EP0814243A1 - Cooling system for the cylinder jacket of an internal combustion engine - Google Patents
Cooling system for the cylinder jacket of an internal combustion engine Download PDFInfo
- Publication number
- EP0814243A1 EP0814243A1 EP96810414A EP96810414A EP0814243A1 EP 0814243 A1 EP0814243 A1 EP 0814243A1 EP 96810414 A EP96810414 A EP 96810414A EP 96810414 A EP96810414 A EP 96810414A EP 0814243 A1 EP0814243 A1 EP 0814243A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- cylinder
- cylinder liner
- cooling
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/164—Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/02—Cylinders; Cylinder heads having cooling means
- F02F1/10—Cylinders; Cylinder heads having cooling means for liquid cooling
- F02F1/14—Cylinders with means for directing, guiding or distributing liquid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P2003/006—Liquid cooling the liquid being oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
- F01P2003/021—Cooling cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
- F01P2003/024—Cooling cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
- F01P2003/028—Cooling cylinders and cylinder heads in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/143—Controlling of coolant flow the coolant being liquid using restrictions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/31—Cylinder temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/32—Engine outcoming fluid temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/165—Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases or frames
- F02F2007/0097—Casings, e.g. crankcases or frames for large diesel engines
Definitions
- the invention relates to a cooling system for internal combustion engines according to the preamble of independent claim 1.
- Large diesel engines are usually arranged with standing cylinders.
- Known cooling systems for large diesel engines in particular are designed so that the coolant flows from bottom to top.
- the incoming, relatively cool coolant cools the cylinder wall first. It flows upwards in the direction of the upper end of the cylinder liner and from there to the cylinder cover.
- the coolant essentially flows and apart from any existing routes where the coolant flows briefly downwards essentially from the bottom upwards.
- the cooling of the walls of the cylinder liner 1, in particular, should not take place in a completely uncontrolled manner.
- sulfuric acid H 2 SO 3
- the sulphurous acid is liquefied. If the cylinder liners are cooled too much, the sulphurous acid condenses in the lower area of the cylinder liner. If the relatively cool coolant is now led down to the cylinder jacket, there is an increased tendency for the wall temperature of the cylinder liner to be too low.
- the coolant flowing upward heats up and now, warmed up further, reaches the upper area of the cylinder liner and further up to the cylinder cover.
- There the wall temperatures of the cylinder liner are significantly higher and there is practically no risk that corrosive combustion products could liquefy there.
- Especially in the upper areas of the cylinder liner there is a particularly intensive cooling, i.e. high cooling capacity required.
- only limited cooling is desired in the middle and lower area of the cylinder liner and it should be avoided that the cooling e.g. is so strong and occurs in temperature ranges that, for example, corrosive combustion products condense on the cylinder surface.
- the object of the invention is to provide an improved cooling system for the cylinder liner of large diesel engines, for example.
- the coolant for the cylinder liner is supplied at a temperature in a predetermined temperature range, the tempering in the predetermined temperature range being at least partially in the upper range the cylinder liner takes place.
- Further advantageous embodiments of the cooling system are characterized by the features of the dependent claims.
- the cool coolant flows through the cylinder cover and / or the upper area of the cylinder liner first and takes heat from it, that is, it heats up.
- the parts of the cylinder cover and the upper area of the cylinder liner that are to be cooled particularly strongly are cooled more intensively.
- the preheated coolant is then fed to the middle and lower area of the cylinder liner, where cooling rather than heating is desired, for example to avoid the condensation of highly corrosive combustion products.
- the heat exchange can be influenced by the preheated coolant alone, but also by changing the flow conditions, or the flow rate and flow rate.
- the circuit of the coolant for the cylinder liner 1 of a two-stroke large diesel engine is described below with reference to FIG. 1.
- the circulation pump 2 conveys the coolant with e.g. constant amount through the inlet line 3 and the distribution ring 4 to the cylinder cover 5 and in this through coolant channels (not shown here) in the cylinder cover 5.
- the coolant inlet is located on the lower edge of the cylinder cover 5, on the distribution ring 4.
- the coolant outlet 6 takes place at the uppermost point of the Cylinder cover 5 built-in valve cage 7.
- the coolant heated in the cylinder cover 5 and in the valve cage 7 reaches the coolant channels 11 in the upper region of the cylinder liner 1 via the lines 8 and 9 and the distribution ring 10 and continues to heat up.
- the coolant flows through the cooling bores or coolant channels 11 of the liner 1 and reaches the gap space 12 located further down.
- the annular gap 12 between the liner and the support ring 17 surrounding it is dimensioned, for example, such that a certain flow rate of the coolant is not undershot with the smallest possible flow rate.
- gap sizes in the range of, for example, 3 millimeters between bushing 1 and support ring 17 are required for the new cooling system.
- the coolant leaves the gap 12 at the lower end of the support ring 17 in the example shown (FIG. 1) via radial outlet bores and is fed to the return line 19 via a collecting ring 18.
- a regulated throttle valve 13 can be provided between the inlet line 9 and the outlet line 19 of the coolant of the cylinder liner 1.
- the throttle valve 13 is controlled or regulated by the reference wall temperature 25 of the cylinder liner 1.
- the throttle valve 13 When the throttle valve 13 is closed, the entire amount of coolant flows through the cooling bores 11 and the gap space 12 of the cylinder liner 1. The heat exchange between the upper part of the cylinder liner 1 and the gap space 11 lying further down is therefore the most intensive.
- the amount of coolant is advantageously regulated such that the coolant temperature at the outlet 6 of the valve cage 7 remains constant.
- the difference in temperature between the inlet line 3 and the outlet line 8 depends on the amount of heat which must be removed as a whole from the cylinder cover 5, the valve cage 7 and the cylinder liner 1.
- the inlet temperature of the coolant at the cylinder cover 5 is the lowest at the nominal power of the engine and increases with decreasing engine power.
- the coolant temperature at the inlet of the cylinder liner 1, the line 9 and in the distributor ring 10 is equal to the temperature of the coolant at the outlet 6 of the valve cage 7 (line 8), so it is largely constant in this area.
- the heat exchange within the cylinder liner 1 is determined by the bore geometry in the upper collar and by the flow rate of the coolant in the gap 12.
