EP0808956A2 - Fireproof back-ventilated façade - Google Patents

Fireproof back-ventilated façade Download PDF

Info

Publication number
EP0808956A2
EP0808956A2 EP97107621A EP97107621A EP0808956A2 EP 0808956 A2 EP0808956 A2 EP 0808956A2 EP 97107621 A EP97107621 A EP 97107621A EP 97107621 A EP97107621 A EP 97107621A EP 0808956 A2 EP0808956 A2 EP 0808956A2
Authority
EP
European Patent Office
Prior art keywords
intumescent
ventilated facades
ventilation
ventilated
profiles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97107621A
Other languages
German (de)
French (fr)
Other versions
EP0808956A3 (en
Inventor
Michael Dr. Breuer
Gunnar Lahmann
Hans-Peter Seelmann-Eggebert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Wolman GmbH
Original Assignee
Dr Wolman GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Wolman GmbH filed Critical Dr Wolman GmbH
Publication of EP0808956A2 publication Critical patent/EP0808956A2/en
Publication of EP0808956A3 publication Critical patent/EP0808956A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7608Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
    • E04B1/7612Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels in combination with an air space
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/947Protection against other undesired influences or dangers against fire by closing openings in walls or the like in the case of fire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • Y10S428/921Fire or flameproofing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to ventilated facades which are provided with an intumescent mass in the area of the rear ventilation.
  • the present invention furthermore relates to components for ventilated facades in which at least one ventilation device or an air-permeable spacing profile is provided with an intumescent mass, the use of intumescent masses for coating ventilation devices or profiles for ventilated facades, the use of ventilation devices and profiles, which Contain at least one layer of an intumescent material for the production of ventilated facades and a method for fire protection equipment for ventilated facades, characterized in that facade elements are provided with intumescent materials in the area of the rear ventilation.
  • intumescent materials in structural fire protection
  • EP-A-694 574 The use of intumescent materials in structural fire protection is known, for example, from EP-A-694 574.
  • Intumescent materials are materials that foam when exposed to heat and thereby form an insulating and heat-resistant foam ("thermal foam") that protects the underlying surfaces and substrates from the effects of fire and heat.
  • thermal foam an insulating and heat-resistant foam
  • carbon dispensers, dehydrating agents and blowing agents e.g. B. sugar, ammonium phosphate and melamine
  • B. melamine phosphate in a mixture with boric acid and increasingly also one-component materials are used.
  • alkali silicates water glass
  • the latter also include expanded mica, expanded graphite, pearlite, raw vermiculite and others.
  • the intumescent materials are used in structural fire protection in the form of paints, varnishes, coatings, pastes, putties, mortars, seals, plates, cuts, strips, foams, sheets, foils, profiles, and semi-finished products.
  • intumescent materials also called insulating layer formers
  • attempts are made to improve the fire resistance of components or special components or to achieve better fire classification of building materials.
  • Ventilated facades generally consist of an insulating layer, an outward-facing protective and decorative layer and a cavity located between the layers or between these layers and the building surface. This cavity is shielded from insects, dirt particles, etc. by perforated profiles made of steel, aluminum, wood or plastic, grids or nets, which are attached between the brackets of the facade, so that there is sufficient ventilation. These ventilation devices and profiles can serve to mechanically stabilize the facade, but must be permeable to air in order to allow a pronounced exchange of air within the cavity. As a rule, perforated profiles are therefore used as spacers.
  • Ventilated facades are particularly widespread outside of buildings.
  • This type of facade has various advantageous properties, such as thermal insulation and protection against the effects of the weather, and prevents the formation of damp chambers due to the rear ventilation.
  • Embodiments of such facade systems are described for example in DE-A-4 212 930.
  • the previously known ventilated facades have the disadvantage of only providing insufficient fire protection in the event of a fire.
  • chimney-like air currents form in the rear ventilation system due to the intense heat that can ignite the fire and contribute to the spread of the fire. The spread of a fire is therefore particularly favorable for ventilated facades with flammable thermal insulation material.
  • the object of the present invention was therefore to provide ventilated facades with reliable fire protection. Accordingly, the ventilated facades described above were found.
  • the solution according to the invention offers particularly effective and economical fire protection and drastically prevents the spread of fire sources.
  • the fire protection equipment of the ventilation devices and profiles can be done in different ways.
  • Back-ventilated facades for example, whose ventilation devices and profiles are coated with an intumescent mass, are advantageous.
  • the coating can e.g. B. by brushing, rolling, knife coating, spraying - by means of compressed gases or preferably by means of the airless method - or by diving.
  • a top layer e.g. B. a varnish can be applied.
  • a particularly simple and effective way of fire protection for ventilated facades is to provide the ventilation devices and profiles with intumescent adhesive strips.
  • adhesive strips are commercially available.
  • the self-adhesive Exterdens® F strip from Dr. Wolman GmbH because in addition to the favorable fire protection properties, it has a pronounced long-term stability. It is important that the air openings of the ventilation devices and profiles are not completely closed with the adhesive strips in order not to impair the rear ventilation effect.
  • Most commercially available intumescent adhesive strips show such a pronounced foaming behavior in the event of a fire that sticking on a small part of the profile surface is sufficient to close the profile in the event of a fire and thus prevent the fire from spreading.
  • a particularly economical form of fire protection for ventilated facades is to install glass fiber, plastic or wire nets coated with intumescent material between the brackets of the facade, which, in the event of fire, seal off the cavities with their thermal foam.
  • a further embodiment according to the invention for ventilated facades consists in using spacer profiles in the form of optionally angled or U-shaped perforated screens or grilles, which are made of a composite material with at least one intumescent layer.
  • All synthetic plastics can serve as the base material for such a composite material.
  • polycondensates, polymers and polyadducts such as epoxy resins or crosslinked polyurethanes, preferably thermoplastic polymers, for example polyesters, polyethers, polyether ketones, polyamides and preferably polystyrenes, vinyl chloride polymers and polyolefins.
  • Suitable polyolefins are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A21, pages 488 to 546, VCH 1992.
  • Suitable vinyl chloride polymers and suitable styrene polymers are described, for example, in Saechtling, Plastics Pocket Book, 23rd edition, p. 241 ff and p. 253 ff (1986).
  • Preferred composite materials contain at least 50% by weight, based on the total weight of the plastic laminate according to the invention, of a thermoplastic, preferably polyolefin or vinyl chloride polymer, in particular PE-HD, or polyvinyl chloride (PVC).
  • a thermoplastic preferably polyolefin or vinyl chloride polymer, in particular PE-HD, or polyvinyl chloride (PVC).
  • vinyl chloride polymers those are particularly suitable which can be processed thermoplastically at temperatures below 200 ° C.
  • spacer profiles made of composite material can be produced in different ways, the production methodology being generally known to the person skilled in the art.
  • a molded plastic body can be produced from the described plastics by known processing methods, such as extrusion, blow molding or laminating.
  • Pretreatment of the molded plastic body may be necessary.
  • Pretreatment can be carried out, for example, by flame treatment, by a corona process, by mechanical pretreatment, for example by roughening, or by chemical methods.
  • chemical pretreatment methods are: halogenation, priming with adhesion promoters, treatment with ethylene-comonomer rubbers, with polyaminoamides, with acrylic ester copolymers, with polyethyleneimines or treatment with oleum or SO 3 .
  • the intumescent layer can be applied to this base body by brushing, rolling, knife coating, spraying - by means of compressed gases or preferably by means of the airless method - or by immersion processes on the base polymer. Further layers can then optionally be applied to the intumescent layer.
  • thermoplastically processable plastics a further method for producing the intumescent layer (s) in addition to the usual thermoplastic processing methods, such as injection molding or blow molding, is preferably the coextrusion of the plastics with the intumescent composition.
  • the polyolefins mentioned above, in particular the ethylene polymers or the vinyl chloride polymers described above, may be mentioned as examples of suitable plastics for coextrusion.
  • the thickness of the intumescent layer (s) in the ventilation devices and profiles is / are in the range from 0.05 to 5.0 mm, preferably in the range from 0.2 to 0.6 mm.
  • Well-suited intumescent mixtures within the meaning of the invention contain as phosphorus-containing nitrogen compound (s) a) ammonium, melamine, dimelamine, urea, dicyandiamide, carbamide and guanidine phosphates or mixtures thereof.
  • Preferred compounds a) are ammonium polyphosphates and melamine phosphates or mixtures thereof.
  • the content of component a) in the intumescent mixture is generally 2 to 50% by weight, preferably 11 to 40% by weight, based on the mixture a) to d).
  • Suitable polyalcohols b) are glycerol, glycerol products, trimethylolethane, trimethylolpropane, tetraphenylethylene glycol, di-trimethylolpropane, 2,2-dimethylolbutanol, dipentaerythritol, tripentaerythritol, EO / PO-trimethylolpropane, EO / PO-pentaerythritol and sugars such as starch and polysaccharide, their starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as polysaccharide and cellulose Mixtures.
  • the content of component b) in the intumescent mixture is generally 2 to 30% by weight, preferably 5 to 18% by weight, based on the mixture a) to d).
  • Suitable blowing agents c) are melamine derivatives such as, for example, melamine cyanurates, melamine phosphates, melamine borates and low and high molecular weight polyethyleneimines, and compounds which split off CO 2 or water in the heat, such as carboxylic acids, dicarboxylic acids, their derivatives and inorganic salts such as CaCO 3 and ammonium carbonate.
  • Slightly soluble nitrogen compounds such as melamine and melamine cyanurate or mixtures thereof are preferred.
  • the content of component c) in the intumescent mixture is generally 2 to 15% by weight, preferably 2 to 10% by weight, based on the mixture a) to d).
  • the intumescent mixture also contains additives as component d), e.g. Substances that develop expansion pressure such as expandable graphite, inorganic fillers such as calcium carbonate, water-releasing substances such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, preferably aluminum hydroxide or magnesium hydroxide, furthermore plasticizers, thickeners, leveling agents, defoamers, adhesion promoters and in particular rheological additives.
  • additives e.g. Substances that develop expansion pressure such as expandable graphite, inorganic fillers such as calcium carbonate, water-releasing substances such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, preferably aluminum hydroxide or magnesium hydroxide, furthermore plasticizers, thickeners, leveling agents, defoamers, adhesion promoters and in particular rheological additives.
  • Suitable flame retardant additives are, for example, boron compounds such as boric acid, metal borates, aminoborates and boranes, organic halogen compounds such as highly chlorinated aliphatic hydrocarbons, aliphatic and aromatic bromine compounds (for example hexabromocylododecane) and chloroparaffins, metallocenes such as ferrocene, azidodicarboxylic acid diamides, red phosphorus and organic phosphorus compounds, such as chlorine-containing phosphor polyols based on oligomeric phosphoric acid esters.
  • boron compounds such as boric acid, metal borates, aminoborates and boranes
  • organic halogen compounds such as highly chlorinated aliphatic hydrocarbons, aliphatic and aromatic bromine compounds (for example hexabromocylododecane) and chloroparaffins
  • metallocenes such as ferrocene
  • the sum of components d) can be contained in the advantageous mixture in an amount of 0 to 60% by weight, preferably 0.5 to 50% by weight, based on the mixture a) to d).
  • the proportion by weight of component which develops the expansion pressure and inorganic fillers or water-releasing substances in the total mass of component d) is usually in the range from 20 to 60% by weight, preferably in the range from 30 to 50% by weight, based on the total mass of component d ).
  • Particularly suitable intumescent composite materials contain plastisol as the plastic component, as already defined, component a) ammonium phosphate, component b) dipentaerythritol, component c) dicyandiamide and component d) expandable graphite and aluminum hydroxide.
  • the ventilated facades according to the invention are suitable for interior and exterior cladding of buildings.
  • these facades offer particular advantages outdoors, since thermal insulation and weather resistance are particularly important there.
  • Ventilated facades are usually built from prefabricated elements. It is particularly advantageous according to the invention to equip these components so that they are provided with intumescent masses in the area of the rear ventilation.
  • Components in which at least one ventilation device or an air-permeable profile is provided with an intumescent mass are preferred.
  • the fire tests were carried out in the following test setup: On two fireproof walls (200 x 300 x 30 cm), at a parallel distance of 10 cm, 4 steel brackets with a leg length of 5 mm were screwed on as brackets. On this steel angle the spacing profile (perforated plate 4/6) measuring 200 x 100 x 2 mm was placed.
  • a profile measuring 200 x 100 x 3 was equipped with a self-adhesive strip (width: 10 mm, thickness: 2 mm), which had the following composition: PVC e-powder Vinnolit® 44472 (Vinnolit Kunststoff GmbH) 22.00% Tricresyl phosphate, Disflamol® TKP (Bayer AG) 15.60% Dibutyl phthalate 6.40% Aluminum hydroxide 3.00% Ammonium polyphosphate 23.32% Melamine cyanurate 16.96% Pentaerythritol 12.72%
  • a perforated profile equipped in this way was placed in the holding device described above and checked from below with a heat radiator type Infra-Boy® SLR (starting gas pressure 50 mbar, surface temperature of the radiator surface 800 ° C.).
  • the distance between the emitter surface and the perforated plate was 17 cm. Beginning intumescence was observed after a few seconds of heat exposure. After about 2 minutes, the holes were completely foamed.
  • the max. The temperature after 30 minutes of exposure to heat was 140 ° C on the side facing away from the radiator.
  • Ventilation device with intumescent paint A profile (perforated sheet 4/6), dimensions 200 x 100 x 3 mm (analogous to example 1) was coated on both sides with an intumescent paint: water 20.80% Tylose 3.00% Disperbyk®, alkylolammonium salt (Byk-Chemie GmbH) 0.20% Titanium dioxide 4.00% Pentaerythritol 12.00% Ammonium polyphosphate, Hostaflam® AP 422 (Hoechst AG, Frankfurt) 24.00% melamine 14.00% Mowilith® DW460, polyvinyl acetate dispersion (Hoechst AG) 20.00% Cereclor 60 LC 10 -C 13 chlorinated paraffin, 2.00% C content 60% (Deutsche ICI GmbH, Frankfurt) provided (application amount 400 g / m 2 , wet) and after drying overnight with a Bunsen burner flame as in Example 1 from below.
  • intumescent paint water 20.80% Tylose 3.00% Disper
  • the fire test was stopped after 32 minutes. On the side facing away from the fire, a temperature of 185 ° C. was measured towards the end of the test.
  • a ventilation device in the form of a commercially available glass fiber network was impregnated or impregnated with an intumescent mass of the following composition (application amount: approx. 350 g / m 2 , wet): Epoxy resin, epoxy value 0.2-0.0225 hydroxide value approx.0.23, Eurepox® 7001 (Schering AG) 31.00% Aluminum hydroxide, 6.50% Expandable graphite, expandable natural graphite 6.85% C content> 95% (LUH - Georg Luh GmbH, 65396 Walluf) Dipentaerythritol 1.05% melamine 0.16% Ammonium polyphosphate 0.39% Xylene 14.05% Bitumen, Special Tar® No. 1 (Worlée-Chemie, Hamburg) 20.00% Polyamine hardener, polyamidoamide adduct Euredur® 423 (Schering AG) 20.00%
  • Example 1 Polyvinyl alcohol, partially saponified, Mowiol®3-83 (Hoechst AG) 25.00% Monoammonium phosphate 22.88% Dicyandiamide 16.64% Pentaerythritol 12.48% Ammonium polyphosphate Colanylschwarz® PR 100 (Hoechst AG) 8.80% Expandable graphite, expandable natural graphite, C content Y 95% (Tropag, O. Ritter Nachf. GmbH) Amine borate solution 1.00% Kelzan®S, polysaccharide thickener, (Lanco, Ritterhude) 1.00% water 3.30%
  • the intumescent layer of the PVC composite material was 1.5 mm under these conditions. Holes with a diameter of 4.0 mm were drilled at intervals of 6.0 mm into the composite material plates measuring 200 x 100 x 6 mm. The rows of holes were staggered so that the largest possible number of holes was reached.
  • a composite material plate prepared in this way was placed in the holding device described and flamed from below with the Bunsen burner (analogously to Example 1). Due to the immediately occurring intunescence, all holes were foamed and the room was closed after a few minutes. After the end of the test, a temperature of 178 ° C. was measured on the side facing away from the fire.
  • the fire chamber was additionally ventilated from behind.
  • the facade had met the protection goals according to the German high-rise building guidelines for the high-rise area.
  • the smoke development during the experiment was low (evaporating binders)
  • the fire barrier 0.5 m above the lintel was completely foamed and was able to prevent the transport of hot gases.
  • the fire barrier 1.0 m above the lintel showed only slight Reactions. However, the temperatures in this area were so low that foaming was not to be expected.
  • the aluminum rails were dimensioned so that an Exterdens® FB strip measuring 400 x 16 x 2 mm (sk) could be inserted into their groove.
  • the design-related ventilation gap of 40 mm should be closed by a horizontal foaming process when exposed to temperature.
  • the facade element was positioned over two Bunsen burners so that the upper edges of the burners were approx. 50 mm below the fire barriers.
  • the Bunsen burners were placed in the center of the rear ventilation space at a distance of 100 mm.
  • a thermocouple was inserted into the rear ventilation gap at a distance of 50 mm above the aluminum rails. At the beginning of the flame, a rapid rise in temperatures to 480 ° C - 500 ° C was measured.
  • the intumescent system responded after a few seconds (5 - 10 sec.). A rapid movement of the thermal foam towards one another closed the ventilation gap. The measured As a result, temperatures above the fire barriers quickly decreased to values between 190 ° C - 198 ° C. After about 25-30 seconds, the gap was completely foamed over the entire width of the facade element.
  • the measured temperature was almost constant at 195 ° C throughout the test period.
  • the fire test was stopped after 15 minutes.
  • the thermal foam formed proved to be compact and stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)
  • Fireproofing Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

