EP0799951B1 - Method for reinforcing building constructions by means of glued carbon fibres - Google Patents

Method for reinforcing building constructions by means of glued carbon fibres Download PDF

Info

Publication number
EP0799951B1
EP0799951B1 EP97400756A EP97400756A EP0799951B1 EP 0799951 B1 EP0799951 B1 EP 0799951B1 EP 97400756 A EP97400756 A EP 97400756A EP 97400756 A EP97400756 A EP 97400756A EP 0799951 B1 EP0799951 B1 EP 0799951B1
Authority
EP
European Patent Office
Prior art keywords
fabric
resin
carbon fibre
strip
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97400756A
Other languages
German (de)
French (fr)
Other versions
EP0799951A1 (en
Inventor
Alain Raymond Chabert
Roger Lacroix
Jean Georges Luyckx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Freyssinet International STUP SA
Original Assignee
Laboratoire Central des Ponts et Chaussees
Bostik Findley SA
Freyssinet International STUP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoire Central des Ponts et Chaussees, Bostik Findley SA, Freyssinet International STUP SA filed Critical Laboratoire Central des Ponts et Chaussees
Publication of EP0799951A1 publication Critical patent/EP0799951A1/en
Application granted granted Critical
Publication of EP0799951B1 publication Critical patent/EP0799951B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements

Definitions

  • the present invention relates to methods of reinforcement of civil engineering structures with fibers bonded carbon, processes that are used to increase the resistance of civil engineering structures in particular when their mechanical characteristics have deteriorated due to aging.
  • document US-A-5 308 430 describes a process of strengthening civil engineering structures in using carbon or other fibers which are coated with resin when applied to the structure.
  • the aforementioned document provides for using fibers that are initially stranded and then to flatten these strands by crushing in order to constitute flat strips of fibers: this manufacturing process presents the disadvantage of risking damaging the fibers during crushing the strands.
  • the object of the present invention is in particular to overcome these various drawbacks.
  • the reinforcement thus obtained is particularly efficient and reliable, in particular because the efforts to resume are transmitted from the civil engineering structure to carbon fibers through a matrix of unique and homogeneous resin, avoiding any layer of intermediate material between this matrix and the structure strengthen.
  • the method according to the invention contributes also to reduce the bending stresses in the resin.
  • Figure 1 shows a particular example of setting work of the process according to the invention, used to reinforce or repair a reinforced concrete beam 1 supporting a floor 2 of building.
  • this app is not limiting, and the invention can be used to reinforce any civil engineering structure, in particular concrete, metal (especially steel) or wood.
  • This reinforcement is obtained by sticking a fabric flexible 3 of carbon fibers on at least one surface of the civil engineering structure: the surface to be reinforced will be generally a surface subjected to tensile forces, in the occurrence the underside 4 of the beam 1, but it would also possible to reinforce in the same way a surface of the civil engineering structure which is subjected to efforts shear, for example the sides 5 of the beam 1 considered here, to the right of the supports 6 of this beam.
  • the resin used may for example be the resin two-component epoxy consisting on the one hand of the resin base of mark "CECA XEP 3935 / A", and on the other hand by the hardener brand "CECA XEP 2919 / B", these two components being manufactured and marketed by CECA S.A., 12 place de l'Iris, La Défense 2, Cédex 54, 92062 PARIS LA DEFENSE (FRANCE).
  • the resin used may be a thermoplastic or thermosetting resin, flame retardant or not, resistant to ultraviolet rays or not, which has the ability to adhere to both the surface of the structure of civil engineering and on carbon fibers and which is able to plug possible cracks in the surface to strengthen 4.
  • This resin has, when applied to fluid state, viscosity at application temperature (i.e. usually at room temperature) included between 1,000 and 100,000 mPa.s.
  • the resin is thixotropic when is in the fluid state, and it does not contain any solvent.
  • a resin which polymerizes is used at room temperature.
  • the fabric 3 of carbon fibers meanwhile, preferably in the form of a flexible strip 7 (see Figure 2) which extends in a longitudinal direction X and which is generally stored in the form of a roll.
  • This strip 7 is made of carbon fibers sized which form on the one hand warp threads 8 substantially continuous extending in the longitudinal direction X, and on the other hand weft yarns 9 (possibly of different size of the warp threads) extending in a transverse direction Y parallel to the width of strip 7 (or possibly in oblong directions).
  • the carbon fibers making up the fabric have tensile strength which is greater than 1,500 MPa, and an elastic modulus between 200 and 400 GPa.
  • the amount of carbon fiber in the fabric 3 in a given direction can be modulated during the manufacture of this fabric, depending on the efforts to take up with carbon fibers.
  • the steering longitudinal X of this strip is preferably parallel to these tensile forces: this is how in the example shown in the drawings, the strip 7 is arranged in parallel to the length of the beam 1.
  • the strip 7 may initially have a face on which the carbon fiber fabric 3 is left bare, and one side covered by a flexible sheet 10 of synthetic material ("polyane”) which is removably glued to the fabric 3 carbon fiber.
  • polyane synthetic material
  • the strip 7 is preferably wound with the flexible sheet 10 directed towards the outside of the roller, so as to protect the carbon fibers during storing said tape.
  • the underlying structure to strengthen risk of cracking, especially when said structure is concrete.
  • the shear forces between the strip of tissue and the underlying structure are distributed under any the length of the tip, measured parallel to the longitudinal direction of the fabric strip. The result that the shear stresses reach values lower than when the ends of the fabric strip are rectangular, so that one can thus avoiding damage and in particular cracking of the underlying structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Laminated Bodies (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Woven Fabrics (AREA)
  • Nonwoven Fabrics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ropes Or Cables (AREA)
  • Knitting Of Fabric (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

The method consists of sticking a layer of carbon fibre cloth onto a structure reinforcing surface (4). Firstly the reinforcing surface is prepared and then coated with an epoxy resin layer in the fluid state. A dry flexible cloth (3), constituted from carbon fibres, is placed onto the resin layer still in the fluid state. A sufficient pressure is exerted on the cloth to impregnate the resin and equalise the resin film. The carbon fibre cloth has the shape of a band (7) which extends in a longitudinal direction (X). The carbon fibres form a continuous wire chain parallel to the longitudinal direction and a transverse wire weft.