- the wall temperature 25 of the cylinder liner 1, and thus the reference temperature for the control of the throttle valve 13 or the coolant quantity, depends on the design , ie the dimensioning and arrangement of the cooling bores 11 and the gap space 12 for the coolant.
- Controls for the cylinder liner wall temperatures 25 as a whole can be installed for all cylinders of the engine, for cylinder groups or for each cylinder individually.
- the regulation of the wall temperatures 25 of all cylinders of the entire engine requires the installation of only a single throttle valve 13 (FIGS. 1 and 2).
- the individual wall temperature control of the individual cylinders generally requires a throttle valve 13 for each cylinder. In the case of wall temperature control for individual groups of cylinders, it is advantageous to provide a throttle valve 13 for each cylinder group.
- throttle valves 13 for regulating the amount of coolant through the cylinder liners 1 and to determine the coolant flow through the cylinder liner 1 solely by dimensioning the orifice 14. This is possible if the differences in the wall temperatures of the cylinder liner 1 over the entire, practically usable power range are so small that the control is unnecessary. It would also be conceivable for the amount of coolant and thus the cooling capacity by regulating the delivery rate of the coolant pump 2 to adapt to the respective requirements.
- the design of the cylinder cover 5 undergoes practically no change due to the new cooling system of known large diesel engines. Only the distribution ring 4 at the entry of the cover 5 has to be adjusted. This also applies to the distribution ring 10 at the upper end of the cylinder liner 1.
- the constructive design i.e. the dimensioning of the gap 12 is based on the coordination of the inside diameter of the support ring 17 with the wall thickness of the cylinder liner 1.
- the outside diameter of the support ring 17 does not necessarily have to be changed compared to the existing dimensions.
- the coolant could be guided below the support ring 17 in a downstream extended gap space 12a as far as the purge air slots 20, as shown in FIG. 2.
- a large diesel engine is usually referred to as long-stroke if the ratio of the stroke of the piston to the bore of the cylinder is two or greater ( Stroke / bore ⁇ 2 ).
- cooling bores and gap spaces can be dimensioned such that any air, steam and gas bubbles that are formed are entrained by the flowing coolant.
- a cyclone separator can be provided in the coolant circuit to effectively vent and degas the coolant. However, gases can also be led out of the cooling system via the automatically acting vent 21. Coolant lost from the cooling system can be refilled from the coolant tank 22 with the feed pump 23.
- the cooling system described is equally suitable for operation with a high tank or with a closed pressure accumulator 24. In a high tank open to the atmosphere, the coolant temperature is limited by the boiling point of the coolant, in contrast to a closed pressure accumulator where the boiling temperature of the coolant is higher under pressure .
- the coolant temperature at the outlet 6 from the valve cage 7 is between 80 ° C and 90 ° C.
- a temperature difference between the outlet temperature and the inlet temperature of the cylinder coolant of 10 ° C to 30 ° C is common.
- the coolant must have a temperature of about 70 ° C when it enters the cylinder jacket and thus reaches the middle part of the cylinder liner 1 relatively coolly. This can lead to the wall temperature of the cylinder liner 1 being so low that combustion products condense on the wall of the cylinder liner 1 and the corrosive conditions described above, which are harmful to the engine, occur.
- the coolant temperature at the inlet into the cylinder liner 1 is higher because the coolant is first passed through the cylinder cover 5 and the valve basket 7 and is preheated, ie tempered, there.
- the temperature of the coolant when it exits the valve cage 7 can therefore be, for example, 85 ° C.
- the coolant heats up further, for example about 3 ° C to 7 ° C.
- the middle section of the cylinder liner 1 is accordingly cooled with coolant which has a temperature of, for example, from 88 ° C. to 92 ° C. This temperature is about 20 ° C higher than that in known cooling systems.
- the coolant in particular in the examples described, is water, possibly with anti-corrosion additives.
- oil e.g. the engine lubricating oil itself or a separate cooling oil is used in a circuit separate from the lubricating oil. Due to the different specific heat of different coolants, adjustments in the dimensioning of the coolant paths and / or the flow rate of the coolant may be required.
- the temperature of the inner wall of the cylinder liner it is also favorable for the temperature of the inner wall of the cylinder liner to be relatively high. Temperatures up to around 200 ° C and higher are conceivable.
- a cooling system would also be conceivable in which certain areas, e.g. the cylinder cover 5 is cooled with a first coolant, e.g. water, and another area, e.g. the cylinder liner 1, 11, 12 is cooled with a second coolant, for example oil.
- a first coolant e.g. water
- a second coolant for example oil
- a cooling or a cooling system in the sense of the present document can certainly include areas in which parts of the engine, in particular the cylinder liners 1 are heated by the coolant, which, of course, considered for the entire engine, is carried away with the coolant heat.
- top in the cylinder space means that area which is at the top reversal point of the piston, ie which is remote from the crankshaft.
- lower in the cylinder space means the area at the lower reversal point of the piston 1 ′, that is to say toward the crankshaft.
- the terms “below” and “above” in the cylinder space are therefore to be understood independently of the position of a cylinder.
- cylinder liner is used in the present specification, this generally means the cylinder jacket, regardless of whether the cylinder really has a cylinder liner or a different cylinder design.
- the coolant When cooling for cylinder liners 1, in particular those of large diesel engines, the coolant is initially passed through the cylinder cover 5 and preheated there. The preheated coolant is then fed into the cooling channels 11 and the gap 12 of the cylinder liner 1 at a predetermined temperature. The preheating in the predetermined temperature range is carried out with heat which is generated at least partially in the area of the cylinder liner 1 (cooling channels 11). With the supply of temperature-controlled coolant, it can be avoided that areas of the inner wall of the cylinder liner 1 are cooled so much that highly corrosive combustion products, such as sulfurous acid, condense on the inner wall of the cylinder liner 1.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Kühlsystem für Brennkraftmaschinen nach dem Oberbegriff des unabhängigen Anspruchs 1.The invention relates to a cooling system for internal combustion engines according to the preamble of
Grossdieselmotoren beispielsweise sind in der Regel mit stehenden Zylindern angeordnet. Bekannte Kühlsysteme für insbesondere Grossdieselmotoren sind so ausgelegt, dass das Kühlmittel, von unten nach oben fliesst. Das eintretende, relativ kühle Kühlmittel kühlt zuerst die Zylinderwand. Es fliesst nach oben in Richtung des oberen Endes der Zylinderlaufbuchse und von dort zum Zylinderdeckel. Das Kühlmittel fliesst im wesentlichen und abgesehen von eventuell vorhandenen Strecken wo das Kühlmittel kurz nach unten fliesst also im wesentlichen von unten nach oben.Large diesel engines, for example, are usually arranged with standing cylinders. Known cooling systems for large diesel engines in particular are designed so that the coolant flows from bottom to top. The incoming, relatively cool coolant cools the cylinder wall first. It flows upwards in the direction of the upper end of the cylinder liner and from there to the cylinder cover. The coolant essentially flows and apart from any existing routes where the coolant flows briefly downwards essentially from the bottom upwards.
