EP0798961A1 - Neue synergistische mittel zur bekämpfung von insekten und akarina - Google Patents

Neue synergistische mittel zur bekämpfung von insekten und akarina

Info

Publication number
EP0798961A1
EP0798961A1 EP95942121A EP95942121A EP0798961A1 EP 0798961 A1 EP0798961 A1 EP 0798961A1 EP 95942121 A EP95942121 A EP 95942121A EP 95942121 A EP95942121 A EP 95942121A EP 0798961 A1 EP0798961 A1 EP 0798961A1
Authority
EP
European Patent Office
Prior art keywords
spp
group
component
mycoinsecticide
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95942121A
Other languages
English (en)
French (fr)
Inventor
Manfred Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LST LIVE SYSTEMS TECHNOLOGY SA
Original Assignee
Hoechst Schering Agrevo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Schering Agrevo GmbH filed Critical Hoechst Schering Agrevo GmbH
Publication of EP0798961A1 publication Critical patent/EP0798961A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom

Definitions

  • Organic pesticides are often insufficient in their potency to adequately protect crops from pests. That is why chemical insecticides are primarily used to this day. Integrated crop protection aims to minimize the use of chemicals without having to accept that crop losses will occur.
  • the present invention relates to insecticidal and acaricidal agents, characterized by an effective content of at least one insecticidal compound selected from the group of the parapyrethroids, the group of the nitromethylenes, the group of the carbamates and the group of the phenylpyrazoles in combination with at least one insect pathogenic fungus (component B).
  • the invention particularly relates to compositions with the following insecticides as mixing partners:
  • Non-ester pyrethroids e.g. Silafluofen
  • Etofenprox (2- (4-ethoxyphenyl) -2-methyl-propyl-3-phenoxybenzyl ether, formula II, component A2)
  • Nitenpyram ((E) -N- (6-chloro-3-pyridylmethyl) -N-ethyl-N'-methyl-2-nitrovinylidenediamine, formula (V), component A5),
  • Fipronil ((+) - 5-amino-1- (2,6-dichloro- ⁇ , ⁇ , ⁇ -trifluoro-p-tolyl) -4-trifluoromethyl-sulfinyl-pyrazole-3-carbonit ⁇ ' l, formula VII, component A7).
  • Mushrooms of the genera Hirsuteila, Verticillium, Metarhician, Beauveria, Paecilomyces and Nomuraea are of particular interest.
  • mycoinsecticides can be present in various forms: as conidiospores, as blastospores, as hyphal packets, as hyphal fragments or as a mixture of two or more of the listed forms.
  • the invention relates in particular to insecticidal and acaricidal compositions which contain the fungus Beauveria bassiana or Metarhistall anisoplii.
  • the mushroom Beauveria bassiana was developed by Bassi, A. (1836, CR Acad. Sci. Paris 2, 434 to 436), Domsch, VH et al. (190, Compendium of Soil Fungi 1, 136 to 139) and Samson, RA et al. (1988, Atlas of Entomopathogenic Fungi, Springer-Verlag, Berlin) and is available from Mycotech (Butte, Montana, USA), Hoechst Schering AgrEvo GmbH and Troy Sciences (formerly Fermone Corp.) (Phoenix, Arizona, USA) .
  • the term active ingredient is also used for the two components A or B.
  • the mixing ratios of the two components can fluctuate within wide limits. They are particularly dependent on the mixture partner used, the stage of development of the pests and the climatic conditions.
  • the invention also relates to compositions which contain the two components A and B in addition to suitable formulation auxiliaries.
  • the active compound combinations according to the invention can be present both as mixed formulations of the two components, which are then diluted in the customary manner with water or as granules, or as so-called tank mixtures by diluting the separately formulated components with water.
  • combinations with other pesticidally active substances such as selective herbicides, and specific fungicides or insecticides, as well as fertilizers and / or growth regulators, e.g. in the form of a finished formulation or as a tank mix.
  • the components can be formulated in various ways, depending on which biological and / or chemical-physical parameters are specified.
  • examples of possible formulations are: yeast formulations, starch formulations, wettable powders (WP), emulsifiable concentrates (EC), aqueous solutions (SL), emulsions (EW) such as oil-in-water and water-in-oil emulsions, sprayable solutions or Emulsions, oil or water-based dispersions, suspoemulsions, dusts (DP), mordants, granules for soil or litter application or water-dispersible granules (WG), ULV formulations, microcapsules, baits (substrates).