- Back-ventilated facades are provided with intumescent composition in the back-ventilated zone. Also claimed are building elements for these facades, the use of intumescent material for coating ventilation equipment of profiles for back-ventilated facades and a method for providing back-ventilated facades with a fire protection finish in this way.

Description

Gegenstand der vorliegenden Erfindung sind hinterlüftete Fassaden, welche im Bereich der Hinterlüftung mit einer intumeszierenden Masse versehen sind.The present invention relates to ventilated facades which are provided with an intumescent mass in the area of the rear ventilation.

Weiterhin sind Gegenstand der vorliegenden Erfindung Bauelemente für hinterlüftete Fassaden, in welchen mindestens eine Lüftungsvorrichtung oder ein luftdurchlässiges Abstandsprofil mit einer intumeszierenden Masse versehen ist, die Verwendung von intumeszierenden Massen zur Beschichtung von Lüftungsvorrichtungen oder Profilen für hinterlüftete Fassaden, die Verwendung von Lüftungsvorrichtungen und Profilen, welche mindestens eine Schicht aus einer intumeszierenden Masse enthalten, zur Herstellung von hinterlüfteten Fassaden sowie ein Verfahren zur Brandschutzausrüstung von hinterlüfteten Fassaden, dadurch gekennzeichnet, daß Fassadenelemente im Bereich der Hinterlüftung mit intumeszierenden Massen versehen werden.The present invention furthermore relates to components for ventilated facades in which at least one ventilation device or an air-permeable spacing profile is provided with an intumescent mass, the use of intumescent masses for coating ventilation devices or profiles for ventilated facades, the use of ventilation devices and profiles, which Contain at least one layer of an intumescent material for the production of ventilated facades and a method for fire protection equipment for ventilated facades, characterized in that facade elements are provided with intumescent materials in the area of the rear ventilation.

Der Einsatz von intumeszierenden Massen im baulichen Brandschutz ist beispielsweise aus EP-A-694 574 bekannt.The use of intumescent materials in structural fire protection is known, for example, from EP-A-694 574.

Als Intumeszenzmassen werden Materialien bezeichnet, die unter Hitzeeinwirkung aufschäumen und dabei einen isolierenden und hitzebeständigen Schaum ("Thermoschaum") bilden, der die darunter liegenden Flächen und Substrate vor der Feuer- und Hitzeeinwirkung schützt. Neben der klassischen Dreiermischung Kohlestoffspender, Dehydrationsmittel und Treibmittel, z. B. Zucker, Ammoniumphosphat und Melamin, sind auch Zweikomponentensysteme entwickelt worden wie z. B. Melaminphosphat in Mischung mit Borsäure und zunehmend kommen auch Einkomponentenmaterialien zum Einsatz. Zu den letzteren zählen neben den altbekannten Alkalisilikaten "Wasserglas" auch Blähglimmer, Blähgraphit, Perlit, Rohvermiculit u.a.Intumescent materials are materials that foam when exposed to heat and thereby form an insulating and heat-resistant foam ("thermal foam") that protects the underlying surfaces and substrates from the effects of fire and heat. In addition to the classic mixture of three, carbon dispensers, dehydrating agents and blowing agents, e.g. B. sugar, ammonium phosphate and melamine, two-component systems have been developed such. B. melamine phosphate in a mixture with boric acid and increasingly also one-component materials are used. In addition to the well-known alkali silicates "water glass", the latter also include expanded mica, expanded graphite, pearlite, raw vermiculite and others.

Die Verwendung der Intumeszenzmassen im baulichen Brandschutz erfolgt in Form von Anstrichen, Lacken, Beschichtungen, Pasten, Kitten, Mörteln, Dichtungen, Platten, Zuschnitten, Streifen, Schaumstoffen, Bahnen, Folien, Profilen u.a. Halbzeugen.The intumescent materials are used in structural fire protection in the form of paints, varnishes, coatings, pastes, putties, mortars, seals, plates, cuts, strips, foams, sheets, foils, profiles, and semi-finished products.

Mit dem Einsatz von Intumeszenzmassen (auch Dämmschichtbildner genannt) wird versucht, die Feuerwiderstandsfähigkeit von Bauteilen oder Sonderbauteilen zu verbessern oder auch eine bessere Brandklassifikation von Baustoffen zu erreichen.With the use of intumescent materials (also called insulating layer formers), attempts are made to improve the fire resistance of components or special components or to achieve better fire classification of building materials.