Gründe dafür sind u.a. Überlegungen, dass das sich im Kühlsystem erwarmende Kühlmittel erwärmt und das erwärmte Kühlmittel selbständig nach oben strömt. Die natürliche Konvektion, die sich aufgrund der Temperatur- und damit auch der Dichteunterschiede einstellt, unterstützt die Zirkulation des Kühlmittels.Reasons for this include considerations that the coolant warming up in the cooling system heats up and the heated coolant flows upwards independently. The natural convection, which occurs due to the temperature and thus also the density differences, supports the circulation of the coolant.
Die Kühlung insbesondere der Wände der Zylinderlaufbuchse 1 soll aber nicht völlig unkontrolliert erfolgen. Bei der Verbrennung von beispielsweise Treibstoffen, die stark schwefelhaltig sind, bildet sich beispielsweise neben anderen korrosiven Verbrennungsprodukten schweflige Säure (H2SO3), die einen Taupunkt hat, der im Bereich von etwa 130° bis 140° C liegt. Die schweflige Säure verflüssigt sich also. Bei zu starker Kühlung der Zylinderlaufbuchsen kondensiert die schweflige Säure im unteren Bereich der Zylinderlaufbuchse. Wenn das relativ kühle Kühlmittel nun unten zum Zylindermantel geführt wird, besteht eine erhöhte Tendenz für eine zu tiefe Wand-Temperatur der Zylinderlaufbuchse.The cooling of the walls of the
Das nach oben fliessende Kühlmittel erwärmt sich und gelangt nun, weiter erwärmt, zum oberen Bereich der Zylinderlaufbuchse und noch weiter oben zum Zylinderdeckel. Dort sind die Wand-Temperaturen der Zylinderlaufbuchse bedeutend höher und die Gefahr, dass korrosive Verbrennungsprodukte sich dort verflüssigen könnten, besteht praktisch nicht. Es ist also gerade im oberen Bereichen der Zylinderlaufbuchse eine besonders intensive Kühlung, d.h. hohe Kühlleistung erforderlich. Umgekehrt ist im mittleren und unteren Bereich der Zylinderlaufbuchse nur eine beschränkte Kühlung erwünscht und es ist zu vermeiden, dass die Abkühlung z.B. so stark ist und bis in Temperaturbereiche erfolgt, dass beispielsweise korrosive Verbrennungsprodukte auf der Zylinderlauffläche kondensieren.The coolant flowing upward heats up and now, warmed up further, reaches the upper area of the cylinder liner and further up to the cylinder cover. There the wall temperatures of the cylinder liner are significantly higher and there is practically no risk that corrosive combustion products could liquefy there. Especially in the upper areas of the cylinder liner there is a particularly intensive cooling, i.e. high cooling capacity required. Conversely, only limited cooling is desired in the middle and lower area of the cylinder liner and it should be avoided that the cooling e.g. is so strong and occurs in temperature ranges that, for example, corrosive combustion products condense on the cylinder surface.
Aufgabe der Erfindung ist es, ein verbessertes Kühlsystem für die Zylinderlaufbuchse von z.B. Grossdieselmotoren zu schaffen. Erfindungsgemäss wird bei einem derartigen Kühlsystem das Kühlmittel für die Zylinderlaufbuchse mit einer Temperatur in einem vorgegebenen Temperaturbereich zugeführt, wobei das Temperieren in den vorgegebenen Temperaturbereich wenigstens teilweise im oberen Bereich der Zylinderlaufbuchse erfolgt. Weitere vorteilhafte Ausbildungsformen des Kühlsystems zeichnen sich durch die Merkmale der abhängigen Ansprüche aus.The object of the invention is to provide an improved cooling system for the cylinder liner of large diesel engines, for example. According to the invention, in such a cooling system, the coolant for the cylinder liner is supplied at a temperature in a predetermined temperature range, the tempering in the predetermined temperature range being at least partially in the upper range the cylinder liner takes place. Further advantageous embodiments of the cooling system are characterized by the features of the dependent claims.
Bei diesem neuen Kühlsystem durchströmt das kühle Kühlmittel, zuerst den Zylinderdeckel und/oder den oberen Bereich der Zylinderlaufbuchse und entnimmt diesen Wärme, erwärmt sich also. Schon aufgrund der im Vergleich zu bekannten Kühlsystemen grösseren Temperaturdifferenz zwischen kühlem Kühlmittel und zu kühlenden Bereichen werden damit die besonders stark zu kühlenden Teile Zylinderdeckel und oberer Bereich der Zylinderlaufbuchse intensiver gekühlt. Das vorgewärmte Kühlmittel wird dann dem mittleren und unteren Bereich der Zylinderlaufbuchse zugeführt, wo nicht eine Kühlung sondern eher eine Beheizung erwünscht ist, um beispielsweise das Kondensieren von stark korrosiven Verbrennungsprodukten zu vermeiden. Der Wärmeaustausch kann allein schon mit dem vorgewärmten Kühlmittel aber auch mit dem Verändern der Srömungsverhältnisse, bzw. der Strömungsgeschwindigkeit und Durchflussmenge beeinflusst werden.In this new cooling system, the cool coolant flows through the cylinder cover and / or the upper area of the cylinder liner first and takes heat from it, that is, it heats up. Already due to the greater temperature difference between the coolant and the areas to be cooled in comparison to known cooling systems, the parts of the cylinder cover and the upper area of the cylinder liner that are to be cooled particularly strongly are cooled more intensively. The preheated coolant is then fed to the middle and lower area of the cylinder liner, where cooling rather than heating is desired, for example to avoid the condensation of highly corrosive combustion products. The heat exchange can be influenced by the preheated coolant alone, but also by changing the flow conditions, or the flow rate and flow rate.