  • yeast formulations starch formulations, wettable powders (WP), emulsifiable concentrates (EC), aqueous solutions (SL), emulsions (EW) such as oil-in-water and water-in-oil emulsions, sprayable solutions or Emulsions, oil
  • Oil-in-water and water-in-oil emulsions, wettable powders or granules are of particular interest. These individual formulation types are known in principle and are described, for example, in: Winnacker-kuchler, "Chemical Technology", Volume 7, C. Hauser Verlag Kunststoff, 4th Edition 1986; van Valkenburg, "Pesticides Formulations", Marcel Dekker NY, 2nd edition 1972-73; K. Martens, "Spray Drying Handbook", 3rd Edition, G. Goodwin Ltd. London.
  • Spray powders are preparations which are uniformly dispersible in water and which, in addition to the active ingredient, also contain wetting agents, e.g. polyoxethylated alkylphenols, polyoxethylated fatty alcohols or fatty amines, alkane or alkylbenzenesulfonates and dispersants, e.g. sodium lignosulfonate, 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium, dibutylnaphthalene sulfonic acid sodium or also oleoylmethyl tauric acid sodium.
  • wetting agents e.g. polyoxethylated alkylphenols, polyoxethylated fatty alcohols or fatty amines, alkane or alkylbenzenesulfonates and dispersants, e.g. sodium lignosulfonate, 2,2'-dinaphthylmethane-6,6
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or else higher-boiling aromatics or hydrocarbons, with the addition of one or more emulsifiers.
  • organic solvent for example butanol, cyclohexanone, dimethylformamide, xylene or else higher-boiling aromatics or hydrocarbons.
  • alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, Propylene oxide-ethylene oxide condensation products, alkyl polyether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester or polyoxethylene sorbitol ester.
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite or diatomaceous earth.
  • finely divided solid substances e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite or diatomaceous earth.
  • Granules can either be produced by spraying the active ingredient onto adsorbable, granulated inert material or by applying active ingredient concentrates by means of adhesives, e.g. Polyvinyl alcohol, sodium polyacrylic acid or mineral oils, on the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules, if desired in a mixture with fertilizers.
  • adhesives e.g. Polyvinyl alcohol, sodium polyacrylic acid or mineral oils
  • the agrochemical preparations generally contain 0.0001 to 99 percent by weight of the two components A and B, in particular between 0.0005 and 95%, particularly preferably between 2 and 90%.
  • the low concentrations, i.e. 0.0001 to 2% are advantageously used to control unwanted social insects, as was proposed in P 44 03 062.2.
  • the concentrations of active ingredients A and B can differ in the formulations.
  • the active ingredient concentration in wettable powders is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components.
  • the active substance concentration can be approximately 1 to 90% by weight, preferably 5 to 80% by weight.
  • Dust-like formulations contain about 1 to 30% by weight, preferably 5 to 20% by weight of active ingredient, sprayable solutions about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends on Part of it depends on whether the active compound is liquid or solid and which granulating aids and fillers are used.
  • the content of the water-dispersible granules is between 1 and 95% by weight, for scattering granules between 1 and 50%, preferably between 2 and 25%.
  • the active ingredient content for component 1 is between 0.0001 and 10%.
  • the application concentration can vary between 0.1 ppm ( ⁇ 0.0001 g / l) and 10,000 ppm (- 0 g / l), preferably between 0.5 and 5,000 ppm, particularly preferably between 5 and 1000 ppm.
  • a mixture which consists of the insecticide component or mycoinsecticide component used in a ratio has proven to be effective, so that the content of component A is between 0.01 and 50%, preferably 0.1 to 50%, and the mycoinsecticide content is 10 2 to 10 15 spores, preferably 10 5 to 10 12 spores or between 0.01 g and 1000 g of formulated substance.
  • the active ingredient formulations mentioned may contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetrants, solvents, fillers or carriers.
  • the formulations present in the commercial form are optionally diluted in the customary manner, e.g. in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water.
  • Preparations in the form of dust, ground granules or scattering granules and sprayable solutions are usually no longer diluted with other inert substances before use.
  • Component B can e.g. as described by Prior, C. et al. in the Journal of Invertebrate Pathology 52, 66 to 72 (1988). Component B is preferably formulated as proposed in P 44 04 702.9.