Hinterlüftete Fassaden bestehen im allgemeinen aus einer Dämmschicht, aus einer nach außen weisenden Schutz- und Dekorschicht und aus einem zwischen den Schichten, bzw. zwischen diesen Schichten und der Gebäudeoberfläche befindlichen Hohlraum. Dieser Hohlraum wird durch gelochte Profile aus Stahl, Aluminium, Holz oder Kunststoff, Gitter oder Netze, die zwischen den Haltern der Fassade angebracht sind vor Insekten, Schmutzpartikeln etc. so abgeschirmt, daß eine ausreichende Hinterlüftung gegeben ist. Diese Lüftungsvorrichtungen und Profile können der mechanischen Stabilisierung der Fassade dienen, müssen jedoch luftdurchlässig sein, um einen ausgeprägten Luftaustausch innerhalb des Hohlraums zu ermöglichen. In der Regel werden daher Lochprofile als Abstandshalter verwendet.Ventilated facades generally consist of an insulating layer, an outward-facing protective and decorative layer and a cavity located between the layers or between these layers and the building surface. This cavity is shielded from insects, dirt particles, etc. by perforated profiles made of steel, aluminum, wood or plastic, grids or nets, which are attached between the brackets of the facade, so that there is sufficient ventilation. These ventilation devices and profiles can serve to mechanically stabilize the facade, but must be permeable to air in order to allow a pronounced exchange of air within the cavity. As a rule, perforated profiles are therefore used as spacers.

Hinterlüftete Fassaden finden besonders im Außenbereich von Gebäuden weite Verbreitung. Diese Fassadenbauart hat verschiedene vorteilhafte Eigenschaften, wie Wärmedammung und Schutz vor Witterungseinflüssen, und verhindert durch die Hinterlüftung die Bildung feuchter Kammern. Ausführungsformen solcher Fassadensysteme sind beispielsweise in DE-A-4 212 930 beschrieben. Die bisher bekannten hinterlüfteten Fassaden weisen jedoch den Nachteil auf, im Brandfall nur unzureichenden Feuerschutz zu gewähren. Im Brandfall bilden sich im Hinterlüftungssystem durch die starke Hitzeentwicklung kaminartige intensive Luftströme aus, die Feuerherde anfachen und zur Verbreitung des Brandes beitragen können. Besonders bei hinterlüfteten Fassaden mit brennbarem Wärmedämmmaterial ist die Ausbreitung eines Brandes daher oft begünstigt.Ventilated facades are particularly widespread outside of buildings. This type of facade has various advantageous properties, such as thermal insulation and protection against the effects of the weather, and prevents the formation of damp chambers due to the rear ventilation. Embodiments of such facade systems are described for example in DE-A-4 212 930. However, the previously known ventilated facades have the disadvantage of only providing insufficient fire protection in the event of a fire. In the event of a fire, chimney-like air currents form in the rear ventilation system due to the intense heat that can ignite the fire and contribute to the spread of the fire. The spread of a fire is therefore particularly favorable for ventilated facades with flammable thermal insulation material.

Aufgabe der vorliegenden Erfindung war es daher, hinterlüftete Fassaden mit einem zuverlässigen Brandschutz bereitzustellen. Demgemäß wurden die eingangs beschriebenen hinterlüfteten Fassaden gefunden.The object of the present invention was therefore to provide ventilated facades with reliable fire protection. Accordingly, the ventilated facades described above were found.

Im Gegensatz zu hinterlüfteten Fassaden mit flächiger Beschichtung mit Brandschutzmitteln bietet die erfindungsgemäße Lösung, brandgeschützte Lüftungsvorrichtungen und Profile einzusetzen, einen besonders wirkungsvollen und wirtschaftlichen Brandschutz und verhindert drastisch die Ausbreitung von Brandherden.In contrast to ventilated facades with surface coating with fire protection agents, the solution according to the invention, to use fire-protected ventilation devices and profiles, offers particularly effective and economical fire protection and drastically prevents the spread of fire sources.

Die Brandschutzausrüstung der Lüftungsvorrichtungen und Profile kann auf verschiedene Weise erfolgen. Vorteilhaft sind beispielsweise hinterlüftete Fassaden, deren Lüftungsvorrichtungen und Profile mit einer intumeszierenden Masse beschichtet sind. Die Beschichtung kann z. B. durch Streichen, Rollen, Rakeln, Spritzen - mittels Druckgasen oder vorzugsweise mittels der Airless-Methode - oder durch Tauchen erfolgen. Um die Witterungsbeständigkeit zu erhöhen, kann auf die Intumeszenzschicht auch eine Deckschicht, z. B. ein Lack aufgetragen werden.The fire protection equipment of the ventilation devices and profiles can be done in different ways. Back-ventilated facades, for example, whose ventilation devices and profiles are coated with an intumescent mass, are advantageous. The coating can e.g. B. by brushing, rolling, knife coating, spraying - by means of compressed gases or preferably by means of the airless method - or by diving. To increase the weather resistance, a top layer, e.g. B. a varnish can be applied.

Eine besonders einfache und wirkungsvolle Möglichkeit des Brandschutzes von hinterlüfteten Fassaden besteht darin, die Lüftungsvorrichtungen und Profile mit intumeszierenden Klebestreifen zu versehen. Derartige Klebestreifen sind handelsüblich. Besonders geeignet ist der selbstklebend ausgerüstete Streifen Exterdens® F der Firma Dr. Wolman GmbH, da er neben den günstigen brandschutztechnischen Eigenschaften eine ausgeprägte Langzeitstabilität aufweist. Wichtig ist dabei, daß die Luftöffnungen der Lüftungsvorrichtungen und Profile nicht vollständig mit den Klebestreifen verschlossen werden, um den Hinterlüftungseffekt nicht zu beeinträchtigen. Die meisten handelsüblichen intumeszierenden Klebestreifen zeigen jedoch im Brandfall ein derart ausgeprägtes Aufschäumverhalten, daß die Beklebung eines kleinen Teils der Profilfläche ausreicht, um im Brandfall ein weitgehendes Verschließen des Profils zu bewirken und so die Ausbreitung des Feuers zu verhindern.A particularly simple and effective way of fire protection for ventilated facades is to provide the ventilation devices and profiles with intumescent adhesive strips. Such adhesive strips are commercially available. The self-adhesive Exterdens® F strip from Dr. Wolman GmbH, because in addition to the favorable fire protection properties, it has a pronounced long-term stability. It is important that the air openings of the ventilation devices and profiles are not completely closed with the adhesive strips in order not to impair the rear ventilation effect. Most commercially available intumescent adhesive strips, however, show such a pronounced foaming behavior in the event of a fire that sticking on a small part of the profile surface is sufficient to close the profile in the event of a fire and thus prevent the fire from spreading.

Eine besonders wirtschaftliche Form des Brandschutzes für hinterlüftete Fassaden besteht darin, zwischen den Haltern der Fassade mit Intumeszenzmasse beschichtete Netze aus Glasfaser, Kunststoff oder Draht anzubringen, die im Brandfall durch ihren Thermoschaum einen Abschluß der Hohlräume bewirken.A particularly economical form of fire protection for ventilated facades is to install glass fiber, plastic or wire nets coated with intumescent material between the brackets of the facade, which, in the event of fire, seal off the cavities with their thermal foam.

Eine weitere erfindungsgemäße Ausführungsform für hinterlüftete Fassaden besteht darin, Abstandsprofile in Form von ggf. gewinkelten oder U-förmigen Lochblenden oder Gittern zu verwenden, die aus einem Verbundmaterial mit mindestens einer intumeszierenden Schicht gefertigt sind.A further embodiment according to the invention for ventilated facades consists in using spacer profiles in the form of optionally angled or U-shaped perforated screens or grilles, which are made of a composite material with at least one intumescent layer.

Als Grundstoff für ein solches Verbundmaterial können alle synthetischen Kunststoffe dienen. So kommen beispielsweise Polykondensate, Polymerisate und Polyaddukte, wie Epoxidharze oder vernetzte Polyurethane, vorzugsweise thermoplastische Polymere, beispielsweise Polyester, Polyether, Polyetherketone, Polyamide und vorzugsweise Polystyrole, Vinylchloridpolymerisate und Polyolefine in Frage. Gut geeignete Polyolefine sind beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A21, Seite 488 bis 546, VCH 1992 beschrieben. Geeignete Vinylchloridpolymerisate und geeignete Styrolpolymerisate (Polystyrole) werden beispielsweise in Saechtling, Kunststofftaschenbuch, 23. Auflage, S. 241 ff und S. 253 ff (1986) beschrieben.All synthetic plastics can serve as the base material for such a composite material. For example, polycondensates, polymers and polyadducts, such as epoxy resins or crosslinked polyurethanes, preferably thermoplastic polymers, for example polyesters, polyethers, polyether ketones, polyamides and preferably polystyrenes, vinyl chloride polymers and polyolefins. Suitable polyolefins are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A21, pages 488 to 546, VCH 1992. Suitable vinyl chloride polymers and suitable styrene polymers (polystyrenes) are described, for example, in Saechtling, Plastics Pocket Book, 23rd edition, p. 241 ff and p. 253 ff (1986).

Bevorzugte Verbundmaterialien enthalten mindestens 50 Gew.-%, bezogen auf das Gesamtgewicht des erfindungsgemäßen Kunststoffschichtkörpers, eines Thermoplasten, vorzugsweise Polyolefin oder Vinylchloridpolymerisat, insbesondere PE-HD, oder Polyvinylchlorid (PVC).Preferred composite materials contain at least 50% by weight, based on the total weight of the plastic laminate according to the invention, of a thermoplastic, preferably polyolefin or vinyl chloride polymer, in particular PE-HD, or polyvinyl chloride (PVC).

Unter den Vinylchloridpolymerisaten sind diejenigen besonders gut geeignet, die sich bei Temperaturen unter 200°C thermoplastisch verarbeiten lassen.Among the vinyl chloride polymers, those are particularly suitable which can be processed thermoplastically at temperatures below 200 ° C.

Als bevorzugte Kunststoffkomponente verwendet man Vinylchloridpolymerisate mit einem K-Wert, gemessen nach DIN 7749, im Bereich von 10 bis 100, vorzugsweise im Bereich von 55 - 80. Besonders geeignet sind PVC-Dispersionen in hochsiedenden Lösungsmitteln mit Zusätzen von Weichmachern, sogenannte Plastisole.Vinyl chloride polymers with a K value, measured according to DIN 7749, in the range from 10 to 100, preferably in the range from 55 to 80, are used as the preferred plastic component. PVC dispersions in high-boiling solvents with additions of plasticizers, so-called plastisols, are particularly suitable.

Die Abstandsprofile aus Verbundmaterial können auf unterschiedliche Art hergestellt werden, wobei die Herstellungsmethodik dem Fachmann im allgemeinen bekannt ist.The spacer profiles made of composite material can be produced in different ways, the production methodology being generally known to the person skilled in the art.

Zunächst kann ein Kunststofformkörper aus den beschriebenen Kunststoffen nach bekannten Verarbeitungsverfahren, wie Extrusion, Blasformen oder Laminieren, hergestellt werden. Unter Umständen ist eine Vorbehandlung des Kunststofformkörpers durchzuführen. Eine Vorbehandlung kann z.B. durch Beflammen, durch ein Korona-Verfahren, durch mechanische Vorbehandlung, etwa durch Aufrauhen oder durch chemische Methoden erfolgen. Als chemische Vorbehandlungsmethoden sind beispielsweise zu nennen: Halogenierung, Grundieren mit Haftvermittlern, Behandlung mit Ethylen-Comonomer-Kautschuken, mit Polyaminoamiden, mit Acrylestercopolymeren, mit Polyethyleniminen oder Behandlung mit Oleum oder SO3.First of all, a molded plastic body can be produced from the described plastics by known processing methods, such as extrusion, blow molding or laminating. Pretreatment of the molded plastic body may be necessary. Pretreatment can be carried out, for example, by flame treatment, by a corona process, by mechanical pretreatment, for example by roughening, or by chemical methods. Examples of chemical pretreatment methods are: halogenation, priming with adhesion promoters, treatment with ethylene-comonomer rubbers, with polyaminoamides, with acrylic ester copolymers, with polyethyleneimines or treatment with oleum or SO 3 .

Auf diesen Grundkörper kann die intumeszierende Schicht durch Streichen, Rollen, Rakeln, Spritzen - mittels Druckgasen oder vorzugsweise mittels der Airless-Methode - oder durch Tauchverfahren auf das Basispolymere aufgetragen werden. Auf die intumeszierende Schicht können dann gegebenenfalls weitere Schichten aufgetragen werden.The intumescent layer can be applied to this base body by brushing, rolling, knife coating, spraying - by means of compressed gases or preferably by means of the airless method - or by immersion processes on the base polymer. Further layers can then optionally be applied to the intumescent layer.

Insbesondere bei thermoplastisch verarbeitbaren Kunststoffen bietet sich als weiteres Verfahren zur Erzeugung der intumeszierenden Schicht(en) neben den üblichen thermoplastischen Verarbeitungsverfahren, wie Spritzguß oder Hohlkörperblasen vorzugsweise die Coextrusion der Kunststoffe mit der intumeszierenden Masse an. Als gut geeignete Kunststoffe für die Coextrusion seien beispielhaft die oben genannten Polyolefine, insbesondere die Ethylenpolymerisate oder die oben beschriebenen Vinylchloridpolymerisate genannt.In particular in the case of thermoplastically processable plastics, a further method for producing the intumescent layer (s) in addition to the usual thermoplastic processing methods, such as injection molding or blow molding, is preferably the coextrusion of the plastics with the intumescent composition. The polyolefins mentioned above, in particular the ethylene polymers or the vinyl chloride polymers described above, may be mentioned as examples of suitable plastics for coextrusion.

Die Dicke der intumeszierenden Schicht(en) in den Lüftungsvorrichtungen und Profilen liegt/liegen im Bereich von 0,05 bis 5,0 mm, vorzugsweise im Bereich von 0,2 bis 0,6 mm.The thickness of the intumescent layer (s) in the ventilation devices and profiles is / are in the range from 0.05 to 5.0 mm, preferably in the range from 0.2 to 0.6 mm.

Weitere Details zu geeigneten Verbundmaterialien sowie zur Herstellung intumeszierender Massen sind in der älteren deutschen Patentanmeldung Nr. 196 17 592.5 beschrieben.Further details on suitable composite materials and on the production of intumescent materials are described in the earlier German patent application No. 196 17 592.5.

Als intumeszierenden Massen in den erfindungsgemäßen hinterlüfteten Fassaden können prinzipiell alle bekannten derartigen Massen eingesetzt werden. Besonders geeignet sind intumeszierende Massen mit starkem Aufschäumverhalten und guter Witterungsbeständigkeit. Geeignet sind beispielsweise intumeszierende Massen, die Blähgraphit enthalten. Blähgraphit zeigt ein so ausgeprägtes Aufschäumverhalten, daß diese Substanz allein oft schon einen wirkungsvollen Brandschutz für die hinterlüfteten Fassaden darstellt. Vorteilhaft werden weiterhin Massen eingesetzt, welche die folgenden Komponenten enthalten:

  • a) eine phosphorhaltige Stickstoffverbindung,
  • b) einen Polyalkohol,
  • c) ein Treibmittel und
  • d) gegebenenfalls weitere Zusatzstoffe.
In principle, all known compositions of this type can be used as intumescent compositions in the ventilated facades according to the invention. Intumescent materials with strong foaming behavior and good weather resistance are particularly suitable. For example, intumescent materials containing expanded graphite are suitable. Expandable graphite shows such a pronounced foaming behavior that this substance alone often provides effective fire protection for the ventilated facades. Masses which contain the following components are also advantageously used:
  • a) a phosphorus-containing nitrogen compound,
  • b) a polyalcohol,
  • c) a blowing agent and
  • d) optionally further additives.

Gut geeignete intumeszierende Mischungen im Sinne der Erfindung enthalten als phosphorhaltige Stickstoffverbindung(en) a) Ammonium-, Melamin-, Dimelamin-, Harnstoff-, Dicyandiamid-, Carbamid- und Guanidinphosphate oder deren Mischungen. Bevorzugte Verbindungen a) sind Ammoniumpolyphosphate und Melaminphosphate oder deren Gemische.Well-suited intumescent mixtures within the meaning of the invention contain as phosphorus-containing nitrogen compound (s) a) ammonium, melamine, dimelamine, urea, dicyandiamide, carbamide and guanidine phosphates or mixtures thereof. Preferred compounds a) are ammonium polyphosphates and melamine phosphates or mixtures thereof.

Der Gehalt der Komponente a) in der intumeszierenden Mischung beträgt im allgemeinen 2 bis 50 Gew.-%, vorzugsweise 11 bis 40 Gew.-%, bezogen auf die Mischung a) bis d).The content of component a) in the intumescent mixture is generally 2 to 50% by weight, preferably 11 to 40% by weight, based on the mixture a) to d).

Geeignete Polyalkohole b) sind Glycerin, Glycerinprodukte, Trimethylolethan, Trimethylolpropan, Tetraphenylethylenglycol, Di-Trimethylolpropan, 2,2-Dimethylolbutanol, Dipentaerythrit, Tripentaerythrit, EO/PO-Trimethylolpropan, EO/PO-Pentaerythrit, Zucker, Polysaccharide wie Stärke und Cellulose und deren Mischungen.Suitable polyalcohols b) are glycerol, glycerol products, trimethylolethane, trimethylolpropane, tetraphenylethylene glycol, di-trimethylolpropane, 2,2-dimethylolbutanol, dipentaerythritol, tripentaerythritol, EO / PO-trimethylolpropane, EO / PO-pentaerythritol and sugars such as starch and polysaccharide, their starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as starch and polysaccharide, such as polysaccharide and cellulose Mixtures.

Bevorzugt sind schwerlösliche mehrwertige Alkohole wie Dipentaerythrit oder deren Gemische.Poorly soluble polyhydric alcohols such as dipentaerythritol or mixtures thereof are preferred.

Der Gehalt der Komponente b) in der intumeszierenden Mischung beträgt im allgemeinen 2 bis 30 Gew.-%, vorzugsweise 5 bis 18 Gew.-%, bezogen auf die Mischung a) bis d).The content of component b) in the intumescent mixture is generally 2 to 30% by weight, preferably 5 to 18% by weight, based on the mixture a) to d).

Geeignete Treibmittel c) sind Melaminderivate wie beispielsweise Melamincyanurate, Melaminphosphate, Melaminborate und nieder- und hochmolekulare Polyethylenimine sowie in der Hitze CO2 oder Wasser abspaltende Verbindungen wie Carbonsäuren, Dicarbonsäuren, deren Derivate und anorganische Salze wie CaCO3 und Ammoniumcarbonat.Suitable blowing agents c) are melamine derivatives such as, for example, melamine cyanurates, melamine phosphates, melamine borates and low and high molecular weight polyethyleneimines, and compounds which split off CO 2 or water in the heat, such as carboxylic acids, dicarboxylic acids, their derivatives and inorganic salts such as CaCO 3 and ammonium carbonate.

Bevorzugt sind im Wasser schwerlösliche Stickstoffverbindungen wie Melamin und Melamincyanurat oder deren Gemische.Slightly soluble nitrogen compounds such as melamine and melamine cyanurate or mixtures thereof are preferred.

Der Gehalt der Komponente c) in der intumeszierenden Mischung beträgt im allgemeinen 2 bis 15 Gew.-%, vorzugsweise 2 bis 10 Gew.-%, bezogen auf die Mischung a) bis d).The content of component c) in the intumescent mixture is generally 2 to 15% by weight, preferably 2 to 10% by weight, based on the mixture a) to d).

Es hat sich als vorteilhaft herausgestellt, wenn die intumeszierende Mischung als Komponente d) noch Zusatzstoffe enthält, z.B. blähdruckentwickelnde Stoffe wie Blähgraphit, anorganische Füllstoffe wie Calciumcarbonat, wasserfreisetzende Stoffe wie Aluminiumhydroxyd, Magnesiumhydroxyd, Calciumhydroxid und Bariumhydroxid, vorzugsweise Aluminiumhydroxid oder Magnesiumhydroxid, weiterhin Weichmacher, Verdicker, Verlaufsmittel, Entschäumer, Haftvermittler und insbesondere rheologische Zusätze.It has proven to be advantageous if the intumescent mixture also contains additives as component d), e.g. Substances that develop expansion pressure such as expandable graphite, inorganic fillers such as calcium carbonate, water-releasing substances such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, preferably aluminum hydroxide or magnesium hydroxide, furthermore plasticizers, thickeners, leveling agents, defoamers, adhesion promoters and in particular rheological additives.

Weitere geeignete Flammschutzadditive sind beispielsweise Borverbindungen wie Borsäure, Metallborate, Aminoborate und Borane, organische Halogenverbindungen, wie hochchlorierte aliphatische Kohlenwasserstoffe, aliphatische und aromatische Bromverbindungen (z.B. Hexabromcylododecan) und Chlorparaffine, Metallocene, wie Ferrocen, Azidodicarbonsäurediamide, roter Phosphor und organische Phosphorverbindungen, wie chlorhaltige Phosphorpolyole auf Basis oligomerer Phosphorsäureester.Further suitable flame retardant additives are, for example, boron compounds such as boric acid, metal borates, aminoborates and boranes, organic halogen compounds such as highly chlorinated aliphatic hydrocarbons, aliphatic and aromatic bromine compounds (for example hexabromocylododecane) and chloroparaffins, metallocenes such as ferrocene, azidodicarboxylic acid diamides, red phosphorus and organic phosphorus compounds, such as chlorine-containing phosphor polyols based on oligomeric phosphoric acid esters.

Die Summe der Komponenten d) kann in der vorteilhaften Mischung zu 0 bis 60 Gew.-%, vorzugsweise 0,5 bis 50 Gew.-% enthalten sein, bezogen auf die Mischung a) bis d).The sum of components d) can be contained in the advantageous mixture in an amount of 0 to 60% by weight, preferably 0.5 to 50% by weight, based on the mixture a) to d).

Der Gewichtsanteil aus blähdruckentwickelnder Komponente und anorganischen Füllstoffen oder wasserfreisetzenden Stoffen in der Gesamtmasse der Komponente d) liegt üblicherweise im Bereich von 20 bis 60 Gew.-%, vorzugsweise im Bereich von 30 bis 50 Gew.-%, bezogen auf die Gesamtmasse der Komponente d).The proportion by weight of component which develops the expansion pressure and inorganic fillers or water-releasing substances in the total mass of component d) is usually in the range from 20 to 60% by weight, preferably in the range from 30 to 50% by weight, based on the total mass of component d ).

Besonders gut geeignete intumeszierende Verbundmaterialien enthalten als Kunststoff-Komponente Plastisol, wie bereits definiert, als Komponente a) Ammoniumphosphat, als Komponente b) Dipentaerythrit, als Komponente c) Dicyandiamid und als Komponente d) Blähgraphit und Aluminiumhydroxid.Particularly suitable intumescent composite materials contain plastisol as the plastic component, as already defined, component a) ammonium phosphate, component b) dipentaerythritol, component c) dicyandiamide and component d) expandable graphite and aluminum hydroxide.

Prinzipiell eignen sich die erfindungsgemäßen hinterlüfteten Fassaden für Innen- und Außenverkleidungen von Gebäuden. Besondere Vorteile bieten diese Fassaden jedoch im Außenbereich, da dort Wärmedämmung und Witterungsbeständigkeit besonders zum Tragen kommen.In principle, the ventilated facades according to the invention are suitable for interior and exterior cladding of buildings. However, these facades offer particular advantages outdoors, since thermal insulation and weather resistance are particularly important there.

Hinterlüftete Fassaden werden üblicherweise aus Fertigelementen errichtet. Es ist erfindungsgemäß besonders vorteilhaft, diese Bauelemente bereits so auszurüsten, daß sie im Bereich der Hinterlüftung mit intumeszierenden Massen versehen sind.Ventilated facades are usually built from prefabricated elements. It is particularly advantageous according to the invention to equip these components so that they are provided with intumescent masses in the area of the rear ventilation.

Bevorzugt sind Bauelemente, in welchen mindestens eine Lüftungsvorrichtung oder ein luftdurchlässiges Profil mit einer intumeszierenden Masse versehen ist.Components in which at least one ventilation device or an air-permeable profile is provided with an intumescent mass are preferred.

Beispiele:Examples:

Die Brandprüfungen wurden in folgender Versuchsanordnung durchgeführt: An zwei feuerfesten Wänden (200 x 300 x 30 cm), im parallelen Abstand von 10 cm wurden 4 Stahlwinkel mit einer Schenkellange von 5 mm als Halterungen angeschraubt. Auf diese Stahlwinkel wurde das Abstandsprofil (Lochblech 4/6) der Maße 200 x 100 x 2 mm gelegt.The fire tests were carried out in the following test setup: On two fireproof walls (200 x 300 x 30 cm), at a parallel distance of 10 cm, 4 steel brackets with a leg length of 5 mm were screwed on as brackets. On this steel angle the spacing profile (perforated plate 4/6) measuring 200 x 100 x 2 mm was placed.

Beispiel 1example 1

Beschichtung eines Profils mit intumeszierenden selbstklebenden Bändern, wobei die Lochabdeckung ca. 50 % betrug. Als intumeszierende Steifen wurden die handelsüblichen selbstklebenden Bänder Exterdens® und Exterdens® F-M1 obenliegend eingesetzt.Coating a profile with intumescent self-adhesive tapes, the hole coverage was approx. 50%. The commercially available self-adhesive tapes Exterdens® and Exterdens® F-M1 were used as intumescent strips.

Derartig ausgestaltete Lochprofile wurden von unten mit dem Bunsenbrenner beflammt. Der Abstand Oberkante Bunsenbrenner - Lochblech betrug jeweils 10 cm. Nach 60 Sekunden waren die Steifen intumesziert und die Löcher des Profils komplett zugeschäumt. Die Temperatur auf der feuerabgewandten Seite lag nach 30 minütiger Beflammung zwischen 145 und 165°C.Hole profiles designed in this way were flamed from below with the Bunsen burner. The distance between the top edge of the Bunsen burner and the perforated plate was 10 cm. After 60 seconds the stiffeners were intumescent and the holes in the profile were completely foamed. The temperature on the side facing away from the fire was between 145 and 165 ° C after flame exposure for 30 minutes.

Beispiel 2Example 2

Analog zu Beispiel 1 wurde ein Profil der Maße 200 x 100 x 3 mit einem selbstklebenden Streifen (Breite: 10 mm, Dicke: 2 mm) ausgestattet, der folgende Zusammensetzung besaß: PVC-E-Pulver Vinnolit® 44472 (Vinnolit Kunststoff GmbH) 22,00 % Trikresylphosphat, Disflamol® TKP (Bayer AG) 15,60 % Dibutylphthalat 6,40 % Aluminiumhydroxid 3,00 % Ammoniumpolyphosphat 23,32 % Melamincyanurat 16,96 % Pentaerythrit 12,72 % Analogously to Example 1, a profile measuring 200 x 100 x 3 was equipped with a self-adhesive strip (width: 10 mm, thickness: 2 mm), which had the following composition: PVC e-powder Vinnolit® 44472 (Vinnolit Kunststoff GmbH) 22.00% Tricresyl phosphate, Disflamol® TKP (Bayer AG) 15.60% Dibutyl phthalate 6.40% Aluminum hydroxide 3.00% Ammonium polyphosphate 23.32% Melamine cyanurate 16.96% Pentaerythritol 12.72%

Ein deratig ausgestattetes Lochprofil wurde in die oben beschriebene Haltevorrichtung gelegt und von unten mit einem Wärmestrahler Typ Infra-Boy® SLR (Ausgangsgasdruck 50 mbar, Oberflächentemperatur der Strahlerfläche 800°C) geprüft.A perforated profile equipped in this way was placed in the holding device described above and checked from below with a heat radiator type Infra-Boy® SLR (starting gas pressure 50 mbar, surface temperature of the radiator surface 800 ° C.).

Der Abstand Strahleroberfläche - Lochblech betrug 17 cm. Nach wenigen Sekunden der Hitzebelastung wurde beginnende Intumeszenz beobachtet. Nach ca. 2 Minuten waren die Löcher vollständig zugeschäumt.The distance between the emitter surface and the perforated plate was 17 cm. Beginning intumescence was observed after a few seconds of heat exposure. After about 2 minutes, the holes were completely foamed.

Die max. Temperatur nach 30 Minuten der Hitzeeinwirkung betrug auf der strahlerabgewandten Seite 140°C.The max. The temperature after 30 minutes of exposure to heat was 140 ° C on the side facing away from the radiator.

Beispiel 3Example 3

Lüftungsvorrichtung mit intumeszierendem Anstrich Ein Profil (Lochblech 4/6), Maße 200 x 100 x 3 mm (analog Beispiel 1) wurde beidseitig mit einem intumeszierenden Anstrich enthaltend: Wasser 20.80 % Tylose 3,00 % Disperbyk®, Alkylolammoniumsalz (Byk-Chemie GmbH) 0,20 % Titandioxid 4,00 % Pentaerythrit 12,00 % Ammoniumpolyphosphat, Hostaflam® AP 422 (Hoechst AG, Frankfurt) 24,00 % Melamin 14,00 % Mowilith® DW460, Polyvinylacetat-Dispersion (Hoechst AG) 20,00 % Cereclor 60 L C10-C13 Chlorparaffin, 2,00 % C-Gehalt 60% (Deutsche ICI GmbH, Frankfurt) versehen (Auftragsmenge 400 g/m2, naß) und nach Trocknen über Nacht mit einem Bunsenbrenner analog Beispiel 1 von unten beflammt.Ventilation device with intumescent paint A profile (perforated sheet 4/6), dimensions 200 x 100 x 3 mm (analogous to example 1) was coated on both sides with an intumescent paint: water 20.80% Tylose 3.00% Disperbyk®, alkylolammonium salt (Byk-Chemie GmbH) 0.20% Titanium dioxide 4.00% Pentaerythritol 12.00% Ammonium polyphosphate, Hostaflam® AP 422 (Hoechst AG, Frankfurt) 24.00% melamine 14.00% Mowilith® DW460, polyvinyl acetate dispersion (Hoechst AG) 20.00% Cereclor 60 LC 10 -C 13 chlorinated paraffin, 2.00% C content 60% (Deutsche ICI GmbH, Frankfurt) provided (application amount 400 g / m 2 , wet) and after drying overnight with a Bunsen burner flame as in Example 1 from below.

Der Brandversuch wurde nach 32 Minuten abgebrochen. Auf der feuerabgewandten Seite wurde gegen Versuchsende eine Temperatur von 185°C gemessen.The fire test was stopped after 32 minutes. On the side facing away from the fire, a temperature of 185 ° C. was measured towards the end of the test.

Beispiel 4Example 4

Eine Lüftungsvorrichtung in Form eines handelsüblichen Glasfasernetzes (Maschenweite 0,5 mm, Stärke 0,2 mm) wurde mit einer intumeszierenden Masse folgender Zusammensetzung imprägniert bzw. getränkt (Auftragsmenge: ca. 350 g/m2, naß): Epoxidharz, Epoxidwert 0,2-0,0225 Hydroxidwert ca. 0,23, Eurepox® 7001 (Schering AG) 31,00 % Aluminiumhydroxid, 6,50 % Blähgraphit, blähfähiger Naturgraphit 6,85 % C-Gehalt > 95 % (LUH - Georg Luh GmbH, 65396 Walluf) Dipentaerythrit 1,05 % Melamin 0,16 % Ammoniumpolyphosphat 0,39 % Xylol 14,05 % Bitumen, Spezial Tar® Nr. 1 (Worlée-Chemie, Hamburg) 20,00 % Polyaminhärter, Polyamidoamidaddukt Euredur® 423 (Schering AG) 20,00 % A ventilation device in the form of a commercially available glass fiber network (mesh size 0.5 mm, thickness 0.2 mm) was impregnated or impregnated with an intumescent mass of the following composition (application amount: approx. 350 g / m 2 , wet): Epoxy resin, epoxy value 0.2-0.0225 hydroxide value approx.0.23, Eurepox® 7001 (Schering AG) 31.00% Aluminum hydroxide, 6.50% Expandable graphite, expandable natural graphite 6.85% C content> 95% (LUH - Georg Luh GmbH, 65396 Walluf) Dipentaerythritol 1.05% melamine 0.16% Ammonium polyphosphate 0.39% Xylene 14.05% Bitumen, Special Tar® No. 1 (Worlée-Chemie, Hamburg) 20.00% Polyamine hardener, polyamidoamide adduct Euredur® 423 (Schering AG) 20.00%

Nach Fixierung dieses beschichteten Glasfasergewebes der Maße 200 x 100 x 2 mm in obiger Haltevorrichtung, wurde eine Hitzebeanspruchung analog Beispiel 2 durchgeführt. Strahlertemperatur an der Strahleroberfläche betrug 500°C. Der Abstand des Wärmestrahlers zum Fassadensegment betrug 17 cm.After fixing this coated glass fiber fabric measuring 200 x 100 x 2 mm in the above holding device, a heat stress was carried out analogously to Example 2. Radiator temperature at the radiator surface was 500 ° C. The distance between the heat radiator and the facade segment was 17 cm.

Die Intumeszenz trat nach wenigen Sekunden ein. Die Netzstruktur war nach ca. 2 Minuten ganzflächig geschlossen. Die Temperatur auf der strahlerabgewandten Seite betrug nach 15 minütiger Versuchsdauer im Maximum 155°C.The intumescence occurred after a few seconds. The network structure was completely closed after about 2 minutes. The temperature on the side facing away from the radiator was a maximum of 155 ° C. after a test period of 15 minutes.