Die Erfindung und insbesondere die Funktionsweise des Kühlsystems, wird nachstehend anhand der schematischen Zeichnungen, welche Ausführungbeispiele der erfindungsgemässen Kühlung von Zylinderlaufbuchsen zeigen, näher erläutert.The invention and in particular the mode of operation of the cooling system are explained in more detail below with reference to the schematic drawings which show exemplary embodiments of the cooling of cylinder liners according to the invention.
Es zeigen:
- Fig. 1
- ein Kühlsystem, für eine Zylinderlaufbuchse, die nur im oberen Teil ihrer Länge mit dem Kühlmittel umflossen ist;
- Fig. 2
- das Kühlsystem von Fig. 1, für eine Zylinderlaufbuchse, die über einen wesentlichen Teil ihrer Länge, bis hin zu den Spülschlitzen der Zylinderspülung mit dem Kühlmittel umflossen ist.
- Fig. 1
- a cooling system, for a cylinder liner, which is only surrounded by the coolant in the upper part of its length;
- Fig. 2
- the cooling system of Fig. 1, for a cylinder liner, over a substantial part of its length, up to the flushing slots the coolant flows around the cylinder purge.
Anhand von Fig. 1 wird nachstehend der Kreislauf des Kühlmittels für die Zylinderlaufbuchse 1 eines Zweitakt-Grossdieselmotors beschrieben. Die Umwälzpumpe 2 fördert das Kühlmittel mit z.B. konstanter Menge durch die Eintrittsleitung 3 und den Verteilring 4 zum Zylinderdeckel 5 und in diesem durch hier nicht gezeigte Kühlmittelkanäle im Zylinderdeckel 5. Der Kühlmitteleintritt befindet sich an der Unterkante des Zylinderdeckels 5, am Verteilring 4. Der Kühlmittelaustritt 6 erfolgt an der obersten Stelle des im Zylinderdeckel 5 eingebauten Ventilkorbes 7.The circuit of the coolant for the
Das im Zylinderdeckel 5 und im Ventilkorb 7 erwärmte Kühlmittel gelangt über die Leitungen 8 und 9 sowie den Verteilring 10 in die Kühlmittelkanäle 11 im oberen Bereich der Zylinderlaufbuchse 1 und erwärmt sich weiter. Das Kühlmittel durchströmt die Kühlbohrungen, bzw. Kühlmittelkanäle 11 der Laufbuchse 1 und gelangt zum weiter unten liegenden Spaltraum 12.The coolant heated in the
Der ringförmige Spaltraum 12 zwischen der Laufbuchse und dem diese umgebenden Stützring 17 ist beispielsweise so dimensioniert, dass eine bestimmte Fliessgeschwindigkeit des Kühlmittels bei der kleinstmöglichen Durchflussmenge nicht unterschritten wird. Mit den bisher spezifizierten Durchflussmengen bei bekannten Zweitakt-Grossdieselmotoren sind für das neue Kühlsystem Spaltgrössen im Bereich von beispielsweise 3 Millimeter zwischen Laufbuchse 1 und Stützring 17 erforderlich.The
Das Kühlmittel verlässt den Spaltraum 12 am unteren Ende des Stützringes 17 im gezeigten Beispiel (Fig. 1) über radiale Austrittsbohrungen und wird über einen Sammelring 18 der Rücklaufleitung 19 zugeführt.The coolant leaves the
Zwischen der Eintrittsleitung 9 und der Austrittsleitung 19 des Kühlmittels der Zylinderlaufbuchse 1 kann ein geregeltes Drosselventil 13 vorgesehen sein. Das Drosselventil 13 wird durch die Referenzwandtemperatur 25 der Zylinderlaufbuchse 1 gesteuert bzw. geregelt. Bei geschlossenem Drosselventil 13 fliesst die gesamte Kühlmittelmenge durch die Kühlbohrungen 11 und den Spaltraum 12 der Zylinderlaufbuchse 1. Der Wärmeaustausch zwischen dem oberen Teil der Zylinderlaufbuchse 1 und dem weiter unten liegenden Spaltraum 11 ist damit am intensivsten.A regulated
Bei offenem Drosselventil 13 werden die Kühlbohrungen 11 der Zylinderlaufbuchse 1 und der untenliegende Spaltraum 12 nur noch von einem Teil des Kühlmittels durchflossen. Der Wärmeaustausch innerhalb der Laufbuchse 1 findet nur noch abgeschwächt statt. Die Mindestmenge des Kühlmittels durch die Zylinderlaufbuchse 1 wird durch die Bemessung der Blende 14 nach dem Drosselventil 13, bei vollständig geöffnetem Drosselventil 13 bestimmt. Ein Teil des Kühlmittels gelangt über das gesteuerte Drosselventil 13, die Blende 14 und das Temperatur-Regelventil 15 in den Kühler 16, mischt sich mit der Bypassmenge und fliesst zur Umwälzpumpe 2 zurück.When the
Die Kühlmittelmenge wird mit Vorteil so geregelt, dass die Kühlmitteltemperatur am Austritt 6 des Ventilkorbes 7 konstant gehalten bleibt. Die Differenztemperatur zwischen der Eintrittsleitung 3 und der Austrittsleitung 8 richtet sich nach der Wärmemenge, welche in der Gesamtheit aus dem Zylinderdeckel 5, dem Ventilkorb 7 und der Zylinderlaufbuchse 1 abgeführt werden muss. Die Eintrittstemperatur des Kühlmittels am Zylinderdeckel 5 ist bei Nennleistung des Motors am niedrigsten und steigt mit abnehmender Motorleistung an.The amount of coolant is advantageously regulated such that the coolant temperature at the
Die Kühlmitteltemperatur am Eintritt der Zylinderlaufbuchse 1, der Leitung 9 und im Verteilring 10 ist gleich der Temperatur des Kühlmittels am Austritt 6 des Ventilkorbes 7 (Leitung 8), ist also in diesem Bereich weitgehend konstant.The coolant temperature at the inlet of the
Der Wärmeaustausch innerhalb der Zylinderlaufbuchse 1 wird bestimmt durch die Bohrungsgeometrie im oberen Kragen und durch die Fliessgeschwindigkeit des Kühlmittels im Spaltraum 12. Die Wandtemperatur 25 der Zylinderlaufbuchse 1, und damit die Referenztemperatur für die Steuerung des Drosselventils 13 bzw. der Kühlmittelmenge ist abhängig von der Auslegung, d.h. der Dimensionierung und der Anordnung der Kühlbohrungen 11 und des Spaltraums 12 für das Kühlmittel.The heat exchange within the