  • the required application rate of the mixture varies with the external conditions, such as temperature, humidity and others. It is also from the respective Application area and the plant to be treated and can therefore vary within wide limits.
  • component A for example silafluofen
  • it is between 1 g / ha and 200 g / ha, preferably between 20 g / ha and 100 g / ha, particularly preferably between 40 g / ha and 80 g / ha.
  • the insect pathogenic fungus is between 10 g conidia / ha and 1000 g conidia / ha, preferably between 20 g conidia / ha and 400 g / ha.
  • 10 8 to 10 10 g conidia of an insect pathogenic fungus correspond to about 1 g.
  • the two components A and B can be applied simultaneously or successively. It is advisable to carry out the second application after the first application has dried on the plant in order to avoid undesired rinsing off of the first component.
  • component (A) and the insect-pathogenic fungi (B) is suitable for combating animal pests, in particular insects and arachnids, which occur in agriculture, with good plant tolerance and favorable warm-blood toxicity.
  • compositions according to the invention have excellent insecticidal activity against a broad spectrum of economically important pests. Some representatives of the pests may be mentioned in detail by way of example, which can be controlled by the agents according to the invention without the name being intended to restrict them to certain species.
  • Isopoda for example, Oniscus asellus, Armadium vulgare, Porcellio scaber.
  • Diplopoda for example, Blaniulus guttulatus.
  • Chilopoda for example, Geophilus carpophagus and Scutigera spec.
  • Symphyla for example, Scutigerella in the aculata.
  • Thysanura for example Lepisma saccharina.
  • Collembola for example Onychiurus armatus.
  • Orthoptera for example Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.
  • Dermaptera for example, Forficula auricularia.
  • Nephotettix cincticeps Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. and Psylla spp ..
  • Hymenoptera e.g. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp ..
  • the active ingredient combinations according to the invention in particular silafluofen and fipromil in combination with Beauveria bassiana, a particularly advantageous effect against termites of the Kalotermitidae family, such as e.g. Cryptotermes cubioceps, Kalotermes spp. or the family Rhinotermitidae, e.g. Coptotermes formosus, Heterotermes spp., Or the Termitidae family, e.g. Nasutitermes spp., Or the Mastotermitidae family, e.g. Mastotermes darwinieusis, reached.
  • the Kalotermitidae family such as e.g. Cryptotermes cubioceps, Kalotermes spp. or the family Rhinotermitidae, e.g. Coptotermes formosus, Heterotermes spp.
  • the Termitidae family e.g. Nasutitermes spp.
  • Formicidae e.g. Atta cephalotes, Lasius niger, Lasius brunneus, Componotus ligniperda, Monomorium pharaonis, Solenopsis geminata, Monomorium minimum, Iridomyres humilis, Dorylus spp. Exition spp.
  • Vespoidea e.g. Vespa germanica, Vespa vulgaris, Vespa media, Vespa saxonica, Vespa crabro, Vespula meculata, Polistes nympha, Vespa orintalis, Vespa mandarinia, Vespa velutina.
  • Oestrus spp. Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae and Tipula paludosa.
  • the combination of silafluofen and the insect pathogenic fungi is suitable for combating sensitive and resistant Heliothis spp., Anthonomus spp., Hypothememus hampei, Spodoptera spp., Nephotettix spp., Nilaparvata lugens, Trichoplusia spp, Leptinotarsa and other decemlineata , Ants) and sucking insects, such as White fly, or spider mite.
  • an insecticidal and acaricidal action is achieved which goes beyond what is due to the action of the individual components is to be expected.
  • These increases in effectiveness make it possible to significantly reduce the amounts used for the individual active ingredients.
  • the combination of the active ingredients can also improve their long-term effectiveness or accelerate the rate of action.
  • Such properties offer the user considerable advantages in practical insect control. It can control insects more cheaply, more quickly, with less workload and more permanently, thereby harvesting more crops.
  • a further increase in activity can be achieved by so-called "feeding attractants” or phagostimulants, such as Achieve consumption (from Pharmone), ATPIus, yeast, starch, Stirrup (from Atochem. North America Inc., USA) and coax.
  • feeding attractants such as Achieve consumption (from Pharmone), ATPIus, yeast, starch, Stirrup (from Atochem. North America Inc., USA) and coax.
  • compositions according to the invention have excellent insecticidal and acaricidal activity, the crop is not harmed at all.
  • the agents are particularly suitable in crops of cotton, soybeans and rice.