Beispiel 5Example 5

Beschichtung eines Profils mit intumeszierenden Pasten Auf ein Abstandsprofil, wie in Beispiel 1 beschrieben, wurde die handelsübliche intumeszierende Paste Interdens® Typ 40 (Hersteller: Dr. Wolman GmbH, Sinzheim) sowie eine intumeszierende Paste nach folgender Rezeptur aufgetragen: Polyvinylalkohol, teilverseift, Mowiol®3-83 (Hoechst AG) 25,00 % Monoammoniumphosphat 22,88 % Dicyandiamid 16,64 % Pentaerythrit 12,48 % Ammoniumpolyphosphat Colanylschwarz® PR 100 (Hoechst AG) 8,80 % Blähgraphit, blähfähiger Naturgraphit, C-Gehalt Y 95 % (Tropag, O. Ritter Nachf. GmbH) Aminboratlösung 1,00 % Kelzan®S, Polysaccharidverdicker, (Lanco, Ritterhude) 1,00 % Wasser 3,30 % Coating a profile with intumescent pastes The commercially available intumescent paste Interdens® Type 40 (manufacturer: Dr. Wolman GmbH, Sinzheim) and an intumescent paste according to the following recipe were applied to a spacing profile as described in Example 1: Polyvinyl alcohol, partially saponified, Mowiol®3-83 (Hoechst AG) 25.00% Monoammonium phosphate 22.88% Dicyandiamide 16.64% Pentaerythritol 12.48% Ammonium polyphosphate Colanylschwarz® PR 100 (Hoechst AG) 8.80% Expandable graphite, expandable natural graphite, C content Y 95% (Tropag, O. Ritter Nachf. GmbH) Amine borate solution 1.00% Kelzan®S, polysaccharide thickener, (Lanco, Ritterhude) 1.00% water 3.30%

Die Pasten wurden mit einer Kartusche (Düsendurchmesser 8,0 mm) als S-förmiger Wulst (Bogendurchmesser ca. 4 cm) auf das Lochblech aufgetragen. Nach dem Trocknen wurde ein Bunsenbrennertest analog Beispiel 1 durchgeführt.The pastes were applied to the perforated sheet with a cartridge (nozzle diameter 8.0 mm) as an S-shaped bead (arc diameter approx. 4 cm). After drying, a Bunsen burner test was carried out analogously to Example 1.

Auch hier beobachtet man nach wenigen Sekunden die beginnende Ausbildung des Thermoschaums. Nach ca. 2 Minuten war das Lochgitter durch den voluminösen Thermoschaum vollständig abgedeckt.Here too, after a few seconds, the beginning formation of the thermal foam is observed. After about 2 minutes, the perforated grid was completely covered by the voluminous thermal foam.

Nach 30 Minuten betrug die Temperatur an der feuerabgewandten Seite 160°C.After 30 minutes the temperature on the side facing away from the fire was 160 ° C.

Beispiel 6Example 6

Lüftungsvorrichtung aus PVC-Verbundmaterial der Abmessung 200 x 100 x 6 mm
Auf eine Hart-PVC-Platte Vinnoflex® S 6515 (BASF AG) wurde beidseitig eine intumeszierende Masse folgender Zusammensetzung aufgewalzt und gepreßt. Phosphatester, Disflamol® TKP (Bayer AG) 15,00% Aluminiumhyroxid 39,34 % Zinkborat 1,06 % Blähgraphit, blähfähiger Naturgraphit 14,60 % C-Gehalt > 95% Erpan® MBS (Tropag, O. Ritter Nachf. GmbH) Monoammoniumphosphat 7,50 % PVC-Harz, Vinnolit® P 4472 (Vinnolit Kunststoff GmbH) 22,50 %

  • Mischgewichtsverhältnis Hart-PVC-/intumeszierende Masse 60:40
  • Walzbedingungen: 8 Minuten bei 180°C
  • Preßbedingungen bei 170°C:
       3 Minuten Temperaturausgleich,
       3 Minuten bei 200 bar, ohne Filterpapier
Ventilation device made of PVC composite material measuring 200 x 100 x 6 mm
An intumescent mass of the following composition was rolled and pressed on both sides of a hard PVC sheet Vinnoflex® S 6515 (BASF AG). Phosphate ester, Disflamol® TKP (Bayer AG) 15.00% Aluminum hydroxide 39.34% Zinc borate 1.06% Expandable graphite, expandable natural graphite 14.60% C content> 95% Erpan® MBS (Tropag, O. Ritter Nachf. GmbH) Monoammonium phosphate 7.50% PVC resin, Vinnolit® P 4472 (Vinnolit Kunststoff GmbH) 22.50%
  • Mixing weight ratio hard PVC / intumescent mass 60:40
  • Rolling conditions: 8 minutes at 180 ° C
  • Press conditions at 170 ° C:
    3 minutes temperature compensation,
    3 minutes at 200 bar, without filter paper

Die intumeszierende Schicht des PVC-Verbundmaterials betrug unter diesem Bedingungen jeweisl 1,5 mm. In die Verbundmaterialplatten der Abmessungen 200 x 100 x 6 mm wurden regelmäßig Löcher mit einem Durchmesser von 4,0 mm in Abstand von 6,0 mm gebohrt. Die Reihen der Löcher waren zueinander versetzt, so daß die größtmögliche Anzahl an Löchern erreicht wurde.The intumescent layer of the PVC composite material was 1.5 mm under these conditions. Holes with a diameter of 4.0 mm were drilled at intervals of 6.0 mm into the composite material plates measuring 200 x 100 x 6 mm. The rows of holes were staggered so that the largest possible number of holes was reached.

Eine derart präparierte Verbundmaterialplatte wurde in die beschriebene Halterungsvorrichtung gelegt und von unten mit dem Bunsenbrenner beflammt (analog Beispiel 1). Durch die sofort eintretende Intuneszenz waren nach wenigen Minuten sämtliche Löcher zugeschäumt und der Raumabschluß gegeben. Nach Versuchsende wurde an der feuerabgewandten Seite eine Temperatur von 178°C gemessen.A composite material plate prepared in this way was placed in the holding device described and flamed from below with the Bunsen burner (analogously to Example 1). Due to the immediately occurring intunescence, all holes were foamed and the room was closed after a few minutes. After the end of the test, a temperature of 178 ° C. was measured on the side facing away from the fire.

Beispiel 7Example 7 Brandversuch einer hinterlüfteten FassadeFire test on a ventilated facade

Bei diesem Praxisversuch wurde eine hinterlüftete Fassade geprüft. Die Unterkonstruktion bestand aus Aluminiumprofilen T, die mit Wandhaltern befestigt wurden. Die Wärmedämmung bestand aus Steinwolleplatten (Rockwool) mit aufgebrachtem Glasvlies (Dichte Steinwolle ca. 25-40 kg/m3). Auf der Unterkonstruktion wurden Putzfassadenelemente aus recyceltem Altglas, einseitig verputzt mit WDVS-Putz (Hersteller der Platte: StoVerotec, Deutschland), mit Schnellbauschrauben befestigt. Der Abstand zwischen Putzfassaden und Steinwolleplatten betrug ca. 2 cm. Im Bereich des Fenstersturzes befand sich ein Lochblech 4/6, das die Hinterlüftung der Fassade gewährleistete. Auf diesem Blech war ein Streifen Exterdens® F 10x2 mm selbstklebend befestigt worden, der die Aufgabe hatte, im Brandfall die Hinterlüftung zu unterbrechen und somit eine beiderseitige Beflammung der Fassadenplatten zu verhindern.In this practical test, a ventilated facade was tested. The substructure consisted of aluminum profiles T, which were fastened with wall brackets. The thermal insulation consisted of rock wool panels (Rockwool) with applied glass fleece (density Rock wool approx. 25-40 kg / m 3 ). Plaster facade elements made from recycled waste glass, plastered on one side with ETICS plaster (manufacturer of the board: StoVerotec, Germany), were fastened with drywall screws. The distance between plaster facades and stone wool slabs was approx. 2 cm. In the area of the lintel there was a perforated plate 4/6, which ensured the ventilation of the facade. A strip of Exterdens® F 10x2 mm was attached to this sheet in a self-adhesive manner, which had the task of interrupting the rear ventilation in the event of a fire and thus preventing the facade panels from being flamed on both sides.

Bei einem zweiten Versuch wurden zusätzlich 0,5 m und 1,0 m über den Fenstersturz weitere Lochbleche mit Exterdens® F - Streifen als Brandbarrieren angebracht.In a second experiment, additional perforated sheets with Exterdens® F strips were installed as fire barriers 0.5 m and 1.0 m above the window lintel.

VersuchsdurchführungTest execution

Im Bereich der Fensterleibung wurde eine 25 kg Holzkrippe (genagelt) als Brandlast eingestellt (Holzart: Kiefer). Gezündet wurde die Brandlast mit 2 x 200 ml Isopropanol. Die Holzkrippe zerfällt nach ca. 20 Minuten. Der Versuch wird über 30 Minuten geführt.In the area of the window reveal, a 25 kg wooden crib (nailed) was set as the fire load (type of wood: pine). The fire load was ignited with 2 x 200 ml isopropanol. The wooden crib disintegrates after about 20 minutes. The experiment is carried out over 30 minutes.

Thermoelemente befanden sich

> 3
an der Unterseite des Fenstersturzes (links, rechts, Mitte)
> 2
im Bereich des Hinterlüftungsblechs oberhalb des Dämmschichtbildners
> 2
0,5 m über dem Fenstersturz (Brandsperre 2)
There were thermocouples
> 3
at the bottom of the lintel (left, right, middle)
> 2nd
in the area of the rear ventilation panel above the insulation layer
> 2nd
0.5 m above the lintel (fire barrier 2)

Der Brandraum wurde von hinten zusätzlich belüftet.The fire chamber was additionally ventilated from behind.

Ergebnis:Result: Versuch 1:Trial 1:

Die Fassade hatte die Schutzziele gemäß deutscher Hochhausbaurichtlinie für den Hochhausbereich erfüllt. Die Rauchentwicklung während des Versuchs war gering (ausdampfende Bindemittel)The facade had met the protection goals according to the German high-rise building guidelines for the high-rise area. The smoke development during the experiment was low (evaporating binders)

Versuch 2:Trial 2: Wie Versuch 1Like experiment 1

Die Brandsperre 0,5 m oberhalb des Fenstersturzes war vollständig aufgeschäumt und konnte so einen Transport heißer Gase unterbinden.
Die Brandsperre 1,0 m über dem Fenstersturz zeigte nur geringe Reaktionen. Jedoch waren in diesem Bereich die Temperaturen so gering, daß mit einem Aufschäumen nicht zu rechnen war.
The fire barrier 0.5 m above the lintel was completely foamed and was able to prevent the transport of hot gases.
The fire barrier 1.0 m above the lintel showed only slight Reactions. However, the temperatures in this area were so low that foaming was not to be expected.

ErgebnisResult

Die beiden Versuche zeigten, daß Brandsperren in hinterlüfteten Fassaden wirkungsvoll den Flammeneintrag in die Hinterlüftung unterbinden bzw. den Transport von heißen Gasen verhindern.The two experiments showed that fire barriers in ventilated facades effectively prevent the entry of flames into the rear ventilation or prevent the transport of hot gases.

Beispiel 8Example 8 Brandversuch an einem hinterlüfteten FassadenelementFire test on a ventilated facade element

Für das hinterlüftete Fassadensystem wurde folgender Aufbau gewählt:The following structure was chosen for the ventilated facade system:

Eine Aluminiumunterkonstruktion der Maße 400 x 400 mm wurde in Form eines Doppelrahmens zusammengefügt, so daß ein Hinterlüftungsspalt von 40 mm resultierte. In die Rückwand der Rahmenkonstruktion wurde eine Steinwolledämmung (Rockwool, A2) der Dicke 80 mm eingelegt. Auf die Fassadenfront (Vorderseite der Rahmenkonstruktion) wurde eine handelsübliche Resopal®-Deckplatte (HPL-Platte, B1) der Fa. Resopal aufgeschraubt. Auf den Innenseiten der Rahmenkonstruktion wurden auf halber Höhe zwei parallel gegenüberliegende Aluminiumschienen für die Aufnahme der Brandschutzstreifen angenietet.An aluminum substructure measuring 400 x 400 mm was put together in the form of a double frame, so that a ventilation gap of 40 mm resulted. Rock wool insulation (Rockwool, A2) with a thickness of 80 mm was inserted into the rear wall of the frame construction. A commercially available Resopal® cover plate (HPL plate, B1) from Resopal was screwed onto the facade front (front of the frame construction). On the inside of the frame construction, two parallel, parallel aluminum rails were riveted to accommodate the fire protection strips.