Es können Regelungen für die Zylinderlaufbuchsen-Wandtemperaturen 25 gesamthaft für alle Zylinder des Motors, für Zylindergruppen oder für jeden Zylinder einzeln installiert werden. Die Regelung der Wandtemperaturen 25 sämtlicher Zylinder des ganzen Motors verlangt die Installation nur eines einzigen Drosselventils 13 (Fig. 1 und 2). Die individuelle Wandtemperatur-Regelung der einzelnen Zylinder verlangt in der Regel ein Drosselventil 13 für jeden Zylinder. Bei der Wandtemperatur-Regelung für einzelne Gruppen von Zylindern, ist mit Vorteil je ein Drosselventil 13 für jede Zylindergruppe vorzusehen.Controls for the cylinder
Es ist allerdings auch denkbar, auf Drosselventile 13 zur Regelung der Kühlmittelmenge durch die Zylinderlaufbuchsen 1 ganz zu verzichten und den Kühlmittelfluss durch die Zylinderlaufbuchse 1 allein durch Dimensionierung der Blende 14 zu bestimmen. Dies ist dann möglich, wenn die Unterschiede in den Wandtemperaturen der Zylinderlaufbuchse 1 über den ganzen, praktisch nutzbaren Leistungsbereich so gering sind, dass sich die Regelung erübrigt. Ebenso wäre es denkbar, die Kühlmittelmenge und damit die Kühlleistung durch Regelung der Fördermenge der Kühlmittelpumpe 2 den jeweiligen Erfordernissen anzupassen.However, it is also conceivable to dispense entirely with
Die konstruktive Ausgestaltung des Zylinderdeckels 5 erfährt durch das neue Kühlsystem bekannter Grossdieselmotoren praktisch keine Änderung. Lediglich der Verteilring 4 am Eintritt des Deckels 5 muss angepasst werden. Dies gilt auch für den Verteilring 10 am oberen Ende der Zylinderlaufbuchse 1.The design of the
Die konstruktive Ausgestaltung d.h. die Dimensionierung des Spaltraumes 12 basiert auf der Abstimmung des Innendurchmessers des Stützringes 17 auf die Wandstärke der Zylindelaufbuchse 1. Der Aussendurchmesser des Stützringes 17 muss gegenüber den bisherigen, bestehenden Abmessungen nicht zwingend verändert werden.The constructive design i.e. the dimensioning of the
Bei sehr langhubigen Motoren könnte das Kühlmittel unterhalb des Stützringes 17 in einem nachgelagerten verlängerten Spaltraum 12a bis über die Spülluftschlitze 20 geführt werden wie dies in Fig. 2 gezeigt ist.In the case of very long-stroke engines, the coolant could be guided below the
Als langhubig bezeichnet man in der Regel einen Grossdieselmotor, wenn das Verhältnis vom Hub des Kolbens zur Bohrung des Zylinders zwei oder grösser ist (
Die Empfindlichkeit des Kühlsystems gegen eingeschlossene bzw. gefangene Gas-, Luft- und insbesondere Dampfblasen ist gering, wenn dafür gesorgt ist, dass in allen vom Kühlmittel durchströmten Räumen eine Mindestgeschwindigkeit des Kühlmittels eingehalten wird. Weiter können Kühlbohrungen und Spalträume so dimensioniert sein, dass eventuell sich bildende Luft-, Dampf- und Gasblasen vom strömenden Kühlmittel mitgerissen werden.The sensitivity of the cooling system to trapped or trapped gas, air and especially vapor bubbles is low if it is ensured that a minimum speed of the coolant is maintained in all rooms through which the coolant flows. Furthermore, cooling bores and gap spaces can be dimensioned such that any air, steam and gas bubbles that are formed are entrained by the flowing coolant.
Als wirksame Entlüftung und Entgasung des Kühlmittels kann im Kühlmittelkreislauf ein Zyklonabscheider vorgesehen sein. Gase können aber auch über die automatisch wirkende Entlüftung 21 aus dem Kühlsystem geführt werden. Vom Kühlsystem verlorenes Kühlmittel kann mit der Speisepumpe 23 aus dem Kühlmitteltank 22 nachgefüllt werden. Das beschriebene Kühlsystem eignet sich gleich gut für den Betrieb mit Hochtank oder mit geschlossenem Druckspeicher 24. In einem zur Atmosphäre offenen Hochtank ist die Kühlmitteltemperatur begrenzt durch die Siedetemperatur des Kühlmittels, dies im Gegensatz zu einem geschlossenen Druckspeicher wo die Siedetemperatur des Kühlmittels unter Druck höher liegt.A cyclone separator can be provided in the coolant circuit to effectively vent and degas the coolant. However, gases can also be led out of the cooling system via the automatically acting
Bei bekannten Kühlsystemen liegt die Kühlmitteltemperatur am Austritt 6 aus dem Ventilkorb 7 zwischen 80°C und 90°C. Für bekannte Gross-Dieselmotoren ist beispielsweise eine Temperaturdifferenz zwischen Austrittstemperatur und Eintrittstemperatur des Zylinderkühlmittels von 10°C bis 30°C üblich. Das Kühlmittel muss in diesem Beispiel also beim Eintritt in den Zylindermantel eine Temperatur von etwa 70°C aufweisen und gelangt so relativ kühl in die mittlere Partie der Zylinderlaufbuchse 1. Dies kann dazu führen, dass die Wandtemperatur der Zylinderlaufbuchse 1 so tief ist, dass Verbrennungsprodukte an der Wand der Zylinderlaufbuchse 1 kondensieren und sich die weiter oben beschriebenen, für den Motor schädlichen, korrosiven Bedingungen einstellen.In known cooling systems, the coolant temperature at the
