EP0811676A1 - Composition for cleaning and coating the interior of an internal combustion engine and method for cleaning and coating the interior of an internal combustion engine therewith - Google Patents
Composition for cleaning and coating the interior of an internal combustion engine and method for cleaning and coating the interior of an internal combustion engine therewith Download PDFInfo
- Publication number
- EP0811676A1 EP0811676A1 EP95909979A EP95909979A EP0811676A1 EP 0811676 A1 EP0811676 A1 EP 0811676A1 EP 95909979 A EP95909979 A EP 95909979A EP 95909979 A EP95909979 A EP 95909979A EP 0811676 A1 EP0811676 A1 EP 0811676A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cleaning
- coating
- internal combustion
- composition
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 57
- 239000000203 mixture Substances 0.000 title claims abstract description 52
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 42
- 238000000576 coating method Methods 0.000 title claims abstract description 38
- 239000011248 coating agent Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000004094 surface-active agent Substances 0.000 claims abstract description 23
- 239000002904 solvent Substances 0.000 claims abstract description 22
- 239000002480 mineral oil Substances 0.000 claims abstract description 18
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 17
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims abstract description 16
- 235000015112 vegetable and seed oil Nutrition 0.000 claims abstract description 14
- 239000008158 vegetable oil Substances 0.000 claims abstract description 14
- 229910000165 zinc phosphate Inorganic materials 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000003921 oil Substances 0.000 description 19
- 235000019198 oils Nutrition 0.000 description 19
- 229940077935 zinc phosphate Drugs 0.000 description 10
- 239000008199 coating composition Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000010705 motor oil Substances 0.000 description 8
- 239000000779 smoke Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- -1 aryl alcohols Chemical class 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 3
- 229960003237 betaine Drugs 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ULDHMXUKGWMISQ-SECBINFHSA-N (-)-carvone Chemical compound CC(=C)[C@@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-SECBINFHSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 2
- SPDJAIKMJHJYAV-UHFFFAOYSA-H trizinc;diphosphate;tetrahydrate Chemical compound O.O.O.O.[Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SPDJAIKMJHJYAV-UHFFFAOYSA-H 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229940077934 zinc phosphate tetrahydrate Drugs 0.000 description 2
- CNPVJWYWYZMPDS-UHFFFAOYSA-N 2-methyldecane Chemical compound CCCCCCCCC(C)C CNPVJWYWYZMPDS-UHFFFAOYSA-N 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- ULDHMXUKGWMISQ-UHFFFAOYSA-N carvone Natural products CC(=C)C1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- COTPAMORPWZHKE-UHFFFAOYSA-H trizinc;thiophosphate;thiophosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=O.[O-]P([O-])([O-])=S COTPAMORPWZHKE-UHFFFAOYSA-H 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/06—Phosphates, including polyphosphates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/18—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/382—Vegetable products, e.g. soya meal, wood flour, sawdust
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/43—Solvents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/02—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
- C23C22/03—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions containing phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G5/00—Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
- C23G5/06—Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using emulsions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/02—Surface coverings of combustion-gas-swept parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/04—Cleaning of, preventing corrosion or erosion in, or preventing unwanted deposits in, combustion engines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/20—Industrial or commercial equipment, e.g. reactors, tubes or engines
Definitions
- the internal combustion engines to be treated include gasoline engines, diesel engines, propane engines, rotary engines used in general cars, buses, trucks and motor bicycles which must be subjected to regular automobile inspection and registration and, furthermore, engines for agricultural equipments, engines for construction vehicles, engines for ships, industrial engines (for compressors, generators and airconditioners) and engines for aircrafts.
- strain friction in engines (internal combustion engines) for cars including imported cars and motor bicycles causes incomplete combustion due to delicate deviation (a lag in timing of ignition and valve operation) in interlocking operation process of mechanism leading to intake, compression, combustion and exhaustion (valve system, rotating parts, sliding parts) which must be kept regular.
- the inventors have conducted intensive research in an attempt to find a method for improving performance of internal combustion engines by completely cleaning and discharging carbon, sludges and the like deposited and accumulated inside internal combustion engines, especially adhering oxidation waste matters and simultaneously by coating and mending the surface of metallic parts such as rotating parts and sliding parts having roughness and flaws such as friction marks, wear marks and hairlines without employing a method which requires labor and time for disassembling, cleaning of the parts and assembling.
- the present invention has been accomplished.
- the present invention provides a method for cleaning and discharging (removing) the adhering oxidation waste matters in internal combustion engines without disassembling the engine into parts and simultaneously coating (mending of coat) the roughened surface by friction reaction.
- the present invention provides a cleaning and coating composition used for the method of cleaning and coating without disassembling the internal combustion engines into the parts.
- composition for cleaning and coating of inside of internal combustion engines is mainly composed of a zinc phosphate, a solvent, a surface active agent, a mineral oil and a natural vegetable oil.