  • the application in rice and tea cultures is particularly useful because the climatic conditions are particularly advantageous for both products. They are also suitable for controlling pests in coffee, fruit and vegetable cultivation or even viticulture.
  • the effect of the combination is more than additive, ie there is a synergistic effect.
  • the active compound combinations according to the invention have an insecticidal action which is higher than is to be expected on the basis of the observed effects of the individual components when used alone. The Active ingredient combinations are therefore synergistic.
  • Example 1 Spodoptera littoralis in combination with silafluofen
  • Example 3 Nilaparvata lugens in combination with silafluofen
  • Larvae of the leafhopper (Nilaparvata lugens) were placed on rice plants which had previously been immersed in aqueous solutions consisting of active ingredients or mixtures thereof. The effect of the individual components or the individual component mixtures was assessed 6 days after storage at 25 ° C. and 80% relative atmospheric humidity.
  • Larvae of the leafhopper (Nilaparvata lugens) were placed on rice plants which had previously been immersed in aqueous solutions consisting of active ingredients or mixtures thereof. The effect of the individual components or the individual component mixtures was assessed 6 days after storage at 25 ° C. and 80% relative atmospheric humidity.
  • Larvae of the leafhopper (Nilaparvata lugens) were placed on rice plants which had previously been immersed in aqueous solutions consisting of active ingredients or mixtures thereof. The effect of the individual components or the individual component mixtures was assessed 6 days after storage at 25 ° C. and 80% relative atmospheric humidity.
  • Example 6 Spodoptera littoralis in combination with NI25
  • Example 7 Nilaparvata lugens in combination with Nitenpyram (TI-304)
  • Larvae of the leafhopper (Nilaparvata lugens) were placed on rice plants which had previously been immersed in aqueous solutions consisting of active ingredients or mixtures thereof. The effect of the individual components or the individual component mixtures was assessed 6 days after storage at 25 ° C. and 80% relative atmospheric humidity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Biotechnology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Gegenstand der Erfindung sind insektizide und akarizide Mittel, gekennzeichnet durch einen wirksamen Gehalt an mindestens einer insektiziden Verbindung ausgewählt aus der Gruppe der Parapyrethroide, der Gruppe der Nitromethylene, der Gruppe der Carbamate und der Gruppe der Phenylpyrazole in Kombination mit mindestens einem insektenpathogenen Pilz(komponente B).

Description

Beschreibung
Neue synergistische Mittel zur Bekämpfung von Insekten und Akarina
Biologische Schädlingsbekämpfungsmittel reichen oft in ihrer Wirkungsstärke nicht aus, um Nutzpflanzenkulturen ausreichend vor Schädlingen zu schützen. Deshalb werden bis heute vorrangig chemische Insektizide eingesetzt. Im Rahmen des integrierten Pflanzenschutzes will man den Einsatz von Chemikalien minimieren, ohne gleichzeitig in Kauf nehmen zu müssen, daß Ernteverluste auftreten.
Aus der Veröffentlichung von Soper et al. (1974, Environmental Entomology, 3, 560- 562) ist bekannt, daß das Wachstum von insektenpathogenen Pilzen durch den gleich-zeitigen Einsatz von Insektiziden gehemmt wird. Dies ist zwar von dem eingesetzten Mittel und dessen Menge abhängig, aber aus den Daten ist ersichtlich, daß das Wachstum der Pilze stark beieinträchtigt wird. Auch Filho et al. (1987, Biologico, 53, 7-12, 69-70) berichten, daß das Wachstum von Beauveria bassiana durch verschiedene Insektizide gehemmt wird. Aus der EP 0668 722 ist nur bekannt, daß der Pilz Beauveria bassiana in Kombination mit Endosulfan eingesetzt werden kann.
Überraschenderweise konnten nun in biologischen Versuchen strukturell völlig andere Insektizide identifiziert werden, die mit Sporen bzw. Partikeln eines insektenpathogenen Pilzes bei einer gemeinsamen Anwendung eine außerordentlich gute Wirksamkeit gegen ein breites Spektrum verschiedener Insekten und Akarina zeigen.