Description

La présente invention est relative aux procédés de renforcement de structures de génie civil au moyen de fibres de carbone collées, procédés qui sont utilisés afin d'augmenter la résistance des structures de génie civil notamment lorsque leurs caractéristiques mécaniques se sont détériorées du fait du vieillissement.The present invention relates to methods of reinforcement of civil engineering structures with fibers bonded carbon, processes that are used to increase the resistance of civil engineering structures in particular when their mechanical characteristics have deteriorated due to aging.

Dans certains procédés connus de ce type, on préfabrique en usine des éléments de matériau composite, constitués de fibres de carbone incluses dans une matrice de résine synthétique, puis on met en oeuvre ces éléments sur des chantiers de bâtiment ou travaux publics en les collant sur les surfaces à renforcer.In certain known processes of this type, factory prefabricated with composite material elements, made up of carbon fibers included in a matrix of synthetic resin, then these elements are used on building sites or public works by sticking them on the surfaces to be reinforced.

Selon les cas, le matériau composite à base de fibres de carbone préparé en usine peut avoir des consistances différentes :

  • il peut s'agir d'un matériau rigide qui se présente sous forme de plaques planes, auquel cas le procédé n'est applicable que pour renforcer une surface parfaitement plane, et il est nécessaire de maintenir les plaques de matériau composite en appui contre cette surface jusqu'à ce qu'elles soient définitivement collées sur ladite surface,
  • le matériau composite peut également être maintenu dans un état plastique par une conservation à très basse température qui bloque la polymérisation de sa matrice de résine, ce qui permet l'application dudit matériau sur des surfaces non planes : mais la conservation à très basse température rend l'utilisation de ce matériau composite extrêmement lourde, et ce mode de conservation exclut même l'utilisation d'un tel matériau sur de petits chantiers, qui ne peuvent être dotés que d'un équipement léger.
Depending on the case, the carbon fiber composite material prepared in the factory may have different consistencies:
  • it may be a rigid material which is in the form of flat plates, in which case the method is only applicable to reinforce a perfectly flat surface, and it is necessary to keep the plates of composite material in abutment against this surface until they are permanently bonded to said surface,
  • the composite material can also be maintained in a plastic state by a conservation at very low temperature which blocks the polymerization of its resin matrix, which allows the application of said material on non-planar surfaces: but the conservation at very low temperature makes the use of this extremely heavy composite material, and this method of preservation even excludes the use of such a material on small sites, which can only be equipped with light equipment.

De plus, dans tous les cas de figure, les efforts qui sont repris par les fibres de carbone transitent d'abord par la colle au moyen de laquelle le matériau composite est fixé à la structure de génie civil, puis par la matrice de résine synthétique, avant d'être transmis aux fibres de carbone : cette multiplication des matériaux intermédiaires entre la structure de génie civil et les fibres de carbone nuit à l'efficacité du renforcement.In addition, in all cases, the efforts which are taken up by the carbon fibers pass first by the glue by means of which the composite material is attached to the civil engineering structure and then by the matrix of synthetic resin, before being transmitted to the fibers of carbon: this multiplication of intermediate materials between the civil engineering structure and the carbon fibers affects the effectiveness of the reinforcement.

Par ailleurs, le document US-A-5 308 430 décrit un procédé de renforcement de structures de génie civil au moyen de fibres de carbone ou autres qui sont enduites de résine au moment de leur application sur la structure.Furthermore, document US-A-5 308 430 describes a process of strengthening civil engineering structures in using carbon or other fibers which are coated with resin when applied to the structure.

Mais les fibres en question sont toutes parallèles les unes aux autres, de sorte que le renforcement ainsi réalisé n'est efficace que pour reprendre des efforts dans une seule direction.But the fibers in question are all parallel to each other, so that strengthening as well achieved is effective only to resume efforts in one direction.

De plus, afin de maintenir une certaine cohésion entre ces fibres avant leur mise en oeuvre, il est nécessaire que lesdites fibres soient collées sur une feuille souple de support.In addition, in order to maintain a certain cohesion between these fibers before their implementation, it is necessary that said fibers are glued to a sheet flexible support.

Par conséquent, s'il est nécessaire de superposer plusieurs couches de fibres de carbone sur la surface à renforcer, ces couches sont séparées entre elles par la feuille souple de matériau support : on introduit ainsi une hétérogénéité supplémentaire dans le matériau composite de renforcement, ce qui diminue la capacité de ce matériau à transmettre convenablement les efforts entre la structure de génie civil et les fibres de carbone.Therefore, if it is necessary to overlay multiple layers of carbon fiber on the surface to reinforce, these layers are separated from each other by the flexible sheet of support material: a additional heterogeneity in the composite material of reinforcement, which decreases the ability of this material to properly transmit the efforts between the structure of civil engineering and carbon fibers.