- the first aspect of the present invention relates to a composition for cleaning and coating of the inside of internal combustion engines which is mainly composed of a zinc phosphate, a solvent, a surface active agent, a mineral oil and a natural vegetable oil.
- the second aspect relates to a composition for cleaning and coating of the inside of internal combustion engines which contains 0.35-3.5% by weight of a zinc phosphate, 25-45% by weight of a solvent, 3.5-18% by weight of a surface active agent, 6-12% by weight of a mineral oil and 1.6-12% by weight of a natural vegetable oil, the total amount of the zinc phosphate, the solvent, the surface active agent, the mineral oil, the natural vegetable oil and water being 100% by weight.
- the zinc phosphate means not only zinc phosphate tetrahydrate, but also zinc dialkyldithiophosphates, zinc diaryldithiophosphates, mixtures of dialkyldithiophosphate esters and zinc oxide and mixtures of alkyl alcohols or aryl alcohols, phosphorus pentasulfide (P 2 S 5 ) and zinc oxide.
- compositions containing a zinc phosphate which are commercially available in the name of "Zinc" as an engine oil supplying agent are also included.
- Amount of the zinc phosphates in the composition is 0.35-3.5% by weight. If the amount is less than 0.35% by weight, the coating effect is insufficient and if it is more than 3.5% by weight, no greater improvement in coating effect can be obtained.
- the zinc dithiophosphates are dispersed in a mineral oil, followed by mixing and dispersing with other components. That is, when zinc phosphate tetrahydrate is used, it is dissolved in a small amount of water (usually water containing a small amount of an acid or alkali being used) and then mixed and dispersed with a mineral oil so that it is contained in an amount of 0.35-3.5% by weight in the composition.
- mineral oils can be used, but bright stock (or bottom) oils (virgin oils of high concentration) are suitably used.
- Amount of the mineral oil in the total composition can be optionally selected from the range of 6-12% by weight based on the total weight of the composition.
- the solvents used in the present invention are petroleum solvents such as, for example, aromatic solvents, aliphatic solvents or mixtures thereof.
- solvents must be selected taking into consideration the conditions that they exert no evil influence (bad effect) upon other engine parts (packing such as gasket and sealing parts) and that they are low in dangerousness such as explosiveness and flammability.
- Amount of the solvents is 25-45% by weight based on the total amount of the composition. If the amount is less than 25% by weight, the effect to remove oxidation waste matters is not sufficient and if it is more than 45% by weight, there may occur problems in combustibility and hence use of them in an amount of up to 45% by weight is preferred.
- the surface active agents there may be used anionic, nonionic, amphoteric and cationic surface active agents. These may be used each alone or as a mixture.
- the first object to use the surface active agents is to emulsify and disperse each component of the composition.
- the second object is to exhibit the action as an aid for acceleration of liberation and dissolution of oxidation waste matters such as carbon and sludges by penetration and activation power (activation action) and the third object is to disperse (emulsify) combustible compositions such as petroleum solvent and natural vegetable oil in water, thereby to neutralize into moderate effect with no evils and besides to neutralize and solve the dangers such as flammability.
- anionic, nonionic, amphoteric and cationic surface active agents may be used, but suitable are nonionic alkylphenylpolyoxyethylene ether surface active agents and polyethylene glycol fatty acid ester surface active agents.
- Amount of the surface active agents is 3.5-18% by weight based on the total amount of the composition and this is sufficient. If the amount is less than 3.5% by weight, the effect to emulsify and disperse all the components is insufficient and if it is more than 18% by weight, the problem of bubbling occurs and no further improvement of detergency can be expected.
- the natural vegetable oils are used for effective coalescent mixing of the components and acceleration of dissolution and removal of especially the sticking oxidation waste matters such as carbon and sludges adhering to and accumulated in the inside of engines and for exhibiting masking effect for offensive smell of the composition.
- the natural vegetable oils include terpineol, d-limonene, eugenol and l-carvone. Amount of the natural vegetable oils is 1.6-12% by weight based on the total composition.
- the amount is less than 1.6% by weight, the masking effect is insufficient and 12% by weight is enough to exhibit the masking effect and the masking effect no longer increases even when more than this amount is employed. Thus, 12% by weight suffices.
- composition of the present invention is made up to 100 parts by weight in total by adding water to a blend of the above components. Usually, amounts of other components are selected so that amount of water is 28-55% by weight based on the total composition. Of course, water can be added to the blend of the above components at the time of use.
- each component may be selected so that lubricity can be obtained as a property.
- the cleaning and coating composition can be prepared by mixing the components and stirring the mixture, and the mixing method and the stirring method are not limiting.
- the cleaning and coating method of the present invention can be applied to any internal combustion engines regardless of the kind. That is, it can be applied to various internal combustion engines for cars, buses, trucks, motor bicycles, construction vehicles, agricultural equipments, ships, aircrafts, airconditioners, generators and compressors, such as, for example, gasoline engines, diesel engines, LPG engines, rotary engines and others.
- the composition is used for cleaning and coating in an amount of 80-120% based on the amount of engine oil used.
- the engine is started and idled for a given time, for example, about 1-5 minutes to circulate the composition through the whole engine.
- the engine is stopped and left to stand for 10-30 minutes after stopping, and again idled.
- the idling is effected for at least 10-30 minutes and the engine is again stopped.
- the drain cock is opened and all of the cleaning composition used for cleaning is drawn out.
- a "Zinc" product (zinc thiophosphate ⁇ zinc dithiophosphate) which comprised an oil previously containing the zinc phosphate in an amount of 1.25% by weight in the total composition and a mineral oil in an amount of 5.75% by weight, the total amount of the zinc phosphate and the mineral oil in the total composition being 7% by weight, was added to a mixture comprising 26 parts by weight of naphthenic paraffin petroleum solvent: Nippon Oil N-22, 6 parts by weight of d-limonene as a natural vegetable oil, and 8 parts by weight of a nonionic surface active agent: nonylphenol EO adduct and 5 parts by weight of an imidazolium betaine amphoteric surface active agent as surface active agents, and these were thoroughly stirred. After stirring, water was added to make up 100 parts by weight in total, followed by further stirring to obtain a cleaning and coating composition.
- a cleaning and coating composition was obtained in the same manner as in Example 1, except that 5 parts by weight of a cationic surface active agent: monoalkylammonium chloride was used in place of 5 parts by weight of the imidazolium betaine amphoteric surface active agent.
- the cleaning and coating agent drawn out changed to deep brown in its color, which showed that it removed carbon and sludges inside the engine, and furthermore, the cleaning and coating agent which was in "smooth state” and free-flowing before use changed to "thick state”.
- the cleaning and coating composition of the present invention is considered to have markedly excellent cleaning action, and moreover, regarding the improvement of the output, it must be concluded that function of the engine per se was recovered considering the covered distance of the car used.
- Example 4 The same procedure as in Example 4 was repeated using a Nissan Pulsar 1700 cc diesel of November, 1992 type (model: X-SN14, motor CD-17) of 9982 km in the distance covered.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Lubricants (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- The present invention relates to a composition for cleaning and coating the inside of internal combustion engines and a method for cleaning the inside of internal combustion engines and for coating rotating parts and sliding parts of internal combustion engines, especially metallic parts thereof using said composition.
- At present, dirt caused by oxidation waste matters such as sludges and carbon accumulated in internal combustion engines is removed by a method which requires technical skill and patience to disassemble parts of internal combustion engines, remove the dirt adhering or stick to the parts by cleaning and assemble the parts again. However, complete cleaning is very difficult because there are parts which cannot be easily disassembled or delicate parts having fine pores. Of course, the well known cleaning method with flushing oil is carried out, but according to this method only the surface of the dirt is washed and substantially no cleaning effect can be obtained.
- As mentioned above, cleaning of the inside of internal combustion engines must resort to a method which requires patience, time and cost for disassembling and fixing by an expert. Furthermore, wear marks and fine scars on the surface of metallic sliding parts caused by friction at rotating parts and sliding parts of internal combustion engines and strain friction generated by fine rugged pores of metal per se are causes for friction loss such as generation of slight vibration and uneven rotation. Thus, they decrease combustion energy (power energy) to cause deterioration in performance of internal combustion engines.
- The internal combustion engines to be treated include gasoline engines, diesel engines, propane engines, rotary engines used in general cars, buses, trucks and motor bicycles which must be subjected to regular automobile inspection and registration and, furthermore, engines for agricultural equipments, engines for construction vehicles, engines for ships, industrial engines (for compressors, generators and airconditioners) and engines for aircrafts. Especially, strain friction in engines (internal combustion engines) for cars including imported cars and motor bicycles causes incomplete combustion due to delicate deviation (a lag in timing of ignition and valve operation) in interlocking operation process of mechanism leading to intake, compression, combustion and exhaustion (valve system, rotating parts, sliding parts) which must be kept regular. As a result, deterioration in performance is brought about, and not only deterioration of inherent performances such as starting and accelerating performances, but also increase of engine noise caused by metallic fatigue, decrease of lubricity caused by ununiform oil film in the rotating part and sliding part increase frictional resistance (friction loss) and simultaneously cause deterioration of airtightness and compressive power in combustion chamber. Furthermore, they cause social problems such as decrease in fuel consumption performance resulting from incomplete combustion such as decrease in combustion power (decrease in explosion power) and contamination of living environment due to increase of carbon monoxide and hydrocarbon contents in exhaust gas.
- The inventors have conducted intensive research in an attempt to find a method for improving performance of internal combustion engines by completely cleaning and discharging carbon, sludges and the like deposited and accumulated inside internal combustion engines, especially adhering oxidation waste matters and simultaneously by coating and mending the surface of metallic parts such as rotating parts and sliding parts having roughness and flaws such as friction marks, wear marks and hairlines without employing a method which requires labor and time for disassembling, cleaning of the parts and assembling. As a result, the present invention has been accomplished.
- The present invention provides a method for cleaning and discharging (removing) the adhering oxidation waste matters in internal combustion engines without disassembling the engine into parts and simultaneously coating (mending of coat) the roughened surface by friction reaction.
- Furthermore, the present invention provides a cleaning and coating composition used for the method of cleaning and coating without disassembling the internal combustion engines into the parts.
- The composition for cleaning and coating of inside of internal combustion engines according to the present invention is mainly composed of a zinc phosphate, a solvent, a surface active agent, a mineral oil and a natural vegetable oil.
- That is, the first aspect of the present invention relates to a composition for cleaning and coating of the inside of internal combustion engines which is mainly composed of a zinc phosphate, a solvent, a surface active agent, a mineral oil and a natural vegetable oil.
- The second aspect relates to a composition for cleaning and coating of the inside of internal combustion engines which contains 0.35-3.5% by weight of a zinc phosphate, 25-45% by weight of a solvent, 3.5-18% by weight of a surface active agent, 6-12% by weight of a mineral oil and 1.6-12% by weight of a natural vegetable oil, the total amount of the zinc phosphate, the solvent, the surface active agent, the mineral oil, the natural vegetable oil and water being 100% by weight.
- The third and fourth aspects relate to a method for cleaning and coating of the inside of internal combustion engines using the composition for cleaning and coating of the inside of internal combustion engines of the above aspects 1 or 2.
- The present invention will be explained in more detail below.
- In this specification, the zinc phosphate means not only zinc phosphate tetrahydrate, but also zinc dialkyldithiophosphates, zinc diaryldithiophosphates, mixtures of dialkyldithiophosphate esters and zinc oxide and mixtures of alkyl alcohols or aryl alcohols, phosphorus pentasulfide (P2S5) and zinc oxide.
- Furthermore, compositions containing a zinc phosphate which are commercially available in the name of "Zinc" as an engine oil supplying agent are also included.
- The zinc phosphates can secure lubrication in engines, and can allow uniform coating (impregnation) and repair of the roughened metallic surface of rotating parts and sliding parts having hairlines, flaws and fine unevenness (pore portions) which cause friction loss, thereby to balance and normalize (correct and cure) the distorted rotation and sliding (lubrication) to result in decrease of frictional resistance in the parts and improve rotation of engine (performance) and combustion performance.
- Amount of the zinc phosphates in the composition is 0.35-3.5% by weight. If the amount is less than 0.35% by weight, the coating effect is insufficient and if it is more than 3.5% by weight, no greater improvement in coating effect can be obtained.
- The zinc dithiophosphates are dispersed in a mineral oil, followed by mixing and dispersing with other components. That is, when zinc phosphate tetrahydrate is used, it is dissolved in a small amount of water (usually water containing a small amount of an acid or alkali being used) and then mixed and dispersed with a mineral oil so that it is contained in an amount of 0.35-3.5% by weight in the composition.
- Commercially available mineral oils can be used, but bright stock (or bottom) oils (virgin oils of high concentration) are suitably used. Amount of the mineral oil in the total composition can be optionally selected from the range of 6-12% by weight based on the total weight of the composition.
- The commercially available product called "Zinc" already contains about 5% by weight to about 23% by weight of a zinc phosphate in mineral oil. Therefore, when this is used as it is, this can be added in an amount of about 6.3 to about 15.5 parts by weight for 100 parts by weight of the composition. In this case, of course, the mineral oil is not needed because it is contained in "Zinc".
- The solvents used in the present invention are petroleum solvents such as, for example, aromatic solvents, aliphatic solvents or mixtures thereof.
- There may be used various petroleum solvents such as, for example, Pegasole AN-45 and Pegasole 3040 manufactured by Mobil Chemical Co., Ltd.; EXXSOL D40, D80, D110, Isopar M and Isopar H manufactured by Exxon Co., Ltd.; A Solvent, K Solvent, Tecleen Series N-20, N-22 and N-24 manufactured by Nippon Oil Co., Ltd.; IP Solvent-1620 and 2028 manufactured by Idemitsu Petrochemical Co., Ltd.; NS Clean 100 and 110 manufactured by Nikko Sekiyu Co., Ltd.; Mineral Terpene and Solvent manufactured by Mitsubishi Oil Co., Ltd.; and Shellzole 70 and Shellzole 71 manufactured by Shell Japan Co., Ltd.
- The solvents are used for mixing with and dissolution of other components used in the composition and for dissolution and removal of oxidation waster matters such as carbon and sludges deposited and accumulated inside the engines or adhering to the inside of engines. The solvents are preferably those which are suitable for dissolution and excellent in penetration action into complicated, intricate and narrow portions of rotating parts and sliding parts which are beyond reach even if disassembled, such as cam shaft, rocker arm, rocker shaft, crankshaft, pin and bearing, tappet, push rod, valve, spring, cylinder liner, piston and pin, compression ring, oil ring, bearing, connecting rod, connecting rod cap, oil strainer, oil passage (oil gallery), and plain metal bearing. Of course, these solvents must be selected taking into consideration the conditions that they exert no evil influence (bad effect) upon other engine parts (packing such as gasket and sealing parts) and that they are low in dangerousness such as explosiveness and flammability. Amount of the solvents is 25-45% by weight based on the total amount of the composition. If the amount is less than 25% by weight, the effect to remove oxidation waste matters is not sufficient and if it is more than 45% by weight, there may occur problems in combustibility and hence use of them in an amount of up to 45% by weight is preferred.
- As the surface active agents, there may be used anionic, nonionic, amphoteric and cationic surface active agents. These may be used each alone or as a mixture.
- The first object to use the surface active agents is to emulsify and disperse each component of the composition. The second object is to exhibit the action as an aid for acceleration of liberation and dissolution of oxidation waste matters such as carbon and sludges by penetration and activation power (activation action) and the third object is to disperse (emulsify) combustible compositions such as petroleum solvent and natural vegetable oil in water, thereby to neutralize into moderate effect with no evils and besides to neutralize and solve the dangers such as flammability.
- Any of anionic, nonionic, amphoteric and cationic surface active agents may be used, but suitable are nonionic alkylphenylpolyoxyethylene ether surface active agents and polyethylene glycol fatty acid ester surface active agents.
- Amount of the surface active agents is 3.5-18% by weight based on the total amount of the composition and this is sufficient. If the amount is less than 3.5% by weight, the effect to emulsify and disperse all the components is insufficient and if it is more than 18% by weight, the problem of bubbling occurs and no further improvement of detergency can be expected.
- The natural vegetable oils are used for effective coalescent mixing of the components and acceleration of dissolution and removal of especially the sticking oxidation waste matters such as carbon and sludges adhering to and accumulated in the inside of engines and for exhibiting masking effect for offensive smell of the composition.
- The natural vegetable oils include terpineol, d-limonene, eugenol and ℓ-carvone. Amount of the natural vegetable oils is 1.6-12% by weight based on the total composition.
- If the amount is less than 1.6% by weight, the masking effect is insufficient and 12% by weight is enough to exhibit the masking effect and the masking effect no longer increases even when more than this amount is employed. Thus, 12% by weight suffices.
- The composition of the present invention is made up to 100 parts by weight in total by adding water to a blend of the above components. Usually, amounts of other components are selected so that amount of water is 28-55% by weight based on the total composition. Of course, water can be added to the blend of the above components at the time of use.
- Therefore, a blend containing the above components at the above proportion, namely, 0.35-3.5 parts by weight of a zinc phosphate, 6-12 parts by weight of a mineral oil, 25-45 parts by weight of a solvent, 3.5-18 parts by weight of a surface active agent and 1.6-12 parts by weight of a natural vegetable oil, is also one of the embodiments of the present invention.
- Water is preferably pure water or distilled water, but any clear water can be used.
- Since the cleaning composition of the present invention is used in internal combustion engines after lubricating oil has been drawn out of the engines, it is required to have a property of capable of securing the lubricity as much as possible. Therefore, each component may be selected so that lubricity can be obtained as a property.
- The cleaning and coating composition can be prepared by mixing the components and stirring the mixture, and the mixing method and the stirring method are not limiting.
- Next, the cleaning and coating method according to the present invention will be explained below.
- The cleaning and coating method of the present invention can be applied to any internal combustion engines regardless of the kind. That is, it can be applied to various internal combustion engines for cars, buses, trucks, motor bicycles, construction vehicles, agricultural equipments, ships, aircrafts, airconditioners, generators and compressors, such as, for example, gasoline engines, diesel engines, LPG engines, rotary engines and others.
- The method of cleaning and coating of internal combustion engines according to the present invention comprises pouring the above composition into the engine in place of engine oil after completely drawing engine oil out of internal combustion engine and circulating the composition in the whole engine through oil passages (oil gallery) for a certain period of time, to allow the composition to contact and friction react with especially its rotating parts and sliding parts (the respective engine parts).
- The cleaning and coating method of the present invention will be explained taking the case of automobile engine.
- The composition is used for cleaning and coating in an amount of 80-120% based on the amount of engine oil used.
- First, drain cock of the oil pan is opened and all engine oil is drawn out.
- The drain cock of the oil pan is completely closed and thereafter the composition of the present invention in an amount of 80-120% based on the amount of the used engine oil is poured from an engine oil pouring port.
- Then, the engine is started and idled for a given time, for example, about 1-5 minutes to circulate the composition through the whole engine.
- The engine is stopped and left to stand for 10-30 minutes after stopping, and again idled. The idling is effected for at least 10-30 minutes and the engine is again stopped. The drain cock is opened and all of the cleaning composition used for cleaning is drawn out.
- After all of the composition has been drawn out, further idling for 5-20 minutes using a flushing oil is carried out for removal of the composition as used which remains in the engine, whereby the engine is rinsed. This rinsing is carried out desirably at least two times.
- After completion of the cleaning, the oil filter is exchanged for a fresh filter and a specified amount of a fresh engine oil is poured into the engine.
- By carrying out the above operations, not only the engine is completely cleaned, but also the metallic surface of rotating parts and sliding parts of the engine is coated. As a result, the surface of the rotating parts and sliding parts of the engine becomes smooth, the frictional resistance decreases, and the power performance (output) and fuel consumption are improved without reducing explosive energy (expansion energy). Of course, life of engine is also prolonged.
- The following examples will further illustrate the invention, which are never limiting the invention.
- A "Zinc" product (zinc thiophosphate·zinc dithiophosphate) which comprised an oil previously containing the zinc phosphate in an amount of 1.25% by weight in the total composition and a mineral oil in an amount of 5.75% by weight, the total amount of the zinc phosphate and the mineral oil in the total composition being 7% by weight, was added to a mixture comprising 26 parts by weight of naphthenic paraffin petroleum solvent: Nippon Oil N-22, 6 parts by weight of d-limonene as a natural vegetable oil, and 8 parts by weight of a nonionic surface active agent: nonylphenol EO adduct and 5 parts by weight of an imidazolium betaine amphoteric surface active agent as surface active agents, and these were thoroughly stirred. After stirring, water was added to make up 100 parts by weight in total, followed by further stirring to obtain a cleaning and coating composition.
- A cleaning and coating composition was obtained in the same manner as in Example 1, except that 5 parts by weight of a nonionic surface active agent polyethylene glycol fatty acid ester was used in place of 5 parts by weight of the imidazolium betaine amphoteric surface active agent.
- A cleaning and coating composition was obtained in the same manner as in Example 1, except that 5 parts by weight of a cationic surface active agent: monoalkylammonium chloride was used in place of 5 parts by weight of the imidazolium betaine amphoteric surface active agent.
- Cleaning and coating were carried out using the cleaning and coating composition obtained in Example 1 under the following conditions.
-
- 1. Car to be cleaned:
Daihatsu·Charade GT-XX Twin Cam·Turbo Car of Type 1988 (model: G-100S).- Cylinder volume: 1000 cc
- Distance covered: 108,000 km.
- 2. Engine performance of the car to be cleaned:
- (1) Measurement of concentration of carbon monoxide (CO) and hydrocarbon (HC) in exhaust gas from the engine before cleaned:
- CO concentration: 0.2%
- HC concentration: 260 PPM
The maximum output measured by chassis dynamo was 74.6 horsepower (catalog data: 105 horsepower). - (2) Steps of cleaning and coating were as follows.
- (i) Oil was completely drawn out and the cleaning and coating composition of the present invention was poured.
- (ii) Idling was carried out for 1 minute without stepping on the accelerator.
- (iii) Engine was stopped and left to stand for 15 minutes.
- (iv) Idling was again carried out for 10 minutes without stepping on the accelerator.
- (v) The drain cock was opened and the cleaning and coating composition of the present invention was drawn out and cleaning was carried out twice with a flushing mineral oil.
- (vi) Oil element was exchanged for new one and oil was exchanged.
- (1) Measurement of concentration of carbon monoxide (CO) and hydrocarbon (HC) in exhaust gas from the engine before cleaned:
- 3. Engine performance after cleaning and coating:
- CO concentration: 0.0% (no detection even after measurement for longer than the specified period)
- HC concentration: 200 PPM
- The maximum output was improved to 95.2 horsepower which was near the catalog data.
- The cleaning and coating agent drawn out changed to deep brown in its color, which showed that it removed carbon and sludges inside the engine, and furthermore, the cleaning and coating agent which was in "smooth state" and free-flowing before use changed to "thick state".
- From the above results, the cleaning and coating composition of the present invention is considered to have markedly excellent cleaning action, and moreover, regarding the improvement of the output, it must be concluded that function of the engine per se was recovered considering the covered distance of the car used.
- In addition, mechanical noise conspicuously diminished, resulting in stillness. This is considered to be an effect of coating of rotating and sliding parts (as a result of mending).
- The same procedure as in Example 4 was repeated using a Nissan Pulsar 1700 cc diesel of November, 1992 type (model: X-SN14, motor CD-17) of 9982 km in the distance covered.
- Concentration of black smoke in waste gas of this car before subjected to cleaning and coating treatment of the present invention was 58% measured by a smoke checker.
- When the concentration was again measured after completion of cleaning and coating, it was markedly improved to 44%. Furthermore, mechanical noise vanished from engine sound at the time of idling and the sound became "mellow". Moreover, black smoke at idling disappeared and the number of engine rotation which was at most 3,000-4,000 could be increased to red zone at a stretch.
- According to the results of test travelling, the maximum speed before the test was 140 km/hour by the meter reading while it increased to higher than 170 km/hour by the maximum speed meter reading after the engine was subjected to the treatment according to the method of the present invention. It was confirmed that blowing up in the whole rotation zone became smooth, accelerator response conspicuously increased, so-called "reaching uppermost limit" was overcome, and black smoke in the exhaust gas decreased to such extent as unrecognized.
- Furthermore, according to the continuous test travelling, the results when about 9 months elapsed after cleaning and coating treatment are as follows.
- (1) State of the car at present:
- Travelling distance: about 30000 km
- Engine troubles, etc.: None
- (2) No trouble was seen after travelling of about 20000 km.
- (3) Concentration of black smoke in exhaust gas measured by a smoke checker was 47% and the concentration somewhat increased. However, the black smoke was seen at the starting of engine, but no black smoke was seen during driving and in high rotating zone.
Claims (3)
- A composition for cleaning and coating of inside of internal combustion engines which comprises a zinc phosphate, a solvent, a surface active agent, a natural vegetable oil and a mineral oil.
- A composition for cleaning and coating of inside of internal combustion engines which comprises 0.35-3.5% by weight of a zinc phosphate, 25-45% by weight of a solvent, 3.5-18% by weight of a surface active agent, 6-12% by weight of a mineral oil and 1.6-12% by weight of a natural vegetable oil, the total amount of the zinc phosphate, the solvent, the surface active agent, the mineral oil, the natural vegetable oil and water being 100% by weight.
- A method for cleaning and coating inside of internal combustion engines using the composition for cleaning and coating of inside of internal combustion engines as defined in claim 1 or 2.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1995/000281 WO1996026256A1 (en) | 1995-02-24 | 1995-02-24 | Composition for cleaning and coating the interior of an internal combustion engine and method for cleaning and coating the interior of an internal combustion engine therewith |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0811676A1 true EP0811676A1 (en) | 1997-12-10 |
EP0811676A4 EP0811676A4 (en) | 1998-09-02 |
EP0811676B1 EP0811676B1 (en) | 2003-10-08 |
Family
ID=14125656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95909979A Expired - Lifetime EP0811676B1 (en) | 1995-02-24 | 1995-02-24 | Composition for cleaning and coating the interior of an internal combustion engine and method for cleaning and coating the interior of an internal combustion engine therewith |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0811676B1 (en) |
KR (1) | KR100300625B1 (en) |
DE (1) | DE69531899T2 (en) |
WO (1) | WO1996026256A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1600492A1 (en) * | 2004-05-19 | 2005-11-30 | ERC Emissions-Reduzierungs-Concepte GmbH | Process and means for avoiding damage by corrosion during the combustion of low sulfur fuels |
EP1905817A1 (en) | 2006-09-28 | 2008-04-02 | Denso Corporation | Cleaning agent composition |
CN105733859A (en) * | 2016-01-28 | 2016-07-06 | 中国民航大学 | Cleaning agent capable of eliminating dirt on heat exchanger of aircraft air conditioner system and preparation method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5940948B2 (en) * | 2012-09-27 | 2016-06-29 | トヨタ自動車株式会社 | Engine cleaning compound and engine cleaning method |
CN104388969A (en) * | 2014-12-12 | 2015-03-04 | 常熟市天河机械设备制造有限公司 | Bearing cleaning agent |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2626225A (en) * | 1947-08-18 | 1953-01-20 | Gulf Research Development Co | Method of cleaning internal-combustion engines and composition therefor |
FR1138382A (en) * | 1950-03-31 | 1957-06-13 | Parker Ste Continentale | Method and composition for cleaning and coating metals |
FR1191662A (en) * | 1958-02-18 | 1959-10-21 | Process of accelerated phosphating of irons and ferrous alloys | |
FR2388899A1 (en) * | 1977-04-25 | 1978-11-24 | Parker Ste Continentale | PROCESS FOR PROTECTING IRON AND STEEL AGAINST CORROSION BY OIL PHOSPHATE TREATMENT |
DE3708909A1 (en) * | 1986-04-02 | 1987-10-15 | Werner Dreisoerner Gmbh | Degreasing and corrosion-prevention agent |
DE4129529A1 (en) * | 1991-09-05 | 1993-03-11 | Henkel Kgaa | COMBINED METHOD FOR CLEANING AND RUST PROTECTION OF DIRTY METAL SURFACES BASED ON IRON OR. STOLE |
JPH07166193A (en) * | 1993-12-13 | 1995-06-27 | Betaa Masuku Kk | Composition for washing and coating interior of internal combustion engine and method for washing and coating interior of internal combustion engine using the same composition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52141491A (en) * | 1976-12-23 | 1977-11-25 | Flossman Arthur C | Catalyst composites |
-
1995
- 1995-02-24 EP EP95909979A patent/EP0811676B1/en not_active Expired - Lifetime
- 1995-02-24 KR KR1019970705799A patent/KR100300625B1/en not_active IP Right Cessation
- 1995-02-24 WO PCT/JP1995/000281 patent/WO1996026256A1/en active IP Right Grant
- 1995-02-24 DE DE69531899T patent/DE69531899T2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2626225A (en) * | 1947-08-18 | 1953-01-20 | Gulf Research Development Co | Method of cleaning internal-combustion engines and composition therefor |
FR1138382A (en) * | 1950-03-31 | 1957-06-13 | Parker Ste Continentale | Method and composition for cleaning and coating metals |
FR1191662A (en) * | 1958-02-18 | 1959-10-21 | Process of accelerated phosphating of irons and ferrous alloys | |
FR2388899A1 (en) * | 1977-04-25 | 1978-11-24 | Parker Ste Continentale | PROCESS FOR PROTECTING IRON AND STEEL AGAINST CORROSION BY OIL PHOSPHATE TREATMENT |
DE3708909A1 (en) * | 1986-04-02 | 1987-10-15 | Werner Dreisoerner Gmbh | Degreasing and corrosion-prevention agent |
DE4129529A1 (en) * | 1991-09-05 | 1993-03-11 | Henkel Kgaa | COMBINED METHOD FOR CLEANING AND RUST PROTECTION OF DIRTY METAL SURFACES BASED ON IRON OR. STOLE |
JPH07166193A (en) * | 1993-12-13 | 1995-06-27 | Betaa Masuku Kk | Composition for washing and coating interior of internal combustion engine and method for washing and coating interior of internal combustion engine using the same composition |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 095, no. 009, 31 October 1995 & JP 07 166193 A (BETAA MASUKU KK), 27 June 1995, * |
See also references of WO9626256A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1600492A1 (en) * | 2004-05-19 | 2005-11-30 | ERC Emissions-Reduzierungs-Concepte GmbH | Process and means for avoiding damage by corrosion during the combustion of low sulfur fuels |
EP1905817A1 (en) | 2006-09-28 | 2008-04-02 | Denso Corporation | Cleaning agent composition |
CN105733859A (en) * | 2016-01-28 | 2016-07-06 | 中国民航大学 | Cleaning agent capable of eliminating dirt on heat exchanger of aircraft air conditioner system and preparation method |
Also Published As
Publication number | Publication date |
---|---|
EP0811676B1 (en) | 2003-10-08 |
EP0811676A4 (en) | 1998-09-02 |
KR19980702400A (en) | 1998-07-15 |
WO1996026256A1 (en) | 1996-08-29 |
DE69531899T2 (en) | 2004-08-19 |
KR100300625B1 (en) | 2001-09-28 |
DE69531899D1 (en) | 2003-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5998343A (en) | Composition for cleaning and coating inside of internal combustion engine and method for cleaning and coating inside of internal combustion engine using said composition | |
JP3903443B2 (en) | Method for producing iron phosphate conversion surface | |
US4197140A (en) | Process for cleaning internal combustion engine cylinders | |
EP0811676B1 (en) | Composition for cleaning and coating the interior of an internal combustion engine and method for cleaning and coating the interior of an internal combustion engine therewith | |
US5340488A (en) | Composition for cleaning an internal combustion engine | |
Kano et al. | Wear resistance properties of ceramic rocker arm pads | |
US2259872A (en) | Flushing composition | |
US5324363A (en) | Method for carbonaceous deposit removal and for reducing engine octane requirement using an aqueous base | |
Chamberlin et al. | Balancing crankcase lubricant performance with catalyst life | |
CN1068902C (en) | Composition for cleaning and coating the interior of an internal combustion engine and its using method | |
Broeze et al. | Sulphur in diesel fuels | |
US3044860A (en) | Lubricating oil detergency testing | |
Rogers et al. | Lubricant Studies in Rotary-Combustion Engines | |
US2556173A (en) | Cleaning fluid for desludging internal-combustion engines | |
Barton et al. | Advantages of Synthetic Automotive Engine Lubricants | |
Caprotti et al. | Protecting diesel fuel injection systems | |
Asseff | Multifunctional gasoline additives reduce engine deposits | |
Yonekawa et al. | The Study on Combustion Chamber Deposit (Part 3) Relationship between Combustion Chamber Deposits and Octane Requirement Increase | |
JP2006307820A (en) | Cleaning method of internal combustion engine of automobile or the like | |
Rosen | Additive Oils Past-Present-Future | |
Kerley | A history of aircraft piston engine lubricants | |
RU2609767C1 (en) | Multifunctional complex additive to petrol | |
Raymond | Engineering Challenges to American Automotive and Petroleum Research | |
KR20020015162A (en) | The cleaning solution composite for an internal-combustion engine | |
US2471390A (en) | Flushing composition for engine lubricating systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970812 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19980714 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20010921 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69531899 Country of ref document: DE Date of ref document: 20031113 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040709 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090225 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090520 Year of fee payment: 15 Ref country code: DE Payment date: 20090430 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100224 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100224 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090223 Year of fee payment: 15 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20110616 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20110616 |