Im vorgeschlagenen Kühlsystem ist die Kühlmitteltemperatur am Eintritt in die Zylinderlaufbuchse 1 höher, weil das Kühlmittel zuerst durch den Zylinderdeckel 5 und den Ventilkorb 7 geführt wird und dort quasi vorgewärmt d.h. temperiert wird. Die Temperatur des Kühlmittels beim Austritt aus dem Ventilkorb 7 kann also beispielsweise 85°C sein. Beim Durchfliessen der Kühlbohrungen 11 im oberen Zylinderlaufbuchsenkragen erwärmt sich das Kühlmittel weiter, beispielsweise etwa 3°C bis 7°C. Die mittlere Partie der Zylinderlaufbuchse 1 wird demnach mit Kühlmittel, das eine Temperatur von z.B. von 88°C bis 92°C hat, gekühlt. Diese Temperatur liegt im Vergleich zu derjenigen in bekannten Kühlsystemen um etwa 20°C höher. Durch das Kühlen mit wärmerem Kühlmittel ist es möglich, die innere Wandtemperatur der Zylinderlaufbuchse 1 so hoch zu halten, dass sie über der Taupunkt-Temperatur der schädlichen, korrosiven Verbrennungsprodukte liegt.In the proposed cooling system, the coolant temperature at the inlet into the
Das Kühlmittel, insbesondere in den beschriebenen Beispielen ist Wasser, darin beigemischt sind eventuell Korrosionschutz-Zusätzen. Es ist allerdings auch denkbar, dass als Kühlmittel Öl, z.B. das Motoren-Schmieröl selbst oder ein separates Kühlöl in einem vom Schmieröl getrennten Kreislauf verwendet wird. Es kann sein, dass aufgrund der unterschiedlichen spezifischen Wärme verschiedener Kühlmittel, Anpassungen in der Dimensionierung der Kühlmittelwege und/oder der Strömungsgeschwindigkeit des Kühlmittels erforderlich werden. Um die Schmierung des Kolbens 1' in der Zylinderlaufbuchse 1 ist es zudem günstig die Temperatur Innenwand der Zylinderlaufbuchse relativ hoch zu. Denkbar sind Temperaturen bis gegen 200°C und höher.The coolant, in particular in the examples described, is water, possibly with anti-corrosion additives. However, it is also conceivable that oil, e.g. the engine lubricating oil itself or a separate cooling oil is used in a circuit separate from the lubricating oil. Due to the different specific heat of different coolants, adjustments in the dimensioning of the coolant paths and / or the flow rate of the coolant may be required. In order to lubricate the piston 1 'in the
Es wäre aber auch ein Kühlsystem denkbar, bei welchem gewisse Bereiche, z.B. der Zylinderdeckel 5 mit einem ersten Kühlmittel, beispielsweise Wasser, gekühlt wird und ein anderer Bereich, z.B. die Zylinderlaufbuchse 1, 11, 12 mit einem zweiten Kühlmittel, beispielsweise Öl gekühlt wird. Zwischen den beiden Teilsystemen könnten Wärmetauscher vorgesehen sein um die Wärme zu übertragen, und die erforderlichen Kühlmitteltemperaturen zu erreichen.However, a cooling system would also be conceivable in which certain areas, e.g. the
Eine Kühlung bzw. ein Kühlsystem im Sinne der vorliegenden Schrift kann durchaus Bereiche einschliessen, in denen Teile des Motors, insbesondere der Zylinderlaufbuchsen 1 vom Kühlmittel erwärmt werden, wobei natürlich, für den gesamten Motor betrachtet, mit dem Kühlmittel Wärme weggeführt wird.A cooling or a cooling system in the sense of the present document can certainly include areas in which parts of the engine, in particular the
Im Sinne dieser Patentschrift bedeutet "oben" im Zylinderraum jenen Bereich der beim oberen Umkehrpunkt des Kolbens, der also von der Kurbelwelle abgekehrt liegt. Entsprechend bedeutet "unten" im Zylinderraum den Bereich, beim unteren Umkehrpunkt des Kolbens 1', der also zur Kurbelwelle hin liegt, Die Ausdrücke "unten" und "oben" im Zylinderraum sind also unabhängig von der Lage eines Zylinders zu verstehen. Wenn in der vorliegenden Schrift der Ausdruck Zylinderlaufbuchse verwendet wird, ist damit ganz allgemein der Zylindermantel gemeint, unabhängig davon, ob der Zylinder wirklich eine Zylinderlaufbuchse aufweist oder eine andere Zylinderkonstruktion vorliegt.In the sense of this patent specification, "top" in the cylinder space means that area which is at the top reversal point of the piston, ie which is remote from the crankshaft. Correspondingly, “below” in the cylinder space means the area at the lower reversal point of the
Bei der Kühlung für Zylinderlaufbuchsen 1, insbesondere solchen von Grossdieselmotoren, wird das Kühlmittel vorerst durch den Zylinderdeckel 5 geführt und dort vorgewärmt. Dann wird das vorgewärmte Kühlmittel mit einer vorgegebenen Temperatur in die Kühlkanäle 11 und den Spaltraum 12 der Zylinderlaufbuchse 1 zugeführt. Das Vorwärmen in den vorgegebenen Temperaturbereich erfolgt mit Wärme, die wenigstens teilweise im Bereich der Zylinderlaufbuchse 1 (Kühlkanäle 11), erzeugt wird. Mit der Zufuhr von temperiertem Kühlmittel kann vermieden werden, dass Bereiche der Innenwand der Zylinderlaufbuchse 1 so sehr abgekühlt werden, dass hoch korrosive Verbrennungsprodukte, wie etwa schweflige Säure, an der Innenwand der Zylinderlaufbuchse 1 kondensieren.When cooling for
Claims (10)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK96810414T DK0814243T3 (en) | 1996-06-20 | 1996-06-20 | Cooling system for a combustion engine cylinder sheath |
DE59610349T DE59610349D1 (en) | 1996-06-20 | 1996-06-20 | Cooling system for the cylinder jacket of an internal combustion engine |
EP96810414A EP0814243B1 (en) | 1996-06-20 | 1996-06-20 | Cooling system for the cylinder jacket of an internal combustion engine |
KR1019970020601A KR100560550B1 (en) | 1996-06-20 | 1997-05-26 | Cooling system of cylinder jacket of internal combustion engine |
CN97112732A CN1093909C (en) | 1996-06-20 | 1997-06-17 | Cooling system for cylinder jacket of internal combustion engine |
JP9164424A JPH1054240A (en) | 1996-06-20 | 1997-06-20 | Cooling mechanism for cylinder jacket of internal combustion engine |