Enfin, le document susmentionné prévoit d'utiliser des fibres qui sont initialement sous forme de torons, puis d'aplatir ces torons par écrasement afin de constituer des bandes plates de fibres : ce procédé de fabrication présente l'inconvénient de risquer d'endommager les fibres lors de l'écrasement des torons.Finally, the aforementioned document provides for using fibers that are initially stranded and then to flatten these strands by crushing in order to constitute flat strips of fibers: this manufacturing process presents the disadvantage of risking damaging the fibers during crushing the strands.

La présente invention a notamment pour but de pallier ces différents inconvénients.The object of the present invention is in particular to overcome these various drawbacks.

A cet effet, l'invention propose un procédé pour renforcer une structure de génie civil, consistant à coller au moins une couche de tissu de fibres de carbone sur une surface à renforcer appartenant à ladite structure, ce procédé comportant les étapes suivantes :

  • a) préparer la surface à renforcer,
  • b) enduire ladite surface à renforcer d'une couche de résine époxy à l'état fluide, capable d'adhérer sur la structure de génie civil et sur les fibres de carbone et apte à boucher d'éventuelles fissures présentées par la surface à renforcer, cette résine présentant, lorsqu'elle est appliquée à l'état fluide, une viscosité comprise entre 1 000 et 100 000 mPa.s, et cette résine ayant par ailleurs, une fois durcie, une résistance à la rupture en traction comprise entre 5 et 100 MPa avec un allongement à la rupture compris entre 0,5 et 10 %, et une résistance à la rupture en compression comprise entre 5 et 100 MPa avec un raccourcissement à la rupture compris entre 0,5 et 10 %,
  • c) et appliquer un tissu souple sec, constitué de fibres de carbone ensimées, sur la couche de résine encore à l'état fluide, en exerçant sur ce tissu une pression suffisante pour l'imprégner de résine et pour égaliser le film de résine, le tissu présentant, dans au moins une direction, une résistance à la rupture supérieure à 1 500 MPa et un module élastique compris entre 200 et 400 GPa, le tissu de fibres de carbone se présentant sous la forme d'une bande qui s'étend selon une direction longitudinale, et les fibres de carbone de ce tissu formant d'une part des fils de chaíne sensiblement continus et parallèles à la direction longitudinale, et d'autre part des fils de trame transversaux.
  • To this end, the invention provides a method for reinforcing a civil engineering structure, consisting of gluing at least one layer of carbon fiber fabric to a surface to be reinforced belonging to said structure, this method comprising the following steps:
  • a) prepare the surface to be reinforced,
  • b) coating said surface to be reinforced with a layer of epoxy resin in the fluid state, capable of adhering to the civil engineering structure and to the carbon fibers and capable of plugging any cracks presented by the surface to be reinforced. , this resin having, when applied in the fluid state, a viscosity of between 1,000 and 100,000 mPa.s, and this resin having moreover, once hardened, a tensile strength of between 5 and 100 MPa with an elongation at break of between 0.5 and 10%, and a compressive breaking strength of between 5 and 100 MPa with a shortening at break of between 0.5 and 10%,
  • c) and apply a dry flexible fabric, consisting of sized carbon fibers, to the layer of resin still in the fluid state, by exerting on this fabric sufficient pressure to impregnate it with resin and to equalize the resin film, the fabric having, in at least one direction, a breaking strength greater than 1,500 MPa and an elastic modulus of between 200 and 400 GPa, the carbon fiber fabric being in the form of a strip which extends in a longitudinal direction, and the carbon fibers of this fabric forming, on the one hand, substantially continuous warp threads parallel to the longitudinal direction, and, on the other hand, transverse weft threads.
  • Grâce à ces dispositions, il est possible de renforcer une surface de forme quelconque, éventuellement courbe ou irrégulière, et il n'est pas nécessaire d'appliquer une pression permanente sur le tissu de fibres de carbone jusqu'à la prise de la résine.Thanks to these provisions, it is possible to reinforce a surface of any shape, possibly curved or irregular, and there is no need to apply permanent pressure on the fiber fabric of carbon until the resin sets.

    Le renforcement ainsi obtenu est particulièrement efficace et fiable, notamment du fait que les efforts à reprendre sont transmis de la structure de génie civil aux fibres de carbone par l'intermédiaire d'une matrice de résine unique et homogène, en évitant toute couche de matériau intermédiaire entre cette matrice et la structure à renforcer.The reinforcement thus obtained is particularly efficient and reliable, in particular because the efforts to resume are transmitted from the civil engineering structure to carbon fibers through a matrix of unique and homogeneous resin, avoiding any layer of intermediate material between this matrix and the structure strengthen.

    Par ailleurs, le procédé selon l'invention contribue également à diminuer les contraintes de flexion dans la résine.Furthermore, the method according to the invention contributes also to reduce the bending stresses in the resin.

    De plus, l'utilisation de fibres de carbone sous forme de tissu, présentant des fils de chaíne et des fils de trame entrecroisés, permet de garantir que les fibres de carbone gardent une cohésion parfaite au cours de leur mise en oeuvre, ce qui permet à la fois une grande facilité de mise en oeuvre et de hautes performances mécaniques.In addition, the use of carbon fibers under fabric shape, with warp threads and interwoven weft, ensures that the fibers of carbon keep a perfect cohesion during their setting which makes it very easy to implementation and high mechanical performance.