Die Aluminiumschienen waren so dimensioniert, daß in ihre Nut ein Exterdens® FB Streifen der Maße 400 x 16 x 2 mm (sk), eingeführt werden konnte. Unter Temperaturbelastung sollte der konstruktionsbedingte Hinterlüftungsspalt von 40 mm durch einen waagrechten Schäumungsvorgang geschlossen werden.The aluminum rails were dimensioned so that an Exterdens® FB strip measuring 400 x 16 x 2 mm (sk) could be inserted into their groove. The design-related ventilation gap of 40 mm should be closed by a horizontal foaming process when exposed to temperature.

VersuchsdurchführungTest execution

Das Fassadenelement wurde so über zwei Bunsenbrennern positioniert, daß sich die Oberkanten der Brenner ca. 50 mm unterhalb der Brandsperren befanden. Die Bunsenbrenner wurden dabei mittig in den Hinterlüftungsraum im Abstand von 100 mm gestellt. Oberhalb der Alu-Schienen wurde im Abstand von 50 mm ein Thermoelement in den Hinterlüftungsspalt geführt. Zu Beginn der Beflammung wurde ein rasches Ansteigen der Temperaturen auf 480°C - 500°C gemessen.The facade element was positioned over two Bunsen burners so that the upper edges of the burners were approx. 50 mm below the fire barriers. The Bunsen burners were placed in the center of the rear ventilation space at a distance of 100 mm. A thermocouple was inserted into the rear ventilation gap at a distance of 50 mm above the aluminum rails. At the beginning of the flame, a rapid rise in temperatures to 480 ° C - 500 ° C was measured.

Nach wenigen Sekunden (5 - 10 sec.) sprach das intumeszierende System an. Ein rasches aufeinander Zubewegen des Thermoschaums führte zum Verschluß des Hinterlüftungsspalts. Die gemessenen Temperaturen oberhalb der Brandsperren reduzierten sich in Folge rasch auf Werte zwischen 190°C - 198°C. Nach ca. 25 - 30 sec. war der Spalt über der gesamten Breite des Fassadenelements vollständig zugeschäumt.The intumescent system responded after a few seconds (5 - 10 sec.). A rapid movement of the thermal foam towards one another closed the ventilation gap. The measured As a result, temperatures above the fire barriers quickly decreased to values between 190 ° C - 198 ° C. After about 25-30 seconds, the gap was completely foamed over the entire width of the facade element.

Die gemessene Temperatur lag während der gesamten Versuchsdauer nahezu konstant bei 195°C. Nach 15 Min. wurde der Brandversuch abgebrochen. Der gebildete Thermoschaum erwies sich als kompakt und tragfähig.The measured temperature was almost constant at 195 ° C throughout the test period. The fire test was stopped after 15 minutes. The thermal foam formed proved to be compact and stable.

Während des Versuchs wurde kein abschmelzendes Aluminium der Unterkonstruktion beobachtet. Die Rauchentwicklung während des Brandversuchs war mäßig. Des weiteren wurde kein Abfallen oder Ablösen der Fassadenplatten festgestellt.No melting aluminum of the substructure was observed during the test. The smoke development during the fire test was moderate. Furthermore, no falling off or detachment of the facade panels was found.

Claims (14)

Hinterlüftete Fassaden, welche im Bereich der Hinterlüftung mit intumeszierenden Massen versehen sind.Ventilated facades, which are provided with intumescent materials in the area of the rear ventilation. Hinterlüftete Fassaden nach Anspruch 1, in welchen mindestens eine Lüftungsvorrichtung oder ein luftdurchlässiges Profil mit einer intumeszierenden Masse versehen ist.Ventilated facades according to claim 1, in which at least one ventilation device or an air-permeable profile is provided with an intumescent mass. Hinterlüftete Fassaden nach Anspruch 2, in welchen die Lüftungsvorrichtungen oder die Profile mit einer intumeszierenden Masse beschichtet sind.Ventilated facades according to claim 2, in which the ventilation devices or the profiles are coated with an intumescent mass. Hinterlüftete Fassaden nach Anspruch 2, in welchen die Lüftungsvorrichtungen oder die Profile mit intumeszierenden Streifen versehen sind.Ventilated facades according to claim 2, in which the ventilation devices or the profiles are provided with intumescent strips. Hinterlüftete Fassaden nach Anspruch 2, in welchen die Lüftungsvorrichtungen oder die Profile aus einem Verbundmaterial mit mindestens einer intumeszierenden Schicht gefertigt sind.Ventilated facades according to claim 2, in which the ventilation devices or the profiles are made of a composite material with at least one intumescent layer. Hinterlüftete Fassaden nach den Ansprüchen 1 bis 5, wobei die intumeszierende Masse Blähgraphit enthält.Ventilated facades according to claims 1 to 5, wherein the intumescent mass contains expanded graphite. Hinterlüftete Fassaden nach den Ansprüchen 1 bis 5, wobei die intumeszierende Masse die folgenden Komponenten enthält: a) eine phosphorhaltige Stickstoffverbindung, b) einen Polyalkohol, c) ein Treibmittel und d) gegebenenfalls weitere Zusatzstoffe. Ventilated facades according to claims 1 to 5, wherein the intumescent mass contains the following components: a) a phosphorus-containing nitrogen compound, b) a polyalcohol, c) a blowing agent and d) optionally further additives. Hinterlüftete Fassaden nach den Ansprüchen 1 bis 7 im Außenbereich.Ventilated facades according to claims 1 to 7 outdoors. Bauelemente für hinterlüftete Fassaden, welche im Bereich der Hinterlüftung mit intumeszierenden Massen versehen sind.Components for ventilated facades, which are provided with intumescent materials in the area of the rear ventilation. Bauelemente für hinterlüftete Fassaden nach Anspruch 9, in welchen mindestens eine Lüftungsvorrichtung oder ein luftdurchlässiges Profil mit einer intumeszierenden Masse versehen ist.Components for ventilated facades according to claim 9, in which at least one ventilation device or an air-permeable profile is provided with an intumescent mass. Verwendung von intumeszierenden Massen zur Beschichtung von Lüftungsvorrichtungen oder Profilen für hinterlüftete Fassaden gemäß den Ansprüchen 1 bis 8.Use of intumescent materials for coating ventilation devices or profiles for ventilated facades according to claims 1 to 8. Verwendung von Lüftungsvorrichtungen oder Profilen, welche mindestens eine Schicht aus einer intumeszierenden Masse enthalten, zur Herstellung von hinterlüfteten Fassaden gemäß den Ansprüchen 1 bis 8.Use of ventilation devices or profiles which contain at least one layer of an intumescent mass for the production of ventilated facades according to claims 1 to 8. Verfahren zur Brandschutzausrüstung von hinterlüfteten Fassaden gemäß Anspruch 1, dadurch gekennzeichnet, daß die Fassadenbauelemente im Bereich der Hinterlüftung mit intumeszierenden Massen versehen werden.Method for fire protection equipment of ventilated facades according to claim 1, characterized in that the facade components are provided with intumescent materials in the area of the rear ventilation. Verfahren zur Brandschutzausrüstung von hinterlüfteten Fassaden nach Anspruch 13, dadurch gekennzeichnet, daß Lüftungsvorrichtungen oder luftdurchlässige Profile mit intumeszierenden Massen versehen werden.Process for fire protection equipment of ventilated facades according to claim 13, characterized in that ventilation devices or air-permeable profiles are provided with intumescent materials.
EP97107621A 1996-05-23 1997-05-09 Fireproof back-ventilated façade Withdrawn EP0808956A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19620893 1996-05-23
DE19620893A DE19620893A1 (en) 1996-05-23 1996-05-23 Fire-resistant ventilated facades

Publications (2)

Publication Number Publication Date
EP0808956A2 true EP0808956A2 (en) 1997-11-26
EP0808956A3 EP0808956A3 (en) 1998-06-10

Family

ID=7795182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97107621A Withdrawn EP0808956A3 (en) 1996-05-23 1997-05-09 Fireproof back-ventilated façade

Country Status (5)

Country Link
US (1) US6000189A (en)
EP (1) EP0808956A3 (en)
JP (1) JPH10131341A (en)
CN (1) CN1170029A (en)
DE (1) DE19620893A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992566A1 (en) * 1998-09-04 2000-04-12 DSM Fine Chemicals Austria GmbH Intumescent laminates with high thermal resistance
EP1038915A1 (en) * 1999-03-22 2000-09-27 Ciba Spezialitätenchemie Pfersee GmbH Flame retardant compositions containing boron, phosphorus and polymer
EP0832735A3 (en) * 1996-09-27 2004-11-24 Dr. Wolman GmbH Fire-protected layered system
WO2005003254A1 (en) 2003-07-06 2005-01-13 Karl Zimmermann Gmbh Flame-retarding fire protection element
DE202010009459U1 (en) * 2010-06-23 2010-12-30 Bip Gmbh Fire protection ventilation grille
WO2014131912A1 (en) * 2013-03-01 2014-09-04 Sika Technology Ag Insulating panel and method for producing same
WO2020233806A1 (en) * 2019-05-21 2020-11-26 Kingspan Holdings (Irl) Limited Barrier, construction article and method of manufacture thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19825497C1 (en) * 1998-06-08 1999-06-24 Hoechst Trevira Gmbh & Co Kg Fire=resistant supporting interlayer, e.g. for bitumen roofing strip
DE19859851B4 (en) * 1998-12-23 2007-04-12 Staba Wuppermann Gmbh Fire protection system
FR2791353B1 (en) * 1999-03-23 2001-05-25 Chavanoz Ind FLAME RETARDANT PLASTIC COMPOSITION, WIRE AND TEXTILE STRUCTURE COATED WITH THE SAME
US6245842B1 (en) 2000-03-03 2001-06-12 Trus Joist Macmillan A Limited Partnership Flame-retardant coating and building product
US6756430B2 (en) * 2000-06-13 2004-06-29 Mitsui Chemicals, Inc. Flame-retarding thermoplastic resin composition
DE10060252A1 (en) * 2000-06-27 2002-01-10 Illbruck Gmbh Fire protection component (1) has metal support with through apertures separated by ribs, for example of stretch metal, achieving flow-opening barrier, which in event of fire seals against fire and smoke
US6432155B1 (en) 2000-08-11 2002-08-13 Cp Kelco U.S., Inc. Compositions containing phosphate and xanthan gum variants
DE10223688A1 (en) * 2002-05-27 2003-12-18 Hilti Ag Joint sealing element for fireproof sealing of joint on building structure has support element which at least on one side facing sealing element in assembled state is coated with intumescent fireproof material
EP1616924A1 (en) * 2004-07-13 2006-01-18 Huntsman Advanced Materials (Switzerland) GmbH Fire retardant composition
GB2417030A (en) * 2004-08-05 2006-02-15 Huntsman Advanced Materials Fire retardant composition
CN100365217C (en) * 2004-11-29 2008-01-30 精碳伟业(北京)科技有限公司 Blocking method and blocking product capable of being in-site formed as requested
ITVI20050160A1 (en) * 2005-05-27 2006-11-28 Giampaolo Benussi INTUMESCENT GASKET
DE102005054375B4 (en) * 2005-11-15 2016-05-12 Hanno-Werk Gmbh & Co. Kg Flame-resistant or non-combustible foam profile for the fire-resistant sealing of building openings
DE202005018354U1 (en) * 2005-11-24 2006-02-09 Promat Gmbh Plate-shaped fire protection element
DE102007061503A1 (en) * 2007-12-18 2009-06-25 Henkel Ag & Co. Kgaa Flameproof plastisols containing expanded graphite
US20140094539A1 (en) * 2010-12-20 2014-04-03 Cantech Industrial Research Corporation Fire resistant coatings
GB2491090A (en) * 2011-03-18 2012-11-28 Intelligent Wood Systems Ltd An adjustable inter-cavity fire-proof barrier
JP6185407B2 (en) * 2014-03-05 2017-08-23 ダイセルポリマー株式会社 Cellulose ester composition
CA2929696A1 (en) 2015-05-12 2016-11-12 Owens Corning Intellectual Capital, Llc Ridge vent with fire resistant material
CN107267161A (en) * 2016-04-07 2017-10-20 黑龙江宇威消防设备有限公司 A kind of environment friendly flame retardant
JPWO2018198706A1 (en) * 2017-04-24 2019-11-07 パナソニックIpマネジメント株式会社 Resin composition for heat-expandable fireproof sheet, heat-expandable fireproof sheet using the same, and method for producing the same
US11395931B2 (en) 2017-12-02 2022-07-26 Mighty Fire Breaker Llc Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
US10430757B2 (en) 2017-12-02 2019-10-01 N-Fire Suppression, Inc. Mass timber building factory system for producing prefabricated class-A fire-protected mass timber building components for use in constructing prefabricated class-A fire-protected mass timber buildings
US11836807B2 (en) 2017-12-02 2023-12-05 Mighty Fire Breaker Llc System, network and methods for estimating and recording quantities of carbon securely stored in class-A fire-protected wood-framed and mass-timber buildings on construction job-sites, and class-A fire-protected wood-framed and mass timber components in factory environments
US10653904B2 (en) 2017-12-02 2020-05-19 M-Fire Holdings, Llc Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques
US10332222B1 (en) 2017-12-02 2019-06-25 M-Fire Supression, Inc. Just-in-time factory methods, system and network for prefabricating class-A fire-protected wood-framed buildings and components used to construct the same
US10290004B1 (en) 2017-12-02 2019-05-14 M-Fire Suppression, Inc. Supply chain management system for supplying clean fire inhibiting chemical (CFIC) totes to a network of wood-treating lumber and prefabrication panel factories and wood-framed building construction job sites
US10311444B1 (en) 2017-12-02 2019-06-04 M-Fire Suppression, Inc. Method of providing class-A fire-protection to wood-framed buildings using on-site spraying of clean fire inhibiting chemical liquid on exposed interior wood surfaces of the wood-framed buildings, and mobile computing systems for uploading fire-protection certifications and status information to a central database and remote access thereof by firefighters on job site locations during fire outbreaks on construction sites
US10814150B2 (en) 2017-12-02 2020-10-27 M-Fire Holdings Llc Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
US10260232B1 (en) 2017-12-02 2019-04-16 M-Fire Supression, Inc. Methods of designing and constructing Class-A fire-protected multi-story wood-framed buildings
US11865394B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires
US11865390B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire
DE102018002035A1 (en) * 2017-12-14 2019-06-19 Friedrich UG Verbundsysteme (haftungsbeschränkt) Building wall module and building wall with building wall modules
US11826592B2 (en) 2018-01-09 2023-11-28 Mighty Fire Breaker Llc Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire
US20220315742A1 (en) * 2019-09-12 2022-10-06 Panasonic Intellectual Property Management Co., Ltd. Thermally expandable fire-resistant resin composition and thermally expandable fire-resistant sheet
US11911643B2 (en) 2021-02-04 2024-02-27 Mighty Fire Breaker Llc Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2159051A (en) * 1981-07-23 1985-11-27 Dixon International Ltd Panel device for a ventilation opening
EP0222298A2 (en) * 1985-11-15 1987-05-20 Bayer Ag Intumescent masses based on an epoxy resin and containing fillers
EP0302987A1 (en) * 1987-08-14 1989-02-15 Dr. Wolman GmbH Compositions for the preparation of intumescent mouldings and semi-finished products, and their use in architectural fireproofing
CH685783A5 (en) * 1992-07-22 1995-09-29 Badertscher Innenausbau Ag Suspended facade divided into fire protection sections

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2795260A (en) * 1956-05-04 1957-06-11 Perry James Stephen Multiple compartment money bag
US2984640A (en) * 1956-12-06 1961-05-16 Albi Mfg Company Inc Weather resistant, fire retardant paint containing chlorine-containing organic polymer, and a spumific
DE1567674C3 (en) * 1963-08-13 1986-11-13 Monsanto Co., St. Louis, Mo. Water-insoluble ammonium polyphosphates
US3284216A (en) * 1965-11-08 1966-11-08 Albi Mfg Company Inc Fire-retardant coating composition
US3513114A (en) * 1966-01-07 1970-05-19 Monsanto Co Intumescent coating compositions
US3914193A (en) * 1969-04-17 1975-10-21 American Cyanamid Co Intumescent coating compositions containing crystalline melamine pyrophosphate
US3592207A (en) * 1969-05-12 1971-07-13 Richard A Borello Air duct closure
US3654190A (en) * 1970-05-28 1972-04-04 Us Navy Fire retardant intumescent paint
AU497271B2 (en) * 1975-05-16 1978-12-07 Dainichi-Nippon Cables Ltd. Intumescent compound
IT1087952B (en) * 1977-10-10 1985-06-04 Montedison Spa FLAME RETARDANT PAINTS.
US4159673A (en) * 1977-11-14 1979-07-03 Weirich James F Vent block
DE3041731A1 (en) * 1980-11-05 1982-06-09 Bayer Ag, 5090 Leverkusen If necessary, foamed intumescent materials and their use
US4380188A (en) * 1981-01-28 1983-04-19 Barber-Colman Company Heat-retarding air distribution unit
US4645782A (en) * 1981-02-16 1987-02-24 Dixon International Limited Putty or mastic
GB8315653D0 (en) * 1983-06-07 1983-07-13 Dixon International Ltd Ventilator device
US4957038A (en) * 1986-10-14 1990-09-18 Hamilton John G Ventilation device
US5406764A (en) * 1991-01-03 1995-04-18 Van Auken; Richard H. Mesh roof facing system
FI921156A (en) * 1991-03-20 1992-09-21 Dainippon Ink & Chemicals SWEETS, ELDBESTAIGIG MATERIAL, ELDBESTAENDIGT MATERIAL OCH FOERFARANDE FOER FRAMSTAELLNING AV ELDBESTAENDIGT MATERIAL
CA2095839C (en) * 1991-09-09 2002-05-21 David C. Aslin Composition with integral intumescence properties
US5225464A (en) * 1992-04-02 1993-07-06 Material Technologies & Sciences, Inc. Intumescent coating and method of manufacture
US5487946A (en) * 1994-08-02 1996-01-30 Battelle Memorial Institute Thermally-protective intumescent coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2159051A (en) * 1981-07-23 1985-11-27 Dixon International Ltd Panel device for a ventilation opening
EP0222298A2 (en) * 1985-11-15 1987-05-20 Bayer Ag Intumescent masses based on an epoxy resin and containing fillers
EP0302987A1 (en) * 1987-08-14 1989-02-15 Dr. Wolman GmbH Compositions for the preparation of intumescent mouldings and semi-finished products, and their use in architectural fireproofing
CH685783A5 (en) * 1992-07-22 1995-09-29 Badertscher Innenausbau Ag Suspended facade divided into fire protection sections

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832735A3 (en) * 1996-09-27 2004-11-24 Dr. Wolman GmbH Fire-protected layered system
EP0992566A1 (en) * 1998-09-04 2000-04-12 DSM Fine Chemicals Austria GmbH Intumescent laminates with high thermal resistance
CZ299871B6 (en) * 1998-09-04 2008-12-17 Dsm Fine Chemicals Austria Gmbh Intumescent laminate with high thermal resistance, process for its production and use thereof
EP1038915A1 (en) * 1999-03-22 2000-09-27 Ciba Spezialitätenchemie Pfersee GmbH Flame retardant compositions containing boron, phosphorus and polymer
WO2005003254A1 (en) 2003-07-06 2005-01-13 Karl Zimmermann Gmbh Flame-retarding fire protection element
DE202010009459U1 (en) * 2010-06-23 2010-12-30 Bip Gmbh Fire protection ventilation grille
WO2014131912A1 (en) * 2013-03-01 2014-09-04 Sika Technology Ag Insulating panel and method for producing same
WO2020233806A1 (en) * 2019-05-21 2020-11-26 Kingspan Holdings (Irl) Limited Barrier, construction article and method of manufacture thereof

Also Published As

Publication number Publication date
JPH10131341A (en) 1998-05-19
EP0808956A3 (en) 1998-06-10
DE19620893A1 (en) 1997-11-27
US6000189A (en) 1999-12-14
CN1170029A (en) 1998-01-14

Similar Documents

Publication Publication Date Title
EP0808956A2 (en) Fireproof back-ventilated façade
EP1641895B1 (en) Flame-retarding fire protection element
EP0056267B1 (en) Fire retarding agent
EP0116846B1 (en) Constructional elements having intumescent properties made from intumescent compounds and the use of intumescent compounds in the preparation of coatings
EP0992566B1 (en) Intumescent laminates with high thermal resistance
DE4135678A1 (en) Thermally expandable fire protection materials - contain expanded graphite, polymeric binders, substances which form carbon skeleton when exposed to fire, and hollow microspheres, etc.
AT392078B (en) LATEX-BASED FIRE PROTECTION
EP0302987B1 (en) Compositions for the preparation of intumescent mouldings and semi-finished products, and their use in architectural fireproofing
DE3625080A1 (en) Thermally expandable composition, process for the preparation thereof, and the use thereof
DE202008018236U1 (en) Fire barrier and with the same formed component
DE3228863A1 (en) THERMOPLASTIC INTUMESCENT MEASURES
DE3444163C2 (en)
DE1471005C3 (en) Fire protection panels
DE19639842C2 (en) Fire-protected composite system
KR0182661B1 (en) Aqueous intumescent coating composition and the fire-proofing protection agent
EP2696006A2 (en) Heat insulation plate for a compound heat insulation system, compound heat insulation system
DE2546781C3 (en) Fire protection putty
DE8033720U1 (en) THERMAL INSULATION AND FIRE RETARDANT, IN PARTICULAR. FOR THE PROTECTION OF CONSTRUCTION PARTS MADE OF WOOD, CONCRETE, STEEL OR THE LIKE. SERVING COVER ELEMENT
DE2747892B1 (en) Coating compound
WO1981000105A1 (en) Method for coating articles
DE3032156A1 (en) Heat-insulating fire-resistive protective cover - contg. plastics and or elastomer layer bonded to layer provided with phosphorus and nitrogen-contg. filler
WO2006096112A1 (en) Intumescent coating and use thereof
DE2315416A1 (en) Aq. compsn. for foamable fire-resistant coatings - combined with etherified aminoplast in org. solvent to improve water resistance
CH662575A5 (en) Process for the preparation of intumescent materials, and the use of these materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19980519

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEELMANN-EGGEBERT, HANS-PETER

Inventor name: LAHMANN, GUNNAR

Inventor name: BREUER, MICHAEL, DR.

17Q First examination report despatched

Effective date: 20000126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20000509