JP2007295636A JP2008057546A (en) | 1996-06-20 | 2007-11-14 | Cooling mechanism for cylinder jacket of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96810414A EP0814243B1 (en) | 1996-06-20 | 1996-06-20 | Cooling system for the cylinder jacket of an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0814243A1 true EP0814243A1 (en) | 1997-12-29 |
EP0814243B1 EP0814243B1 (en) | 2003-04-16 |
Family
ID=8225634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96810414A Expired - Lifetime EP0814243B1 (en) | 1996-06-20 | 1996-06-20 | Cooling system for the cylinder jacket of an internal combustion engine |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0814243B1 (en) |
JP (2) | JPH1054240A (en) |
KR (1) | KR100560550B1 (en) |
CN (1) | CN1093909C (en) |
DE (1) | DE59610349D1 (en) |
DK (1) | DK0814243T3 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006047206A1 (en) * | 2004-10-25 | 2006-05-04 | General Electric Company | Engine power assembly |
EP1757795A1 (en) * | 2005-08-27 | 2007-02-28 | DEUTZ Aktiengesellschaft | Internal combustion engine |
CN111456863A (en) * | 2020-05-18 | 2020-07-28 | 安徽华菱汽车有限公司 | Cylinder sleeve cooling device capable of achieving accurate flow distribution |
EP3693566A1 (en) * | 2019-02-08 | 2020-08-12 | Winterthur Gas & Diesel AG | Cylinder assembly for a large-size engine and cooling method |
DE102020120712A1 (en) | 2020-08-05 | 2022-02-10 | Audi Aktiengesellschaft | Drive device for a motor vehicle |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0814243B1 (en) * | 1996-06-20 | 2003-04-16 | Wärtsilä Schweiz AG | Cooling system for the cylinder jacket of an internal combustion engine |
JP5459503B2 (en) * | 2010-07-14 | 2014-04-02 | 株式会社Ihi | Diesel engine cylinder bore corrosion prevention system |
EP2604835B1 (en) * | 2011-12-16 | 2016-04-13 | Caterpillar Motoren GmbH & Co. KG | Cylinder liner and cylinder head for internal combustion engine |
CH712931B1 (en) * | 2015-07-24 | 2020-09-15 | Nippon Yusen Kk | System for determining the degree of how easily cryogenic corrosion occurs in a cylinder of an engine and computer program product. |
JP7241512B2 (en) | 2018-11-19 | 2023-03-17 | 株式会社ジャパンエンジンコーポレーション | cooling structure |
US11028800B1 (en) * | 2019-11-19 | 2021-06-08 | Transportation Ip Holdings, Llc | Engine coolant system and method |
CN114790951B (en) * | 2022-03-03 | 2024-02-13 | 深圳市燃气集团股份有限公司 | Method and related device for controlling cylinder liner water temperature of gas generator |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB131719A (en) * | 1918-08-24 | 1919-08-25 | Vickers Ltd | Improvements in or relating to the Water Cooling of Internal Combustion Engines. |
DE803449C (en) * | 1949-09-17 | 1951-04-02 | Buessing Nutzkraftwagen G M B | Circulation cooling for internal combustion engines |
FR2225041A5 (en) * | 1973-04-03 | 1974-10-31 | Amiot F | |
WO1982000317A1 (en) * | 1980-07-10 | 1982-02-04 | Samuel O | Internal combustion engine cooling method and device |
JPS59185818A (en) * | 1983-04-06 | 1984-10-22 | Mitsubishi Heavy Ind Ltd | Cylinder liner cooling system of water-cooled engine |
EP0176430A1 (en) * | 1984-09-20 | 1986-04-02 | Societe D'etudes De Machines Thermiques S.E.M.T. | Method and device for controlling the internal cylinder surface temperature of an internal-combustion engine |
JPS6170120A (en) * | 1984-09-13 | 1986-04-10 | Mitsubishi Heavy Ind Ltd | Cooling system of internal-combustion engine |
JPS62251419A (en) * | 1986-04-25 | 1987-11-02 | Ishikawajima Harima Heavy Ind Co Ltd | Control device for cylinder liner temperature of internal combustion engine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6043119A (en) * | 1983-08-19 | 1985-03-07 | Toyota Motor Corp | Cooling apparatus for internal-combustion engine |
JPS63108514U (en) * | 1986-12-29 | 1988-07-13 | ||
EP0814243B1 (en) * | 1996-06-20 | 2003-04-16 | Wärtsilä Schweiz AG | Cooling system for the cylinder jacket of an internal combustion engine |
-
1996
- 1996-06-20 EP EP96810414A patent/EP0814243B1/en not_active Expired - Lifetime
- 1996-06-20 DK DK96810414T patent/DK0814243T3/en active
- 1996-06-20 DE DE59610349T patent/DE59610349D1/en not_active Expired - Fee Related
-
1997
- 1997-05-26 KR KR1019970020601A patent/KR100560550B1/en not_active IP Right Cessation
- 1997-06-17 CN CN97112732A patent/CN1093909C/en not_active Expired - Fee Related
- 1997-06-20 JP JP9164424A patent/JPH1054240A/en active Pending
-
2007
- 2007-11-14 JP JP2007295636A patent/JP2008057546A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB131719A (en) * | 1918-08-24 | 1919-08-25 | Vickers Ltd | Improvements in or relating to the Water Cooling of Internal Combustion Engines. |
DE803449C (en) * | 1949-09-17 | 1951-04-02 | Buessing Nutzkraftwagen G M B | Circulation cooling for internal combustion engines |
FR2225041A5 (en) * | 1973-04-03 | 1974-10-31 | Amiot F | |
WO1982000317A1 (en) * | 1980-07-10 | 1982-02-04 | Samuel O | Internal combustion engine cooling method and device |
JPS59185818A (en) * | 1983-04-06 | 1984-10-22 | Mitsubishi Heavy Ind Ltd | Cylinder liner cooling system of water-cooled engine |
JPS6170120A (en) * | 1984-09-13 | 1986-04-10 | Mitsubishi Heavy Ind Ltd | Cooling system of internal-combustion engine |
EP0176430A1 (en) * | 1984-09-20 | 1986-04-02 | Societe D'etudes De Machines Thermiques S.E.M.T. | Method and device for controlling the internal cylinder surface temperature of an internal-combustion engine |