    Dans des modes de réalisation préférés, on peut avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :

    • la surface à renforcer est soumise à des efforts de traction, les fils de chaíne du tissu de fibres de carbone étant disposés parallèlement auxdits efforts ;
    • la bande de tissu de fibres de carbone présente au moins une extrémité longitudinale découpée en pointe ;
    • la bande de tissu de fibres de carbone présente deux extrémités longitudinales découpées en pointe ;
    • le tissu de fibres de carbone comporte initialement une face nue et une face recouverte d'une feuille souple amovible en matériau synthétique, le tissu étant appliqué sur le film de résine par l'intermédiaire de sa face nue, et la feuille de matériau synthétique étant enlevée du tissu après imprégnation de ce tissu par la résine ;
    • la résine peut être thixotrope lorsqu'elle est à l'état fluide ;
    • la résine ne comprend aucun solvant ;
    • la structure de génie civil est constituée d'un matériau choisi parmi le béton, le métal et le bois.
    In preferred embodiments, recourse may also be had to one and / or the other of the following arrangements:
    • the surface to be reinforced is subjected to tensile stresses, the warp threads of the carbon fiber fabric being arranged parallel to said stresses;
    • the strip of carbon fiber fabric has at least one longitudinal end cut into a point;
    • the strip of carbon fiber fabric has two longitudinal ends cut into a point;
    • the carbon fiber fabric initially has a bare face and a face covered with a removable flexible sheet of synthetic material, the fabric being applied to the resin film via its bare face, and the sheet of synthetic material being removed from the fabric after impregnation of this fabric with the resin;
    • the resin can be thixotropic when it is in the fluid state;
    • the resin does not include any solvent;
    • the civil engineering structure is made of a material chosen from concrete, metal and wood.

    D'autres caractéristiques et avantages de l'invention apparaítront au cours de la description détaillée suivante d'une de ses formes de réalisation, donnée à titre d'exemple non limitatif, en regard des dessins joints.Other characteristics and advantages of the invention will appear during the detailed description following of one of its embodiments, given as non-limiting example, with reference to the accompanying drawings.

    Sur les dessins :

    • la figure 1 est une vue en perspective illustrant un exemple de mise en oeuvre du procédé selon l'invention,
    • la figure 2 illustre la disposition des fibres de carbone au sein de la bande de tissu de fibres de carbone utilisée dans l'exemple de la figure 1,
    • et la figure 3 montre la bande de tissu de fibres de carbone de la figure 2, revêtue d'une feuille protectrice amovible.
    In the drawings:
    • FIG. 1 is a perspective view illustrating an example of implementation of the method according to the invention,
    • FIG. 2 illustrates the arrangement of the carbon fibers within the strip of carbon fiber fabric used in the example of FIG. 1,
    • and Figure 3 shows the strip of carbon fiber fabric of Figure 2, coated with a removable protective sheet.

    La figure 1 montre un exemple particulier de mise en oeuvre du procédé selon l'invention, utilisé pour renforcer ou réparer une poutre en béton armé 1 supportant un plancher 2 de bâtiment.Figure 1 shows a particular example of setting work of the process according to the invention, used to reinforce or repair a reinforced concrete beam 1 supporting a floor 2 of building.

    Mais bien entendu, cette application n'est pas limitative, et l'invention est utilisable pour renforcer toute structure de génie civil, en particulier en béton, en métal (notamment acier) ou en bois.But of course, this app is not limiting, and the invention can be used to reinforce any civil engineering structure, in particular concrete, metal (especially steel) or wood.

    Ce renforcement est obtenu en collant un tissu souple 3 de fibres de carbone sur au moins une surface de la structure de génie civil : la surface à renforcer sera en général une surface soumise à des efforts de traction, en l'occurrence la sous-face 4 de la poutre 1, mais il serait également possible de renforcer de la même façon une surface de la structure de génie civil qui est soumise à des efforts de cisaillement, par exemple les flancs 5 de la poutre 1 considérés ici, au droit des appuis 6 de cette poutre.This reinforcement is obtained by sticking a fabric flexible 3 of carbon fibers on at least one surface of the civil engineering structure: the surface to be reinforced will be generally a surface subjected to tensile forces, in the occurrence the underside 4 of the beam 1, but it would also possible to reinforce in the same way a surface of the civil engineering structure which is subjected to efforts shear, for example the sides 5 of the beam 1 considered here, to the right of the supports 6 of this beam.

    Pour mettre en oeuvre le procédé de renforcement selon l'invention, on procède comme suit :

    • la surface à renforcer 4 de la structure de génie civil est nettoyée, le cas échéant sablée et dégraissée, ou encore cette surface peut subir toute autre préparation mécanique ou chimique visant à assurer la durabilité du renforcement,
    • cette surface est enduite d'un film mince de résine à l'état fluide,
    • on applique ensuite le tissu de fibres, sec, sur le film de résine encore à l'état fluide,
    • ce tissu est marouflé, c'est-à-dire pressé contre la surface à réparer, avec une pression suffisante pour égaliser l'épaisseur de la résine entre cette surface à réparer et le tissu, et pour imprégner ce tissu avec la résine,
    • et le cas échéant, on procède à nouvelles applications de résine et de tissu s'il est nécessaire d'utiliser plusieurs couches de tissu superposées, éventuellement avec des dimensions de tissu différentes.
    To implement the reinforcement method according to the invention, the procedure is as follows:
    • the surface to be reinforced 4 of the civil engineering structure is cleaned, if necessary sanded and degreased, or this surface can undergo any other mechanical or chemical preparation aimed at ensuring the durability of the reinforcement,
    • this surface is coated with a thin film of resin in the fluid state,
    • the dry fiber fabric is then applied to the resin film still in the fluid state,
    • this fabric is mounted, that is to say pressed against the surface to be repaired, with sufficient pressure to equalize the thickness of the resin between this surface to be repaired and the fabric, and to impregnate this fabric with the resin,
    • and if necessary, new resin and fabric applications are made if it is necessary to use several superimposed layers of fabric, possibly with different fabric dimensions.

    La résine utilisée pourra être par exemple la résine époxy bi-composants constituée d'une part par la résine de base de marque "CECA XEP 3935/A", et d'autre part par le durcisseur de marque "CECA XEP 2919/B", ces deux composants étant fabriqués et commercialisés par la société CECA S.A., 12 place de l'Iris, La Défense 2, Cédex 54, 92062 PARIS LA DEFENSE (FRANCE).The resin used may for example be the resin two-component epoxy consisting on the one hand of the resin base of mark "CECA XEP 3935 / A", and on the other hand by the hardener brand "CECA XEP 2919 / B", these two components being manufactured and marketed by CECA S.A., 12 place de l'Iris, La Défense 2, Cédex 54, 92062 PARIS LA DEFENSE (FRANCE).

    De façon plus générale, la résine utilisée pourra être une résine thermoplastique ou thermodurcissable, ignifugée ou non, résistante aux rayons ultraviolets ou non, qui a la capacité d'adhérer à la fois sur la surface de la structure de génie civil et sur les fibres de carbone et qui est apte à boucher d'éventuelles fissures de la surface à renforcer 4.More generally, the resin used may be a thermoplastic or thermosetting resin, flame retardant or not, resistant to ultraviolet rays or not, which has the ability to adhere to both the surface of the structure of civil engineering and on carbon fibers and which is able to plug possible cracks in the surface to strengthen 4.

    Cette résine présente, lors de son application à l'état fluide, une viscosité à la température d'application (c'est-à-dire en général à la température ambiante) comprise entre 1 000 et 100 000 mPa.s.This resin has, when applied to fluid state, viscosity at application temperature (i.e. usually at room temperature) included between 1,000 and 100,000 mPa.s.

    Cette résine, un foie durcie, présente :

    • une résistance au cisaillement compatible avec celle du matériau constituant la structure de génie civil,
    • une résistance à la rupture en traction comprise entre 5 et 100 MPa, avec un allongement à la rupture compris entre 0,5 et 10 %,
    • et une résistance à la rupture en compression comprise entre 5 et 100 MPa, avec un raccourcissement à la rupture compris entre 0,5 et 10 %.
    This resin, a hardened liver, presents:
    • a shear strength compatible with that of the material constituting the civil engineering structure,
    • a tensile breaking strength of between 5 and 100 MPa, with an elongation at break of between 0.5 and 10%,
    • and a compressive breaking strength of between 5 and 100 MPa, with a shortening at break of between 0.5 and 10%.

    De préférence, la résine est thixotrope lorsqu'elle est à l'état fluide, et elle ne comporte pas de solvant.Preferably, the resin is thixotropic when is in the fluid state, and it does not contain any solvent.

    Avantageusement, on utilise une résine qui polymérise à température ambiante.Advantageously, a resin which polymerizes is used at room temperature.

    Par ailleurs, on notera que la même résine peut être utilisée quel que soit le matériau de la structure de génie civil (béton, métal, bois).Furthermore, it will be noted that the same resin can be used whatever the material of the engineering structure civil (concrete, metal, wood).

    Le tissu 3 de fibres de carbone, quant à lui, se présente de préférence sous la forme d'une bande souple 7 (voir figure 2) qui s'étend selon une direction longitudinale X et qui est en général stockée sous forme de rouleau.The fabric 3 of carbon fibers, meanwhile, preferably in the form of a flexible strip 7 (see Figure 2) which extends in a longitudinal direction X and which is generally stored in the form of a roll.

    Cette bande 7 est constituée de fibres de carbone ensimées qui forment d'une part des fils de chaíne 8 sensiblement continus s'étendant selon la direction longitudinale X, et d'autre part des fils de trame 9 (éventuellement de grosseur différente des fils de chaíne) s'étendant selon une direction transversale Y parallèle à la largeur de la bande 7 (ou éventuellement selon des directions oblongues).This strip 7 is made of carbon fibers sized which form on the one hand warp threads 8 substantially continuous extending in the longitudinal direction X, and on the other hand weft yarns 9 (possibly of different size of the warp threads) extending in a transverse direction Y parallel to the width of strip 7 (or possibly in oblong directions).

    Les fibres de carbones constituant le tissu présentent une résistance à la rupture en traction qui est supérieure à 1 500 MPa, et un module élastique compris entre 200 et 400 GPa.The carbon fibers making up the fabric have tensile strength which is greater than 1,500 MPa, and an elastic modulus between 200 and 400 GPa.

    Eventuellement, la quantité de fibres de carbone du tissu 3 dans une direction donnée pourra être modulé lors de la fabrication de ce tissu, en fonction des efforts à reprendre par les fibres de carbone.Optionally, the amount of carbon fiber in the fabric 3 in a given direction can be modulated during the manufacture of this fabric, depending on the efforts to take up with carbon fibers.

    Lorsque la bande 7 est appliquée sur une surface à renforcer soumise à des efforts de traction, la direction longitudinale X de cette bande est de préférence parallèle à ces efforts de traction : c'est ainsi que dans l'exemple représenté sur les dessins, la bande 7 est disposée parallèlement à la longueur de la poutre 1.When the strip 7 is applied to a surface to strengthen subject to tensile stress, the steering longitudinal X of this strip is preferably parallel to these tensile forces: this is how in the example shown in the drawings, the strip 7 is arranged in parallel to the length of the beam 1.

    Avantageusement, comme représenté sur la figure 3, la bande 7 peut présenter initialement une face sur laquelle le tissu 3 de fibres de carbone est laissé nu, et une face recouverte par une feuille souple 10 de matériau synthétique ("polyane") qui est collée de façon amovible sur le tissu 3 de fibres de carbone.Advantageously, as shown in FIG. 3, the strip 7 may initially have a face on which the carbon fiber fabric 3 is left bare, and one side covered by a flexible sheet 10 of synthetic material ("polyane") which is removably glued to the fabric 3 carbon fiber.

    Dans ce cas, la bande 7 est de préférence enroulée avec la feuille souple 10 dirigée vers l'extérieur du rouleau, de façon à protéger les fibres de carbone pendant le stockage de ladite bande.In this case, the strip 7 is preferably wound with the flexible sheet 10 directed towards the outside of the roller, so as to protect the carbon fibers during storing said tape.

    De plus, lors de la mise en oeuvre de la bande de tissu de fibres de carbone, on n'enlève la feuille 10 de matériau souple qu'après l'opération de marouflage, de sorte que cette feuille 10 évite toute salissure ou tout endommagement du tissu 3 de fibres de carbone lors de la pose de ce tissu.In addition, during the implementation of the strip of carbon fiber fabric, we only remove sheet 10 of flexible material only after the masking operation, so that this sheet 10 avoids any soiling or any damage carbon fiber fabric 3 when installing this tissue.

    Par ailleurs, lors de la mise en oeuvre de la bande 7 de tissu de fibres de carbone, on pourra avantageusement découper en pointe les extrémités 7a de cette bande (ou au moins une extrémité longitudinale 7a), comme représenté sur la figure 1, de façon à mieux répartir les contraintes de cisaillement qui s'exercent dans la résine entre la structure de génie civil et le tissu de fibres de carbone.Furthermore, during the implementation of the strip 7 of carbon fiber fabric, we can advantageously cut the ends 7a of this strip into a point (or minus one longitudinal end 7a), as shown in Figure 1, so as to better distribute the stresses of shear in the resin between the structure civil engineering and carbon fiber fabric.

    En effet, l'expérience montre que les contraintes de cisaillement entre la bande 7 de tissu et la structure sous-jacente à renforcer sont sensiblement nulles en partie courante de la bande, mais se concentrent aux extrémités de ladite bande.Indeed, experience shows that the constraints of shear between the strip 7 of fabric and the underlying structure to be reinforced are substantially zero in part band current but are concentrated at the ends of said strip.

    Lorsque lesdites extrémités de la bande sont des lignes droites perpendiculaires à la direction longitudinale de la bande de tissu, on constate à chacune desdites extrémités un pic très prononcé de contrainte de cisaillement.When said ends of the strip are straight lines perpendicular to the longitudinal direction of the strip of fabric, we see at each of said ends a very pronounced peak of shear stress.

    Dans ce cas, la structure sous-jacente à renforcer risque de subir des fissurations, notamment lorsque ladite structure est en béton.In this case, the underlying structure to strengthen risk of cracking, especially when said structure is concrete.

    Au contraire, du fait que les extrémités 7a de la bande de tissu selon l'invention sont découpées en pointes ou en biseaux, les efforts de cisaillement entre la bande de tissu et la structure sous-jacente sont répartis sous toute la longueur de la pointe, mesurée parallèlement à la direction longitudinale de la bande de tissu. Il en résulte que les contraintes de cisaillement atteignent des valeurs maximales moins élevées que lorsque les extrémités de la bande de tissu sont rectangulaires, de sorte qu'on peut éviter ainsi l'endommagement et notamment la fissuration de la structure sous-jacente.On the contrary, because the ends 7a of the strip of fabric according to the invention are cut into points or at a bevel, the shear forces between the strip of tissue and the underlying structure are distributed under any the length of the tip, measured parallel to the longitudinal direction of the fabric strip. The result that the shear stresses reach values lower than when the ends of the fabric strip are rectangular, so that one can thus avoiding damage and in particular cracking of the underlying structure.

    L'efficacité remarquable du procédé de renforcement selon l'invention a pu être vérifiée notamment au cours d'un essai de rupture en flexion simple, réalisé sur deux poutres en béton armé identiques, dont une seule avait été renforcée par collage d'un tissu de fibres de carbone sur sa sous-face, selon le procédé décrit ci-dessus : l'effort nécessaire pour casser la poutre non renforcée a été de 1,5 tonne, tandis que l'effort nécessaire pour casser la poutre renforcée par des fibres de carbone a été de 4 tonnes.The remarkable efficiency of the reinforcement process according to the invention could be verified in particular during a simple bending rupture test, carried out on two beams in identical reinforced concrete, only one of which had been reinforced by gluing a carbon fiber fabric on its underside, according to the process described above: the effort required to break the unreinforced beam was 1.5 ton, while the effort required to break the beam reinforced with carbon fiber was 4 tonnes.

    Claims (8)

    1. Method for reinforcing a civil engineering structure (1), consisting of bonding at least one layer of carbon fibre fabric onto a surface to be reinforced (4) belonging to the said structure, this method comprising the following steps:
      a) preparing the surface to be reinforced (4)
      b) coating the said surface (4) with a layer of epoxy resin in the fluid state, capable of adhering to the civil engineering structure and to the carbon fibres and able to stop any cracks that may be present on the surface to be reinforced (4), this resin having, when it is applied in the fluid state, a viscosity of between 1,000 and 100,000 mPa.s, and this resin having moreover, once hardened, a tensile strength of between 5 and 100 MPa with an elongation at break of between 0.5 and 10 %, and a compressive strength of between 5 and 100 Mpa with a shortening at break of between 0.5 and 10 %,
      c) and applying a dry flexible fabric (3), consisting of sized carbon fibres onto the layer of resin that is still in the fluid state, while exerting sufficient pressure on this fabric in order to impregnate it with resin and to equalise the resin film, the fabric having, in at least one direction, a breaking strength greater than 1, 500 MPa and an elastic modulus of between 200 and 400 GPa, the carbon fibre fabric (3) being in the form of a strip (7) which extends in a longitudinal direction (X) and the carbon fibres of this fabric forming on the one hand warp threads (8) that are substantially continuous and parallel to the longitudinal direction (X) and on the other hand transverse weft threads (9).
    2. Method according to claim 1, wherein the surface to be reinforced (4) is subjected to tensile forces, the weft threads (8) of the carbon fibre fabric being disposed parallel to the said forces.
    3. Method according to claim 2, wherein the strip (7) of carbon fibre fabric has at least one longitudinal end (7a) cut to a point.
    4. Method according to claim 3, wherein the strip (7) of carbon fibre fabric has two longitudinal ends (7a) cut to a point.
    5. Method according to any one of the preceding claims, wherein the carbon fibre fabric (3) has initially one bare face and one face covered with a detachable flexible sheet (10) made of synthetic material, the fabric (3) being applied to the resin film via its bare face, and the sheet (10) of synthetic material being removed from the fabric after this fabric has been impregnated with resin.
    6. Method according to any one of the preceding claims, wherein the resin is thixotropic while it is in the fluid state.
    7. Method according to any one of the preceding claims, wherein the resin does not contain any solvent.
    8. Method according to any one of the preceding claims, wherein the civil engineering structure (1) consists of a material chosen from concrete, metal and wood.
    EP97400756A 1996-04-04 1997-04-02 Method for reinforcing building constructions by means of glued carbon fibres Expired - Lifetime EP0799951B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9604250 1996-04-04
    FR9604250A FR2747146B1 (en) 1996-04-04 1996-04-04 PROCESS FOR REINFORCING CIVIL ENGINEERING STRUCTURES USING STICKED CARBON FIBERS

    Publications (2)

    Publication Number Publication Date
    EP0799951A1 EP0799951A1 (en) 1997-10-08
    EP0799951B1 true EP0799951B1 (en) 2002-11-27

    Family

    ID=9490915

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97400756A Expired - Lifetime EP0799951B1 (en) 1996-04-04 1997-04-02 Method for reinforcing building constructions by means of glued carbon fibres

    Country Status (7)

    Country Link
    EP (1) EP0799951B1 (en)
    AT (1) ATE228603T1 (en)
    DE (1) DE69717337T2 (en)
    DK (1) DK0799951T3 (en)
    ES (1) ES2187734T3 (en)
    FR (1) FR2747146B1 (en)
    PT (1) PT799951E (en)

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2788542B1 (en) 1999-01-19 2003-01-31 Freyssinet Int Stup LIQUID TANK PROVIDED WITH A REINFORCEMENT AND SEALING COATING, AND METHOD FOR PRODUCING THE SAME
    BE1013230A3 (en) * 2000-01-13 2001-11-06 Immo Emergo Nv External reinforcement for beams, columns, plates and the like.
    TWI225116B (en) * 2000-06-29 2004-12-11 Nippon Oil Corp Structure reinforcing method, structure-reinforcing reinforcing fiber yarn-containing material, reinforcing structure material and reinforced structure
    JPWO2003027416A1 (en) * 2001-09-25 2005-01-06 構造品質保証研究所株式会社 Structure reinforcement structure, reinforcement material, seismic isolation device, and reinforcement method
    FR2836502B1 (en) 2002-02-25 2004-05-21 Freyssinet Int Stup METHOD OF STRENGTHENING A STRUCTURE BY A COMPOSITE MATERIAL AND REINFORCING OBTAINED THEREBY
    CN100363585C (en) * 2004-03-04 2008-01-23 北京特希达科技有限公司 Prestressed carbon fiber plate stretching method and device
    DE102006047460A1 (en) * 2006-10-07 2008-04-10 Andreas Kufferath Gmbh & Co. Kg Reinforcing device for use with components made of castable, hardening materials, such as concrete materials, and components produced therewith
    FR2918689B1 (en) * 2007-07-09 2012-06-01 Freyssinet METHOD FOR REINFORCING A CONSTRUCTION WORK, AND STRENGTHENING THE STRUCTURE
    FR2948712B1 (en) 2009-08-03 2015-03-06 Soletanche Freyssinet METHOD FOR STRENGTHENING A CONSTRUCTION STRUCTURE AND STRENGTHENING THE STRENGTH
    JP6528268B2 (en) * 2015-03-09 2019-06-12 清水建設株式会社 Reinforcement structure of reinforced concrete structure and reinforcement method of reinforced concrete structure
    CN109944459A (en) * 2019-04-11 2019-06-28 华侨大学 A kind of bracing means and reinforcement means using carbon cloth reinforced non-uniform beam
    CN110514496B (en) * 2019-09-02 2022-07-12 卡本科技集团股份有限公司 Anchoring test method for reinforcing end part of concrete beam by carbon fiber grids
    CN114651096A (en) * 2019-10-28 2022-06-21 Sika技术股份公司 Impregnating resins for woven or stitched fabrics
    FR3139149B1 (en) 2022-08-26 2024-10-25 Soletanche Freyssinet Method for reinforcing a construction work and device for such a method

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1490102A (en) * 1975-09-08 1977-10-26 Balfour Beatty Ltd Artificial and natural structures
    EP0378232B1 (en) * 1989-01-12 1993-04-28 Mitsubishi Kasei Corporation Method for reinforcing concrete structures
    US5308430A (en) * 1990-01-30 1994-05-03 Makoto Saito Reinforcing fiber sheet, method of manufacturing the same, and the method of reinforcing structure with the reinforcing fiber sheet
    US5218810A (en) * 1992-02-25 1993-06-15 Hexcel Corporation Fabric reinforced concrete columns
    US5649398A (en) * 1994-06-10 1997-07-22 Hexcel-Fyfe L.L.C. High strength fabric reinforced walls
    GB9501193D0 (en) * 1995-01-21 1995-03-15 Devonport Management Ltd Reinforced material

    Also Published As

    Publication number Publication date
    FR2747146A1 (en) 1997-10-10
    FR2747146B1 (en) 1998-07-10
    PT799951E (en) 2003-03-31
    ATE228603T1 (en) 2002-12-15
    ES2187734T3 (en) 2003-06-16
    DK0799951T3 (en) 2003-03-24
    EP0799951A1 (en) 1997-10-08
    DE69717337T2 (en) 2003-10-16
    DE69717337D1 (en) 2003-01-09

    Similar Documents

    Publication Publication Date Title
    EP0799951B1 (en) Method for reinforcing building constructions by means of glued carbon fibres
    USRE39839E1 (en) Carbon fiber reinforcement system
    CA2832857C (en) Double-sided stiffened composite panel, and method for producing such a panel
    US20070272353A1 (en) Method and Apparatus of Sealing Seams in Segmented Bridges
    EP2143637B1 (en) Method for mounting a de-icing mat and a metal shield on a structure
    EP3010691B1 (en) Edgebanding process for composite panels, band for this process, panel made by this process
    FR2790500A1 (en) METHOD AND DEVICE FOR REINFORCING A CONCRETE STRUCTURE
    EP0837202B1 (en) Method of reinforcing building constructions and construction reinforced in such a way
    EP1842959B1 (en) Uv-resistant bituminous watertight membrane, system including such a membrane and manufacturing method
    EP2780226B1 (en) Method for assembling a structure known as a box structure and structure obtained by such a method
    EP3060391A2 (en) Bonded assembly provided with a intermediate deformation layer with variable flexibility
    FR2947018A1 (en) GLUE ASSEMBLY AND METHODS OF ASSEMBLY AND REINFORCEMENT HAVING APPLICATION
    EP0394117A1 (en) Multi-layered coating and thermal insulating element with such a coating
    EP0101340A1 (en) Composite materials and pipe-linings made of such materials
    FR2899837A1 (en) High strength composite panels, useful e.g. in aeronautical industry, comprising tubular, rigid, composite stiffening profiles between resin-encapsulated fiber layers
    FR2533606A1 (en) Device for forming an expansion joint between two structural elements, expansion joint obtained and method of implementation.
    EP2466036B1 (en) Method for reinforcing a construction structure by means of reinforcing strips
    BE1004649A3 (en) Adapted to shaft tube lines interior trim tube.
    FR2632047A1 (en) ASSEMBLY OF CARBON OR GRAPHITE TUBES
    FR2584018A1 (en) Process for manufacturing a composite tube and product obtained
    FR3119631A1 (en) Method of reinforcing a structure
    EP1968779B2 (en) Method of adhesively bonding a strip of flexible fabric to a substrate
    FR2598115A1 (en) COMPOSITE TUBULAR ELEMENTS AND PROCESSES FOR THEIR MANUFACTURE
    JPH08276530A (en) Method for bonding f-r-p in repair and reinforcing of concrete structure
    EP1226299A1 (en) Non-woven mesh used as a reinforcing frame

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

    17P Request for examination filed

    Effective date: 19971204

    17Q First examination report despatched

    Effective date: 19990917

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LABORATOIRE CENTRAL DES PONTS ET CHAUSSEES

    Owner name: ATO FINDLEY S.A.

    Owner name: FREYSSINET INTERNATIONAL (STUP)

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LABORATOIRE CENTRAL DES PONTS ET CHAUSSEES

    Owner name: BOSTIK FINDLEY S.A.

    Owner name: FREYSSINET INTERNATIONAL (STUP)

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LABORATOIRE CENTRAL DES PONTS ET CHAUSSEES

    Owner name: BOSTIK FINDLEY S.A.

    Owner name: FREYSSINET INTERNATIONAL STUP

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

    REF Corresponds to:

    Ref document number: 228603

    Country of ref document: AT

    Date of ref document: 20021215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69717337

    Country of ref document: DE

    Date of ref document: 20030109

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: BOSTIK FINDLEY S.A.

    Owner name: FREYSSINET INTERNATIONAL STUP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: FREYSSINET INTERNATIONAL STUP EN BOSTIK FINDLEY S.

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: EP

    Ref document number: 20030400743

    Country of ref document: GR

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20030212

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030402

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030402

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2187734

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030828

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20160321

    Year of fee payment: 20

    Ref country code: IE

    Payment date: 20160324

    Year of fee payment: 20

    Ref country code: DK

    Payment date: 20160322

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20160321

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160324

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20160323

    Year of fee payment: 20

    Ref country code: BE

    Payment date: 20160323

    Year of fee payment: 20

    Ref country code: GR

    Payment date: 20160323

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160321

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20160407

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160324

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20160323

    Year of fee payment: 20

    Ref country code: PT

    Payment date: 20160401

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20160329

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69717337

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EUP

    Effective date: 20170402

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20170401

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170401

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 228603

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170402

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170401

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MK9A

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: MA

    Ref document number: 20030400743

    Country of ref document: GR

    Effective date: 20170403

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20170726

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170402

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170412

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170403