EP0811117A1 - Fremdgezündete brennkraftmaschine mit direkteinspritzung - Google Patents

Fremdgezündete brennkraftmaschine mit direkteinspritzung

Info

Publication number
EP0811117A1
EP0811117A1 EP96923870A EP96923870A EP0811117A1 EP 0811117 A1 EP0811117 A1 EP 0811117A1 EP 96923870 A EP96923870 A EP 96923870A EP 96923870 A EP96923870 A EP 96923870A EP 0811117 A1 EP0811117 A1 EP 0811117A1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion engine
internal combustion
valve
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96923870A
Other languages
English (en)
French (fr)
Inventor
Martin Müller
Uwe Maienberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0811117A1 publication Critical patent/EP0811117A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10072Intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/024Increasing intake vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • F02F2001/246Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis and orientated radially from the combustion chamber surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention is based on a spark-ignition internal combustion engine with direct injection according to the preamble of claim 1.
  • a spark-ignition internal combustion engine with direct injection is already known (EP 0 488 254 B1), which, as shown in an exemplary embodiment in FIG. 1, has four cylinders or has four combustion chambers, each with a fuel injection valve, which injects the fuel directly into the combustion chamber, so that there is a relatively narrowly delimited cloud of fuel droplets in the combustion chamber.
  • the fuel droplet cloud is laminated and, due to a specially shaped piston head, reaches a spark plug in the shape of a vortex, which initiates a time-controlled combustion of the fuel droplet cloud.
  • the internal mixture formation by means of the direct injection
  • Fuel injection valve is known to the person skilled in the art as a so-called stratified charge or charge stratification.
  • the state of the stratified charge or the charge stratification in the combustion chambers is limited to the operating range of the lower partial load of the internal combustion engine, in particular to the idling range.
  • the relatively narrowly delimited fuel droplet cloud enables combustion to be carried out with a large excess of air in the combustion chamber, which leads to a reduction in fuel consumption and in emissions of harmful exhaust gas components in the exhaust gas.
  • the fuel injector In the area of higher load of the internal combustion engine, in particular in the area of the upper partial load and the full load, it is necessary to use the fuel injector increase the amount of fuel delivered in order to meet the desired, higher power requirement.
  • the amount of fuel emitted by the fuel injector is so high that a state of charge stratification in the combustion chambers can no longer be achieved, so that an essentially homogeneous distribution of the fuel in the combustion chambers is aimed at, as before, with almost no fuel and excess air stoichiometric. Burn fuel-air ratio.
  • an electromotive throttle valve is provided in the prior art mentioned above, which is rotatably housed in an intake pipe of the internal combustion engine. Downstream of the throttle valve, the intake pipe opens into an intake manifold, which feeds the air sucked in by the internal combustion engine via the intake pipe into individual supply lines to the intake valves of the cylinders.
  • a feed opening is provided in the intake pipe downstream of the throttle valve, from which fuel is emitted into the feed line, which comes from an electromagnetically actuated valve.
  • the valve is part of a fuel evaporation retention system of a fuel tank of the internal combustion engine and is sufficiently known to the person skilled in the art as a so-called regeneration valve or tank ventilation valve.
  • the fuel evaporation retention system also has a
  • Adsorption filter which is filled with an adsorption medium, in particular with activated carbon, around which from the Intermediately store the fuel vapors outgassing the fuel vapors.
  • the fuel vapors temporarily stored in the adsorption filter are discharged from the supply opening into the intake pipe by means of the valve in certain operating areas of the internal combustion engine, in order to get evenly into the combustion chambers of the cylinders via the intake pipe distributor, where they are subsequently burned. Due to the limited storage capacity of the adsorption filter, it must be regenerated, that is, discharged from the stored fuel, for which purpose
  • Ventilation line is provided on the adsorption filter, into which air can flow in an open position of the valve, which then entrains the fuel that is temporarily stored in the adsorption filter.
  • the internal combustion engine can no longer produce a stratified charge state in the combustion chamber since the fuel mixes with air as soon as the inlet valve overflows.
  • the advantages of charge stratification in terms of fuel consumption and reduction of the proportion of harmful components in the exhaust gas can therefore no longer be achieved. Because of this, it is provided in the stated prior art to carry out the introduction of the fuel by means of the valve only in the operating range of the upper partial load and in the full load range, since in these operating ranges there should be combustion with a homogeneous distribution of the fuel in the combustion chambers, which can only be influenced by the valve from an external supply of additional fuel.
  • FIG. 11 of the prior art mentioned at the beginning shows a second exemplary embodiment of a spark-ignition internal combustion engine with direct injection.
  • the internal combustion engine has four cylinders or four combustion chambers, each with two intake and two
  • Each inlet valve is separately connected to the intake manifold via a feed line, so that two feed lines lead to the two inlet valves per cylinder for each cylinder.
  • one of the two supply lines per cylinder has an auxiliary motor-operated throttle element in the form of a throttle valve rotatably accommodated in the one supply line and a feed opening in the supply line downstream of this throttle valve.
  • the four feed openings in the eight feed lines which are provided downstream of the four throttle valves and are shown in FIG. 11, are connected to one another and together with the valve, for example by means of hose lines.
  • the fuel is introduced by means of the valve in such a way that the throttle valves are closed in the lower load area of the internal combustion engine and open somewhat in the higher load area, so that downstream of the throttle valves, a negative pressure is generated in the supply lines, with the aid of which, in the open valve, that in the adsorption filter cached fuel can be sucked into the supply lines without the need for an additional pumping device.
  • the introduction of the fuel by means of the valve interrupts the state of the stratified charge provided in the combustion chambers during the regeneration of the adsorption filter.
  • Claim 1 has the advantage that the supply of fuel by means of a valve Fuel evaporation retention system of a fuel tank of the internal combustion engine takes place in such a way that the state of the stratified charge, characterized by combustion with a high excess of air, can be maintained in at least one of the combustion chambers or in several or in most combustion chambers of the internal combustion engine even during the regeneration of the adsorption filter. This advantageously results in a further reduction in fuel consumption and the proportion of harmful exhaust gas components of the internal combustion engine. It is also of particular advantage that the spark-ignition internal combustion engine according to the invention with direct injection is constructed more simply and requires fewer components. In particular, a pump device provided in the prior art or a plurality of throttle valves in the
  • Feed lines to the intake valves of the internal combustion engine are dispensed with.
  • Claim 1 specified spark-ignition internal combustion engine with direct injection possible.
  • FIG. 1 shows an internal combustion engine in a schematically simplified representation according to a first exemplary embodiment according to the invention
  • FIG. 2 shows a detail of the internal combustion engine according to a second exemplary embodiment according to the invention
  • FIG. 3 shows a detail of the internal combustion engine according to a third exemplary embodiment according to the invention. Description of the exemplary embodiments
  • Embodiment of a spark ignition internal combustion engine 1 with direct injection in a schematically simplified
  • the internal combustion engine 1 has an engine block 2 which, for example, has four cylinders 4, which are identified by corresponding dashed, circular lines in FIGS. 1 to 3. However, it is also possible to provide an internal combustion engine having two, three, five, six or more cylinders. Pistons, not shown, are accommodated in the cylinders 4 in a known manner. To move the pistons, fuel is burned in combustion chambers 5 of the internal combustion engine 1 delimited by pistons and cylinders 4, the pressure energy resulting from the combustion being converted into corresponding kinetic energy of the pistons. The gas exchange in the combustion chambers 5 of the internal combustion engine 1 can take place, for example, according to the four-stroke process or the two-stroke process. To control the
  • Gas exchange valves of the known type are provided in the combustion chambers 5 of the internal combustion engine 1.
  • each cylinder 4 or combustion chamber 5 of the internal combustion engine 1 has an inlet valve 7 and an outlet valve 8. Fuel is fed into the combustion chambers 5 of the internal combustion engine 1 by means of at least one fuel injection valve 9 per combustion chamber 5.
  • The, for example, four fuel injection valves 9 shown schematically in FIG. 1 are, for example, electromagnetically operable and are connected via electric lines 17 to an electronic control unit 22, which can control the fuel injection valves 9 accordingly.
  • the fuel injector 9 provided for each cylinder 4 delivers the fuel directly into the combustion chamber 5 Internal combustion engine 1, preferably towards the end of the compression stroke immediately before ignition in a finely atomized form, so that there is a relatively narrowly delimited cloud of fuel droplets in combustion chamber 5.