JPS62251419A (en) * | 1986-04-25 | 1987-11-02 | Ishikawajima Harima Heavy Ind Co Ltd | Control device for cylinder liner temperature of internal combustion engine |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 009, no. 046 (M - 360) 27 February 1985 (1985-02-27) * |
PATENT ABSTRACTS OF JAPAN vol. 010, no. 238 (M - 508) 16 August 1986 (1986-08-16) * |
PATENT ABSTRACTS OF JAPAN vol. 012, no. 126 (M - 687) 19 April 1988 (1988-04-19) * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006047206A1 (en) * | 2004-10-25 | 2006-05-04 | General Electric Company | Engine power assembly |
GB2435075A (en) * | 2004-10-25 | 2007-08-15 | Gen Electric | Engine power assembly |
GB2435075B (en) * | 2004-10-25 | 2008-12-17 | Gen Electric | Engine power assembly |
EP1757795A1 (en) * | 2005-08-27 | 2007-02-28 | DEUTZ Aktiengesellschaft | Internal combustion engine |
EP3693566A1 (en) * | 2019-02-08 | 2020-08-12 | Winterthur Gas & Diesel AG | Cylinder assembly for a large-size engine and cooling method |
CN111550324A (en) * | 2019-02-08 | 2020-08-18 | 温特图尔汽柴油公司 | Cylinder device for large engine and cooling method |
CN111550324B (en) * | 2019-02-08 | 2024-01-12 | 温特图尔汽柴油公司 | Cylinder device for large engine and cooling method |
CN111456863A (en) * | 2020-05-18 | 2020-07-28 | 安徽华菱汽车有限公司 | Cylinder sleeve cooling device capable of achieving accurate flow distribution |
CN111456863B (en) * | 2020-05-18 | 2024-05-07 | 安徽华菱汽车有限公司 | Cylinder sleeve cooling device capable of accurately shunting |
DE102020120712A1 (en) | 2020-08-05 | 2022-02-10 | Audi Aktiengesellschaft | Drive device for a motor vehicle |
DE102020120712B4 (en) | 2020-08-05 | 2024-08-08 | Audi Aktiengesellschaft | Drive device for a motor vehicle |
Also Published As
Publication number | Publication date |
---|---|
DK0814243T3 (en) | 2003-06-02 |
JP2008057546A (en) | 2008-03-13 |
DE59610349D1 (en) | 2003-05-22 |
JPH1054240A (en) | 1998-02-24 |
KR100560550B1 (en) | 2006-08-23 |
EP0814243B1 (en) | 2003-04-16 |
CN1093909C (en) | 2002-11-06 |
CN1170812A (en) | 1998-01-21 |
KR980002682A (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010027816B4 (en) | Internal combustion engine with oil circuit and method for heating the engine oil of such an internal combustion engine | |
EP2322785B1 (en) | Cooling system | |
DE69600246T2 (en) | Temperature control system for lubricating oil and fuel in a turbo jet engine | |
EP0814243B1 (en) | Cooling system for the cylinder jacket of an internal combustion engine | |
DE3928477C2 (en) | Liquid cooling arrangement for an internal combustion engine with a turbocharger | |
DE2847057A1 (en) | INTERNAL COMBUSTION ENGINE WITH COOLING SYSTEM | |
DE3339717C2 (en) | ||
AT501008A2 (en) | LIQUID-COOLED INTERNAL COMBUSTION ENGINE | |
DE2825298A1 (en) | ARRANGEMENT FOR COOLING THE CYLINDER COVER OF A FOUR-STROKE DIESEL ENGINE | |
DE4325141A1 (en) | Internal combustion engine | |
EP1227236A2 (en) | Crankcase for a liquid cooled piston combustion engine | |
DE69711608T2 (en) | METHOD AND DEVICE FOR RECOVERING HEAT FROM THE CHARGING AIR OF AN ENGINE | |
DE60020800T2 (en) | System for controlling the temperature of an engine cylinder wall | |
DE102010023063B4 (en) | Oil supply system for an internal combustion engine | |
AT522272B1 (en) | COMBUSTION ENGINE | |
DE102005048019A1 (en) | Aircraft engine e.g. gas turbine, oil supplying method, involves leading oil into oil cooler, where oil cooler controls oil supply temperature to respective storage chamber such that same oil outlet temperature results for storage chambers | |
CH626949A5 (en) | ||
DE102005057760B4 (en) | Cooling system for a motor | |
EP0509956B1 (en) | Arrangement for cooling a cylinder of an internal combustion Diesel engine | |
DE19701543A1 (en) | Cooling arrangement in the engine block | |
DE102009029289B4 (en) | Cylinder head with oil return | |
DE102017223127B3 (en) | Heat transfer circuit with a cooling jacket for cooling a heat source of a drive motor | |
DE3701385C1 (en) | Piston internal combustion engine with liquid cooling | |
EP3374620A1 (en) | Common rail water jacket | |
DE3742315A1 (en) | Lubricating-medium and/or cooling-medium tank arrangement, especially for an internal-combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE DK FI FR IT NL |
|
AX | Request for extension of the european patent |
Free format text: LT;LV;SI |
|
DAX | Request for extension of the european patent (deleted) | ||
17P | Request for examination filed |
Effective date: 19980609 |
|
17Q | First examination report despatched |
Effective date: 20000726 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: WAERTSILAE SCHWEIZ AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE DK FI FR IT NL |
|
REF | Corresponds to: |
Ref document number: 59610349 Country of ref document: DE Date of ref document: 20030522 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090616 Year of fee payment: 14 Ref country code: DK Payment date: 20090611 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090625 Year of fee payment: 14 Ref country code: FR Payment date: 20090615 Year of fee payment: 14 Ref country code: FI Payment date: 20090615 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090622 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100620 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |