EP0808370A1 - Stress-tolerant plants and methods of producing the same - Google Patents

Stress-tolerant plants and methods of producing the same

Info

Publication number
EP0808370A1
EP0808370A1 EP96902974A EP96902974A EP0808370A1 EP 0808370 A1 EP0808370 A1 EP 0808370A1 EP 96902974 A EP96902974 A EP 96902974A EP 96902974 A EP96902974 A EP 96902974A EP 0808370 A1 EP0808370 A1 EP 0808370A1
Authority
EP
European Patent Office
Prior art keywords
plant
hsf
nucleic acid
protein
transcription activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96902974A
Other languages
German (de)
French (fr)
Inventor
Fritz Eberhard-Karls-Universität Tübingen SCHÖFFL
Anja Eberhard-Karls-Universität Tübingen HÜBEL
Jeong Eberhard-Karls-Universität Tübingen HEE LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KWS SAAT SE and Co KGaA
Original Assignee
KWS Kleinwanzlebener Saatzucht AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KWS Kleinwanzlebener Saatzucht AG filed Critical KWS Kleinwanzlebener Saatzucht AG
Publication of EP0808370A1 publication Critical patent/EP0808370A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Definitions

  • the present invention relates to a plant with increased stress tolerance and a method for its production.
  • the present invention relates to a plant with an increased level of protective proteins even under stress-free conditions.
  • Heat shock proteins are synthesized in all organisms, including plants, in response to greatly increased temperatures or heat shock (HS).
  • the biological significance of this reaction known as the HS response, is the protection of cellular proteins and structures during a stress phase and / or in the subsequent recovery phase.
  • the HS response can also be caused by other abiotic stress factors (stressors) such as Heavy metals, arsenite or dryness are triggered.
  • stressors abiotic stress factors
  • the HS response is a general stress reaction which ensures the survival of the cell and thus of the organism under unfavorable environmental conditions.
  • the protective effect of the HSPs is based predominantly on minimizing the damage caused by the denaturation of proteins due to the action of the stressors on the organism.
  • HSPs are molecular chaperones (cf. Table 1), which form a reversible bond with partially denatured proteins and thereby enable or accelerate the correct renaturation (folding) of these molecules.
  • HSPs are able to reduce the proportion of denatured protein due to the effects of stress, or to increase the proportion of correctly folded, biologically active proteins. Further details on the role of heat shock proteins in plants are described by Vierling, E. in Annu. Rev. Plant Physiology Plant Mol. Biol. 1991, volume 42, pages 579 to 620.
  • HSP20 group with a molecular weight of approximately 17-20 kDa are of particular importance for the response of the plants to stress. These proteins are highly expressed and there are several related genes (a family of genes). In contrast to other HSP groups (for example HSP70), there are no HSP20 or HSP20-like proteins which are already formed under normal conditions, for example at the normal ambient temperature. Without environmental stress, HSPs are only synthesized in certain stages of plant development, with this being observed especially in the late phases of pollen development and embryogenesis (the desiccation phase of seed maturation).
  • the present invention was based on the technical problem of providing plants which have an increased stress tolerance and which can react in particular to a large number of different stressors with increased tolerance.
  • This problem is solved by a plant containing at least one constitutively expressed and active transcription activator for the constitutive expression of at least one protective protein.
  • Another technical problem has been to provide a method for producing a plant with increased stress tolerance.
  • step (b) Regeneration of a transgenic plant from the plant cell produced in step (a).
  • Another technical problem was the provision of means for producing a plant with increased stress tolerance.
  • nucleic acid which codes for a transcription activator which is constitutively active in the plant.
  • Figure 1 Alternative models of regulation of the HS response in higher eukaryotes.
  • FIG. 1 Expression of the HSF-GUS fusion gene in transgenic Arabidopsis.
  • A) shows schematically the components of the gene fusion construct.
  • B) shows the constitutive GUS activities in transgenic Arajbidopsis plants.
  • the GUS activities were determined for each construct in protein extracts from 30 individual transformants (F0) and their Fl progeny. GUS activity was measured in pMol NAD / mg protein / minute.
  • Figure 3 Constitutive expression of HSP18 in transgenic AraJidopsis that overexpresses HSF fusion proteins.
  • A) shows the detection of HSP18 in Western blots.
  • WT untransformed Arabidopsis
  • HG1, HG2, GH1, GH2 single transformants, containing HSF-GUS or GUS-HSF.
  • Figure 4 Constructs for cloning the fusion products HSF1-GUS / GUS-HSF2.
  • FIG. 4a shows the construct pAthsfl, in which the Eco RV (41 base pairs before the start of translation) / Sacl fragment from Athsfl was cloned into the pBluescript vector;
  • FIG. 4b shows the base vector pBIN19-CaMV / Noster, which contains the 300 bp fragment of the Cauliflower Mosaic Virus 35S promoter as promoter, which still contains the TATA box and the transcription start of the native CaMV gene.
  • the CaMV promoter To insert the CaMV promoter, the HindIII / Xba I fragment was cloned into the plant vector pBIN19, and then the transcription termination signal Noster was inserted as the SacI / EcoRI fragment into the pBIN19 vector with the CaMV promoter;
  • FIG. 4c shows the HSF-GUS gene construct in the pBluescript vector (auxiliary vector).
  • the coding region of the GUS gene lies in a DNA restriction fragment which had been subcloned into the plasmid via Hindlll / Sacl.
  • the Athsfl gene from pAthsfl (FIG. 4a) was isolated as a HindII fragment. This resulted in the fragment in which the 5 'end with the EcoRV site (41 base pairs before the start of translation) is located. This fragment contains the associated transcription start for the native Athsfl gene.
  • This gene fragment forms the starting point for the construction of the HG fusion with the constitutive plant promoter (FIG. 4d);
  • FIG. 4d shows the construct in which the HG fusion fragment between the EcoRV / SacI cleavage sites from FIG. 4c had been cloned into the basic vector pBIN19 cleaved with S al / SacI;
  • FIG. 4e shows the gene construct in which the GH fusion fragment was cloned directly into the base vector.
  • GUS was cloned as the Xbal / Sacl fragment in the corresponding interfaces of the vector.
  • the vector generated in this way containing GUS, there were more in the polylinker Restriction sites are available for the merger with Athsfl. Athsf was then inserted by cloning via the SacI site (24 base pairs after the translation start).
  • CaMV 300 bp with start of transcription
  • “Increased stress tolerance” as used herein means the ability of a plant according to the invention to show less impairment in performance under the influence of stress factors than the wild type plant, or even to maintain full performance.
  • the increased stress tolerance is presumably based, without being bound by any theory, on the presence of one or more protective proteins under normal conditions in an increased concentration in comparison with the respective wild type plant.
  • the performance of a plant can be seen, for example, in the growth rate, the stability of the characteristics, the resistance to pathogens, the quality and the yield of the harvested products, the nutrient efficiency, the efficiency of the water balance and the behavior towards crop protection agents.
  • Transcription activator means a regulatory protein which stimulates the transcription of certain genes in the active state.
  • the transcription activator must recognize (i) certain sequences (so-called responsive elements) in the promoters of the genes under its control and / or their flanking regions, (ii) bind to it and (iii) initiate or promote transcription of the genes.
  • a transcription activator can be present as a protein either in the active (derepressed) or in the inactive (repressed) state. The activator only stimulates transcription and thus the expression of the regulated genes in the active state.
  • Constantly expressed and active in the context of the transcriptional activator means that the activator is constantly, i.e. is expressed under normal conditions such as under stress conditions and is constantly present in a form which allows its binding to the control elements of the DNA.
  • Heat shock factor HSF
  • HSE heat shock elements
  • a naturally occurring HSF in wild-type plants needs one to be activated by stress, e.g. Heat stress, generated signal.
  • HSF Genes that are regulated by HSF are, for example, the genes for protective proteins, such as the heat shock proteins.
  • Protective proteins as used herein are gene products of genes whose expression is regulated by HSF.
  • the best known protective proteins include the heat shock proteins, which act as molecular chaperones in the cells and thereby protect other proteins or biochemical and physiological processes in the cell when exposed to stress.
  • Protective proteins can have enzymatic activities that catalyze biochemical reactions and thus protect cells and organisms from stress-related damage (e.g. due to oxidative stress, for an overview see (CH Foyer, P.
  • Stress factors are biotic or abiotic factors that can reduce the performance of a plant.
  • Such factors can be: pathogen infestation (viruses, viroids, fungi, bacteria, insects, nematodes), wounding, heat (especially during flower formation and during seed ripening), cold (especially during germination), UV radiation, high light intensity , high concentration of heavy metal, salt and / or ozone, acidity, dryness and 0 2 deficiency.
  • Wild type plant herein means a plant which shows a normal stress tolerance and which provides the starting plant or plant cell for the process according to the invention.
  • Fusion protein means a fusion protein consisting of a transcription activator and at least one further protein component which usually does not occur in the corresponding transcription activator.
  • the fusion protein has the DNA-binding property of the transcription activator and, if appropriate, others
  • the activator component of the fusion protein has the ability to bind DNA and regulate the transcription of the genes under its control, and it can carry the foreign protein component at its N-terminus, C-terminus and / or within the protein chain
  • the foreign protein portion preferably comprises approximately 500-600 amino acids.
  • “Increased level of protective protein” means that the plant according to the invention with increased stress tolerance contains one or more protective proteins in a concentration which is higher than in the comparable wild type with normal stress tolerance.
  • An elevated level is already present, for example, when the plant with increased stress tolerance under stress-free conditions reaches a concentration of protective proteins which corresponds to 5%, preferably approximately 15-20% or more, of the concentration of protective proteins under stress conditions.
  • Normal conditions means that no “stressors” as discussed above affect the plant.
  • a transition from normal conditions to stress conditions is caused, for example, by an increase in temperature from approximately 20-25 ° C. (normal) to approximately 37 ° C. (stress). Stress reactions can also be triggered at temperatures lower and / or higher than 37 ° C.
  • An important switching point for the regulation of the HS response, ie the HSP synthesis, is the transcription of the HSPs.
  • the coordinated expression of the HSPs is brought about by the central regulator, ie the HS transcription factor (HSF).
  • HSF HS transcription factor
  • This function consists in recognizing heat shock promoters, binding them and stimulating the transcription of the HS genes (which code for HSP). This principle of regulation is preserved in all higher eukaryotes, including the plants (cf. FIG. 1).
  • the central regulator protein HSF is constitutive (ie permanent), but it is inactive under normal or optimal growth conditions with regard to its ability to bind to DNA and to activate the transcription of the HS genes.
  • the effect of stress on the plant is that the HSF is activated, ie it gains its ability to bind the DNA and transcription activation of the HS genes, and this in turn leads to the increased production of HSPs.
  • the activation of HSF often correlates with a trimerization or multimerization of HSF monomers.
  • HSF trimers bind to conserved HS promoter elements (referred to as HSE which contain the consensus motif [nGAAnnTTCn] n ).
  • HSE conserved HS promoter elements
  • the transcripts of the HS genes generated in this way are then preferably translated during a heat shock and enriched in relatively large amounts, with the result that a high level of HSPs and other protective proteins is present in the plant under stress.
  • HSF gene under the control of a strong constitutive promoter should lead to overexpression of the HSF and consequently to an increased transcription of the HS genes with the result of an increased HSP level. As invented by the inventors Found surprisingly, this approach did not lead to overexpression of the HSPs.
  • an elevated level of protective proteins in a plant is obtained under normal conditions if the plant contains a transcription activator, preferably an HSF, which is constitutively expressed and constitutively in the active state, so that it is present Plant constitutively expressed at least one protective protein.
  • a transcription activator preferably an HSF
  • HSF which is constitutively expressed and constitutively in the active state
  • Plant constitutively expressed at least one protective protein Preferably, however, several protective proteins, such as the members of the HSP20 family, as well as HSP70 and superoxide dismutase, are constitutively expressed simultaneously in such a plant under the influence of the transcription activator.
  • the constitutive expression of the protective proteins can even affect all protective proteins of the plant.
  • the increased stress tolerance of a plant manipulated in this way is based, without being bound to any theory, presumably on an increased concentration of one or more protective proteins even under normal conditions, so that protective proteins are already present in large quantities when a stress factor occurs. to immediately minimize the damage caused, for example, by denaturing proteins due to the stressful situation.
  • Such a plant with increased stress tolerance already has a level of at least one protective protein under normal conditions, ie stress-free conditions, which makes up approximately 5% of the level of protective protein which is built up in a plant which is fully under stress.
  • the plant according to the invention preferably already contains about 15 to 20% or more of the stress protein level of a plant under stress conditions under normal conditions, with very particular preference the members of the HSP20 family already reaching 20% of the maximum level under stress conditions under normal conditions.
  • a so-called heat shock factor is preferably considered as the activator of the protective proteins. These transcription activators (transcription factors) usually bind to conserved elements within the HS promoters, which often have the consensus motif [nGAAnnTTCn] n .
  • An example of such a heat shock factor from plants is the AraJidopsis heat shock factor (cf. Hübel, A. and Schöffl, F. in Plant Molecular Biology, volume 26, pages 353 to 362 (1994).
  • the transcription activator in wild type plants is either not at all present under normal conditions, or else in a form which does not allow DNA binding, in particular binding to HSE.
  • an inactive transcription activator can be converted into a constitutively active transcription activator by manipulating its native, inactive structure, preferably by changing the protein sequence.
  • the techniques for changing a given protein sequence are well known to those skilled in the art, as described, for example, in Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press (1989).
  • the modification of the inactive transcription activator takes place with the aim of giving the activator a constitutive DNA binding ability.
  • a preferred modification of an HSF to activate it is the fusion with another protein (foreign protein), the foreign protein preferably being fused to the N-terminus or C-terminus of the HSF.
  • Suitable fusion partner for an HSF are, for example, ⁇ -glucuronidase, and further so-called reporter proteins, for example luciferase, structural or enzyme proteins, and proteins which are simultaneously suitable for selecting cells, tissues and plants with a modified HSF.
  • Neomycin phosphotransferase II, phosphinothricin acetyltransferase and hygmycin phosphotransferase are particularly suitable for this.
  • the HSF can also be modified by attaching any other, including synthetic, proteins.
  • Whether a modification of the inactive HSF has converted it into a constitutively active HSF can be determined simply by examining the modified HSF to determine whether it has acquired the ability to bind DNA under normal conditions through the modification.
  • This ability to bind DNA can be determined using conventional methods known from the prior art, such as, for example, the gel retardation assays familiar to the person skilled in the art, as described in D.D. Mosser, N.G. Theodorakis and R.J. Morimoto in: Molecular & Cellular Biology, Volume 8, pages 4736 to 4744 (1988).
  • Plants from the Brassicaceae family, the Magnoliatae class and the Lilietae class are preferred as plants with increased stress tolerance, members of the genera Brassica, Beta, Solanum, Lycopersicum, Helianthus, Glycine, Zea, Hordeum, Triticum being particularly preferred , Seeale and Oryza.
  • the increased stress tolerance of the plants according to the invention is evident in their ability to maintain their full performance under the action of stress factors, but at least under given stress conditions they show less impairment of their full performance than the wild type plant from which the plant according to the invention originates has gone.
  • the performance of a plant can be seen, for example, in its growth rate, the stability of the characteristics, seeds and fruit substance, the resistance to pathogens, the quality and the yield of the harvested products, the nutrient efficiency, the efficiency of the water balance and the tolerance towards it Pesticides.
  • the plants according to the invention preferably show an improved stress tolerance to at least one of the biotic stress factors, such as pathogen attack (for example viruses, viroids, fungi, bacteria, insects, nematodes), and / or abiotic stress factors, wounding, heat (in particular during flower formation and during fruit and seed ripeness), cold (especially during germination), UV radiation, high light intensities, high concentrations of heavy metals, salt and ozone, acidity, dryness, and 0 2 deficiency. Plants which have an increased tolerance to several of the stress factors mentioned are particularly preferred; they are very particularly preferably more tolerant to all stress factors.
  • pathogen attack for example viruses, viroids, fungi, bacteria, insects, nematodes
  • / or abiotic stress factors wounding
  • heat in particular during flower formation and during fruit and seed ripeness
  • cold especially during germination
  • UV radiation high light intensities
  • high concentrations of heavy metals salt and ozone
  • acidity dryness
  • dryness
  • Preferred plants according to the invention have an elevated level of at least one protective protein, but preferably several protective proteins, even under stress-free conditions, ie under conditions in which the plants are not exposed to one of the above-mentioned stress factors (normal conditions).
  • the presence of an elevated level of protective protein can be determined simply by determining the content of protective proteins in a plant according to the invention and comparing this content with the protective protein content of the wild type plant.
  • the protective proteins can be isolated and quantified from the plants using conventional methods known from the prior art.
  • a nucleic acid which codes for the desired transcription activator is used as the vehicle for introducing a constitutive active transcription activator into the plant.
  • the nucleic acid is a DNA, for example in the form of a plasmid, which can be introduced into plants by known methods.
  • the suitable plasmid for this purpose is the Ti plasmid from Agrobacterium tumefaciens, or one of the known techniques for direct DNA transfer is used.
  • the nucleic acid introduced into the plant preferably codes for a constitutively active HSF, with a fusion protein consisting of an HSF and another protein or protein fragment being particularly preferred as the active form.
  • the introduced nucleic acid itself preferably contains the regulatory elements required for the expression of the desired transcription activator, the elements required for the expression in plants being known and described in the prior art. Alternatively, the introduced nucleic acid can also be brought under the control of regulatory elements already present in the plant cell.
  • F. Schöffl, M. Rieping and G. Baumann in: Developmental Genetics, Volume 8, pages 365 to 374 (1987) describes the constitutive expression of an HS gene under the control of the CaMV-35S promoter in tobacco.
  • the methods for introducing a nucleic acid into a plant cell are well known to those skilled in the art.
  • the regeneration of a complete plant from a plant cell, transformed with a nucleic acid is also familiar to the person skilled in the art and can be carried out using conventional methods from the prior art.
  • the plants according to the invention are produced by introducing a nucleic acid which codes for a constitutively active transcription activator into a plant cell and regenerating the transgenic plant from the plant cell transformed with the nucleic acid.
  • the plants of the invention are of great use in the field of agriculture, particularly where under difficult growing conditions, i.e. Plants must be grown under the influence of stress factors.
  • the heat shock factor is expressed constitutively, but its activation for DNA binding is strictly linked to heat induction (at 37 ° C), and activation requires the transition from monomers to trimers.
  • ATHSFL is described in detail in Hübel, A. and Schöffl, F. in Plant Molecular Biology, Volume 26, pages 353 to 362 (1994).
  • HSF-GUS HSF-GUS
  • GUS-HSF GUS-HSF
  • the ATHSF1 portion was 15 amino acids missing at the C-terminus in the HSF-GUS fusion and 5 amino acids at the N-terminus in the GUS-HSF fusion. In the GUS-HSF fusion, the GUS content is reduced by 5 amino acids at the C-terroinus.
  • the GUS activities were determined for each construct in protein extracts from 30 different transformants (F0) and the Fl subsequent generation. GUS activity was measured in pMol NAD / mg protein / minute.
  • Arabidopsis thaliana ecotype Columbia
  • Agrobacterium tumefaciens containing the vector plasmids derived from BIN19, with the help of Valvekens, M. van Montagu and M. van Lijsebettens in: Proceedings of the National Academy of Science, USA, Volume 85, Pages 5536 to 5540 (1988) described method transformed.
  • F1 seeds were generated from self-transformed transformants and the GUS activities were determined in the leaf tissue protein extracts using the fluorescence method as described by RA Jefferson, TA Kavnagh and MW Bevan in: The EMBO Journal, Vol. 6, pages 3901 to 3907 (1987).
  • the CIS activities found are shown in FIG. 1B.
  • RNA levels of HSF and the HSF fusions in the wild type as well as in the transgenic Arajbidopsis were determined.
  • the total RNA was isolated from the leaf tissue of individual transformants and from wild type plants following or without heat stress (HS) at 37 ° C. for 3 hours.
  • the RNAs were analyzed by Northern blot hybridization using 30 ⁇ g
  • HSP18 constitutive expression of HSP18 in transgenic AraJbidopsi ⁇ that overexpress HSF fusion proteins is shown in FIG. 3.
  • HSP17.6 The gene sequence for HSP17.6 is described in K.W. Helm and E. Vierling in: Nucleic Acids Research, Volume 17, page 7995 (1989).
  • the result of the HSP expression studies shows that in the wild type (WT) at room temperature (RT) no HSPl ⁇ mRNA is detectable.
  • Antisera directed against recombinant HSP18 from Arabidopsis can be used to detect constitutively expressed small HSPs in the transgenic plants.
  • the antisera although directed against an individual HSP, recognize all members of an HSP family because of the strong conservation of the HSP structure.
  • the level of constitutively expressed HSP found in the transgenic plants at room temperature is approximately 15 to 20% of the amount of HSPs induced by HS (determined with the aid of immunodiffusion). This corresponds to approximately 1 to 2 ng HSP18 / ⁇ g total protein.
  • the amount of small HSP in the transgenic plants increases to the value that is also achieved in the heat-induced wild type (cf. FIG. 3).
  • HSP70 the most conserved of all protective proteins, are also strongly constitutively increased in HSF-GUS (GUS-HSF) transgenic plants compared to the uninduced wild type.
  • GUS-HSF HSF-GUS
  • the constitutive stress response is not only limited to the small HSP, but also includes HSP70 and other HSPs.
  • the constitutively active HSF induces a range of HSPs.
  • the HSF fusion proteins are constituted by trimerization.
  • the HSF fusion proteins bind constitutively to HSE sequences.
  • the heat shock proteins are expressed constitutively.
  • HSF-GUS or GUS-HSF gene constructs described above allow heterologous expression in plants other than Arabidopsis.
  • the fusion products from Arabidopsis lead to the constitutive expression of HSPs in heterologous plants.
  • the corresponding HSFs can also be activated in a manner analogous to the activation in Arabidopsis described in detail above, so that the HSPs are constitutively expressed by the homologously constitutively active HSFs.
  • the media used are derived from that of Murashige T. et al. in "A revised medium for rapid growth and bioassays with tobacco tissue cultures", Physiol. Plans. 15: 473-497 (1962) specified MS medium and by that of Gamborg O.L. et al. in the nutrient requirements of suspension cultures of soybean root cells ", Exp. Cell Res. 50: 151-158 (1968).
  • LB 4404 and Ril5834-Wildstamm both commercially available; for example Clontech Laboratories, Palo Alto, California, or the American Type Culture Collection under the deposit number ATCC 15834).
  • HSF1 / GUS and GUS / HSF2 (BIN19 derivatives; Bevan M., (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721).
  • the plas id DNA was prepared using the method of P.J.J. Hooykaas and T. Mozo, "Agrobacterium molecular genetics” in Plant Molecular Biology, Manual B3: 1-9, (1994).
  • the DNA transfer into the agrobacterium was checked by isolating bacterial DNA according to the method described by P.J.J. Hooykaas and T. Mozo, "Agrobacterium molecular genetics” in Plant Molecular Biology, Manual B3: 1-9, (1994).
  • the restriction cleavage of the DNA, the transfer to nitrocellulose and the hybridization against the corresponding radioactive probe gave information about a successful DNA transfer into the agrobacteria.
  • Both strains of Agrobacteria required for infection were grown overnight in selective antibiotic medium (LB medium) at 27 ° C. After centrifuging and again taking up the sediment in 1/10 MS medium, the bacteria could be used for the infection.
  • selective antibiotic medium LB medium
  • the X-Gluc assay was performed according to Jefferson RA, (1987) "Assaying Chimeric Genes in Plants: The GUS-Gene Fusion System", Plant Molecular Biology Reporter 5: 387-405. Detection of heat stress proteins (Western blot / ELISA.
  • the antibodies used were produced in rabbits (immunization with recombinant Arabidopsis thaliana heat shock factor ATHSP17.6).
  • the heat stress proteins were extracted from plant tissue using a buffer containing 6 M urea. The extracts were separated using a 15% SDS-PAGE.
  • heat-stressed plant tissue was used as a positive control. The heat stress was carried out in SIB buffer (1 mM NaP, 1% sucrose, pH 6.0) at 40 ° C. for 2 hours with shaking.
  • the LB4404 agrobacterial strain required for infection was grown overnight in selective antibiotic medium (AB minimal medium) at 27 ° C. After centrifuging and again taking up the sediment in 1/10 MS medium, the bacteria could be used for infection.
  • cotyledon infection 7 to 10 day old sterile sugar beet seedlings of different genotypes were used. The cotyledons injured at the basal end were incubated for approx. 4 min in an agrobacterial suspension (approx. 10 9 cells / ml). The infected explants were kept on 1/10 MS medium for 3 to 4 days at 24 ° C. and a 16 hour day and then on MS medium with 0.5 mg / 1 BAP, 0.05 mg / 1 NAA, 500 mg / 1 carbenicillin and 300 mg / 1 kanamycin transferred. Until the end of the selection, subculturing was carried out every 2 to 3 weeks on the same medium.
  • transgenic shoots selected after a few weeks were propagated on MS with 0.5 mg / 1 BAP and 500 mg / 1 carbenicillin and then rooted on 4 MS with 5 mg / 1 IBA and 500 mg / 1 carbenicillin (16 hour day, 24 ° C).
  • Transgenic HSF-GUS tobacco plants show an increased drought tolerance.
  • the drying out of cut leaves is significantly slowed down compared to WT, the differences in water loss are up to 20, sometimes even 30%, depending on the drying time and the temperature.
  • Transgenic plants that were dried out to a water loss of 29.5% could be revitalized again; WT plants that lost 33.25% water in the same period (33 hours) could not be revitalized.
  • Photo-oxidative stress generated by high temperature (37 ° C) and high light intensities (increased from 50 to 650 PFD), produced a significant difference (up to 30%) in the fluorescence, measured in, in transgenic tobacco plants compared to WT Fv / Fm; this difference is due to an increased Fo of the dark-adapted WT plants, which already occurs at time 0 (before the photo-oxidation stress).
  • HSP 100 HSP 104 is important for thermotolerance in yeast associated with regulatory proteins in the cytoplasm
  • HSP90 b active forms in animal cells (hormone receptors, protein kinases etc.) the most conserved HSP, ATPase, reversible interaction with the nucleolus, the dissociation of
  • HSP70 b requires other (denatured) proteins ATP, possibly a negative regulator of the HS response, may possibly interact with HSF molecular "chaperone" for the correct arrangement of
  • HSP60 multimeric protein complexes in mitochondria, chloroplasts, possibly cytoplasm
  • HSP20 C Formation of granular bodies in plants, function as chaperone according to the mammalian HSP26 in vitro
  • Ubiquitin is involved in proteolytic degradation
  • HSF b HS factor positive regulator of the transcription of HS genes
  • HSP HSP families in plants (the members are transported to the chloroplasts or to the ER); there is only one HSP in humans

Abstract

The invention concerns plants with enhanced stress tolerance obtainable by introducing a nucleic acid which codes for a constitutively active transcription activator into a plant cell and by regenerating a transgenic plant. The plants concerned have higher levels of protective proteins under normal conditions than wild plant types.

Description

Streßtolerante Pflanzen und Verfahren zu deren HerstellungStress-tolerant plants and processes for their production
Die vorliegende Erfindung betrifft eine Pflanze mit erhöhter Streßtoleranz sowie ein Verfahren zu deren Herstellung. Insbe¬ sondere betrifft die vorliegende Erfindung eine Pflanze mit einem erhöhten Spiegel an Schutzproteinen auch unter stre߬ freien Bedingungen.The present invention relates to a plant with increased stress tolerance and a method for its production. In particular, the present invention relates to a plant with an increased level of protective proteins even under stress-free conditions.
In sämtlichen Organismen, so auch in Pflanzen, werden Hitze¬ schockproteine (HSP) in Reaktion auf stark erhöhte Temperaturen oder Hitzeschock (HS) synthetisiert. Die biologische Bedeutung dieser als HS-Antwort bekannten Reaktion ist der Schutz zellu¬ lärer Proteine und Strukturen während einer Streßphase und/oder in der darauffolgenden Erholungsphase. Die HS-Antwort kann auch durch andere abiotische Streßfaktoren (Stressoren) wie z.B. Schwermetalle, Arsenit oder Trockenheit ausgelöst werden. Es handelt sich bei der HS-Antwort um eine allgemeine Streßre¬ aktion, die das Überleben der Zelle und damit des Organismus unter ungünstigen Umweltbedingungen sichert. Die Schutzwirkung der HSPs beruht überwiegend auf einer Minimierung der Schäden, die durch die Denaturierung von Proteinen aufgrund der Einwir¬ kung der Stressoren auf den Organismus entstehen. Fast alle HSP sind molekulare Chaperone (Vgl. Tab. 1) , die eine reversible Bindung mit partiell denaturierten Proteinen eingehen und dadurch eine korrekte Renaturierung (Faltung) dieser Moleküle ermöglichen bzw. beschleunigen. HSPs sind in der Lage, den Anteil an denaturiertem Protein aufgrund der Streßeinwirkung zu senken, bzw. den Anteil korrekt gefalteter, biologisch aktiver Proteine zu erhöhen. Weitere Einzelheiten über die Rolle der Heat-Shock-Proteine in Pflanzen sind beschrieben bei Vierling, E. in Annu. Rev. Plant Physiology Plant Mol. Biol. 1991, Band 42, Seiten 579 bis 620.Heat shock proteins (HSP) are synthesized in all organisms, including plants, in response to greatly increased temperatures or heat shock (HS). The biological significance of this reaction, known as the HS response, is the protection of cellular proteins and structures during a stress phase and / or in the subsequent recovery phase. The HS response can also be caused by other abiotic stress factors (stressors) such as Heavy metals, arsenite or dryness are triggered. The HS response is a general stress reaction which ensures the survival of the cell and thus of the organism under unfavorable environmental conditions. The protective effect of the HSPs is based predominantly on minimizing the damage caused by the denaturation of proteins due to the action of the stressors on the organism. Almost all HSPs are molecular chaperones (cf. Table 1), which form a reversible bond with partially denatured proteins and thereby enable or accelerate the correct renaturation (folding) of these molecules. HSPs are able to reduce the proportion of denatured protein due to the effects of stress, or to increase the proportion of correctly folded, biologically active proteins. Further details on the role of heat shock proteins in plants are described by Vierling, E. in Annu. Rev. Plant Physiology Plant Mol. Biol. 1991, volume 42, pages 579 to 620.
Obwohl, wie oben ausgeführt, sämtliche Organismen bei Streß eine HS-Antwort zeigen, kommt dieser Antwort bei Pflanzen eine besondere Bedeutung zu. Pflanzen können aufgrund ihrer Gebun¬ denheit an den Standort am wenigsten einen Umweltstreß vermei¬ den oder diesem Ausweichen und sind am extremsten den abioti- schen Stressoren ausgesetzt. Dabei haben die kleinen HSPs (HSP20-Gruppe mit einem Molekulargewicht von ungefähr 17-20 kDa) eine besonders wichtige Bedeutung für die Antwort der Pflanzen auf Streß. Diese Proteine werden stark exprimiert, und es gibt mehrere verwandte Gene (ein Genfamilie) . Im Gegensatz zu anderen HSP-Gruppen (z.B. HSP70) , gibt es keine HSP20 oder HSP20-ähnliche Proteine, die auch bereits bei Normalbedingun¬ gen, z.B. bei der normalen Umgebungstemperatur, gebildet werden. Ohne Umweltstreß werden HSP nur in bestimmten Stadien der Pflanzenentwicklung synthetisiert, wobei dies speziell in den Spätphasen der Pollenentwicklung und der Embryogenese (Dessikationsphase der Samenreifung) beobachtet wird.Although, as stated above, all organisms show an HS response when stressed, this response occurs in plants special meaning too. Plants are least able to avoid or avoid environmental stress due to their location, and are most exposed to the abiotic stressors. The small HSPs (HSP20 group with a molecular weight of approximately 17-20 kDa) are of particular importance for the response of the plants to stress. These proteins are highly expressed and there are several related genes (a family of genes). In contrast to other HSP groups (for example HSP70), there are no HSP20 or HSP20-like proteins which are already formed under normal conditions, for example at the normal ambient temperature. Without environmental stress, HSPs are only synthesized in certain stages of plant development, with this being observed especially in the late phases of pollen development and embryogenesis (the desiccation phase of seed maturation).
Es sind jedoch keine Pflanzen bekannt, bei denen unter normalen streßfreien Bedingungen merkliche Spiegel an HSPs vorliegen. Insbesondere sind keine Pflanzen bekannt, bei denen unter streßfreien Bedingungen eine ganze Gruppe an HSPs oder gar sämtliche HSPs in biologisch relevanten Konzentrationen in der Pflanze vorliegen.However, there are no plants known to have significant levels of HSPs under normal stress free conditions. In particular, no plants are known in which a whole group of HSPs or even all HSPs are present in the plant in biologically relevant concentrations under stress-free conditions.
Der vorliegenden Erfindung lag das technische Problem zugrunde, Pflanzen bereitzustellen, die eine erhöhte Streßtoleranz besitzen und die insbesondere auf eine Vielzahl verschiedener Stressoren mit erhöhter Toleranz reagieren können.The present invention was based on the technical problem of providing plants which have an increased stress tolerance and which can react in particular to a large number of different stressors with increased tolerance.
Dieses Problem wird gelöst durch eine Pflanze, enthaltend mindestens einen konstitutiv expri ierten und aktiven Trans¬ kriptionsaktivator für die konstitutive Expression von minde¬ stens einem Schutzprotein. Ein weiteres technisches Problem bestand darin, ein Verfahren zur Herstellung einer Pflanze mit erhöhter Streßtoleranz bereitzustellen.This problem is solved by a plant containing at least one constitutively expressed and active transcription activator for the constitutive expression of at least one protective protein. Another technical problem has been to provide a method for producing a plant with increased stress tolerance.
Dieses technische Problem wird erfindungsgemäß gelöst durch ein Verfahren, umfassend die Schritte:According to the invention, this technical problem is solved by a method comprising the steps:
(a) Einbringen einer Nukleinsäure, die für einen konstitutiv aktiven Transkriptionsaktivator codiert, in eine Pflanzen¬ zelle, und(a) introducing a nucleic acid which codes for a constitutively active transcription activator into a plant cell, and
(b) Regenerieren einer transgenen Pflanze aus der in Schritt (a) erzeugten Pflanzenzelle.(b) Regeneration of a transgenic plant from the plant cell produced in step (a).
Ein weiteres technisches Problem bestand in der Bereitstellung von Mitteln zur Erzeugung einer Pflanze mit erhöhter Streßtole¬ ranz.Another technical problem was the provision of means for producing a plant with increased stress tolerance.
Dieses technische Problem wird gelöst durch eine Nukleinsäure, die für einen in der Pflanze konstitutiv aktiven Transkrip¬ tionsaktivator codiert.This technical problem is solved by a nucleic acid which codes for a transcription activator which is constitutively active in the plant.
Figur 1: Alternative Modelle der Regulation der HS-Antwort in höheren Eukaryonten.Figure 1: Alternative models of regulation of the HS response in higher eukaryotes.
Figur 2: Expression des HSF-GUS-Fusionsgens in transgener Arabidopsis .Figure 2: Expression of the HSF-GUS fusion gene in transgenic Arabidopsis.
A) zeigt schematisch die Komponenten des Genfusions- konstrukts.A) shows schematically the components of the gene fusion construct.
B) zeigt die konstitutiven GUS-Aktivitäten in transgenen Arajbidopsis-Pflanzen. Die GUS-Aktivitäten wurden ermit¬ telt für jedes Konstrukt in Proteinextrakten aus 30 einzelnen Transformanden (F0) und deren Fl-Nachkommen. Die GUS-Aktivität wurde gemessen in pMol NAD/mg Protein/Minute.B) shows the constitutive GUS activities in transgenic Arajbidopsis plants. The GUS activities were determined for each construct in protein extracts from 30 individual transformants (F0) and their Fl progeny. GUS activity was measured in pMol NAD / mg protein / minute.
C) zeigt konstitutive HSF und HSF-GUS (GH, HG) mRNAs durch Northern-Blot-HybridisierungC) shows constitutive HSF and HSF-GUS (GH, HG) mRNAs by Northern blot hybridization
Figur 3: Konstitutive Expression von HSP18 in transgener AraJidopsis, die HSF-Fusionsproteine überexprimiert.Figure 3: Constitutive expression of HSP18 in transgenic AraJidopsis that overexpresses HSF fusion proteins.
A) zeigt den Nachweis von HSP18 in Western-Blots.A) shows the detection of HSP18 in Western blots.
B) zeigt den Nachweis von HSP18-mRNA durch Nothern-Blot- Hybridisierung.B) shows the detection of HSP18 mRNA by Northern blot hybridization.
WT = nicht transformierte Arabidopsis ; HG1, HG2, GH1, GH2 = einzelne Transformanden, enthaltend HSF-GUS bzw. GUS-HSF.WT = untransformed Arabidopsis; HG1, HG2, GH1, GH2 = single transformants, containing HSF-GUS or GUS-HSF.
Figur 4: Konstrukte zur Clonierung der Fusionsprodukte HSF1- GUS/GUS-HSF2.Figure 4: Constructs for cloning the fusion products HSF1-GUS / GUS-HSF2.
Figur 4a zeigt das Konstrukt pAthsfl, bei dem das Eco RV (41 Basenpaare vor dem Start der Translation) /Sacl- Fragment von Athsfl in den pBluescript-Vektor cloniert wurde;FIG. 4a shows the construct pAthsfl, in which the Eco RV (41 base pairs before the start of translation) / Sacl fragment from Athsfl was cloned into the pBluescript vector;
Figur 4b zeigt den Basisvektor pBIN19-CaMV/Nos-ter, der als Promotor das 300 bp-Fragment des Cauliflower Mosaic Virus 35S-Promotors enthält, das noch die TATA-Box und den Transkriptionsstart des nativen CaMV-Gens enthält. Zur Insertion des CaMV-Pro otors wurde das Hindlll/Xba I-Fragment in den Pflanzenvektor pBIN19 cloniert, und anschließend wurde das Transkrip- tionsterminationssignal Nos-ter als das SacI/EcoRI- Fragment in den pBIN19-Vektor mit dem CaMV-Promotor eingefügt; Figur 4c zeigt das HSF-GUS-Genkonstrukt in dem pBluescript- Vektor (Hilfsvektor) . Der codierende Bereich des GUS- Gens liegt in einem DNA-Restriktionsfragment, das über Hindlll/Sacl in das Plasmid subcloniert worden war. Für die Insertion von Athsfl wurde das Athsfl- Gen aus pAthsfl (Figur 4a) als HindiII-Fragment iso¬ liert. Dies ergab das Fragment, in dem das 5'-Ende mit der EcoRV-Stelle (41 Basenpaare vor dem Start der Translation) gelegen ist. Dieses Fragment enthält den zugehörigen Transkriptionsstart für das native Athsfl-Gen. Dieses Genfragment bildet den Ausgangs¬ punkt für die Konstruktion der HG-Fusion mit dem konstitutiven Pflanzenpromotor (Figur 4d) ;FIG. 4b shows the base vector pBIN19-CaMV / Noster, which contains the 300 bp fragment of the Cauliflower Mosaic Virus 35S promoter as promoter, which still contains the TATA box and the transcription start of the native CaMV gene. To insert the CaMV promoter, the HindIII / Xba I fragment was cloned into the plant vector pBIN19, and then the transcription termination signal Noster was inserted as the SacI / EcoRI fragment into the pBIN19 vector with the CaMV promoter; FIG. 4c shows the HSF-GUS gene construct in the pBluescript vector (auxiliary vector). The coding region of the GUS gene lies in a DNA restriction fragment which had been subcloned into the plasmid via Hindlll / Sacl. For the insertion of Athsfl, the Athsfl gene from pAthsfl (FIG. 4a) was isolated as a HindII fragment. This resulted in the fragment in which the 5 'end with the EcoRV site (41 base pairs before the start of translation) is located. This fragment contains the associated transcription start for the native Athsfl gene. This gene fragment forms the starting point for the construction of the HG fusion with the constitutive plant promoter (FIG. 4d);
Figur 4d zeigt das Konstrukt, bei dem das HG-Fusionsfragment zwischen den Spaltstellen EcoRV/SacI aus Figur 4c in den mit S al/SacI-gespaltenen Basisvektor pBIN19 cloniert worden war;FIG. 4d shows the construct in which the HG fusion fragment between the EcoRV / SacI cleavage sites from FIG. 4c had been cloned into the basic vector pBIN19 cleaved with S al / SacI;
Die verwendeten Abkürzungen besitzen folgende Bedeu¬ tung:The abbreviations used have the following meaning:
Athsfl AS 1-520 mit TATA-Box GUS AS 1-603 CaMV 300 bp mit Transkriptionsstart Nos-ter 300 bp r TranskriptionsstartAthsfl AS 1-520 with TATA-Box GUS AS 1-603 CaMV 300 bp with transcription start Nos-ter 300 bp r transcription start
Figur 4e zeigt das Genkonstrukt, bei dem das GH-Fusionsfrag¬ ment direkt in den Basisvektor cloniert wurde. In den Basisvektor pBIN19-CaMV-35S-Nos-ter wurde GUS als das Xbal/Sacl-Fragment in den entsprechenden Schnittstel¬ len des Vektors cloniert. In dem so erzeugten Vektor, enthaltend GUS standen in dem Polylinker weitere Restriktionsstellen für die Fusionierung mit Athsfl zur Verfügung. Das Einfügen von Athsf erfolgte anschließend durch Clonierung über die Sacl- Schnittstelle (24 Basenpaare nach dem Translations¬ start) .FIG. 4e shows the gene construct in which the GH fusion fragment was cloned directly into the base vector. In the base vector pBIN19-CaMV-35S-Noster, GUS was cloned as the Xbal / Sacl fragment in the corresponding interfaces of the vector. In the vector generated in this way, containing GUS, there were more in the polylinker Restriction sites are available for the merger with Athsfl. Athsf was then inserted by cloning via the SacI site (24 base pairs after the translation start).
Athsfl :AS 6-625Athsfl: AS 6-625
GUS :AS 1-598CIS: AS 1-598
CaMV :300 bp mit TranskriptionsstartCaMV: 300 bp with start of transcription
Nos-ter :300 bp :TranskriptionsstartNos-ter: 300 bp: start of transcription
"Erhöhte Streßtoleranz" wie hierin verwendet, bedeutete die Fähigkeit einer erfindungsgemäßen Pflanze, unter dem Einfluß von Streßfaktoren eine geringere Beeinträchtigung ihrer Leistungesfähigkeit zu zeigen als die Wildtyppflanze oder gar die volle Erhaltung ihrer Leistungsfähigkeit beizubehalten. Die erhöhte Streßtoleranz beruht vermutlich, ohne an eine Theorie gebunden zu sein, auf dem Vorhandensein von einem oder mehreren Schutzproteinen unter Normalbedingungen in einer erhöhten Konzentration im Vergleich zu der jeweiligen Wildtyppflanze. Die Leistungsfähigkeit einer Pflanze zeigt sich beispielsweise in der Wachstumsgeschwindigkeit, der Stabilität der Merkmals¬ ausprägung, der Widerstandsfähigkeit gegenüber Pathogenen, der Qualität und des Ertrags der Ernteprodukte, der Nährstoffeffi- zienz, der Effizienz des Wasserhaushalts und dem Verhalten gegenüber Pflanzenschutzmitteln."Increased stress tolerance" as used herein means the ability of a plant according to the invention to show less impairment in performance under the influence of stress factors than the wild type plant, or even to maintain full performance. The increased stress tolerance is presumably based, without being bound by any theory, on the presence of one or more protective proteins under normal conditions in an increased concentration in comparison with the respective wild type plant. The performance of a plant can be seen, for example, in the growth rate, the stability of the characteristics, the resistance to pathogens, the quality and the yield of the harvested products, the nutrient efficiency, the efficiency of the water balance and the behavior towards crop protection agents.
"Transkriptionsaktivator", wie hierin verwendet, bedeutet ein regulatorisches Protein, das im aktiven Zustand die Transkrip¬ tion von bestimmten Genen stimuliert. Dazu muß der Transkrip¬ tionsaktivator an bestimmte Sequenzen (sogenannte Responsive Elements) in den Promotoren der seiner Kontrolle unterstehenden Gene und/oder deren flankierende Regionen (i) erkennen, (ii) daran binden und (iii) die Transkription der Gene initiieren oder fördern."Transcription activator", as used herein, means a regulatory protein which stimulates the transcription of certain genes in the active state. For this purpose, the transcription activator must recognize (i) certain sequences (so-called responsive elements) in the promoters of the genes under its control and / or their flanking regions, (ii) bind to it and (iii) initiate or promote transcription of the genes.
Ein Transkriptionsaktivator kann als Protein entweder im akti¬ ven (dereprimierten) oder im inaktiven (reprimierten) Zustand vorliegen. Nur im aktiven Zustand stimuliert der Aktivator die Transkription und damit die Expression der regulierten Gene.A transcription activator can be present as a protein either in the active (derepressed) or in the inactive (repressed) state. The activator only stimulates transcription and thus the expression of the regulated genes in the active state.
Beispiele für Transkriptionsaktivatoren in Pflanzen sind beschrieben in K.D. Scharf, S. Rose, W. Zott, F. Schöffl und L. Nover in: The EMBO Journal, Band 9, Seiten 4495 bis 4501 (1990) .Examples of transcription activators in plants are described in K.D. Scharf, S. Rose, W. Zott, F. Schöffl and L. Nover in: The EMBO Journal, Volume 9, pages 4495 to 4501 (1990).
"Konstitutiv exprimiert und aktiv" heißt im Zusammenhang mit dem Transkriptionsaktivator, daß der Aktivator ständig, d.h. unter Normalbedingungen wie unter Streßbedingungen, exprimiert wird und ständig in einer Form vorliegt, die seine Bindung an die Kontrollelemente der DNA erlaubt."Constitutively expressed and active" in the context of the transcriptional activator means that the activator is constantly, i.e. is expressed under normal conditions such as under stress conditions and is constantly present in a form which allows its binding to the control elements of the DNA.
"Hitzeschockfaktor (HSF) " ist gleichzusetzen mit dem Begriff "Hitzeschock-Transkriptionsaktivator", der im aktiven Zustand über seine DNA-Bindungsdomäne an die Hitzeschockelemente (HSE) in Promotorsequenzen bindet und dadurch die Transkription der entsprechenden Gene beeinflußt. Die Aktivierung des Transkrip¬ tionsaktivators zu seiner DNA-bindenden Form erfolgt beispiels¬ weise durch Multimerisierung, wie Trimerisierung, einzelner Aktivatorproteine."Heat shock factor (HSF)" is to be equated with the term "heat shock transcription activator", which binds to the heat shock elements (HSE) in promoter sequences in the active state via its DNA binding domain and thereby influences the transcription of the corresponding genes. The transcription activator is activated to its DNA-binding form, for example by multimerization, such as trimerization, of individual activator proteins.
Ein natürlich vorkommender HSF in Wildtyppflanzen benötigt für seine Aktivierung ein durch Unweitstreß, z.B. Hitzestreß, erzeugtes Signal.A naturally occurring HSF in wild-type plants needs one to be activated by stress, e.g. Heat stress, generated signal.
Gene, die von HSF reguliert werden, sind z.B. die Gene für Schutzproteine, wie die Hitzeschockproteine. "Schutzproteine", wie hierin verwendet, sind Genprodukte von Genen, deren Expression von HSF reguliert wird. Zu den bekann¬ testen Schutzproteinen zählen die Hitzeschockproteine, die als molekulare Chaperone in den Zellen fungieren und dadurch andere Proteine bzw. biochemische und physiologische Prozesse in der Zelle bei Streßeinwirkung schützen. Schutzproteine können enzymatische Aktivitäten besitzen, die biochemische Reaktionen katalysieren und so den Schutz von Zellen und Organismen vor streßbedingten Schädigungen (z.B. durch oxidativen Stress, zur Übersicht siehe (C.H. Foyer, P. Descourvieres und K.J. Kunert in: Plant, Cell and Environment, Band 17, Seiten 507 bis 523 (1994)), Anaerobiose (Y. Yang, H.-B. Kwon, H.-P. Peng, M.- C. Shin in: Plant Physiology, Band 101, Seiten 209 bis 216 (1993)) betreffend Schwer etalltoxidität (D. Neumann, O. Lichtenberger, D. Günther, K. Tschiersch und L. Nover in: Planta, Band 194, Seiten 360 bis 367 (1994)) Photoinhibition (G. Schuster, D. Even, K. Kloppstech und J. Ohad in: The EMBO Journal, Band 7, Seiten 1 bis 6 (1988)) und oxidativem Stress (P. Mehlen, J. Briolag, L. Smith, C. Diaz-Latoud, M. Fabre, D. Pauli, A.-P. Arrigo in: Eur. J. Biochemistry, Band 215, S. 277- 284 (1993)) bewirken. Hierzu zählen u.a. auch die Proteine der HSP20-Familie.Genes that are regulated by HSF are, for example, the genes for protective proteins, such as the heat shock proteins. "Protective proteins" as used herein are gene products of genes whose expression is regulated by HSF. The best known protective proteins include the heat shock proteins, which act as molecular chaperones in the cells and thereby protect other proteins or biochemical and physiological processes in the cell when exposed to stress. Protective proteins can have enzymatic activities that catalyze biochemical reactions and thus protect cells and organisms from stress-related damage (e.g. due to oxidative stress, for an overview see (CH Foyer, P. Descourvieres and KJ Kunert in: Plant, Cell and Environment, Volume 17 , Pages 507 to 523 (1994)), anaerobiose (Y. Yang, H.-B. Kwon, H.-P. Peng, M.- C. Shin in: Plant Physiology, volume 101, pages 209 to 216 (1993 )) regarding heavy metal toxicity (D. Neumann, O. Lichtenberger, D. Günther, K. Tschiersch and L. Nover in: Planta, Volume 194, pages 360 to 367 (1994)) Photoinhibition (G. Schuster, D. Even, K. Kloppstech and J. Ohad in: The EMBO Journal, Volume 7, pages 1 to 6 (1988)) and oxidative stress (P. Mehlen, J. Briolag, L. Smith, C. Diaz-Latoud, M. Fabre, D. Pauli, A.-P. Arrigo in: Eur. J. Biochemistry, Volume 215, pp. 277-284 (1993)), including the proteins of the HSP20 family.
"Streßfaktoren (Stessoren)" sind biotische oder abiotische Faktoren, die zu einer Minderung der Leistungsfähigkeit einer Pflanze führen können."Stress factors (stressors)" are biotic or abiotic factors that can reduce the performance of a plant.
Solche Faktoren können sein: Pathogenbefall (Viren, Viroide, Pilze, Bakterien, Insekten, Nematoden) , Verwundung, Hitze (insbesondere bei der Blütenausbildung und während der Samen¬ reife), Kälte (insbesondere während der Keimung), UV-Strahlung, hohe Lichtintensität, hohe Konzentration an Schwermetall, an Salz und/oder an Ozon, Azidität, Trockenheit und 02-Mangel. "Wildtyppflanze" hierin bedeutet eine Pflanze, die eine normale Streßtoleranz zeigt und die die Ausgangspflanze bzw. -pflanzen- zelle für das erfindungsgemäße Verfahren liefert.Such factors can be: pathogen infestation (viruses, viroids, fungi, bacteria, insects, nematodes), wounding, heat (especially during flower formation and during seed ripening), cold (especially during germination), UV radiation, high light intensity , high concentration of heavy metal, salt and / or ozone, acidity, dryness and 0 2 deficiency. "Wild type plant" herein means a plant which shows a normal stress tolerance and which provides the starting plant or plant cell for the process according to the invention.
••Fusionsprotein", wie hierin verwendet, bedeutet ein Fusions¬ protein aus einem Transkriptionsaktivator und mindestens einem weiteren Proteinbestandteil, der üblicherweise nicht in dem entsprechenden Transkriptionsaktivator vorkommt. Das Fusions¬ protein besitzt die DNA-bindende Eigenschaft des Transkrip¬ tionsaktivators und ggf. weitere Eigenschaften aufgrund des weiteren Proteinbestandteils. Der Aktivatorbestandteil des Fusionsproteins besitzt die Fähigkeit zur DNA-Bindung und zur Regulierung der Transkription der unter seiner Kontrolle stehenden Gene, und er kann den Fremdproteinanteil an seinem N- Terminus, C-Terminus und/oder innerhalb der Proteinkette tragen. Dabei umfaßt der Fremdproteinanteil vorzugsweise ca. 500-600 Aminosäuren."Fusion protein", as used herein, means a fusion protein consisting of a transcription activator and at least one further protein component which usually does not occur in the corresponding transcription activator. The fusion protein has the DNA-binding property of the transcription activator and, if appropriate, others The activator component of the fusion protein has the ability to bind DNA and regulate the transcription of the genes under its control, and it can carry the foreign protein component at its N-terminus, C-terminus and / or within the protein chain The foreign protein portion preferably comprises approximately 500-600 amino acids.
"Erhöhter Spiegel an Schutzprotein" bedeutet, daß die erfin¬ dungsgemäße Pflanze mit erhöhter Streßtoleranz ein oder mehrere Schutzproteine in einer Konzentration enthält, die höher ist als bei dem vergleichbaren Wildtyp mit normaler Streßtoleranz. Ein erhöhter Spiegel liegt beispielsweise bereits dann vor, wenn die Pflanze mit erhöhter Streßtoleranz unter streßfreien Bedingungen eine Konzentration an Schutzproteinen erreicht, die 5 %, vorzugsweise ca. 15-20 % oder mehr, der Konzentration an Schutzproteinen unter Streßbedingungen entspricht."Increased level of protective protein" means that the plant according to the invention with increased stress tolerance contains one or more protective proteins in a concentration which is higher than in the comparable wild type with normal stress tolerance. An elevated level is already present, for example, when the plant with increased stress tolerance under stress-free conditions reaches a concentration of protective proteins which corresponds to 5%, preferably approximately 15-20% or more, of the concentration of protective proteins under stress conditions.
"Normalbedingungen", wie hierin verwendet, bedeutet, daß keine "Streßfaktoren", wie oben erläutert, auf die Pflanze einwirken. Ein Übergang von Normalbedingungen auf Streßbedingungen wird beispielsweise bewirkt durch eine Temperaturerhöhung von ca. 20-25°C (Normal) auf ca. 37°C (Streß). Streßreaktionen können aber auch schon bei niedrigeren und/oder höheren Temperaturen als 37°C ausgelöst werden. Eine wichtige Schaltstelle für die Regulation der HS-Antwort, d.h. der HSP-Synthese, ist die Transkription der HSPs. Die koordinierte Expression der HSPs wird durch den zentralen Regu¬ lator, d.h. den HS-Transkriptionsfaktor (HSF) bewirkt. Der HSF nimmt somit eine Schlüsselfunktion bei der Initiation der HS- Antwort ein. Diese Funktion besteht darin, Hitzeschockpromoto¬ ren zu erkennen, daran zu binden und die Transkription der HS- Gene (die für HSP codieren) zu stimulieren. Dieses Regula¬ tionsprinzip ist bei allen höheren Eukaryonten, einschließlich der Pflanzen, konserviert (Vgl. Figur 1). Das zentrale Regula¬ torprotein HSF wird konstitutiv (d.h. permanent) gebildet, aber es ist bei normalen bzw. optimalen Wachstumsbedingungen inaktiv hinsichtlich seiner Fähigkeit an DNA zu binden und die Trans¬ kription der HS-Gene zu aktivieren. Streßeinwirkung auf die Pflanze hat zur Folge, daß der HSF aktiviert wird, d.h. er gewinnt seine Fähigkeit zur DNA-Bindung und Transkriptionsakti¬ vierung der HS-Gene, und dies wiederum führt zur vermehrten Herstellung von HSPs. Die Aktivierung von HSF korreliert häufig mit einer Trimerisierung bzw. Multi- merisierung von HSF-Mono- meren. Die HSF-Trimere binden an konservierte HS-Promotor¬ elemente (als HSE bezeichnet, die das Konsensusmotiv [nGAAnnTTCn]n enthalten) . Die so erzeugten Transkripte der HS- Gene werden dann während eines Hitzeschocks bevorzugt transla- tiert und in relativ großen Mengen angereichert mit der Folge, daß unter Streß ein hoher Spiegel an HSPs und an anderen Schutzproteinen in der Pflanze vorliegt."Normal conditions" as used herein means that no "stressors" as discussed above affect the plant. A transition from normal conditions to stress conditions is caused, for example, by an increase in temperature from approximately 20-25 ° C. (normal) to approximately 37 ° C. (stress). Stress reactions can also be triggered at temperatures lower and / or higher than 37 ° C. An important switching point for the regulation of the HS response, ie the HSP synthesis, is the transcription of the HSPs. The coordinated expression of the HSPs is brought about by the central regulator, ie the HS transcription factor (HSF). The HSF thus plays a key role in initiating the HS response. This function consists in recognizing heat shock promoters, binding them and stimulating the transcription of the HS genes (which code for HSP). This principle of regulation is preserved in all higher eukaryotes, including the plants (cf. FIG. 1). The central regulator protein HSF is constitutive (ie permanent), but it is inactive under normal or optimal growth conditions with regard to its ability to bind to DNA and to activate the transcription of the HS genes. The effect of stress on the plant is that the HSF is activated, ie it gains its ability to bind the DNA and transcription activation of the HS genes, and this in turn leads to the increased production of HSPs. The activation of HSF often correlates with a trimerization or multimerization of HSF monomers. The HSF trimers bind to conserved HS promoter elements (referred to as HSE which contain the consensus motif [nGAAnnTTCn] n ). The transcripts of the HS genes generated in this way are then preferably translated during a heat shock and enriched in relatively large amounts, with the result that a high level of HSPs and other protective proteins is present in the plant under stress.
Eine Möglichkeit, die HS-Antwort zu beeinflussen, schien durch die ektopische Überexpression von HSF gegeben zu sein. Dabei sollte ein HSF-Gen unter der Kontrolle eines starken konstitu- tiven Promotors zu einer Überexpression des HSF und folglich zu einer vermehrten Transkription der HS-Gene mit der Folge eines erhöhten HSP-Spiegels führen. Wie von den Erfindern über- raschenderweise gefunden, führte dieser Ansatz jedoch nicht zu einer Überexpression der HSPs.One possibility of influencing the HS response seemed to be the ectopic overexpression of HSF. An HSF gene under the control of a strong constitutive promoter should lead to overexpression of the HSF and consequently to an increased transcription of the HS genes with the result of an increased HSP level. As invented by the inventors Found surprisingly, this approach did not lead to overexpression of the HSPs.
Dagegen wurde jedoch im Rahmen der vorliegenden Erfindung gefunden, daß ein erhöhter Spiegel an Schutzproteinen in einer Pflanze unter Normalbedingungen erhalten wird, wenn die Pflanze einen Transkriptionsaktivator, vorzugsweise einen HSF, enthält, der konstitutiv exprimiert wird und konstitutiv im aktiven Zustand vorliegt, so daß diese Pflanze mindestens ein Schutz¬ protein konstitutiv exprimiert. Vorzugsweise werden in einer solchen Pflanze jedoch mehrere Schutzproteine, wie beispiels¬ weise die Mitglieder der HSP20-Familie, sowie HSP70 und Super- oxiddismutase, gleichzeitig unter dem Einfluß des Transkrip¬ tionsaktivators konstitutiv exprimiert. Die konstitutive Expression der Schutzproteine kann sogar sämtliche Schutz¬ proteine der Pflanze betreffen.In contrast, it was found within the scope of the present invention that an elevated level of protective proteins in a plant is obtained under normal conditions if the plant contains a transcription activator, preferably an HSF, which is constitutively expressed and constitutively in the active state, so that it is present Plant constitutively expressed at least one protective protein. Preferably, however, several protective proteins, such as the members of the HSP20 family, as well as HSP70 and superoxide dismutase, are constitutively expressed simultaneously in such a plant under the influence of the transcription activator. The constitutive expression of the protective proteins can even affect all protective proteins of the plant.
Die erhöhte Streßtoleranz einer derart manipulierten Pflanze beruht, ohne jedoch an eine Theorie gebunden zu sein, vermut¬ lich auf einer erhöhten Konzentration an einem bzw. mehreren Schutproteinen bereits unter Normalbedingungen, so daß bei Auf¬ treten eines Streßfaktors bereits Schutzproteine in größerer Menge vorliegen, um sofort die Schäden zu minimieren, die z.B. durch Denaturierung von Proteinen aufgrund der Streßsituation entstehen. Eine solche Pflanze mit erhöhter Streßtoleranz besitzt bereits unter Normalbedingungen, d.h. streßfreien Bedingungen, einen Spiegel an mindestens einem Schutzprotein, der ungefähr 5 % des Spiegels an Schutzprotein ausmacht, der bei einer voll unter Streß stehenden Pflanze aufgebaut wird. Vorzugsweise enthält die erfindungsgemäße Pflanze bereits unter Normalbedingungen ca. 15 bis 20 % oder mehr des Streßprotein¬ spiegels einer Pflanze unter Streßbedingungen, wobei ganz besonders bevorzugt die Mitglieder der HSP20-Familie unter Normalbedingungen bereits 20 % des maximalen Spiegels unter Streßbedingungen erreichen. Als Aktivator der Schutzproteine kommt vorzugsweise ein soge¬ nannter Hitzeschockfaktor in Betracht. Diese Transkriptions¬ aktivatoren (Transkriptionsfaktoren) binden i.d.R. an konser¬ vierte Elemente innerhalb der HS-Promotoren, die häufig das Konsensusmotiv [nGAAnnTTCn]n haben. Ein Beispiel für einen solchen Hitzeschockfaktor aus Pflanzen stellt der AraJidopsis- Hitzeschockfaktor dar (vgl. Hübel, A. und Schöffl, F. in Plant Molecular Biology, Band 26, Seite 353 bis 362 (1994) . Weitere Hitzeschockfaktoren sind dem Fachmann aus dem Stand der Technik wohl bekannt, wie beispielsweise beschrieben in K.D. Scharf, T. Materna, E. Treuter und L. Nover in: L. Nover (ed.) Plant Promotors and Transcription Factors, Seiten 121 bis 158, Springer Verlag, Berlin-Heidelberg (1994) .The increased stress tolerance of a plant manipulated in this way is based, without being bound to any theory, presumably on an increased concentration of one or more protective proteins even under normal conditions, so that protective proteins are already present in large quantities when a stress factor occurs. to immediately minimize the damage caused, for example, by denaturing proteins due to the stressful situation. Such a plant with increased stress tolerance already has a level of at least one protective protein under normal conditions, ie stress-free conditions, which makes up approximately 5% of the level of protective protein which is built up in a plant which is fully under stress. The plant according to the invention preferably already contains about 15 to 20% or more of the stress protein level of a plant under stress conditions under normal conditions, with very particular preference the members of the HSP20 family already reaching 20% of the maximum level under stress conditions under normal conditions. A so-called heat shock factor is preferably considered as the activator of the protective proteins. These transcription activators (transcription factors) usually bind to conserved elements within the HS promoters, which often have the consensus motif [nGAAnnTTCn] n . An example of such a heat shock factor from plants is the AraJidopsis heat shock factor (cf. Hübel, A. and Schöffl, F. in Plant Molecular Biology, volume 26, pages 353 to 362 (1994). Further heat shock factors are known to the person skilled in the art well-known in the art, as described for example in KD Scharf, T. Materna, E. Treuter and L. Nover in: L. Nover (ed.) Plant Promotors and Transcription Factors, pages 121 to 158, Springer Verlag, Berlin-Heidelberg ( 1994).
Wie oben ausgeführt, liegt der Transkriptionsaktivator in Wild¬ typpflanzen unter Normalbedingungen entweder überhaupt nicht vor, oder aber in einer Form,- die die DNA-Bindung, insbesondere die Bindung an HSE, nicht erlaubt. Im Rahmen der vorliegenden Erfindung konnte gezeigt werden, daß ein solcher inaktiver Transkriptionsaktivator in einen konstitutiv aktiven Transkrip¬ tionsaktivator durch Manipulation seiner nativen, inaktiven Struktur umgewandelt werden kann, vorzugsweise durch Änderung der Proteinsequenz. Die Techniken zum Ändern einer vorgegebenen Proteinsequenz sind dem Fachmann aus dem Stand der Technik wohl bekannt, wie beispielsweise beschrieben in Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press (1989). Die Modifikation des inaktiven Transkriptionsaktivators erfolgt mit dem Ziel, dem Aktivator eine konstitutive DNA-Bindungs¬ fähigkeit zu verleihen.As stated above, the transcription activator in wild type plants is either not at all present under normal conditions, or else in a form which does not allow DNA binding, in particular binding to HSE. In the context of the present invention, it could be shown that such an inactive transcription activator can be converted into a constitutively active transcription activator by manipulating its native, inactive structure, preferably by changing the protein sequence. The techniques for changing a given protein sequence are well known to those skilled in the art, as described, for example, in Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press (1989). The modification of the inactive transcription activator takes place with the aim of giving the activator a constitutive DNA binding ability.
Eine bevorzugte Modifikation eines HSF zu dessen Aktivierung ist die Fusion mit einem weiteren Protein (Fremdprotein) , wobei das Fremdprotein vorzugsweise an den N-Terminus oder C-Terminus des HSF fusioniert wird. Geeignete Fusionspartner für einen HSF sind beispielsweise ß-Glucuronidase, sowie weitere, sogenannte Reporterproteine, beispielsweise Luziferase, Struktur- oder Enzymproteine, sowie Proteine, die gleichzeitig zur Selektion von Zellen, Geweben und Pflanzen mit einem modifizierten HSF geeignet sind. Insbesondere eignen sich hierfür Neomycinphos- photransferase II, Phosphinothricinacetyltransferase und Hygro- mycinphosphotransferase. Weiterhin kann der HSF auch durch das Anhängen beliebiger anderer, auch synthetischer Proteine modifiziert werden.A preferred modification of an HSF to activate it is the fusion with another protein (foreign protein), the foreign protein preferably being fused to the N-terminus or C-terminus of the HSF. Suitable fusion partner for an HSF are, for example, β-glucuronidase, and further so-called reporter proteins, for example luciferase, structural or enzyme proteins, and proteins which are simultaneously suitable for selecting cells, tissues and plants with a modified HSF. Neomycin phosphotransferase II, phosphinothricin acetyltransferase and hygmycin phosphotransferase are particularly suitable for this. Furthermore, the HSF can also be modified by attaching any other, including synthetic, proteins.
Ob eine durchgeführte Modifikation des inaktiven HSF diesen in einen konstitutiv aktiven HSF umgewandelt hat, kann einfach dadurch festgestellt werden, daß der modifizierte HSF dahinge¬ hend untersucht wird, ob er die Fähigkeit zur DNA-Bindung unter Normalbedingungen durch die Modifikation erlangt hat. Diese Fähigkeit zur DNA-Bindung läßt sich mit aus dem Stand der Technik bekannten herkömmlichen Verfahren ermitteln, wie bei¬ spielsweise mit den dem Fachmann geläufigen Gelretardations- assays, wie beschrieben in D.D. Mosser, N.G. Theodorakis und R.J. Morimoto in: Molecular & Cellular Biology, Band 8, Seiten 4736 bis 4744 (1988) .Whether a modification of the inactive HSF has converted it into a constitutively active HSF can be determined simply by examining the modified HSF to determine whether it has acquired the ability to bind DNA under normal conditions through the modification. This ability to bind DNA can be determined using conventional methods known from the prior art, such as, for example, the gel retardation assays familiar to the person skilled in the art, as described in D.D. Mosser, N.G. Theodorakis and R.J. Morimoto in: Molecular & Cellular Biology, Volume 8, pages 4736 to 4744 (1988).
Als Pflanze mit erhöhter Streßtoleranz sind bevorzugt Pflanzen aus der Familie der Brassicaceae, der Klasse der Magnoliatae und er Klasse der Lilietae, wobei besonders bevorzugt sind Mit¬ glieder der Gattungen Brassica, Beta, Solanum, Lycopersicum, Helianthus, Glycine, Zea, Hordeum, Triticum, Seeale und Oryza.Plants from the Brassicaceae family, the Magnoliatae class and the Lilietae class are preferred as plants with increased stress tolerance, members of the genera Brassica, Beta, Solanum, Lycopersicum, Helianthus, Glycine, Zea, Hordeum, Triticum being particularly preferred , Seeale and Oryza.
Die erhöhte Streßtoleranz der erfindungsgemäßen Pflanzen zeigt sich in deren Fähigkeit, bei dem Einwirken von Streßfaktoren ihre Leistungsfähigkeit voll aufrecht zu erhalten, zumindest jedoch zeigen sie unter gegebenen Streßbedingungen eine gerin¬ gere Beeinträchtigung ihrer vollen Leistungsfähigkeit als die Wildtyppflanze, aus der die erfindungsgemäße Pflanze hervor¬ gegangen ist. Die Leistungsfähigkeit einer Pflanze zeigt sich beispielsweise in deren Wachstumsgeschwindigkeit, der Stabilität der Merkmals¬ ausprägung, Samen und Fruchtsubstanz, der Widerstandsfähigkeit gegenüber Pathogenen, der Qualität und des Ertrags der Ernte¬ produkte, der Nährstoffeffizienz, der Effizienz des Wasserhaus¬ halts und der Verträglichkeit gegenüber Pflanzenschutzmitteln.The increased stress tolerance of the plants according to the invention is evident in their ability to maintain their full performance under the action of stress factors, but at least under given stress conditions they show less impairment of their full performance than the wild type plant from which the plant according to the invention originates has gone. The performance of a plant can be seen, for example, in its growth rate, the stability of the characteristics, seeds and fruit substance, the resistance to pathogens, the quality and the yield of the harvested products, the nutrient efficiency, the efficiency of the water balance and the tolerance towards it Pesticides.
Vorzugsweise zeigen die erfindungsgemäßen Pflanzen eine verbes¬ serte Streßtoleranz gegenüber mindestens einem der biotischen Streßfaktoren, wie Pathogenbefall (beispielsweise Viren, Viroide, Pilze, Bakterien, Insekten, Nematoden) , und/oder abiotischen Streßfaktoren, Verwundung, Hitze (insbesondere bei der Blütenausbildung und während der Frucht- und Samenreife) , Kälte (insbesondere während der Keimung) , UV-Strahlung, hohe Lichtintensitäten, hohe Konzentrationen von Schwermetallen, von Salz und von Ozon, Azidität, Trockenheit, sowie 02-Mangel. Besonders bevorzugt sind Pflanzen, die eine erhöhte Toleranz gegen mehrere der genannten Streßfaktoren aufweisen, ganz besonders bevorzugt sind sie toleranter gegenüber sämtlichen Streßfaktoren.The plants according to the invention preferably show an improved stress tolerance to at least one of the biotic stress factors, such as pathogen attack (for example viruses, viroids, fungi, bacteria, insects, nematodes), and / or abiotic stress factors, wounding, heat (in particular during flower formation and during fruit and seed ripeness), cold (especially during germination), UV radiation, high light intensities, high concentrations of heavy metals, salt and ozone, acidity, dryness, and 0 2 deficiency. Plants which have an increased tolerance to several of the stress factors mentioned are particularly preferred; they are very particularly preferably more tolerant to all stress factors.
Bevorzugte erfindungsgemäße Pflanzen weisen bereits unter streßfreien Bedingungen, d.h. unter Bedingungen, unter denen die Pflanzen nicht einem der o.g. Streßfaktoren ausgesetzt sind (Normalbedingungen) , einen erhöhten Spiegel mindestens eines Schutzproteins, vorzugsweise jedoch mehrerer Schutzproteine auf. Das Vorliegen eines erhöhten Spiegels an Schutzprotein läßt sich einfach dadurch feststellen, das der Gehalt an Schutzproteinen bei einer erfindungsgemäßen Pflanze ermittelt wird und dieser Gehalt verglichen wird mit dem Schutzprotein¬ gehalt der Wildtyppflanze. Die Schutzproteine lassen sich mit aus dem Stand der Technik bekannten herkömmlichen Verfahren aus den Pflanzen isolieren und quantifizieren. Als Vehikel zum Einbringen eines konstitutiven aktiven Trans¬ kriptionsaktivators in die Pflanze wird eine Nukleinsäure ver¬ wendet, die für den gewünschten Transkriptionsaktivator codiert.Preferred plants according to the invention have an elevated level of at least one protective protein, but preferably several protective proteins, even under stress-free conditions, ie under conditions in which the plants are not exposed to one of the above-mentioned stress factors (normal conditions). The presence of an elevated level of protective protein can be determined simply by determining the content of protective proteins in a plant according to the invention and comparing this content with the protective protein content of the wild type plant. The protective proteins can be isolated and quantified from the plants using conventional methods known from the prior art. A nucleic acid which codes for the desired transcription activator is used as the vehicle for introducing a constitutive active transcription activator into the plant.
Die Nukleinsäure stellt eine DNA dar, beispielsweise in Form eines Plasmids, die nach bekannten Verfahren in Pflanzen einge¬ bracht werden kann. Beispielsweise kommt als hierfür geeignetes Plasmid das Ti-Plasmid aus dem Agrobacterium tumefaciens in Betracht, oder es wird eine der bekannten Techniken zum direk¬ ten DNA-Transfer verwendet.The nucleic acid is a DNA, for example in the form of a plasmid, which can be introduced into plants by known methods. For example, the suitable plasmid for this purpose is the Ti plasmid from Agrobacterium tumefaciens, or one of the known techniques for direct DNA transfer is used.
Die in die Pflanze eingebrachte Nukleinsäure codiert vorzugs¬ weise für einen konstitutiv aktiven HSF, wobei als aktive Form besonders bevorzugt ist ein Fusionsprotein aus einem HSF und einem weiteren Protein bzw. Proteinfragment.The nucleic acid introduced into the plant preferably codes for a constitutively active HSF, with a fusion protein consisting of an HSF and another protein or protein fragment being particularly preferred as the active form.
Vorzugsweise enthält die eingebrachte Nukleinsäure selbst die für die Expression des gewünschten Transkriptionsaktivators erforderlichen regulatorischen Elemente, wobei die für die Expression in Pflanzen erforderlichen Elemente in dem Stand der Technik bekannt und beschrieben sind. Alternativ kann die ein¬ gebrachte Nukleinsäure auch unter die Kontrolle von bereits in der Pflanzenzelle vorhandenen regulatorischen Elementen gebracht werden. F. Schöffl, M. Rieping und G. Baumann in: Developmental Genetics, Band 8, Seiten 365 bis 374 (1987) beschreibt die konstitutive Expression von einem HS-Gen unter der Kontrolle des CaMV-35S-Promotors in Tabak.The introduced nucleic acid itself preferably contains the regulatory elements required for the expression of the desired transcription activator, the elements required for the expression in plants being known and described in the prior art. Alternatively, the introduced nucleic acid can also be brought under the control of regulatory elements already present in the plant cell. F. Schöffl, M. Rieping and G. Baumann in: Developmental Genetics, Volume 8, pages 365 to 374 (1987) describes the constitutive expression of an HS gene under the control of the CaMV-35S promoter in tobacco.
Die Verfahren zum Einbringen einer Nukleinsäure in eine Pflanzenzelle sind dem Fachmann wohl bekannt. Auch die Regene¬ ration einer vollständigen Pflanze aus einer Pflanzenzelle, transformiert mit einer Nukleinsäure, ist dem Fachmann geläufig und kann mit herkömmlichen Verfahren aus dem Stand der Technik erfolgen. Die erfindungsgemäßen Pflanzen werden hergestellt durch Ein¬ bringen einer Nukleinsäure, die für einen konstitutiv aktiven Transkriptionsaktivator codiert, in eine Pflanzenzelle, und Regenerieren der transgenen Pflanze aus der mit der Nuklein¬ säure transformierten Pflanzenzelle.The methods for introducing a nucleic acid into a plant cell are well known to those skilled in the art. The regeneration of a complete plant from a plant cell, transformed with a nucleic acid, is also familiar to the person skilled in the art and can be carried out using conventional methods from the prior art. The plants according to the invention are produced by introducing a nucleic acid which codes for a constitutively active transcription activator into a plant cell and regenerating the transgenic plant from the plant cell transformed with the nucleic acid.
Sämtliche Maßnahmen zum Herstellen einer transgenen Pflanze sind aus dem Stand der Technik bekannt. Üblicherweise wird nach dem Einbringen einer Nukleinsäure in Pflanzenzellen nach den¬ jenigen Pflanzenzellen selektiert, die die Nukleinsäure aufge¬ nommen haben und diese stabil exprimieren. Aus diesen Transformanden wird dann mit herkömmlichen Verfahren eine vollständige Pflanze regeneriert. Besonders vorteilhaft ist es, wenn der zur Selektion der geeignet transformierten Pflanzen erforderliche Selektionsmarker durch das Fremdprotein bereitgestellt wird, das als Fusionpartner des HSF dient.All measures for producing a transgenic plant are known from the prior art. Usually after a nucleic acid has been introduced into plant cells, selection is made for those plant cells which have taken up the nucleic acid and stably express it. A complete plant is then regenerated from these transformants using conventional methods. It is particularly advantageous if the selection marker required for the selection of the appropriately transformed plants is provided by the foreign protein which serves as a fusion partner of the HSF.
Die erfindungsgemäßen Pflanzen sind von großem Nutzen auf dem Gebiet der Landwirtschaft, insbesondere wo unter schwierigen Wachstumsbedingungen, d.h. unter dem Einfluß von Streßfaktoren Pflanzen angebaut werden müssen.The plants of the invention are of great use in the field of agriculture, particularly where under difficult growing conditions, i.e. Plants must be grown under the influence of stress factors.
Die folgenden Beispiele erläutern die Erfindung. Dabei wurden die meisten Versuche mit Arabidopsis thaliana durchgeführt, die bekanntermaßen ein beliebtes Modellsystem für Kulturpflanzen darstellt. Dieses Modell verkörpert alle wichtigen genetischen, physiologischen, biochemischen und molekularen Eigenschaften höherer Pflanzen. Insbesondere stellt diese Pflanze ein Modell¬ system für die Regulation der HS-Antwort bei Kulturpflanzen dar. Der Hitzeschockfaktor aus Arabidopsis, ATHSFl:The following examples illustrate the invention. Most of the experiments were carried out with Arabidopsis thaliana, which is known to be a popular model system for crops. This model embodies all the important genetic, physiological, biochemical and molecular properties of higher plants. In particular, this plant represents a model system for the regulation of the HS response in crop plants. The heat shock factor from Arabidopsis, ATHSFl:
Der Hitzeschockfaktor wird konstitutiv exprimiert, aber seine Aktivierung zur DNA-Bindung ist strikt an die Induktion durch Wärme gebunden (bei 37°C) , und die Aktivierung erfordert den Übergang von Monomeren zu Trimeren. ATHSFl ist ausführlich beschrieben in Hübel, A. und Schöffl, F. in Plant Molecular Biology, Band 26, Seite 353 bis 362 (1994) .The heat shock factor is expressed constitutively, but its activation for DNA binding is strictly linked to heat induction (at 37 ° C), and activation requires the transition from monomers to trimers. ATHSFL is described in detail in Hübel, A. and Schöffl, F. in Plant Molecular Biology, Volume 26, pages 353 to 362 (1994).
Herstellen von konstitutiv aktivem ATHSFl:Manufacture of constitutively active ATHSFl:
Es wurden zwei Arten an Genfusionsprodukten, HSF-GUS (HG) und GUS-HSF (GH) , hergestellt, wie in Figur 2A gezeigt. Die Fusio¬ nen wurden konstitutiv exprimiert mit Hilfe des CaMV 3SS-Promo¬ tors in transgenen Arabidopεiε-Pflanzen. Es spielt für die Aktivität des Fusionsprodukts keine Rolle, ob ATHSFl mit dem Fremdprotein am N- oder am C-Terminus fusioniert wurde. Das zur Transforma-tion verwendete Konstrukt wurde hergestellt, indem ATHSFl-cDNA subkloniert wurde in dem Pflanzenvektor BIN19, der das Glucoronidase (GUS)-Reportergen unter der Kontrolle des konstitutiven CAMV35S-Promotors, sowie die Terminationssequenz der Nopalinsynthase (NOS-ter) enthält. Konstruktionstechnisch bedingt fehlte dem ATHSFl-Anteil in der HSF-GUS-Fusion 15 Aminosäuren an dem C-Terminus und in der GUS-HSF-Fusion 5 Aminosäuren an dem N-Termi-nus. In der GUS-HSF-Fusion ist der GUS-Anteil um 5 Aminosäuren am C-Terroinus verkürzt.Two types of gene fusion products, HSF-GUS (HG) and GUS-HSF (GH), were made as shown in Figure 2A. The fusions were constitutively expressed using the CaMV 3SS promoter in transgenic Arabidopsis plants. It does not matter for the activity of the fusion product whether ATHSF1 was fused with the foreign protein at the N- or at the C-terminus. The construct used for the transformation was produced by subcloning ATHSF1 cDNA in the plant vector BIN19, which contains the glucoronidase (GUS) reporter gene under the control of the constitutive CAMV35S promoter, and the termination sequence of the nopaline synthase (NOS-ter). The ATHSF1 portion was 15 amino acids missing at the C-terminus in the HSF-GUS fusion and 5 amino acids at the N-terminus in the GUS-HSF fusion. In the GUS-HSF fusion, the GUS content is reduced by 5 amino acids at the C-terroinus.
Expression der Fusionen in ArabidopsisExpression of the fusions in Arabidopsis
Die GUS-Aktititäten wurden für jedes Konstrukt ermittelt in Proteinextrakten aus 30 verschiedenen Transformanden (F0) und der Fl-Folgegeneration. Die GUS-Aktivität wurde gemessen in pMol NAD/mg Protein/Minute. Arabidopsis thaliana (Ökotyp Columbia) wurde mit Agrobacterium tumefaciens, enthaltend die von BIN19 stammenden Vektorplas¬ mide, mit Hilfe des von Valvekens, M. van Montagu und M. van Lijsebettens in: Proceedings of the National Academy of Science, USA, Band 85, Seiten 5536 bis 5540 (1988) beschriebe¬ nen Verfahrens transformiert. Fl-Samen wurden erzeugt aus geselbsteten Transformanden, und die GUS-Aktivitäten wurden in den Proteinextrakten aus Blattgewebe bestimmt unter Verwendung des Fluoreszenzverfahrens, wie beschrieben von R.A. Jefferson, T.A. Kavnagh und M.W. Bevan in: The EMBO Journal, Band 6, Seiten 3901 bis 3907 (1987) . Die gefundenen GUS-Aktivitäten sind in Figur 1B gezeigt.The GUS activities were determined for each construct in protein extracts from 30 different transformants (F0) and the Fl subsequent generation. GUS activity was measured in pMol NAD / mg protein / minute. Arabidopsis thaliana (ecotype Columbia) was treated with Agrobacterium tumefaciens, containing the vector plasmids derived from BIN19, with the help of Valvekens, M. van Montagu and M. van Lijsebettens in: Proceedings of the National Academy of Science, USA, Volume 85, Pages 5536 to 5540 (1988) described method transformed. F1 seeds were generated from self-transformed transformants and the GUS activities were determined in the leaf tissue protein extracts using the fluorescence method as described by RA Jefferson, TA Kavnagh and MW Bevan in: The EMBO Journal, Vol. 6, pages 3901 to 3907 (1987). The CIS activities found are shown in FIG. 1B.
Ferner wurden die mRNA-Spiegel von HSF und der HSF-Fusionen im Wildtyp wie auch im transgenen Arajbidopsis ermittelt. Hierzu wurde die Gesamt-RNA isoliert aus dem Blattgewebe von einzelnen Transformanden und von Wildtyppflanzen folgend auf oder ohne Wärmestreß (HS) bei 37°C für 3 Stunden. Die RNAs wurden analy¬ siert durch Nothern-Blot-Hybridisierung mit Hilfe von 30 μgFurthermore, the mRNA levels of HSF and the HSF fusions in the wild type as well as in the transgenic Arajbidopsis were determined. For this purpose, the total RNA was isolated from the leaf tissue of individual transformants and from wild type plants following or without heat stress (HS) at 37 ° C. for 3 hours. The RNAs were analyzed by Northern blot hybridization using 30 μg
Gesamt-RNA/Spur und einer 32P-markierten ATHSFl-cDNA-Probe, wie beschrieben von Severin und Schöffl in K. Severin und F. Schöffl in: Plant Molecular Biology, Band 15, Seiten 827 bis 833 (1990) . Die mRNA-Spiegel der Chimären Gene waren signifi¬ kant erhöht im Vergleich zu den Spiegeln des authentischen ATHSFl-Transkripts, wie aus Figur IC ersichtlich. Diese Daten zeigen, daß die Chimären HSFs stabil in den transgenen Pflanzen zusätzlich zu dem endogenen Wildtyp-ATHSFl exprimiert werden.Total RNA / lane and a 32P-labeled ATHSFl cDNA sample as described by Severin and Schöffl in K. Severin and F. Schöffl in: Plant Molecular Biology, volume 15, pages 827 to 833 (1990). The mRNA levels of the chimeric genes were significantly increased in comparison to the levels of the authentic ATHSF1 transcript, as can be seen from FIG. IC. These data show that the chimeric HSFs are stably expressed in the transgenic plants in addition to the endogenous wild-type ATHSF1.
Konstitutive HSP-SyntheseConstitutive HSP synthesis
Für die kleinen HSP bei Arabidopsis sind bisher 5 Gene bekannt, drei für Klasse I (zu der auch das unten getestete HSP18 gehört), zwei für Klasse II (vgl. Vierling, E. s.o.). mRNAs innerhalb einer Familie sind so stark konserviert, daß sie bei Hybridisierungen kreuzreagieren.So far, 5 genes are known for the small HSP in Arabidopsis, three for class I (which also includes the HSP18 tested below), two for class II (see Vierling, E. see above). mRNAs are so well preserved within a family that they cross-react in hybridizations.
Die konstitutive Expression von HSP18 in transgenen AraJbi- dopsiε , die HSF-Fusionsproteine überexprimieren, ist in Figur 3 gezeigt.The constitutive expression of HSP18 in transgenic AraJbidopsiε that overexpress HSF fusion proteins is shown in FIG. 3.
Zur Western-Blot-Analyse wurden die Proteine isoliert ohne oder folgend auf einen HS (vgl. auch Figur 1) durch rasches Homoge¬ nisieren von Blattgewebe in Puffern, enthaltend 8 M Harnstoff. Analysenproben (30 μg/Spur) wurden einer SDS-PAGE unterzogen und mit Hilfe des Elektroblotverfahrens auf Nitrozellulose übertragen. HSP18 wurde nachgewiesen durch einen Antikörper, der gegen ein rekombinantes Arabidopsis HSP17.6 gerichtet war. Die Gensequenz für HSP17.6 ist beschrieben in K.W. Helm und E. Vierling in: Nucleic Acids Research, Band 17, Seite 7995 (1989) . Die Banden wurden sichtbar gemacht durch Inkubation mit Mäuse-Anti-Huhn-IgG, an das alkalische Phosphatase gekoppelt war, und Anfärben mit dem Nitrotetrazoliumblau/5-Brom-4-chlor- 3-indolyl-phosphat-system, wie beschrieben in E. Engvall und P.J. Perlmann in: Journal of Immunology, Band 109, Seite 129 (1972) .For Western blot analysis, the proteins were isolated without or following an HS (cf. also FIG. 1) by rapidly homogenizing leaf tissue in buffers containing 8 M urea. Analysis samples (30 μg / lane) were subjected to SDS-PAGE and transferred to nitrocellulose using the electroblot method. HSP18 was detected by an antibody directed against a recombinant Arabidopsis HSP17.6. The gene sequence for HSP17.6 is described in K.W. Helm and E. Vierling in: Nucleic Acids Research, Volume 17, page 7995 (1989). The bands were visualized by incubation with mouse anti-chicken IgG to which alkaline phosphatase was coupled and staining with the nitrotetrazolium blue / 5-bromo-4-chloro-3-indolyl-phosphate system as described in E. Engvall and PJ Perlmann in: Journal of Immunology, Volume 109, page 129 (1972).
Die Nothern-Blot-Hybridisierungen wurden durchgeführt wie beschrieben in K. Severin und F. Schöffl in : Plant Molecular Biology, Band 15, Seiten 827 bis 833 (1990).The Northern blot hybridizations were carried out as described in K. Severin and F. Schöffl in: Plant Molecular Biology, Volume 15, pages 827 to 833 (1990).
Das Ergebnis der HSP-Expressionsstudien zeigt, daß im Wildtyp (WT) bei Raumtemperatur (RT) keine HSPlδmRNA nachweisbar ist. Mittels Antiseren, die gegen rekombinantes HSP18 aus Arabi¬ dopsis gerichtet sind, können in den transgenen Pflanzen konstitutiv exprimierte kleine HSPs nachgewiesen werden. Die Antiseren, obwohl sie gegen ein individuelles HSP gerichtet sind, erkennen wegen der starken Konservierung der HSP-Struktur alle Mitglieder einer HSP-Familie. Im Western-Blot ist ein deutlicher Unterschied zwischen WT (keine Expression) und transgenen Pflanzen bei RT zu erkennen. Der in den transgenen Pflanzen bei Raumtemperatur aufgefundene Spiegel an konstitutiv exprimierten HSP beträgt ca. 15 bis 20 % der durch HS induzier¬ ten Menge an HSPs (ermittelt mit Hilfe der Immundiffusion) . Dies entspricht etwa 1 bis 2 ng HSP18/μg Gesamtprotein. Nach einem Hitzeschock steigt in den transgenen Pflanzen die Menge der kleinen HSP auf den Wert, der auch beim hitzeinduzierten Wildtyp erreicht wird (vgl. Figur 3).The result of the HSP expression studies shows that in the wild type (WT) at room temperature (RT) no HSPlδmRNA is detectable. Antisera directed against recombinant HSP18 from Arabidopsis can be used to detect constitutively expressed small HSPs in the transgenic plants. The antisera, although directed against an individual HSP, recognize all members of an HSP family because of the strong conservation of the HSP structure. There is a in the Western blot clear difference between WT (no expression) and transgenic plants at RT. The level of constitutively expressed HSP found in the transgenic plants at room temperature is approximately 15 to 20% of the amount of HSPs induced by HS (determined with the aid of immunodiffusion). This corresponds to approximately 1 to 2 ng HSP18 / μg total protein. After a heat shock, the amount of small HSP in the transgenic plants increases to the value that is also achieved in the heat-induced wild type (cf. FIG. 3).
Die mRNA-Spiegel für HSP70, das konservierteste aller Schutz¬ proteine, sind in HSF-GUS (GUS-HSF) transgenen Pflanzen eben¬ falls stark konstitutiv erhöht im Vergleich zum nicht induzier¬ ten Wildtyp. Dies zeigt, daß die konstitutive Streßreaktion nicht nur auf die kleinen HSP beschränkt ist, sondern auch HSP70 und weitere HSP umfaßt. Dies heißt mit anderen Worten, daß der konstitutiv aktive HSF eine Palette von HSPs induziert.The mRNA levels for HSP70, the most conserved of all protective proteins, are also strongly constitutively increased in HSF-GUS (GUS-HSF) transgenic plants compared to the uninduced wild type. This shows that the constitutive stress response is not only limited to the small HSP, but also includes HSP70 and other HSPs. In other words, the constitutively active HSF induces a range of HSPs.
Konstitutive Aktivität der HSF-Fusionsproteine und HSF-Inter- aktionen.Constitutive activity of the HSF fusion proteins and HSF interactions.
Die Derepression der HSF-Aktivität der in Arabidopsis expri¬ mierten Fusionsproteine (HSF-GUS und GUS-HSF) konnte durch dreierlei Experimente bewiesen werden:Depression of the HSF activity of the fusion proteins expressed in Arabidopsis (HSF-GUS and GUS-HSF) could be demonstrated by three experiments:
1. Es erfolgt eine konstitutive Trimerisierung der HSF-Fusions¬ proteine.1. The HSF fusion proteins are constituted by trimerization.
2. Die HSF-Fusionsproteine binden konstitutiv an HSE-Sequenzen.2. The HSF fusion proteins bind constitutively to HSE sequences.
3. Die Hitzeschockproteine werden konstitutiv exprimiert.3. The heat shock proteins are expressed constitutively.
Es wurde gezeigt, daß bei Normaltemperatur (20 bis 25°C) , d.h. unter streßfreien Bedingungen, die HSF-Fusionsproteine aktiv sind, der natürlich vorkommende HSF jedoch inaktiv ist. Erst nach einem HS kann auch die Aktivität des natürlich vorkommen¬ den ATHSFl beobachtet werden.It was shown that at normal temperature (20 to 25 ° C), ie under stress-free conditions, the HSF fusion proteins are active are, but the naturally occurring HSF is inactive. Only after an HS can the activity of the naturally occurring ATHSFL be observed.
Übertragbarkeit der HSF-Aktivierunα aus Arabidopsis auf andere PflanzenTransferability of the HSF activation from Arabidopsis to other plants
Die oben beschriebenen HSF-GUS- bzw. GUS-HSF-Genkonstrukte erlauben die heterologe Expression in anderen Pflanzen als Arabidopsis . Dabei führen die Fusionsprodukte aus Arabidopsis zur konstitutiven Expression von HSPs in heterologen Pflanzen.The HSF-GUS or GUS-HSF gene constructs described above allow heterologous expression in plants other than Arabidopsis. The fusion products from Arabidopsis lead to the constitutive expression of HSPs in heterologous plants.
Weiterhin lassen sich in anderen Pflanzen als Arabidopsis die entsprechenden HSFs in analoger Weise zu der oben ausgiebig ausgeführten Aktivierung in Arabidopsis ebenfalls aktivieren, so daß es zu einer konstitutiven Expression der HSPs durch die homologen konstitutiv aktiven- HSFs kommt.Furthermore, in plants other than Arabidopsis, the corresponding HSFs can also be activated in a manner analogous to the activation in Arabidopsis described in detail above, so that the HSPs are constitutively expressed by the homologously constitutively active HSFs.
Konstitutive Expression von Hitzeschockproteinen in Hairv Root- Kulturen und Pflanzen der ZuckerrübeConstitutive expression of heat shock proteins in Hairv root crops and sugar beet plants
Medien:Media:
Bakterienbacteria
Zur Anzucht der Bakterien werden Medien verwendet, wie sie von Maniatis T. et al. in "Molecular cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press (1989) näher beschrieben werden. PflanzenMedia are used to grow the bacteria, as described by Maniatis T. et al. in "Molecular cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press (1989). plants
Die benutzten Medien leiten sich von dem von Murashige T. et al. in "A revised medium for rapid growth and bioassays with tobacco tissue cultures", Physiol. Plant. 15: 473-497 (1962) angegebenem MS-Medium und von dem von Gamborg O.L. et al. in ••Nutrient requirements of Suspension cultures of soybean root cells", Exp. Cell Res. 50: 151-158 (1968) angegebenem B5-Medium ab.The media used are derived from that of Murashige T. et al. in "A revised medium for rapid growth and bioassays with tobacco tissue cultures", Physiol. Plans. 15: 473-497 (1962) specified MS medium and by that of Gamborg O.L. et al. in the nutrient requirements of suspension cultures of soybean root cells ", Exp. Cell Res. 50: 151-158 (1968).
Stämme und Vektoren:Tribes and vectors:
AαrobakterienstämmeAαrobacterium strains
LB 4404 und Ril5834-Wildstamm (beide kommerziell erhältlich; beispielsweise Clontech Laboratories, Palo Alto, Kalifornien, bzw. der American Type Culture Collection unter der Hinter- legungs-Nr. ATCC 15834).LB 4404 and Ril5834-Wildstamm (both commercially available; for example Clontech Laboratories, Palo Alto, California, or the American Type Culture Collection under the deposit number ATCC 15834).
PlasmidPlasmid
HSF1/GUS und GUS/HSF2 (BIN19 Derivate; Bevan M. , (1984), "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721).HSF1 / GUS and GUS / HSF2 (BIN19 derivatives; Bevan M., (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721).
Angewandte Methoden:Methods used:
Alle molekularbiologischen Standard-Methoden - wie z.B. Restriktionsanalyse, Plasmidisolierung, Minipräparation von Plasmid-DNA, Transformation von Bakterien usw. - wurden, sofern nicht anders angegeben, wie bei Maniatis et al., "Molecular Cloning: A Laboratory Manual", (1989) beschrieben, durchge¬ führt.All standard molecular biological methods - such as restriction analysis, plasmid isolation, mini-preparation of plasmid DNA, transformation of bacteria, etc. - were, unless otherwise stated, as described by Maniatis et al., "Molecular Cloning: A Laboratory Manual ", (1989).
PflanzenmaterialPlant material
7 bis 10 Tage alte Zuckerrübenpflanzen verschiedener Genotypen wurden für die Transformation in vitro angezogen.7-10 day old sugar beet plants of different genotypes were grown for transformation in vitro.
DNA-Transfer in AqrobakterienDNA transfer in aqua bacteria
a) Transformationa) Transformation
Die Plas id-DNA wurde nach der Methode von P.J.J. Hooykaas und T. Mozo, "Agrobacterium molecular genetics" in Plant Molecular Biology, Manual B3: 1-9, (1994), über direkte Transformation übertragen.The plas id DNA was prepared using the method of P.J.J. Hooykaas and T. Mozo, "Agrobacterium molecular genetics" in Plant Molecular Biology, Manual B3: 1-9, (1994).
b) DNA-Analyseb) DNA analysis
Die Überprüfung des DNA-Transfers in das Agrobakterium erfolgte durch die Isolierung von Bakterien-DNA nach der von P.J.J. Hooykaas und T. Mozo, "Agrobacterium molecular genetics" in Plant Molecular Biology, Manual B3: 1-9, (1994) , beschriebenen Methode. Die Restriktionsspaltung der DNA, der Transfer auf Nitrozellulose und die Hybridisierung gegen die entsprechende radioaktive Sonde gaben Aufschluß über einen erfolgreichen DNA-Transfer in die Agrobakterien.The DNA transfer into the agrobacterium was checked by isolating bacterial DNA according to the method described by P.J.J. Hooykaas and T. Mozo, "Agrobacterium molecular genetics" in Plant Molecular Biology, Manual B3: 1-9, (1994). The restriction cleavage of the DNA, the transfer to nitrocellulose and the hybridization against the corresponding radioactive probe gave information about a successful DNA transfer into the agrobacteria.
Herstellung von "Hairy Root"-Kulturen von Zuckerrüben durch Co- Transfer von T-DNAs aus Agrobacterium tumefaciens und A . rhizo- genes Plasmiden: Anzucht der BakterienProduction of "Hairy Root" Cultures of Sugar Beet by Co-Transfer of T-DNAs from Agrobacterium tumefaciens and A. rhizogenic plasmids: Cultivation of the bacteria
Beide zur Infektion benötigten Agrobakterienstämme wurden über Nacht in selektivem Antibiotika-Medium (LB-Medium) bei 27°C angezogen. Nach Zentrifugieren und erneuter Aufnahme des Sedi¬ ments in 1/10 MS-Medium konnten die Bakterien zur Infektion verwendet werden.Both strains of Agrobacteria required for infection were grown overnight in selective antibiotic medium (LB medium) at 27 ° C. After centrifuging and again taking up the sediment in 1/10 MS medium, the bacteria could be used for the infection.
Hvpokotyl-Explantat-InfektionHvpokotyl explant infection
Für die Hypokotyl-Infektion wurden 7 bis 10 Tage alte sterile Zuckerrübenkeimlinge verschiedener Genotypen verwendet. Die verletzten 1 cm langen Hypokotylstücke (nur Sproßpol) wurden kurz in eine Agrobakterien-Suspension (A . tumefaciens und A .Sterile sugar beet seedlings of different genotypes, 7 to 10 days old, were used for the hypocotyl infection. The injured 1 cm long pieces of hypocotyl (only shoot pole) were briefly placed in an agrobacterial suspension (A. Tumefaciens and A.
9 rhizogenes wurden im Verhältnis 1:1 gemischt, ca. 10 Zellen/ml) eingetaucht. Die infizierten Explantate wurden auf MSB-Medium (MS mit 0,5 mg/1 BAP und 30 mg/1 Kanamycin) 4 Wochen bei 24°C und Dauerlicht gehalten. Von den induzierten Wurzeln wurden die Wurzelspitzen auf **. B5-Medium mit 500 mg/1 Cefotaxim und 300 mg/1 Kanamycin überführt. Nach ca. 8 Wochen (Subkultur alle 4 Wochen) konnten die Wurzeln zur weiteren Vermehrung in B5-Flüssig-Medium subkultiviert werden. 9 rhizogenes were mixed in a 1: 1 ratio, about 10 cells / ml) were immersed. The infected explants were kept on MSB medium (MS with 0.5 mg / 1 BAP and 30 mg / 1 kanamycin) for 4 weeks at 24 ° C. and steady light. The root tips of the induced roots were **. B5 medium transferred with 500 mg / 1 cefotaxime and 300 mg / 1 kanamycin. After about 8 weeks (subculture every 4 weeks) the roots could be subcultured in B5 liquid medium for further propagation.
Biochemischer Nachweis der Expression des FusionsproteinesBiochemical detection of the expression of the fusion protein
Der X-Gluc-Assay wurde nach Jefferson R.A. , (1987), "Assaying Chimeric Genes in Plants: The GUS-Gene Fusion System", Plant Molecular Biology Reporter 5: 387-405, durchgeführt. Nachweis der Hitzestressproteine (Western-Blot/ELISA.The X-Gluc assay was performed according to Jefferson RA, (1987) "Assaying Chimeric Genes in Plants: The GUS-Gene Fusion System", Plant Molecular Biology Reporter 5: 387-405. Detection of heat stress proteins (Western blot / ELISA.
Die verwendeten Antikörper wurden in Kaninchen hergestellt (Immunisierung mit rekombinantem Arabidopsis thaliana Hitze¬ schockfaktor ATHSP17,6). Die Extraktion der Hitzestressproteine aus Pflanzengewebe erfolgte mit einem Puffer, der 6 M Harnstoff enthält. Die Auftrennung der Extrakte erfolgte mit einer 15 % SDS-PAGE. Neben den rekombinanten ATHSP17,6 wurde hitzegestre߬ tes Pflanzengewebe als Positivkontrolle verwendet. Der Hitzestress erfolgte in SIB-Puffer (1 mM NaP, 1 % Sucrose, pH 6,0) bei 40°C für 2 Stunden unter Schütteln.The antibodies used were produced in rabbits (immunization with recombinant Arabidopsis thaliana heat shock factor ATHSP17.6). The heat stress proteins were extracted from plant tissue using a buffer containing 6 M urea. The extracts were separated using a 15% SDS-PAGE. In addition to the recombinant ATHSP17.6, heat-stressed plant tissue was used as a positive control. The heat stress was carried out in SIB buffer (1 mM NaP, 1% sucrose, pH 6.0) at 40 ° C. for 2 hours with shaking.
Transformation von Zuckerrüben mit AgrrojacteriuΛi tumefaciens :Transformation of sugar beet with AgrrojacteriuΛi tumefaciens:
Anzucht der BakterienCultivation of the bacteria
Der zur Infektion benötigte- Agrobakterienstamm LB4404 wurde über Nacht in selektivem Antibiotika-Medium (AB-Minimal-Medium) bei 27°C angezogen. Nach Zentrifugieren und erneuter Aufnahme des Sediments in 1/10 MS-Medium konnten die Bakterien zur Infektion verwendet werden.The LB4404 agrobacterial strain required for infection was grown overnight in selective antibiotic medium (AB minimal medium) at 27 ° C. After centrifuging and again taking up the sediment in 1/10 MS medium, the bacteria could be used for infection.
Blatt-Explantat-InfektionLeaf explant infection
Für die Kotyledonen-Infektion wurden 7 bis 10 Tage alte sterile Zuckerrübenkeimlinge verschiedener Genotypen verwendet. Die am basalen Ende verletzten Kotyledonen wurden ca. 4 min in einer Agrobakterien-Suspension (ca. 109 Zellen/ml) inkubiert. Die infizierten Explantate wurden auf 1/10 MS-Medium 3 bis 4 Tage bei 24°C und einem 16 Stunden-Tag gehalten und danach auf MS- Medium mit 0,5 mg/1 BAP, 0,05 mg/1 NAA, 500 mg/1 Carbenicillin und 300 mg/1 Kanamycin überführt. Bis Selektionsende wurde alle 2 bis 3 Wochen auf dem gleichen Medium subkultiviert. Die nach einigen Wochen selektierten transgenen Sprosse wurden auf MS mit 0,5 mg/1 BAP und 500 mg/1 carbenicillin vermehrt und anschließend auf 4 MS mit 5 mg/1 IBA und 500 mg/1 Carbenicillin bewurzelt (16 Stunden-Tag, 24°C) .For the cotyledon infection 7 to 10 day old sterile sugar beet seedlings of different genotypes were used. The cotyledons injured at the basal end were incubated for approx. 4 min in an agrobacterial suspension (approx. 10 9 cells / ml). The infected explants were kept on 1/10 MS medium for 3 to 4 days at 24 ° C. and a 16 hour day and then on MS medium with 0.5 mg / 1 BAP, 0.05 mg / 1 NAA, 500 mg / 1 carbenicillin and 300 mg / 1 kanamycin transferred. Until the end of the selection, subculturing was carried out every 2 to 3 weeks on the same medium. The transgenic shoots selected after a few weeks were propagated on MS with 0.5 mg / 1 BAP and 500 mg / 1 carbenicillin and then rooted on 4 MS with 5 mg / 1 IBA and 500 mg / 1 carbenicillin (16 hour day, 24 ° C).
Der biochemische Nachweis der Expression des Fusionsproteins sowie der Nachweis der Hitzestressproteine erfolgte wie für die "Hairy Root"-Kulturen angegeben.The biochemical detection of the expression of the fusion protein and the detection of the heat stress proteins were carried out as indicated for the "Hairy Root" cultures.
Die obigen Versuche zeigten, daß die transgenen "Hairy Roots" der Zuckerrübe sowie die transgenen Zuckerrüben-Pflänzchen die Hitzestressproteine konstitutiv exprimierten.The above experiments showed that the transgenic "hairy roots" of the sugar beet and the transgenic sugar beet plants constitutively expressed the heat stress proteins.
Konstitutive Expression von Hitzeschockproteinen in TabakpflanzenConstitutive expression of heat shock proteins in tobacco plants
Die heterologe HSF-GUS-Expression bewirkt eine konstitutive HSP-Synthese:The heterologous HSF-GUS expression effects a constitutive HSP synthesis:
Der bei Arabidopsis beobachtete Effekt der konstitutiven Hitze¬ schockproteinsynthese, beruhend auf dem transgenen Arabidopsis HSF-GUS, ist auch bei transgenen Tabakpflanzen nachweisbar. Demzufolge ist das aus Arabidopsis stammende HSF-Fusionsprotein auch in heterologen Pflanzen wirksam.The effect of constitutive heat shock protein synthesis, which is observed in Arabidopsis and is based on the transgenic Arabidopsis HSF-GUS, can also be demonstrated in transgenic tobacco plants. As a result, the HSF fusion protein from Arabidopsis is also effective in heterologous plants.
Die konstitutive Expression von Hitzeschockproteinen in den Tabakpflanzen erhöht die Widerstandsfähigkeit der Pflanzen gegen verschiedene Streßbedingungen. TrockentoleranzThe constitutive expression of heat shock proteins in the tobacco plants increases the resistance of the plants to various stress conditions. Drought tolerance
Transgene HSF-GUS Tabakpflanzen zeigen eine erhöhte Trocken¬ toleranz. Die Austrocknung von abgeschnittenen Blättern ist gegenüber dem WT deutlich verlangsamt, die Unterschiede im Wasserverlust betragen bis zu 20, manchmal sogar 30 %, abhängig von der Austrocknungsdauer und von der Temperatur. Transgene Pflanzen, die bis zu einem Wasserverlust von 29,5 % ausgetrock¬ net wurden, konnten wieder revitalisiert werden; WT-Pflanzen, die im gleichen Zeitraum (33 Stunden) 33,25 % Wasserverlust hatten, waren nicht revitalisierbar.Transgenic HSF-GUS tobacco plants show an increased drought tolerance. The drying out of cut leaves is significantly slowed down compared to WT, the differences in water loss are up to 20, sometimes even 30%, depending on the drying time and the temperature. Transgenic plants that were dried out to a water loss of 29.5% could be revitalized again; WT plants that lost 33.25% water in the same period (33 hours) could not be revitalized.
Toleranz gegen photoxydativen StreßTolerance to photo-oxidative stress
Photoxydativer Streß, erzeugt durch hohe Temperatur (37°C) und hohe Lichtintensitäten (von 50 auf 650 PFD erhöht) , erzeugte bei transgenen Tabakpflanzen -im Vergleich zum WT einen signifi¬ kanten Unterschied (bis zu 30 %) in der Fluoreszenz, gemessen in Fv/Fm; dieser Unterschied beruht auf einer erhöhten Fo der dunkeladaptierten WT-Pflanzen, die schon zum Zeitpunkt 0 (vor dem Photoxydationsstreß) auftritt. Diese Befunde zeigen an, daß in transgenen Pflanzen offensichtlich eine Stabilisierung des photosynthetischen Reaktionszentrums stattfindet und eventuell das nicht photochemische Quenching (Entsorgung von Radikalen über enzymatische Wege) verstärkt wird.Photo-oxidative stress, generated by high temperature (37 ° C) and high light intensities (increased from 50 to 650 PFD), produced a significant difference (up to 30%) in the fluorescence, measured in, in transgenic tobacco plants compared to WT Fv / Fm; this difference is due to an increased Fo of the dark-adapted WT plants, which already occurs at time 0 (before the photo-oxidation stress). These results indicate that the photosynthetic reaction center is evidently stabilizing in transgenic plants and that non-photochemical quenching (disposal of radicals via enzymatic routes) may be enhanced.
SchwermetalltoleranzHeavy metal tolerance
Transgene Pflanzen, bei denen ein Teil der Wurzel abgeschnitten wurde, zeigen eine deutlich abgeschwächte Reaktion gegenüber Eisen in Fe-EDTA-Lösungen (200 bis 400 μM) . WT-Pflanzen zeigen bei identischer Behandlung schwere Symptome in Form von "Nässen" und Nekrosen. Tabelle 1Transgenic plants in which part of the root has been cut off show a significantly weakened reaction to iron in Fe-EDTA solutions (200 to 400 μM). With identical treatment, WT plants show severe symptoms in the form of "oozing" and necrosis. Table 1
Biochemische und funktionelle Eigenschaften von HS-ProteinenBiochemical and functional properties of HS proteins
HSP-Familie1 EigenschaftenHSP family 1 properties
HSP 100 HSP 104 ist wichtig für die Thermotoleranz in Hefe assoziiert in dem Cytoplasma mit regulatorischen ProteinenHSP 100 HSP 104 is important for thermotolerance in yeast associated with regulatory proteins in the cytoplasm
HSP90b (inaktive Formen) in tierischen Zellen (Hormonrezeptoren, Proteinkinasen usw.) das am stärksten konservierte HSP, ATPase, reversible Wechselwirkung mit dem Nukleolus, die Dissoziation vonHSP90 b (inactive forms) in animal cells (hormone receptors, protein kinases etc.) the most conserved HSP, ATPase, reversible interaction with the nucleolus, the dissociation of
HSP70b anderen (denaturierten) Proteinen verlangt ATP, möglicherweise ein negativer Regulator der HS-Antwort, kann möglicherweise mit HSF wechselwirken molekulares "Chaperon" für die richtige Anordnung vonHSP70 b requires other (denatured) proteins ATP, possibly a negative regulator of the HS response, may possibly interact with HSF molecular "chaperone" for the correct arrangement of
HSP60b multimeren Proteinkomplexen in Mitochondrien, Chloroplasten, möglicherweise CytoplasmaHSP60 b multimeric protein complexes in mitochondria, chloroplasts, possibly cytoplasm
HS-abhängige Aggregation dieser HSP in dem Cytoplasma,HS-dependent aggregation of this HSP in the cytoplasm,
HSP20C Bildung von granulären Körperchen in Pflanzen, Funktion als Chaperon entsprechend dem Säuger-HSP26 in vitroHSP20 C Formation of granular bodies in plants, function as chaperone according to the mammalian HSP26 in vitro
8 kDa Protein, das an der Erkennung von Proteinen für den8 kDa protein that is involved in the recognition of proteins for the
Ubiquitin proteolytischen Abbau beteiligt istUbiquitin is involved in proteolytic degradation
HSFb HS-Faktor, positiver Regulator der Transkription von HS-GenenHSF b HS factor, positive regulator of the transcription of HS genes
a) Klassifiziert anhand des Molekulargewicht in kDa; es existieren verschiedene Größen in ver¬ schiedenen Organismen, aber die Struktur und Funktion ist innerhalb der Familien konser¬ viert b) Multiple Isoformen; häufig hitzeinduzierbare Proteine c) Multiple HSPs; HSP-Familien in Pflanzen (die Mitglieder werden in die Chloroplasten oder ans ER transportiert); es kommt im Menschen nur ein HSP vor a) Classified based on the molecular weight in kDa; there are different sizes in different organisms, but the structure and function is conserved within the families b) multiple isoforms; frequently heat-inducible proteins c) Multiple HSPs; HSP families in plants (the members are transported to the chloroplasts or to the ER); there is only one HSP in humans

Claims

Patentansprüche claims
1. Pflanze mit erhöhter Streßtoleranz, enthaltend mindestens einen konstitutiv exprimierten und aktiven Transkriptions¬ aktivator für die konstitutive Expression von mindestens einem Schutzprotein, das üblicherweise nur durch Stre߬ faktoren induziert wird.1. Plant with increased stress tolerance, containing at least one constitutively expressed and active transcription activator for the constitutive expression of at least one protective protein which is usually only induced by stress factors.
2. Pflanze nach Anspruch 1, dadurch gekennzeichnet, daß der Transkriptionsaktivator ein Hitzeschockfaktor (HSF) ist.2. Plant according to claim 1, characterized in that the transcription activator is a heat shock factor (HSF).
3. Pflanze nach Anspruch 2, dadurch gekennzeichnet, daß der Transkriptionsaktivator ein Fusionsprotein aus einem HSF und einem weiteren Protein ist.3. Plant according to claim 2, characterized in that the transcription activator is a fusion protein from an HSF and another protein.
4. Pflanze nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, daß die Pflanze ausgewählt wird aus der Familie der Brassicaceae, der Klasse der Magnoliatae und der Klasse der Liliatae.4. Plant according to one of claims 1 to 3, characterized gekenn¬ characterized in that the plant is selected from the family of the Brassicaceae, the class of Magnoliatae and the class of Liliatae.
5. Pflanze nach Anspruch 4, dadurch gekennzeichnet, daß die Pflanze ausgewählt wird aus den Gattungen Brassica, Beta, Solanum, Lycopersicum, Helianthus, Glycine, Zea, Hordeum, Triticum, Seeale und Oryza.5. Plant according to claim 4, characterized in that the plant is selected from the genera Brassica, Beta, Solanum, Lycopersicum, Helianthus, Glycine, Zea, Hordeum, Triticum, Seeale and Oryza.
6. Pflanze nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet, daß die Pflanze erhöhte Streßtoleranz zeigt gegenüber den Streßfaktoren Pathogenbefall, Verwundung, Hitze, Kälte, UV-Strahlung, hohe Lichtintensität, hohe Konzentration an Schwermetall, Salz und/oder Ozon, Azidi¬ tät, Trockenheit und/oder 02-Mangel.6. Plant according to one of claims 1 to 5, characterized gekenn¬ characterized in that the plant shows increased stress tolerance compared to the stress factors pathogen attack, wounding, heat, cold, UV radiation, high light intensity, high concentration of heavy metal, salt and / or ozone , Acidity, dryness and / or 0 2 deficiency.
7. Pflanze nach einem der Ansprüche 1 bis 6, dadurch gekenn¬ zeichnet, daß die Pflanze auch unter streßfreien Bedingun- gen einen erhöhten Spiegel an mindestens einem Schutz¬ protein aufweist.7. Plant according to one of claims 1 to 6, characterized gekenn¬ characterized in that the plant even under stress-free conditions gene has an elevated level of at least one protective protein.
8. Pflanze nach Anspruch 7, dadurch gekennzeichnet, daß der Spiegel an mehreren Schutzproteinen erhöht ist.8. Plant according to claim 7, characterized in that the level of several protective proteins is increased.
9. Nukleinsäure, die für einen in einer Pflanze konstitutiv aktiven Transkriptionsaktivator codiert.9. Nucleic acid which codes for a transcription activator constitutively active in a plant.
10. Nukleinsäure nach Anspruch 9, dadurch gekennzeichnet, daß die Nukleinsäure eine DNA ist.10. Nucleic acid according to claim 9, characterized in that the nucleic acid is a DNA.
11. Nukleinsäure nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß der codierte Transkriptionsaktivator ein HSF ist.11. Nucleic acid according to one of claims 9 or 10, characterized in that the encoded transcription activator is an HSF.
12. Nukleinsäure nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß der- codierte Transkriptionsaktivator ein Fusionsprotein aus einem HSF und einem weiteren Protein ist.12. Nucleic acid according to one of claims 9 to 11, characterized in that the encoded transcription activator is a fusion protein of an HSF and another protein.
13. Nukleinsäure nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß sie weiterhin ein oder mehrere regula¬ torische Elemente umfaßt für die Expression der codieren¬ den Sequenz in einer Pflanze.13. Nucleic acid according to one of claims 9 to 12, characterized in that it further comprises one or more regulatory elements for the expression of the coding sequence in a plant.
14. Pflanzenzelle, enthaltend eine Nukleinsäure nach einem der Ansprüche 9 bis 13.14. Plant cell containing a nucleic acid according to one of claims 9 to 13.
15. Pflanze, die aus einer Pflanzenzelle nach Anspruch 14 erhältlich ist.15. Plant which is obtainable from a plant cell according to claim 14.
16. Verfahren zum Herstellen einer Pflanze mit erhöhter Stre߬ toleranz, umfassend die Schritte: a) Einbringen einer Nukleinsäure, die für einen konstitu¬ tiv aktiven Transkriptionsaktivator codiert, in eine Pflanzenzelle, und16. A method for producing a plant with increased stress tolerance, comprising the steps: a) introducing a nucleic acid, which codes for a constitutively active transcription activator, into a plant cell, and
b) Regenerieren einer transgenen Pflanze aus der in Schritte a) erzeugten Pflanzenzelle.b) Regeneration of a transgenic plant from the plant cell produced in step a).
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Nukleinsäure eine DNA ist.17. The method according to claim 16, characterized in that the nucleic acid is a DNA.
18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Nukleinsäure eine RNA ist.18. The method according to claim 16, characterized in that the nucleic acid is an RNA.
19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß der Transkriptionsaktivator ein HSF ist.19. The method according to any one of claims 16 to 18, characterized in that the transcription activator is an HSF.
20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der Transkriptionsaktivator ein Fusionsprotein aus einem HSF und einem weiteren Protein ist.20. The method according to any one of claims 16 to 19, characterized in that the transcription activator is a fusion protein from an HSF and another protein.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß das weitere Protein gleichzeitig als Selektionsmarker dient. 21. The method according to claim 20, characterized in that the further protein simultaneously serves as a selection marker.
EP96902974A 1995-02-02 1996-02-01 Stress-tolerant plants and methods of producing the same Withdrawn EP0808370A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1995103359 DE19503359C1 (en) 1995-02-02 1995-02-02 Plants with increased tolerance towards stress
DE19503359 1995-02-02
PCT/EP1996/000430 WO1996023891A1 (en) 1995-02-02 1996-02-01 Stress-tolerant plants and methods of producing the same

Publications (1)

Publication Number Publication Date
EP0808370A1 true EP0808370A1 (en) 1997-11-26

Family

ID=7752991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96902974A Withdrawn EP0808370A1 (en) 1995-02-02 1996-02-01 Stress-tolerant plants and methods of producing the same

Country Status (4)

Country Link
EP (1) EP0808370A1 (en)
JP (1) JPH10510998A (en)
DE (1) DE19503359C1 (en)
WO (1) WO1996023891A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9706381D0 (en) * 1997-03-27 1997-05-14 Cambridge Advanced Tech Improvements relating to the specificity of gene expression
US7345217B2 (en) 1998-09-22 2008-03-18 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US7868229B2 (en) 1999-03-23 2011-01-11 Mendel Biotechnology, Inc. Early flowering in genetically modified plants
US7858848B2 (en) 1999-11-17 2010-12-28 Mendel Biotechnology Inc. Transcription factors for increasing yield
US7193129B2 (en) 2001-04-18 2007-03-20 Mendel Biotechnology, Inc. Stress-related polynucleotides and polypeptides in plants
US8686226B2 (en) 1999-03-23 2014-04-01 Mendel Biotechnology, Inc. MYB-related transcriptional regulators that confer altered root hare, trichome morphology, and increased tolerance to abiotic stress in plants
US8633353B2 (en) 1999-03-23 2014-01-21 Mendel Biotechnology, Inc. Plants with improved water deficit and cold tolerance
EP1230344B1 (en) * 1999-11-17 2011-11-02 Mendel Biotechnology, Inc. Plant biochemistry-related genes
ATE434048T1 (en) * 2000-01-13 2009-07-15 Riken TRANSGENIC PLANTS WITH THE NEOXANTHIN-BREAKING ENZYME GENE
US8426678B2 (en) 2002-09-18 2013-04-23 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
FR2836688B1 (en) * 2002-03-01 2006-01-13 Biogemma Fr USE OF ELIP PROTEINS TO INCREASE PLANT RESISTANCE TO PHOTOOXIDANT STRESS
JP2006034252A (en) * 2004-07-30 2006-02-09 National Agriculture & Bio-Oriented Research Organization Oryza sativa resistant to composite environmental stress
EP2361927A1 (en) 2010-02-26 2011-08-31 BASF Plant Science Company GmbH Plants having enhanced yield-related traits and a method for making the same
EP2361985A1 (en) 2010-02-26 2011-08-31 BASF Plant Science Company GmbH Plants having enhanced yield-related traits and a method for making the same
KR101291365B1 (en) * 2010-03-04 2013-07-29 연세대학교 산학협력단 Gene Implicated in Drought Stress Tolerance and Growth Accelerating and Transformed Plants with the Same
US20130036516A1 (en) 2010-03-18 2013-02-07 Basf Plant Science Company Gmbh Plants having enhanced yield-related traits and method for making the same
BR112012022880A2 (en) 2010-03-18 2015-09-15 Basf Plant Science Co Gmbh methods for increasing yield and / or plant yield traits relative to control plants, for the production of a transgenic plant and for the production of a product, plant, construction, use of a construction, transgenic plant, harvestable parts of a plant, products derived from a plant and use of a nucleic acid
AR083141A1 (en) 2010-03-19 2013-02-06 Basf Plant Science Co Gmbh PLANTS THAT HAVE BETTER FEATURES RELATED TO PERFORMANCE AND A METHOD FOR PRODUCING
EP2371845A1 (en) 2010-03-22 2011-10-05 BASF Plant Science Company GmbH Plants having enhanced yield-related traits and a method for making the same
CN105063063A (en) 2010-06-24 2015-11-18 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and method for making the same
EP2835427A3 (en) 2010-08-24 2015-05-20 BASF Plant Science Company GmbH Plants having enhanced yield-related traits and a method for making the same
BR112013018545A2 (en) 2011-01-20 2019-02-05 Basf Plant Science Co Gmbh plants with improved production-related characteristics and a method for producing them
WO2012117330A1 (en) 2011-02-28 2012-09-07 Basf Plant Science Company Gmbh Plants having enhanced yield-related traits and producing methods thereof
EA201391243A1 (en) 2011-02-28 2014-07-30 Басф Плант Сайенс Компани Гмбх PLANTS OWNED WITH INCREASED PROFITABILITY-ASSOCIATED PROPERTIES AND METHOD OF THEIR RECEIVING
CN103582702A (en) 2011-03-01 2014-02-12 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and producing methods thereof
JP5704708B2 (en) * 2011-03-31 2015-04-22 一般財団法人電力中央研究所 Method for evaluating ozone effects on rice yield
EP2677035A1 (en) 2012-06-22 2013-12-25 BASF Plant Science Company GmbH Plants having enhanced yield-related traits and a method for making the same
EP2816115A1 (en) 2013-06-17 2014-12-24 BASF Plant Science Company GmbH Plants having one or more enhanced yield-related traits and a method for making the same
EP2896698A1 (en) 2014-01-17 2015-07-22 BASF Plant Science Company GmbH Plants having one or more enhanced yield-related traits and a method for making the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3810286A1 (en) * 1988-03-25 1989-10-12 Max Planck Gesellschaft TRANSGENIC PLANT WITH MODIFIED PHYSIOLOGY, MORPHOLOGY AND MODIFIED HORMONE METABOLISM, TISSUE CULTURES OF THIS PLANT AND METHOD FOR THE PRODUCTION THEREOF
US4990607A (en) * 1989-03-14 1991-02-05 The Rockefeller University Alteration of gene expression in plants
EP0587788B1 (en) * 1991-06-03 1999-01-07 Arch Development Corporation Methods and compositions of genetic stress response systems
JP4719560B2 (en) * 2005-12-01 2011-07-06 本田技研工業株式会社 Motorcycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9623891A1 *

Also Published As

Publication number Publication date
WO1996023891A1 (en) 1996-08-08
JPH10510998A (en) 1998-10-27
DE19503359C1 (en) 1996-02-22

Similar Documents

Publication Publication Date Title
WO1996023891A1 (en) Stress-tolerant plants and methods of producing the same
DE69936980T2 (en) SYNTHETIC PROMOTERS
DE69932868T2 (en) Nucleic acid molecule having a nucleotide sequence for a promoter
DE69928264T2 (en) SEED FAVORITE PROMOTERS
DE69434312T2 (en) REGULATION OF PLANT GROWTH
EP2035563B1 (en) Pathogen-inducible synthetic promoter
DE19644478A1 (en) Leaf-specific expression of genes in transgenic plants
DE69732702T2 (en) A SYNTHETIC, VEGETABLE CORE PROMOTER AND POWER SUPPLIED, REGULATORY ELEMENT
EP0298918A2 (en) Inducible virus resistance in plants
EP0412381B1 (en) Use of lysozyme gene constructions in plants for enhanced resistance
DE4100594A1 (en) NEW PLASMIDES FOR THE TIME AND LOCAL CONTROLLED EXPRESSION OF A HETEROLOGICAL PRODUCT IN PLANTS
DE3719053A1 (en) IMPROVED USE OF PLANT-RECOVERABLE NITROGEN BY CULTURAL PLANTS WITH OVEREXPRESSION OF GLUTAMINE SYNTHETASE
DE69432988T2 (en) FOR DNA SEQUENCES ENCODING AMMONIUM TRANSPORTERS AND PLASMIDES, BACTERIA, YEARS AND PLANT CELLS THEREOF
DE19734218A1 (en) Processes for increasing yield in plants
WO2000029566A1 (en) Promoters for gene expression in the roots of plants
DE69837396T2 (en) GENETIC PROCEDURE
DE69730984T2 (en) PROMOTER FROM TOBACCO
KR20190031881A (en) Manufacturing method of optimized promoters inducible by phytohormone abscisic acid and uses thereof
DE19940270C2 (en) Process for the production of plants with increased photosynthesis rate
DE69834570T2 (en) PROTEIN MANUFACTURE IN TRANSGENIC LUZERN PLANTS
EP1458230A1 (en) Production of recombinant antibodies by means of fusion with elastin-like peptides
DE10313795A1 (en) Altered PPase expression in sugar beet
DE19607697C2 (en) Storage root tissue-specific regulon of sugar beet
EP0927246A2 (en) Adenylosuccinate synthetase
EP1276882A2 (en) Method for genetically modifying a plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK FR GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KWS SAAT AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000901