  • a bottom of the piston can have a specially designed piston shape, for example a nose-bowl shape, as is shown in EP 0 488 254 B1, in order to cause an air vortex in the combustion chamber 5, in which fuel, when the inlet valve 7 is open is emitted by means of the fuel injection valve 9, so that the fuel droplet cloud can spread into the combustion chamber 5.
  • the fuel droplet cloud for example laminated, arrives at an ignition device provided in the combustion chamber 5, in particular a spark plug, which ignites the fuel drop cloud in a time-controlled manner.
  • Fuel droplet cloud causes combustion in the combustion chamber 5, which takes place on average with a large excess of air or with a heavily emaciated mixture.
  • Such internal mixture formation by means of a direct-injection fuel injection valve 9 is known to the person skilled in the art as a so-called stratified charge or landing stratification.
  • the control of the power of the internal combustion engine 1 takes place essentially by changing the amount of fuel emitted by the fuel injection valves 9 into the combustion chambers 5 and partly by changing the air mass drawn in by the internal combustion engine 1.
  • the state of the landing stratification in the combustion chambers 5 is limited to the region of the lower and middle partial load of the internal combustion engine, in particular to idling, in order to achieve an improved efficiency of the internal combustion engine 1 by burning the fuel with a high excess of air, so that the
  • Fuel consumption and the proportion of harmful exhaust gas components is reduced.
  • the amount of fuel emitted by the fuel injection valves 9 is increased in such a way that there is an essentially homogeneous distribution of the fuel in the combustion chambers 5.
  • a main throttle element 10 is provided which can be actuated, for example, by an electromotive actuator 11.
  • the main throttle body As shown in Figure 1, the main throttle body
  • Internal combustion engine 1 is housed in order to appropriately measure the amount of air drawn in by the internal combustion engine 1 in the intake pipe 14. To control the actuator
  • Fuel injector 9 delivered, certain amount of fuel to realize the state of the charge stratification in the combustion chambers 5.
  • the intake pipe 14 opens into an intake manifold 15, which has a number of supply lines 16 corresponding to the number of cylinders, that is to say four supply lines 16 in the exemplary embodiment.
  • the intake manifold 15 distributes the air flowing from the intake pipe 14 into the intake manifold 15 into the supply lines 16 to the inlet valves 7 and to the combustion chambers 5, respectively.
  • the exhaust valves 8 are connected in a known manner to an exhaust manifold 18 which connects the exhaust gases of the combustion chambers 5 to one passes on the exhaust manifold 18 connected catalyst 19 for subsequent post-combustion or after-reaction.
  • a lambda probe 20 is introduced into the exhaust gas stream upstream of the catalytic converter 19 and is connected to the electronic control unit 22 via an electrical line 21.
  • the internal combustion engine 1 has a fuel evaporation retention system which serves to retain the constituents of the fuel that outgas from a fuel tank 25 of the internal combustion engine 1.
  • an adsorption filter 27 is provided, which is connected to the fuel tank 25 via a tank line 28 and to a valve 30 via a valve line 29.
  • the adsorption filter 27 is filled with an adsorption medium, in particular with activated carbon, for storing the fuel vapors.
  • the valve 30 is designed to be electromagnetically actuable and serves to introduce the fuel temporarily stored in the adsorption filter 27 into certain ones Operating ranges of the internal combustion engine 1.
  • Such a valve 30 is sufficiently known to the person skilled in the art as a so-called regeneration valve or tank ventilation valve.
  • the valve 30 is connected to the electronic control device 22 via an electrical line 31 in order to be actuated by it, for example in a clocked manner.
  • the valve 30 is connected via a connecting line 32 only to a partial number of the cylinders 4 or combustion chambers 5 of the internal combustion engine 1, preferably to a single combustion chamber.
  • a connecting line 32 only to a partial number of the cylinders 4 or combustion chambers 5 of the internal combustion engine 1, preferably to a single combustion chamber.
  • the introduction into a single combustion chamber 6 is shown, which is referred to below as the regeneration combustion chamber 6.
  • the fuel temporarily stored in the adsorption filter 27 is discharged from the valve 30 via the connecting line 32 into a supply opening 34 provided in the wall or inside the supply line 16, which then flows with the flow in the supply line 16 in the direction of an arrow 47 Air mixed to flow into the regeneration combustion chamber 6 in the form of a fuel-air mixture.
  • the valve 30 releases the fuel into the regeneration combustion chamber 6 only in certain operating ranges of the internal combustion engine 1 and is controlled accordingly by the electronic control unit 22.
  • a secondary throttle element 36 is accommodated in the feed line 16 to the regeneration combustion chamber 6, which is designed, for example, in the form of a throttle valve 36, which can be actuated, for example, by an electromotive actuator 37.
  • the actuator 37 is connected via an electrical line 38 to the electronic control unit 22 connected to be controlled by this.
  • the vaporized fuel is introduced only in a partial number of combustion chambers 5, in the exemplary embodiment into one regeneration combustion chamber 6, the remaining, for example three, combustion chambers 5 can be in the region of the lower and middle partial load and in particular when the internal combustion engine is idling 1 the combustion can be carried out in the state of the charge stratification with a high excess of air.
  • the introduction of the fuel for regeneration purposes of the adsorption filter 27 by means of the valve 30 into the regeneration combustion chamber 6 is preferably provided in the lower load area of the internal combustion engine 1, in particular when idling, since in this area in the
  • a sufficient negative pressure can be provided to the supply line 16 to the regeneration combustion chamber 6 with the aid of the secondary throttle valve 36 which more or less closes the cross section of the supply line 16.
  • the secondary throttle valve 36 assumes a position in which the power output by the regeneration combustion chamber 6 is adapted to the power of the remaining combustion chambers 5.
  • the combustion in the regeneration combustion chamber 6 is carried out with an essentially stoichiometric fuel-air ratio.
  • the state of the charge stratification in the regeneration combustion chamber 6 can be passed on and the secondary throttle valve 36 can be opened completely for the most part.
  • FIG. 2 a partial representation of internal combustion engine 1, shows a second exemplary embodiment of the invention, in which all the same or equivalent parts are identified by the same reference numerals as in the first exemplary embodiment according to FIG. 1.
  • the internal combustion engine 1 although only one cylinder 4 or one combustion chamber 6 is shown in FIG. 2, also has four cylinders 4 or four combustion chambers 5, for example, which, as shown in FIG. 2, each have two intake valves 7 and two exhaust valves 8 have. However, it is also possible to provide three intake valves and three exhaust valves or any other number of intake valves and exhaust valves.
  • the internal combustion engine 1 although only one cylinder 4 or one combustion chamber 6 is shown in FIG. 2, also has four cylinders 4 or four combustion chambers 5, for example, which, as shown in FIG. 2, each have two intake valves 7 and two exhaust valves 8 have. However, it is also possible to provide three intake valves and three exhaust valves or any other number of intake valves and exhaust valves.
  • the internal combustion engine 1 although only one cylinder 4 or one combustion
  • Supply line 16 to the regeneration combustion chamber 6 has a number of branches 44, 45 corresponding to the number of inlet valves 7.
  • the two branches 44, 45 provided in the exemplary embodiment divide the air flowing in the supply line 16 or by means of the delivery of fuel by means of of the valve 30 in the supply line 16 fuel-air mixture separately to the two inlet valves 7.
  • the branches 44, 45 extend only partially from the inlet valves 7 into the feed line 16, so that an unbranched part 49 remains in the feed line 16 upstream of the branches 44, 45.
  • the feed opening 34 can open into the feed line 16 such that, as shown in solid lines, it is closer to one of the branches 44, 45, or that, as shown in broken lines at 34 ', it is symmetrical to the branches 44, 45 lies.
  • the auxiliary throttle valve 36 can assume various positions when the fuel is introduced by means of the valve 30, so as to measure the air flowing from the intake manifold 15 in the supply line 16 accordingly.
  • FIG. 3 a partial illustration of the internal combustion engine 1, shows a third exemplary embodiment of the invention, in which all the same and equivalent parts are identified by the same reference numerals as in FIGS. 1 and 2.
  • the second exemplary embodiment according to FIG their entire length divided into two branches 44, 45 to separate the air flowing from the intake manifold 15 into the supply line 16 in the branches 44, 45 via the
  • branches 44, 45 flowing air accordingly.
  • the fuel is released by means of the valve 30 in FIG each of the branches 44, 45, which for this purpose have at least one feed opening 34 upstream of the inlet valves 7 and downstream of the throttle valves 36.
  • the control of the two second throttle flaps 36 by means of the electronic control unit 22 can take place, for example, in such a way that both throttle flaps 36 assume the same swivel position or also a different swivel position in the branches 44, 45.
  • two valves 30 which discharge volatilized fuel via separate connecting lines 36 into each feed opening 34 of the branches 44 and 45.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

Es wird eine fremdgezündete Brennkraftmaschine (1) mit Direkteinspritzung vorgeschlagen, mit einem Ansaugrohr (14), mit wenigstens zwei Brennräumen (5), mit je Brennraum (5) wenigstens einem Einlaßventil (7) und wenigstens einem Auslaßventil (8), mit einem in den Brennraum (5) direkteinspritzenden Brennstoffeinspritzventil (9) und mit einer Zuführleitung (16) zu dem wenigstens einen Einlaßventil (7) jedes Brennraums (5), in welcher von einem Drosselorgan (36) steuerbare Luft aus dem Ansaugrohr (14) strömt, wobei der Luft aus einem Brennstoffverdunstungs-Rückhaltesystem eines Brennstofftanks (25) der Brennkraftmaschine verdunsteter Brennstoff stromabwärts des Drosselorgans (36) zuführbar ist, wobei die Einleitung des verdunsteten Brennstoffs aus dem Brennstoffverdunstungs-Rückhaltesystem in die Zuführleitung (16) nur bei einer Teilanzahl der Brennräume (5), insbesondere bei einem einzelnen Brennraum (6) der Brennkraftmaschine (1), erfolgt.

Description

Fremdgezündete Brennkraftmaschine mit Direkteinspritzunα
Stand der Technik
Die Erfindung geht aus von einer fremdgezündeten Brennkraftmaschine mit Direkteinspritzung nach der Gattung des Anspruchs 1. Es ist schon eine fremdgezündete Brennkraftmaschine mit Direkteinspritzung bekannt (EP 0 488 254 Bl) , die, wie in einem Ausführungsbeispiel in Figur 1 dargestellt ist, über vier Zylinder beziehungsweise vier Brennräume mit jeweils einem Brennstoffeinspritzventil verfügt, welches den Brennstoff in den Brennraum direkt einspritzt, so daß sich eine relativ eng begrenzte Brennstofftropfchenwolke im Brennraum ergibt. Die
Brennstofftröpfchenwolke ist laminar geschichtet und gelangt aufgrund eines speziell geformten Kolbenbodens wirbeiförmig zu einer Zündkerze, die eine zeitlich gesteuerte Verbrennung der Brennstofftropfchenwolke einleitet. Die innere Gemischbildung mittels des direkteinspritzenden
Brennstoffeinspritzventils ist dem Fachmann als sogenannte Schichtladung oder Ladungsschichtung bekannt. Der Zustand der Schichtladung beziehungsweise der LadungsSchichtung in den Brennräumen ist jedoch auf den Betriebsbereich der unteren Teillast der Brennkraftmaschine, insbesondere auf den Leerlaufbereich, beschränkt. Die relativ eng begrenzte Brennstofftropfchenwolke ermöglicht das Durchführen einer Verbrennung mit hohem Luftüberschuß im Brennraum, die zu einer Reduzierung des Brennstoffverbrauchs sowie der Emissionen an schädlichen Abgasbestandteilen im Abgas führt. Im Bereich höherer Last der Brennkraftmaschine, insbesondere im Bereich der oberen Teillast und der Vollast, ist es jedoch erforderlich, die vom Brennstoffeinspritzventil abgegebene Brennstoffmenge zu erhöhen, um damit der gewünschten, höheren Leistungsanforderung gerecht zu werden. Die vom Brennstoffeinspritzventil abgegebene Brennstoffmenge ist derart hoch, daß sich ein Zustand der LadungsSchichtung in den Brennräumen nicht mehr verwirklichen läßt, so daß eine im wesentlichen homogene Verteilung des Brennstoffs in den Brennräumen angestrebt wird, um den Brennstoff, wie bisher üblich, ohne Luftüberschuß mit nahezu stöchiometrischen-. Brennstoff-Luft-Verhältnis zu verbrennen.
Um den Übergang von dem durch ein im Mittel extrem mageres Brennstoff-Luft-Gemisch gekennzeichneten Zustand der LadungsSchichtung zu dem durch eine homogene Verteilung des Brennstoffs gekennzeichneten Zustand mit bestimmtem Brennstoff-Luft-Verhältnis in der oberen Teillast und insbesondere der Vollast in den Brennräumen der Brennkraftmaschine zu bewerkstelligen, ist im eingangs erwähnten Stand der Technik eine elektromotorisch betätigbare Drosselklappe vorgesehen, die in einem Ansaugrohr der Brennkraftmaschine drehbar untergebracht ist. Stromabwärts der Drosselklappe mündet das Ansaugrohr in einen Ansaugrohrverteiler, der die von der Brennkraftmaschine über das Ansaugrohr angesaugte Luft in einzelnen Zuführleitungen den Einlaßventilen der Zylinder zuführt.
Des weiteren ist stromabwärts der Drosselklappe eine Zuführδffnung im Ansaugrohr vorgesehen, aus der Brennstoff in die Zuführleitung abgegeben wird, der von einem elektromagnetisch betätigbaren Ventil stammt. Das Ventil ist Teil eines Brennstoffverdunstungs-Rückhaltesystems eines Brennstofftanks der Brennkraftmaschine und dem Fachmann als sogenanntes Regenerierventil oder Tankentlüftungsventil hinreichend bekannt. Das Brennstoffverdunstungs- Rückhaltesystem verfügt außerdem über einen
Adsorptionsfilter, der mit einem Adsorptionsmedium, insbesondere mit Aktivkohle, gefüllt ist, um die aus dem Brennstofftank ausgasenden Brennstoffdämpfe zwischenzuspeichern. Die im Adsorptionsfilter zwischengespeicherten Brennstoffdämpfe werden mittels des Ventils in bestimmten Betriebsbereichen der Brennkraftmaschine aus der Zuführöffnung in das Ansaugrohr abgegeben, um über den Ansaugrohrverteiler gleichmäßig in die Brennräume der Zylinder zu gelangen, wo sie anschließend verbrannt werden. Aufgrund der begrenzten Speicherkapazität des Adsorptionsfilters muß dieser regeneriert, das heißt, vom gespeicherten Brennstoff entladen werden, wozu eine
Belüftungsleitung am Adsorptionsfilter vorgesehen ist, in welche Luft in einer Offenstellung des Ventils einströmen kann, die dann den im Adsorptionsfilter zwischengespeicherten Brennstoff mitreißt. Durch die Einleitung des Brennstoffs vor dem Einlaßventil der
Brennkraftmaschine kann im Brennraum kein Zustand der Schichtladung mehr hergestellt werden, da sich der Brennstoff bereits beim Überströmen des Einlaßventils mit Luft vermischt. Die Vorteile der LadungsSchichtung in bezug auf Brennstoffverbrauch und Verringerung des Anteils schädlicher Bestandteile im Abgas können daher nicht mehr erreicht werden. Aufgrund dessen ist im angegebenen Stand der Technik vorgesehen, die Einleitung des Brennstoffs mittels des Ventils nur im Betriebsbereich der oberen Teillast und im Bereich der Vollast durchzuführen, da in diesen Betriebsbereichen eine Verbrennung mit einer homogenen Verteilung des Brennstoffs in den Brennräumen vorhanden sein soll, die von einer äußeren Zufuhr zusätzlichen Brennstoffs mittels des Ventils nur wenig beeinflußbar ist. Im Bereich der oberen Teillast und insbesondere im Bereich der Vollast ist jedoch kein ausreichender Unterdruck im Ansaugrohr vorhanden, so daß zusätzlich eine Pumpvorrichtung vorgesehen ist, die Luft in den Adsorptionsfilter bläst, um so den im Adsorptionsfilter zwischengespeicherten Brennstoff in das Ansaugrohr zu befördern. In Figur 11 des eingangs erwähnten Standes der Technik ist ein zweites Ausführungsbeispiel einer fremdgezündeten Brennkraftmaschine mit Direkteinspritzung gezeigt. Die Brennkraftmaschine besitzt vier Zylinder beziehungsweise vier Brennräume, die jeweils zwei Einlaß- und zwei
Auslaßventile aufweisen. Jedes Einlaßventil ist über eine Zuführleitung separat an den Ansaugrohrverteiler angeschlossen, so daß zu jedem Zylinder zwei Zuführleitungen zu den zwei Einlaßventilen je Zylinder führen. Dabei ist in einer der zwei Zuführleitungen je Zylinder ein elektromotorisch betätigbares Nebendrosselorgan in Form einer Drosselklappe drehbar in der einen Zuführleitung untergebracht und stromabwärts dieser Drosselklappe eine Zuführδffnung in der Zuführleitung vorgesehen. Die in Figur 11 dargestellten, stromabwärts der vier Drosselklappen vorgesehenen, vier Zuführöffnungen in den acht Zuführleitungen sind zum Beispiel mittels Schlauchleitungen untereinander und gemeinsam mit dem Ventil verbunden. Die Einleitung des Brennstoffs mittels des Ventils erfolgt derart, daß die Drosselklappen im unteren Lastbereich der Brennkraftmaschine geschlossen sind und im Bereich höher Last etwas öffnen, so daß stromabwärts der Drosselklappen ein Unterdruck in den Zuführleitungen erzeugt wird, mit dessen Hilfe bei offenem Ventil der im Adsorptionsfilter zwischengespeicherte Brennstoff in die Zuführleitungen eingesaugt werden kann, ohne daß hierzu eine zusätzliche Pumpvorrichtung erforderlich wäre. Die Einleitung des Brennstoffs mittels des Ventils unterbricht jedoch für die Zeit der Regenerierung des Adsorptionsfilters den in den Brennräumen vorgesehenen Zustand der Schichtladung.
Vorteile der Erfindung
Die erfindungsgemäße fremdgezündete Brennkraftmaschine mit Direkteinspritzung mit den kennzeichnenden Merkmalen des
Anspruchs 1 hat demgegenüber den Vorteil, daß die Zufuhr von Brennstoff mittels eines Ventils eines Brennstoffverdunstungs-Rückhaltesystems eines Brennstofftanks der Brennkraftmaschine derart erfolgt, daß der durch eine Verbrennung bei hohem Luftüberschuß gekennzeichnete Zustand der Schichtladung in wenigstens einem der Brennräume oder in mehreren oder in den meisten Brennräumen der Brennkraftmaschine auch während der Regeneration des Adsorptionsfilters aufrechterhalten werden kann. Vorteilhafterweise ergibt sich damit eine weitere Verringerung des Brennstoffverbrauchs sowie des Anteils schädlicher Abgasbestandteile der Brennkraftmaschine. Von besonderem Vorteil ist außerdem, daß die erfindungsgemäße fremdgezündete Brennkraftmaschine mit Direkteinspritzung einfacher aufgebaut ist und weniger Bauteile benötigt. Insbesondere kann auf eine im Stand der Technik vorgesehene Pumpvorrichtung oder auf mehrere Drosselklappen in den
Zuführleitungen zu den Einlaßventilen der Brennkraftmaschine verzichtet werden.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im
Anspruch 1 angegebenen fremdgezündeten Brennkraftmaschine mit Direkteinspritzung möglich.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Brennkraftmaschine in schematisch vereinfachter Darstellungsweise gemäß einem ersten erfindungsgemäßen Ausführungsbeispiel, Figur 2 einen Ausschnitt der Brennkraftmaschine gemäß einem zweiten erfindungsgemäßen Ausführungsbeispiel, Figur 3 einen Ausschnitt der Brennkraftmaschine gemäß einem dritten erfindungsgemäßen Ausführungsbeispiel. Beschreibung der Ausfuhrungsbeispiele
In Figur 1 ist ein erstes erfindungsgemäßes
Ausführungsbeispiel einer fremdgezündeten Brennkraftmaschine 1 mit Direkteinspritzung in schematisch vereinfachter
Darstellungsweise gezeigt. Die Brennkraftmaschine 1 besitzt einen Motorblock 2, der beispielsweise vier Zylinder 4 aufweist, die in den Figuren 1 bis 3 durch entsprechend gestrichelte, kreisrunde Linien gekennzeichnet sind. Es ist aber auch möglich, eine zwei, drei, fünf, sechs oder mehr Zylinder aufweisende Brennkraftmaschine vorzusehen. In bekannter Weise sind in den Zylindern 4 nicht näher dargestellte Kolben untergebracht. Zum Bewegen der Kolben wird Brennstoff in von Kolben und Zylindern 4 begrenzten Brennräumen 5 der Brennkraftmaschine 1 verbrannt, wobei die aufgrund der Verbrennung entstehende Druckenergie in entsprechende Bewegungsenergie der Kolben umgesetzt wird. Der Gaswechsel in den Brennräumen 5 der Brennkraftmaschine 1 kann dabei beispielsweise nach dem Viertaktverfahren oder nach dem Zweitaktverfahren erfolgen. Zur Steuerung des
Gaswechsels in den Brennräumen 5 der Brennkraftmaschine 1 sind Gaswechselventile bekannter Bauart vorgesehen.
Wie in Figur 1 dargestellt ist, verfügt ein jeder Zylinder 4 beziehungsweise Brennraum 5 der Brennkraftmaschine 1 über jeweils ein Einlaßventil 7 und jeweils ein Auslaßventil 8. Die Zufuhr von Brennstoff in die Brennräume 5 der Brennkraftmaschine 1 erfolgt mittels wenigstens einem Brennstoffeinspritzventil 9 je Brennraum 5. Die in Figur 1 schematisch dargestellten, beispielsweise vier Brennstoffeinspritzventile 9 sind zum Beispiel elektromagnetisch betätigbar ausgebildet und über elektrische Leitungen 17 mit einem elektronischen Steuergerät 22 verbunden, welches die Brennstoffeinspritzventile 9 entsprechend ansteuern kann. Das je Zylinder 4 vorgesehene Brennstoffeinspritzventil 9 gibt den Brennstoff direkt in den Brennraum 5 der Brennkraftmaschine 1, vorzugsweise gegen Ende des Verdichtungstaktes unmittelbar vor der Zündung in fein zerstäubter Form, ab, so daß sich eine relativ eng begrenzte Brennstofftropfchenwolke im Brennraum 5 ergibt. Zur Optimierung der Gemischbildung kann ein Boden des Kolbens eine speziell ausgebildete Kolbenform, beispielsweise eine Nasen-Muldenform, wie sie in der EP 0 488 254 Bl gezeigt ist, aufweisen, um bei offenem Einlaßventil 7 einen Luftwirbel im Brennraum 5 zu bewirken, in welchen Brennstoff mittels des Brennstoffeinspritzventils 9 abgegeben wird, so daß sich die Brennstofftröpfchenwolke in den Brennraum 5 ausbreiten kann. Die Brennstofftropfchenwolke gelangt dabei beispielsweise laminar geschichtet zu einer im Brennraum 5 vorgesehenen Zündvorrichtung, insbesondere einer Zündkerze, welche die Brennstofftropfchenwolke zeitlich gesteuert entflammt. Die relativ eng begrenzte
Brennstofftröpfchenwolke bewirkt eine Verbrennung in dem Brennraum 5, die im Mittel bei hohem Luftüberschuß beziehungsweise bei stark abgemagertem Gemisch abläuft. Eine derartige innere Gemischbildung mittels eines direkteinspritzenden Brennstoffeinspritzventils 9 ist dem Fachmann als sogenannte Schichtladung oder LandungsSchichtung bekannt.
Die Steuerung der Leistung der Brennkraftmaschine 1 erfolgt im wesentlichen durch Ändern der von den Brennstoffeinspritzventilen 9 in die Brennräume 5 abgegebenen Brennstoffmenge und teilweise durch Ändern der von der Brennkraftmaschine 1 angesaugten Luftmasse. Der Zustand der LandungsSchichtung in den Brennräumen 5 ist auf den Bereich der unteren und mittleren Teillast der Brennkraftmaschine, insbesondere auf den Leerlauf, begrenzt, um durch eine Verbrennung des Brennstoffs bei hohem Luftüberschuß einen verbesserten Wirkungsgrad der Brennkraftmaschine 1 zu erzielen, so daß der
Brennstoffverbrauch und der Anteil schädlicher Abgasbestandteile verringert wird. Im Bereich der oberen Teillast und insbesondere im Bereich der Vollast ist es jedoch erforderlich, vermehrt Brennstoff in die Brennräume 5 mit den Brennstoffeinspritzventilen 9 abzugeben, um damit dem Wunsch an höherer Leistung und höherem Drehmoment gerecht zu werden. Dabei ist es nicht mehr möglich, den Zustand der LadungsSchichtung in den Brennräumen 5 aufrechtzuerhalten, so daß eine stochiometrische Verbrennung des Brennstoffs ohne Luftüberschuß in den Brennräumen 5 angestrebt wird. Dabei wird die von den Brennstoffeinspritzventilen 9 abgegebene Brennstoffmenge derart erhöht, daß sich eine im wesentlichen homogene Verteilung des Brennstoffs in den Brennräumen 5 ergibt. Um den Übergang von dem durch ein extrem mageres Brennstoff- Luft-Gemisch gekennzeichneten Schichtladungszustand zu dem durch eine homogene Verteilung des Brennstoffs gekennzeichneten Zustand mit bestimmtem Brennstoff-Luft- Verhältnis in der oberen Teillast und insbesondere der Vollast in den Brennräumen 5 der Brennkraftmaschine 1 zu bewerkstelligen, ist ein Hauptdrosselorgan 10 vorgesehen, das beispielsweise von einem elektromotorischen Stellantrieb 11 betätigbar ist.
Wie in Figur 1 dargestellt ist, kann das Hauptdrosselorgan
10 zum Beispiel in Form einer Drosselklappe 10 ausgebildet sein, die drehbar in einem Ansaugrohr 14 der
Brennkraftmaschine 1 untergebracht ist, um die im Ansaugrohr 14 von der Brennkraftmaschine 1 angesaugte Luftmenge entsprechend zuzumessen. Zur Ansteuerung des Stellantriebs
11 dient das elektronische Steuergerät 22, das über eine elektrische Leitung 12 mit dem Stellantrieb 11 verbunden ist. Die Ansteuerung der Hauptdrosselklappe 10 erfolgt zum Beispiel derart, daß die von der Brennkraftmaschine 1 angesaugte Luft im Bereich der oberen Teillast im Ansaugrohr 14 soweit gedrosselt wird, daß eine Verbrennung in den Brennräumen 5 der Brennkraftmaschine 1 mit nahezu stδchiometrischem Brennstoff-Luft-Verhältnis (λ=l) durchgeführt wird. Im Bereich der unteren Teillast und des Leerlaufs der Brennkraftmaschine 1 nimmt die Hauptdrosselklappe 10 eine Offenstellung oder eine Zwischenstellung ein, um bei von den
Brennstoffeinspritzventilen 9 abgegebener, bestimmter Brennstoffmenge den Zustand der Ladungsschichtung in den Brennräumen 5 zu verwirklichen.
Das Ansaugrohr 14 mündet in einen Ansaugrohrverteiler 15, der über eine der Zylinderzahl entsprechende Anzahl an Zuführleitungen 16, im Ausführungsbeispiel also über vier Zuführleitungen 16, verfügt. Der Ansaugrohrverteiler 15 verteilt die aus dem Ansaugrohr 14 in den Ansaugrohrverteiler 15 einströmende Luft in die Zuführleitungen 16 zu den Einlaßventilen 7 beziehungsweise zu den Brennräumen 5. Die Auslaßventile 8 sind in bekannter Weise an einen Abgaskrümmer 18 angeschlossen, welcher die Abgase der Brennräume 5 einem an den Abgaskrümmer 18 angeschlossenen Katalysator 19 zur anschließenden Nachverbrennung beziehungsweise Nachreaktion weiterleitet. Zur Überwachung der Verbrennung in den Brennräumen 5 ist stromauf des Katalysators 19 eine Lambdasonde 20 in den Abgasstrom eingebracht, welche über eine elektrische Leitung 21 an das elektronisches Steuergerät 22 angeschlossen ist.
Wie in der Figur 1 weiter dargestellt ist, besitzt die Brennkraftmaschine 1 ein Brennstoffverdunstungs- Rückhaltesystem, das dazu dient, die aus einem Brennstofftank 25 der Brennkraftmaschine 1 ausgasenden Bestandteile des Brennstoffs zurückzuhalten. Hierzu ist ein Adsorptionsfilter 27 vorgesehen, der über eine Tankleitung 28 mit dem Brennstofftank 25 und über eine Ventilleitung 29 an ein Ventil 30 angeschlossen ist. Der Adsorptionsfilter 27 ist zur Speicherung der Brennstoffdämpfe mit einem Adsorptionsmedium, insbesondere mit Aktivkohle, gefüllt. Das Ventil 30 ist elektromagnetisch betätigbar ausgebildet und dient zur Einleitung des im Adsorptionsfilter 27 zwischengespeicherten Brennstoffs in bestimmten Betriebsbereichen der Brennkraftmaschine 1. Ein derartiges Ventil 30 ist dem Fachmann als sogenanntes Regenerierventil oder Tankentlüftungsventil hinreichend bekannt. Das Ventil 30 ist über eine elektrische Leitung 31 an das elektronische Steuergerät 22 angeschlossen, um von diesem beispielsweise getaktet angesteuert zu werden.
Erfindungsgemäß ist das Ventil 30 über eine Anschlußleitung 32 nur mit einer Teilanzahl der Zylinder 4 beziehungsweise Brennräume 5 der Brennkraftmaschine 1, vorzugsweise mit einem einzelnen Brennraum, verbunden. Es ist aber auch möglich, die Einleitung des verdunsteten Brennstoffs mittels des Ventils 30 zum Beispiel bei einer vier Brennräume aufweisenden Brennkraftmaschine 1 in zwei oder sogar drei Brennräumen durchzuführen. In den Ausführungsbeispielen ist die Einleitung in einen einzelnen Brennraum 6 dargestellt, der im folgenden als Regenerier-Brennraum 6 bezeichnet wird. Zu Regeneration des Adsorptionsfilters 27 wird der im Adsorptionsfilter 27 zwischengespeicherte Brennstoff vom Ventil 30 über die Anschlußleitung 32 in eine in der Wandung oder im Innern der Zuführleitung 16 vorgesehenen Zuführöffnung 34 abgegeben, der sich dann mit der in der Zuführleitung 16 in Richtung eines Pfeils 47 strömenden Luft vermischt, um in Form eines Brennstoff-Luft-Gemisches in den Regenerier-Brennraum 6 einzuströmen. In den restlichen drei Brennräumen 5 ist keine derartige Brennstoffzufuhr mittels des Ventils 30 vorgesehen. Das Ventil 30 gibt den Brennstoff nur bei bestimmten Betriebsbereichen der Brennkraftmaschine 1 in den Regenerier-Brennraum 6 ab und wird hierzu von dem elektronischen Steuergerät 22 entsprechend angesteuert.
Stromauf der Zuführöffnung 34 ist in der Zuführleitung 16 zum Regenerier-Brennraum 6 ein Nebendrosselorgan 36 untergebracht, welches beispielsweise in Form einer Drosselklappe 36 ausgebildet ist, die beispielsweise von einem elektromotorischen Stellantrieb 37 betätigbar ist. Der Stellantrieb 37 ist über eine elektrische Leitung 38 an das elektronische Steuergerät 22 angeschlossen, um von diesem gesteuert zu werden.
Aufgrund der begrenzten Speicherkapazität des Adsorptionsfilters 27 ist es erforderlich, diesen zeitweise zu regenerieren, das heißt, mit Luft zu spülen, wozu eine Belüftungsöffnung 40 am Adsorptionsfilter 27 vorgesehen ist. Da die Einleitung des verdunsteten Brennstoffs erfindungsgemäß nur bei einer Teilanzahl der Brennräume 5, im Ausführungsbeispiel in den einen Regenerier-Brennraum 6, durchgeführt wird, kann in den verbleibenden, beispielsweise drei Brennräumen 5 im Bereich der unteren und mittleren Teillast und insbesondere im Leerlauf der Brennkraftmaschine 1 die Verbrennung weiter im Zustand der Ladungsschichtung mit hohem Luftüberschuß durchgeführt werden. Die Einleitung des Brennstoffs zu Regenerationszwecken des Adsorptionsfilters 27 mittels des Ventils 30 in den Regenerier-Brennraum 6 ist vorzugsweise im unteren Lastbereich der Brennkraftmaschine 1, insbesondere im Leerlauf, vorgesehen, da in diesem Bereich in der
Zuführleitung 16 zum Regenerier-Brennraum 6 mit Hilfe der den Querschnitt der Zuführleitung 16 mehr oder weniger schließenden Nebendrosselklappe 36 ein ausreichender Unterdruck bereitgestellt werden kann. Dabei nimmt die Nebendrosselklappe 36 eine Stellung ein, bei der eine Anpassung der vom Regenerier-Brennraum 6 abgegebenen Leistung an die Leistung der restlichen Brennräume 5 erfolgt. Während der Einleitung des Brennstoffs mittels des Ventils 30 in die Zuführleitung 16 ist vorgesehen, daß die Verbrennung im Regenerier-Brennraum 6 mit im wesentlichen stδchiometrischem Brennstoff-Luft-Verhältnis durchgeführt wird. In Zeiten, in denen keine Einleitung von Brennstoff mittels des Ventils 30 vorgesehen ist, kann, wie in den verbleibenden Brennräumen 5, auf den Zustand der LadungsSchichtung im Regenerier-Brennraum 6 übergegangen und die Nebendrosselklappe 36 vorwiegend vollständig geöffnet werden. Reicht gegebenenfalls der im Adsorptionsfilter 27 zwischengespeicherte Brennstoff nicht aus, um eine homogene Verteilung des Brennstoffs im Regenerier-Brennraum 6 zu erhalten, so kann mit dem im Regenerier-Brennraum 6 untergebrachten Brennstoffeinspritzventil 9 noch zusätzlich Brennstoff hinzugeführt werden. Die Anforderung an die Betriebssicherheit der Nebendrosselklappe 36 ist dabei gering, da bei einem Versagen des Stellantriebs 37 oder bei einem Verklemmen der Nebendrosselklappe 36 stets ein eingeschränkter Betrieb der Brennkraftmaschine 1 durch eine entsprechende Steuerung der Hauptdrosselklappe 10 möglich ist.
In Figur 2, einer Teildarstellung der Brennkraftmaschine 1, ist ein zweites erfindungsgemäßes Ausführungsbeispiel der Erfindung gezeigt, bei dem alle gleichen oder gleichwirkenden Teile mit den gleichen Bezugszeichen wie im ersten Ausführungsbeispiel nach Figur 1 gekennzeichnet sind. Die Brennkraftmaschine 1 hat, obwohl in der Figur 2 nur ein Zylinder 4 beziehungsweise ein Brennraum 6 dargestellt ist, zum Beispiel ebenfalls vier Zylinder 4 beziehungsweise vier Brennräume 5, die, wie in der Figur 2 dargestellt ist, über jeweils zwei Einlaßventile 7 und zwei Auslaßventile 8 verfügen. Es ist aber auch möglich, drei Einlaßventile und drei Auslaßventile oder eine beliebige, andere Anzahl von Einlaßventilen und Auslaßventilen vorzusehen. Die
Zuführleitung 16 zum Regenerier-Brennraum 6 besitzt eine der Anzahl der Einlaßventile 7 entsprechende Anzahl an Verzweigungen 44, 45. Die im Ausführungsbeispiel vorgesehenen, zwei Verzweigungen 44, 45 teilen dabei die in der Zuführleitung 16 strömende Luft oder ein, durch die Abgabe von Brennstoff mittels des Ventils 30 in der Zuführleitung 16 entstandenes Brennstoff-Luft-Gemisch separat den zwei Einlaßventilen 7 zu. Die Verzweigungen 44, 45 erstrecken sich nur teilweise von den Einlaßventilen 7 in die Zuführleitung 16 hinein, so daß stromaufwärts der Verzweigungen 44, 45 ein unverzweigter Teil 49 in der Zuführleitung 16 verbleibt. Die Luft beziehungsweise das Brennstoff-Luft-Gemisch strömt in der Zuführleitung 16 in Richtung des Pfeils 47 zu den dann offenen Einlaßventilen 7 in den Regenerier-Brennraum 6, wobei stromaufwärts der Verzweigungen 44, 45 in dem unverzweigten Teil 49 der Zuführleitung 16 die Zuführöffnung 34 und etwas weiter stromaufwärts von der Zuführδffnung 34 die elektromotorisch betätigbare Nebendrosselklappe 36 untergebracht ist. Die Zuführδffnung 34 kann dabei so in die Zuführleitung 16 münden, daß sie, wie ausgezogen dargestellt ist, näher zu einer der Verzweigungen 44, 45 liegt, oder, daß sie, wie gestrichelt bei 34' dargestellt ist, symmetrisch zu den Verzweigungen 44, 45 liegt. Wie bereits erläutert, kann die Nebendrosselklappe 36 bei der Einleitung des Brennstoffs mittels des Ventils 30 verschiedene Stellungen annehmen, um so die aus dem Ansaugrohrverteiler 15 in der Zuführleitung 16 strömende Luft entsprechend zuzumessen.
In Figur 3, einer Teildarstellung der Brennkraftmaschine 1, ist ein drittes erfindungsgemäßes Ausführungsbeispiel der Erfindung gezeigt, bei dem alle gleichen und gleichwirkenden Teile mit den gleichen Bezugszeichen wie in den Figuren 1 und 2 gekennzeichnet sind. Die in Figur 3 nur mit einem Zylinder 4 dargestellte, fremdgezündete mehrzylindrige Brennkraftmaschine 1 besitzt, wie die Brennkraftmaschine 1 in Figur 2, zwei Einlaßventile 7 und zwei Auslaßventile 8 je Brennraum 5. Die Zuführleitung 16 ist jedoch im Unterschied zum zweiten Ausführungsbeispiel nach Figur 2 in ihrer ganzen Länge in zwei Verzweigungen 44, 45 aufgeteilt, um die aus dem Ansaugrohrverteiler 15 in die Zuführleitung 16 strömende Luft in den Verzweigungen 44, 45 separat über die
Einlaßventile 7 in den Regenerier-Brennraum 6 abzugeben. Stromaufwärts beider Einlaßventile 7 ist in jeder Verzweigung 44, 45 je ein Nebendrosselorgan 36 untergebracht, das beispielsweise in Form einer Drosselklappe 36 ausgebildet ist, um die in den
Verzweigungen 44, 45 strömende Luft entsprechend zuzumessen. Die Abgabe des Brennstoffs mittels des Ventils 30 erfolgt in jede der Verzweigungen 44, 45, die hierzu stromaufwärts der Einlaßventile 7 und stromabwärts der Drosselklappen 36 zumindest je eine Zuführöffnung 34 aufweisen. Die Ansteuerung der beiden zweiten Drosselklappen 36 mittels des elektronischen Steuergeräts 22 kann beispielsweise derart erfolgen, daß beide Drosselklappen 36 in den Verzweigungen 44, 45 eine gleiche Schwenkstellung oder auch eine voneinander abweichende Schwenkstellung einnehmen. Es ist aber auch möglich, in nur einer der Verzweigungen 44 oder 45 eine Zuführδffnung 34 vorzusehen, um mittels des Ventils 30 Brennstoff in die Zuführöffnung 34 abzugeben. Denkbar ist auch, zwei Ventile 30 vorzusehen, die über getrennte Anschlußleitungen 36 in jede Zuführδffnung 34 der Verzweigungen 44 und 45 verflüchtigten Brennstoff abgeben.

Claims

Patentansprüche
1. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung, mit einem Ansaugrohr, mit wenigstens zwei Brennräumen, mit je Brennraum wenigstens einem Einlaßventil und wenigstens einem Auslaßventil, mit einem in den Brennraum direkteinspritzenden Brennstoffeinspritzventil und mit einer Zuführleitung zu dem wenigstens einen Einlaßventil jedes Brennraums, in welcher von einem Drosselorgan steuerbare Luft aus dem Ansaugrohr strömt, wobei der Luft aus einem Brennstoffverdunstungs-Rückhaltesystem eines Brennstofftanks der Brennkraftmaschine verdunsteter Brennstoff stromabwärts des Drosselorgans zuführbar ist, dadurch gekennzeichnet, daß die Einleitung des verdunsteten Brennstoffs aus dem
Brennstoffverdunstungs-Rückhaltesystem in die Zuführleitung (16) nur bei einer Teilanzahl der Brennräume (5) , insbesondere bei einem einzelnen Brennraum (6) der Brennkraftmaschine (1), erfolgt.
2. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung nach Anspruch 1, dadurch gekennzeichnet, daß die Brennkraftmaschine (1) zumindest zwei Einlaßventile (7) je Brennraum (5) aufweist, die über die Zuführleitung (16) an das Ansaugrohr (14) angeschlossen sind, und die
Zuführleitung (16) Verzweigungen (44, 45) entsprechend der Anzahl der Einlaßventile (7) je Brennraum (5) aufweist und in einem nicht verzweigten Teil (49) der Zuführleitung (16) das Drosselorgan (36) untergebracht ist.
3. Fremdgezündete Brennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, daß stromaufwärts wenigstens einer der Verzweigungen (44, 45) und stromabwärts des Drosselorgans (36) zumindest eine Zuführδffnung (34) in der Zuführleitung (16) zum Einleiten des verdunsteten Brennstoffs aus dem Brennstoffverdunstungs-Ruckhaltesystem vorgesehen ist.
4. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung nach Anspruch 1, dadurch gekennzeichnet, daß die Brennkraftmaschine (1) zumindest zwei Einlaßventile (7) je Brennraum (5) aufweist, die über die Zuführleitung (16) an das Ansaugrohr (14) angeschlossen sind, und die Zuführleitung (16) Verzweigungen (44, 45) entsprechend der Anzahl der Einlaßventile (7) je Brennraum (5) aufweist und in zumindest einer der Verzweigungen (44, 45) das Drosselorgan (36) untergebracht ist.
5. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung nach Anspruch 4, dadurch gekennzeichnet, daß in zumindest einer der Verzweigungen (44, 45) der Zuführleitung (16) stromabwärts des Drosselorgans (36) mindestens eine
Zuführöffnung (34) vorgesehen ist, über die verdunsteter Brennstoff aus dem Brennstoffverdunstungs-Ruckhaltesystem in die Verzweigung (44; 45) einleitbar ist.
6. Fremdgezündete Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in dem Ansaugrohr (14) ein Hauptdrosselorgan (10) untergebracht ist.
7. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung nach Anspruch 6, dadurch gekennzeichnet, daß das Hauptdrosselorgan (36) elektromotorisch betätigbar ist.
8. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung nach Anspruch 1, dadurch gekennzeichnet, daß der verdunstete Brennstoff aus dem Brennstoffverdunstungs-Rückhaltesystem mittels eines Ventils (30) in die Zuführleitung (16) abgebbar ist.
9. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung nach Anspruch 8, dadurch gekennzeichnet, daß das Ventil (30) elektromagnetisch betätigbar ausgebildet ist.
10. Fremdgezündete Brennkraftmaschine mit Direkteinspritzung nach Anspruch 1, dadurch gekennzeichnet, daß das Drosselorgan (36) elektromotorisch betätigbar ist.
EP96923870A 1995-12-21 1996-07-24 Fremdgezündete brennkraftmaschine mit direkteinspritzung Withdrawn EP0811117A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19547916 1995-12-21
DE19547916A DE19547916A1 (de) 1995-12-21 1995-12-21 Fremdgezündete Brennkraftmaschine mit Direkteinspritzung
PCT/DE1996/001352 WO1997023721A1 (de) 1995-12-21 1996-07-24 Fremdgezündete brennkraftmaschine mit direkteinspritzung

Publications (1)

Publication Number Publication Date
EP0811117A1 true EP0811117A1 (de) 1997-12-10

Family

ID=7780871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96923870A Withdrawn EP0811117A1 (de) 1995-12-21 1996-07-24 Fremdgezündete brennkraftmaschine mit direkteinspritzung

Country Status (7)

Country Link
US (1) US5826565A (de)
EP (1) EP0811117A1 (de)
JP (1) JPH11506815A (de)
DE (1) DE19547916A1 (de)
HU (1) HUP9702158A3 (de)
RU (1) RU2153094C2 (de)
WO (1) WO1997023721A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759420A1 (fr) * 1997-02-07 1998-08-14 Siemens Automotive Sa Procede et dispositif de regeneration d'un filtre a vapeurs de carburant pour un moteur a injection directe
US6148802A (en) * 1997-07-04 2000-11-21 Robert Bosch Gmbh Method for operating an internal combustion engine, especially of an automobile
US6257209B1 (en) * 1998-03-18 2001-07-10 Toyota Jidosha Kabushiki Kaisha Evaporative fuel processing apparatus for lean-burn internal combustion engine
US5950603A (en) * 1998-05-08 1999-09-14 Ford Global Technologies, Inc. Vapor recovery control system for direct injection spark ignition engines
DE19828774A1 (de) * 1998-06-27 1999-12-30 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP0969197B1 (de) * 1998-07-02 2004-04-14 Ford Global Technologies, Inc. Verbrennugskraftmaschine mit Direkteinspritzung
JP3503479B2 (ja) * 1998-07-15 2004-03-08 トヨタ自動車株式会社 希薄燃焼内燃機関の蒸発燃料処理装置
DE19909658A1 (de) 1999-03-05 2000-09-07 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Benzindirekteinspritzung
US6314939B1 (en) * 1999-03-11 2001-11-13 Outboard Marine Corporation Methods and apparatus for controlling engine operation
DE19926310A1 (de) * 1999-06-09 2000-12-14 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
US6279547B1 (en) * 2000-05-03 2001-08-28 Ford Global Technologies, Inc. Fuel vapor emission control system employing fuel vapor tank
FR2958691B1 (fr) * 2010-04-13 2012-05-04 Continental Automotive France Procede et dispositif de diagnostic de vanne de purge pour vehicule a motorisation hybride.
JP2011231735A (ja) * 2010-04-30 2011-11-17 Nippon Soken Inc 蒸発燃料供給装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245975A (en) * 1990-11-28 1993-09-21 Toyota Jidosha Kabushiki Kaisha Direct injection type internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9723721A1 *

Also Published As

Publication number Publication date
HUP9702158A2 (hu) 1998-04-28
US5826565A (en) 1998-10-27
HUP9702158A3 (en) 2000-07-28
DE19547916A1 (de) 1997-06-26
RU2153094C2 (ru) 2000-07-20
JPH11506815A (ja) 1999-06-15
WO1997023721A1 (de) 1997-07-03

Similar Documents

Publication Publication Date Title
DE69526293T2 (de) Brennkraftmaschine mit Verbrennung eines armen Gemisches für ein Fahrzeug
DE19824915C1 (de) Verfahren zum Wechseln der Betriebsart einer direkt-einspritzenden Otto-Brennkraftmaschine
DE3828742C2 (de)
DE19750226C1 (de) Motorregelsystem für einen Dieselmotor
DE19650517C2 (de) Verfahren und Vorrichtung zur Tankentlüftung für eine direkteinspritzende Brennkraftmaschine
DE69817273T2 (de) Brennstoffeinspritzvorrichtung für eine Brennkraftmaschine
EP1852601B1 (de) Verfahren zur direkten Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine und Einspritzdüse zur Durchführung der Einspritzung
DE69107242T2 (de) Ansauganlage für einen Motor.
DE19653756C2 (de) Neue Regelstrategie für einen NOx-Speicher
DE102005044544B4 (de) Verfahren zum Betrieb einer fremdgezündeten 4-Takt-Brennkraftmaschine
EP1039112A2 (de) Brennstoffzuführungsystem für eine fremdgezündete Brennkraftmaschine
WO2007031157A1 (de) Verfahren zum betrieb einer fremdgezündeten brennkraftmaschine
WO1997023721A1 (de) Fremdgezündete brennkraftmaschine mit direkteinspritzung
DE102012107714A1 (de) Steuersystem für ein Verbrennungssystem
EP0972131B1 (de) Verfahren zum vermindern von schädlichen abgasemissionen eines mit magerem kraftstoff/luftgemisch betriebenen otto-motores
DE19650518C1 (de) Verfahren zum Steuern einer direkteinspritzenden Brennkraftmaschine
DE69712524T2 (de) Ansaugsystem für eine brennkraftmaschine
DE2851504A1 (de) Verfahren zum betreiben einer brennkraftmaschine mit innerer verbrennung und variablem verdichtungsverhaeltnis, sowie brennkraftmaschine zum durchfuehren des verfahrens
EP1218625A1 (de) DIREKTEINSPRITZENDE BRENNKRAFTMASCHINE MIT NOx-REDUZIERTER EMISSION
DE19945544A1 (de) Brennstoffzuführsystem für eine fremdgezündete Brennkraftmaschine und Verfahren zum Betrieb einer solchen Brennkraftmaschine
EP2893180A1 (de) Ventileinrichtung, system und verwendung zur einblasung von gasförmigem kraftstoff
DE2424122A1 (de) Drehkolbenmaschine
DE2631762C2 (de) Verbrennungsmotor mit Brennstoffeinspritzung und Vorkammer-Fackelzündung
DE10147171B4 (de) Verfahren zum direkten Einspritzen von Kraftstoff in Form von zwei Einspritzungen mit unterschiedlichen Einspritzwinkeln und eine Steuereinrichtung zum Einspritzen
EP1598541A2 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000201