetragene Pyrolysekoks wird danach einer NE- und Fe-Abscheidung unterzogen, wobei Wertstoffe gewonnen werden. Der Pyrolysekoks kann mit einer Stückgröße von < 50 mm in den Einschmelzofen (1) eingeführt werden. Der pyrolysekoks kann vorher aufgemahlen werden, was gewöhnlich nicht erforderlich ist. Die Aschebestandteile werden bei einer Temperatur von etwa 1.350°C im Einschmelzofen (1) eingeschmolzen. Die Schwermetalle sind in einer stabilen Aluminiumsilikatmatrix eingebunden. Die flüssige Schlacke granuliert im Wasserbad des Naßentschlackers (22) zu einem glasigen laugungsresistenten Granulat. Das Abgas verläßt die Primärkammer (17) des Einschmelzofens (1) mit einer Temperatur von etwa 1.350°C. In der Sekundärkammer (21) des Einschmelzofens (1) wird durch Zugabe von Luft ein Sauerstoffgehalt von 6 Vol% bis 7 Vol% eingestellt. Das Abgas kühlt durch Zugeben von Luft und durch Verdampfen von Wasser aus dem Naßentschlacker (22) auf eine Temperatur von 950°C bis 1.150°C ab. Die verdampften Schwermetalle und Alkalimetallverbindungen aus der Primärkammer (17) kondensieren aus und werden als Restszaub ausgetragen. Die Zusammensetzung des Abgases aus dem Kessel (3) entspricht in etwa der Zusammensetzung von Rauchgasen aus einer konventionellen Rostfeuerung.Pyrolysis coke consists of approximately 18% to 20% by weight Carbon. The rest are ashes and non-ferrous as well Iron components. In the pyrolysis drum (2) the Pyrolysis coke at a temperature of 500 ° C. In the downstream Wet purging (7) is the pyrolysis coke to about 60 ° C Cooled to 70 ° C. The discharged pyrolysis coke will then subjected to a non-ferrous and Fe separation, whereby valuable materials be won. The pyrolysis coke can be made with one piece size of <50 mm are introduced into the melting furnace (1). Of the pyrolysis coke can be ground beforehand, which is common is not required. The ash components are at one Temperature of about 1,350 ° C in the melting furnace (1) melted down. The heavy metals are in a stable Integrated aluminum silicate matrix. The liquid slag granulated in a water bath of the wet slag remover (22) into one glassy lye-resistant granules. The exhaust gas leaves the Primary chamber (17) of the melting furnace (1) with a temperature of about 1,350 ° C. In the secondary chamber (21) of the Melting furnace (1) is turned on by adding air Oxygen content adjusted from 6 vol% to 7 vol%. The exhaust gas cools by adding air and evaporating water from the wet slag remover (22) to a temperature of 950 ° C to From 1,150 ° C. The evaporated heavy metals and Alkali metal compounds from the primary chamber (17) condense and are discharged as residual spell. The The composition of the exhaust gas from the boiler (3) corresponds to about the composition of flue gases from one conventional grate firing.

    Aus der in Fig. 4 dargestellten Seitenansicht des Einschmelzofens (1) wird das Schmelzofenprinzip der Erfindung deutlich. Der Einschmelzofen (1) weist auf: verfahrbaren Ofendeckel (14), Doppelpendelklappe (15), mindestens einen Brenner (16), Primärkammer (17), Schlackenabzug (18), hydraulischen Ofenantrieb (19), Video-Ofenüberwachung (20), Sekundärkammer (21) und Naßentschlacker (22).From the side view of the Melting furnace (1) becomes the melting furnace principle of the invention clear. The melting furnace (1) has: movable Oven cover (14), double pendulum flap (15), at least one Burner (16), primary chamber (17), slag discharge (18), hydraulic furnace drive (19), video furnace monitoring (20), Secondary chamber (21) and wet deslagger (22).

    Claims (14)

    1. A process for treating domestic waste, in which
      a) the material is pyrolysed,
      b) pyrolysis gas is subjected to dust removal, a portion of the pyrolysis gas from which dust has been removed is burned and the remaining portion is introduced into a melting furnace (1),
      c) hot gas from the combustion stage is used to heat the pyrolysis reactor (2), and
      d) exhaust gas from the heating of the pyrolysis reactor (2) and pyrolysis coke are introduced into the melting furnace (1).
    2. A process according to Claim 1, in which the material is pretreated before the pyrolysis.
    3. A process according to Claim 2, in which the material is crushed to a size of < 1,000 mm, is compressed and is charged into the pyrolysis reactor (2) via a shaft.
    4. A process according to Claim 2, in which the material is crushed to a size of < 300 mm and is charged into the pyrolysis reactor (2) by means of an press screw.
    5. A process according to Claims 2 to 4, in which the material is freed of metal-containing substances.
    6. A process according to Claims 1 to 5, in which an indirectly heated pyrolysis drum is used as pyrolysis reactor (2).
    7. A process according to Claims 1 to 6, in which the heat required for heating the pyrolysis reactor (2) is obtained by the exhaust gas from the combustion according to process step (b) and a portion of the exhaust gas from the melting furnace.
    8. A process according to Claims 1 to 7, in which the removal of dust from the pyrolysis gas is effected in an oil quench (5) above the dewpoint of the water.
    9. A process according to Claims 1 to 8, in which the pyrolysis coke is cooled, freed of metal-containing substances and is sieved, and the fraction having a size of > 50 mm is crushed and introduced into the melting furnace (1) with the fraction of < 50 mm.
    10. A process according to Claims 1 to 9, in which pyrolysis coke having a size of < 50 mm and at least one of the constituents such as dried sewage sludge, pyrolysis gas, residual substances from the oil quench, fuel oil, waste of high calorific value, such as plastics, pasty, liquid and gaseous combustible waste and also laden activated carbon and coke are introduced into the melting furnace (1).
    11. A process according to Claims 1 to 10, in which the burned exhaust gas from the melting furnace (1) is introduced into a boiler (3) and/or recuperator (4).
    12. A process according to Claims 1 to 11, in which the dust from the dust removal stage of the melting process is returned into the melting furnace (1).
    13. A process according to one of Claims 1 to 12, characterised in that tertiary air is introduced into the primary chamber (17) of the melting furnace (1) at the furnace roof and the outgoing, molten material leaves the primary chamber with the flue gas, flows through the secondary chamber (21) and is discharged as slag.
    14. A process according to one of Claims 1 to 13, characterised in that the temperature in the primary chamber (17) is 1,250 to 1,500°C.
    EP96908081A 1995-03-21 1996-03-20 Process for processing domestic waste Expired - Lifetime EP0815393B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE19509620 1995-03-21
    DE19509620 1995-03-21
    DE19522457 1995-06-21
    DE19522457A DE19522457C2 (en) 1995-03-21 1995-06-21 Process for treating household waste
    PCT/EP1996/001194 WO1996029542A1 (en) 1995-03-21 1996-03-20 Process and device for processing domestic waste

    Publications (2)

    Publication Number Publication Date
    EP0815393A1 EP0815393A1 (en) 1998-01-07
    EP0815393B1 true EP0815393B1 (en) 1999-01-07

    Family

    ID=26013444

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96908081A Expired - Lifetime EP0815393B1 (en) 1995-03-21 1996-03-20 Process for processing domestic waste

    Country Status (5)

    Country Link
    EP (1) EP0815393B1 (en)
    JP (1) JP2002515110A (en)
    AT (1) ATE175486T1 (en)
    ES (1) ES2126393T3 (en)
    WO (1) WO1996029542A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN105910124A (en) * 2016-06-16 2016-08-31 光大环保技术研究院(深圳)有限公司 Fly ash low-temperature melting device and method

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH11193913A (en) * 1997-12-27 1999-07-21 Ishikawajima Harima Heavy Ind Co Ltd Thermal decomposition gasification melting system for waste
    ES2170687B1 (en) * 2000-07-27 2003-12-16 Quimica Plus S L DECOMPOSITION PROCEDURE BY VEHICLE TIRE PIROLISIS.
    CN104976622B (en) * 2015-08-05 2018-07-06 中国东方电气集团有限公司 A kind of rotary kiln gasification, the house refuse classification gasification system of plasma melting
    CN106800942A (en) * 2017-03-31 2017-06-06 山西易通环能科技集团有限公司 A kind of worn-out agricultural film process in plastics technique
    CN110701616A (en) * 2019-11-05 2020-01-17 西安热工研究院有限公司 System and method for generating power by drying, pyrolyzing and incinerating municipal domestic waste
    CN115213195B (en) * 2022-07-22 2024-09-06 陕西南洋智汇能源环保科技有限公司 Organic solid waste cooperative treatment and utilization system and method

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5122748B2 (en) * 1971-08-13 1976-07-12
    DE3273004D1 (en) * 1981-05-27 1986-10-09 Ind Teknik Bengt Fridh Ab A method for treating waste material which includes metal and/or metal oxide, organic material and possibly also water; and apparatus for carrying out the method
    DE4217301A1 (en) * 1992-02-17 1993-12-02 Siemens Ag Method and device for heating a smoldering drum
    DE4308551A1 (en) * 1993-03-17 1994-01-05 Siemens Ag Thermal waste disposal process - involves gasification of carbonisation fines to reduce process costs

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN105910124A (en) * 2016-06-16 2016-08-31 光大环保技术研究院(深圳)有限公司 Fly ash low-temperature melting device and method
    CN105910124B (en) * 2016-06-16 2018-03-20 光大环保技术研究院(深圳)有限公司 A kind of flying dust watery fusion device and method

    Also Published As

    Publication number Publication date
    ATE175486T1 (en) 1999-01-15
    ES2126393T3 (en) 1999-03-16
    JP2002515110A (en) 2002-05-21
    WO1996029542A1 (en) 1996-09-26
    EP0815393A1 (en) 1998-01-07

    Similar Documents

    Publication Publication Date Title
    DE4446803C2 (en) Process and device for thermal and material recycling of residual and waste materials
    DE69512152T2 (en) Process and device for thermolysis of waste
    EP0394391B1 (en) Process and device for processing slag and other combustion residues from waste incineration plants
    DE19608093C2 (en) Process for recycling residual and waste materials as well as low calorific fuels in a cement kiln
    DE19522457C2 (en) Process for treating household waste
    EP0545241A1 (en) Process for thermic valorisation of waste materials
    DE4238934C2 (en) Process for the gasification of raw materials and waste materials containing organic or organic materials
    EP0908673B1 (en) Method for processing residues and/or ash from thermal treatment of refuse
    DE3635068C2 (en)
    EP0069752B1 (en) Thermal exploitation of refuse and plant for implementing such method
    EP0815393B1 (en) Process for processing domestic waste
    WO1987001692A2 (en) Use of waste material with a calorific value for cement production
    DE4318610C2 (en) Process for the extraction of energy and valuable materials from waste
    EP0654450A2 (en) Method and apparatus for melting solid burning residues
    EP0823266A1 (en) Process and device for the disposal of carbonised coke and/or pyrolysis dust
    DE4435166C1 (en) Assembly to vitrify contaminated waste
    DE4443088C1 (en) Process for the disposal of residues from waste incineration plants as well as activated coke and / or activated carbon
    JPH09235559A (en) Utilization of residue and waste in terms of material and energy in upright furnace
    EP0067901B1 (en) Process for manufacturing a solid, storable, non smelling fuel from refuse
    DE19730385C5 (en) Process for the production of fuel and synthesis gas from fuels and combustible waste and an apparatus for carrying out the process
    EP0940166B1 (en) Processing of residual material and fumes
    EP0380566A1 (en) Process for disposal of waste by combustion with oxygen.
    DE3327203C2 (en) Solid gasifier with gas circulation and removal of liquid slag for waste
    WO1983000046A1 (en) Device for manufacturing a storable, odourless solid fuel from waste material
    DE4443090C1 (en) Treatment device for asbestos or asbestos contg. waste

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19971021

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19980610

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL

    REF Corresponds to:

    Ref document number: 175486

    Country of ref document: AT

    Date of ref document: 19990115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Free format text: METALLGESELLSCHAFT AKTIENGESELLSCHAFT,REUTERWEG 14,60323 FRANKFURT AM MAIN (DE) TRANSFER- METALLGESELLSCHAFT AKTIENGESELLSCHAFT,BOCKENHEIMER LANDSTRASSE 73-77,60325 FRANKFURT AM MAIN (DE)

    Ref country code: CH

    Ref legal event code: EP

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 19990216

    Year of fee payment: 4

    REF Corresponds to:

    Ref document number: 59601109

    Country of ref document: DE

    Date of ref document: 19990218

    ET Fr: translation filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 19990224

    Year of fee payment: 4

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 19990225

    Year of fee payment: 4

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2126393

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 19990319

    Year of fee payment: 4

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 19990322

    Year of fee payment: 4

    ITF It: translation for a ep patent filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990407

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

    Effective date: 20000202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000320

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331

    BERE Be: lapsed

    Owner name: METALLGESELLSCHAFT A.G.

    Effective date: 20000331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001001

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20000320

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001130

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20001001

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20011010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050320