Gegenstand der vorliegenden Erfindung sind insektizide und akarizide Mittel, gekennzeichnet durch einen wirksamen Gehalt an mindestens einer insektiziden Verbindung ausgewählt aus der Gruppe der Parapyrethroide, der Gruppe der Nitromethylene, der Gruppe der Carbamate und der Gruppe der Phenylpyrazole in Kombination mit mindestens einem insektenpathogenen Pilz (Komponente B). Die Erfindung betrifft insbesondere Mittel mit folgenden Insetktiziden als Mischungspartnern:
1) Parapyrethroide ("Non ester Pyrethroide"), wie z.B. Silafluofen
(4-Ethoxyphenyl-[3-(4-fluor-3-phenoxy-phenyl)-propyl]-dimethyl-silan, Formel I, Komponente A1 )
und
Etofenprox (2-(4-Ethoxyphenyl)-2-methyl-propyl-3-phenoxybenzylether, Formel II, Komponente A2),
2) Nitromethylene, wie z.B.
Imidacloprid (1-(6-Chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylidenamin, Formel III, Komponente A3),
NO,
N
Cl— < N~ )-CHrN X N-H (III) NI25 ((E)-N1-[(6-Chloro-3-pyridyl)-methyl]-N2-cyano-N1-methylacetamidin, Formel IV, Komponente A4)
und
Nitenpyram ((E)-N-(6-Chloro-3-pyridylmethyl)-N-ethyl-N'-methyl-2- nitrovinylidenediamine, Formel (V), Komponente A5),
Cl-< N"Λ -CH2Nh v 2CH3 H
CH3NH NO-
3) Carbamate, wie z.B.
Fenoxycarb (Ethyl-2-(4-phenoxyphenoxy)-ethylcarbamat, Formel VI, Komponente A6)
4) Phenylpryrazole, wie z.B.
Fipronil ((+)-5-Amino-1-(2,6-dichloro-α,α,α-trifluoro-p-tolyl)-4-trifluoromethyl- sulfinyl-pyrazole-3-carbonitπ'l, Formel VII, Komponente A7).
Die oben genannten Verbindungen sind einschlägig aus der Literatur bekannt ("Pesticide Manual", 10. Ausgabe Brit. Crop. Prot. Council, 1994) und im Handel erhältlich.
Von besonderem Interesse in ihrer Wirkung gegen Insekten ist eine Mischung aus Silafluofen und Pilzen der Gattungen Acremonium, Acanthomyces, Aschersonia, Aspergillus, Beauveria, Culicinomyces, Engyodontium, Funicularis, Fusarium, Gibellula, Hirsuteila, Hymenstilbe, Metarhizium, Nomuraea, Paecilomyces, Paraisaria, Pleurodesmopora, Polycephalomyces, Pseudogibellula, Sorosporella, Sporothrix, "Stilbella", Tetracrium, Tetranacrium, Tilachlidium, Tolypocladium, und Verticillium. Alle diese Gattungen werden der Abteilung der Deuteromycota zugeordnet (Samson et al., "Atlas of Entomopathogenic Fungi, 1988, Springer Verlag).
Von besonderem Interesse sind Pilze der Gattungen Hirsuteila, Verticillium, Metarhizium, Beauveria, Paecilomyces und Nomuraea.
Dabei kann der Anteil an Mycoinsektiziden in verschiedenen Formen vorliegen: als Konidiosporen, als Blastosporen, als Hyphenpakete, als Hyphenfragmente oder als Mischung aus zwei oder mehr der aufgeführten Formen.
Die Erfindung betrifft insbesondere insektizide und akarizide Mittel, die den Pilz Beauveria bassiana oder Metarhizium anisoplii enthalten.
Der Pilz Beauveria bassiana wurde von Bassi, A. (1836, C. R. Acad. Sei. Paris 2, 434 bis 436), Domsch, V. H. et al. (190, Compendium of Soil Fungi 1 , 136 bis 139) und Samson, R. A. et al. (1988, Atlas of Entomopathogenic Fungi, Springer-Verlag, Berlin) beschrieben und ist von Mycotech (Butte, Montana, USA), der Hoechst Schering AgrEvo GmbH und der Troy Sciences (ehemals Fermone Corp.) (Phoenix, Arizona, USA) erhältlich. Im folgenden wird für die beiden Komponenten A oder B auch jeweils der Begriff Wirkstoff verwendet. Die Mischungsverhältnisse der beiden Komponenten können innerhalb weiter Grenzen schwanken. Sie sind insbesondere abhängig vom eingesetzten Mischungspartner, vom Entwicklungsstadium der Schädlinge und den Klimabedingungen.
Gegenstand der Erfindung sind auch Mittel, die die beiden Komponenten A und B neben geeigneten Formulierungshilfsmitteln enthalten.
Die erfindungsgemäßen Wirkstoffkombinationen können sowohl als Mischformulierungen der beiden Komponenten vorliegen, die dann in üblicher Weise mit Wasser verdünnt oder als Granulate zur Anwendung gebracht werden, oder als sogenannte Tankmischungen durch gemeinsame Verdünnung der getrennt formulierten Komponenten mit Wasser hergestellt werden.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie selektiven Herbiziden, und spezifischen Fungiziden oder Insektiziden, sowie Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Die Komponenten können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Hefeformulierungen, Stärkeformulierungen, Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SL), Emulsionen (EW) wie öl-in Wasser- und Wasser-in-ÖI- Emulsionen, versprühbare Lösungen oder Emulsionen, Dispersionen auf Öl- oder Wasserbasis, Suspoemulsionen, Stäubemittel (DP), Beizmittel, Granulate zur Boden- oder Streuapplikation oder wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Köder (Substrate).
Von besonderem Interesse sind Öl- in Wasser und Wasser-in-ÖI-Emulsionen, Spritzpulver oder Granulate. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Valkenburg, "Pesticides Formulations", Marcel Dekker N. Y., 2. Auflage 1972 - 73; K. Martens, "Spray Drying Handbook", 3. Auflage, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2. Auflage, Darland Books, Caldwell N. J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry", 2. Auflage, J. Wiley & Sons, N. Y., Marsden, "Solvente Guide", 2. Auflage, Interscience, N. Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N. J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N. Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.
Spritzpulver (benetzbare Pulver) sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole oder Fettamine, Alkan- oder Alkylbenzolsulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen, unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester oder Polyoxethylensorbitester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit und Pyrophyllit oder Diatomeenerde.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Die agrochemischen Zubereitungen enthalten in der Regel 0,0001 bis 99 Gewichtsprozent der beiden Komponenten A und B, insbesondere zwischen 0,0005 und 95 %, insbesondere bevorzugt zwischen 2 und 90 %. Die niedrigen Konzentrationen, d.h. 0,0001 bis 2 % kommen vorteilhaft zur Bekämpfung von unerwünschten sozialen Insekten zur Anwendung, wie dies in der P 44 03 062.2 vorgeschlagen wurde.
Die Konzentrationen der Wirkstoffe A und B können in den Formulierungen verschieden sein.
In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90 Gew.-%, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten etwa 1 bis 30 Gew.-%, vorzugsweise 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 0,05 bis 80 Gew.-%, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei Granulaten, z.B. wasserdispergierbaren Granulaten, hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel und Füllstoffe verwendet werden. In der Regel liegt der Gehalt bei den in Wasser dispergierbaren Granulaten zwischen 1 und 95 Gew.-%, bei Streugranulaten zwischen 1 und 50 %, bevorzugt zwischen 2 und 25 %. Bei Ködern liegt der Wirkstoffgehalt für die Komponente 1 zwischen 0,0001 und 10 %.
Die Anwendungskonzentration kann zwischen 0,1 ppm (±0,0001 g/l) und 10.000 ppm (- 0 g/l) schwanken, vorzugsweise zwischen 0,5 und 5.000 ppm, insbesondere bevorzugt zwischen 5 und 1000 ppm.
Als wirksam erwiesen hat sich eine Mischung, die aus der verwendeten Insektizid- Komponente bzw. Mycoinsektizid-Komponente in einem Verhältnis bestehen, so daß der Gehalt an Komponente A zwischen 0,01 und 50 %, vorzugsweise 0,1 bis 50 % und der Mycoinsektizidanteil bei 102 bis 1015 Sporen, vorzugsweise bei 105 bis 1012 Sporen bzw. zwischen 0,01 g und 1000 g formulierter Substanz liegt.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvem, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Die Komponente B kann z.B. wie von Prior, C. et al. im Journal of Invertebrate Pathology 52, 66 bis 72 (1988) beschrieben, formuliert werden. Vorzugsweise wird die Komponente B wie in der P 44 04 702.9 vorgeschlagen formuliert.
Mit den äußeren Bedingungen, wie z.B. Temperatur, Feuchtigkeit u.a., variiert die erforderliche Aufwandmenge der Mischung. Sie ist auch von dem jeweiligen Anwendungsgebiet und der zu behandelnden Pflanze abhängig und kann daher innerhalb weiter Grenzen schwanken. Für die Komponente A (z.B. Silafluofen) liegt sie zwischen 1 g/ha und 200 g/ha, vorzugsweise zwischen 20 g/ha und 100 g/ha, insbesondere bevorzugt zwischen 40 g/ha und 80 g/ha.
Für den insektenpathogenen Pilz liegt sie zwischen 10 g Konidien/ha und 1000 g Konidien/ha, vorzugsweise zwischen 20 g Konidien/ha und 400 g/ha.
108 bis 1010 g Konidien eines insektenpathogenen Pilzes entsprechen etwa 1 g.
Die beiden Komponenten A und B können gleichzeitig oder sukzessive appliziert werden. Sinnvollerweise sollte die zweite Applikation durchgeführt werden, nachdem die erste Applikation auf der Pflanze getrocknet ist, um ein unerwünschtes Abspülen der ersten Komponente zu vermeiden.
Die Kombination aus der Komponente (A) und den insektenpathogenen Pilzen (B) eignet sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft vorkommen.
Die synergistische Mischung der beiden Komponenten wirkt gegenüber normal sensiblen und resistenten Arten sowie einzelnen Entwicklungsstadien. Die erfindungsgemäßen Mittel weisen eine ausgezeichnete insektizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger Schädlinge auf. Im einzelnen seien beispielhaft einige Vertreter der Schädlinge genannt, die durch die erfindungsgemäßen Mittel kontrolliert werden können, ohne daß durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.
Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadium vulgäre, Porcellio scaber. Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus. Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec. Aus der Ordnung der Symphyla z.B. Scutigerella im aculata. Aus der Ordnung der Thysanura z.B. Lepisma saccharina. Aus der Ordnung der Collembola z.B. Onychiurus armatus. Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria. Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.
Aus der Ordnung der Mallophaga z.B. Trichodectes spp. und Damalinea spp.. Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis und Thrips tabaci. Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus und Triatoma spp.. Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporahorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. und Psylla spp..
Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculactrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Perileucoptera coffeella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.
Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Hypothemenus hampei, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis und Costelytra zealandica.
Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp..
Aus der Ordnung der Isoptera die Familien Mastotermitidae, Kalotermitidae, Hodotermitidae (insbesondere Hodotermitinae, Termopsinae), Rhonotermitidae (insbesondere Coptotermitinae, Heterotermitinae, Psammotermitinae), Termitidae (insbesondere Macrotermitinae, Nasutitermitinae, Termitinae), z.B. Mastotermes spp., wie Mastrotermes darwiniensis, Cryptotermes spp., Incistitermes spp., Kalotermes spp., wie Kalotermes flavicollis, Marginitermes spp., Anaconthotermes spp., Zootermopsis spp., Coptotermes spp., wie Coptotermes formosanus, Heterotermes spp., Psammotermes spp., Prorhinotermes spp., Schedorhinotermes spp., Allodontermes spp., Nasutitermes spp., Termes spp., Amitermes spp., Globitermes spp., Microcerotermes spp., Oniscus asselus, Armadium vulgäre, Porcellio scaber, Reticulitermes spp., wie Reticulitermes flavipes, Reticulitermes lucifugus.
Mit den erfindungsgemäßen Wirkstoffkombinationen, insbesondere Silafluofen und Fipromil in Kombination mit Beauveria bassiana, wird eine besonders vorteilhafte Wirkung gegenüber Termiten der Familie Kalotermitidae, wie z.B. Cryptotermes cubioceps, Kalotermes spp. oder der Familie Rhinotermitidae, wie z.B. Coptotermes formosus, Heterotermes spp., oder der Familie Termitidae, wie z.B. Nasutitermes spp., oder der Familie Mastotermitidae, wie z.B. Mastotermes darwinieusis, erreicht.
Aus der Familie der Formicidae, z.B. Atta cephalotes, Lasius niger, Lasius brunneus, Componotus ligniperda, Monomorium pharaonis, Solenopsis geminata, Monomorium minimum, Iridomyres humilis, Dorylus spp. Exition spp.
Aus der Überfamilie der Vespoidea, z.B. Vespa germanica, Vespa vulgaris, Vespa media, Vespa saxonica, Vespa crabro, Vespula meculata, Polistes nympha, Vespa orintalis, Vespa mandarinia, Vespa velutina.
Aus der Überfamilie der Apoidea sei die sogenannte Killerbiene erwähnt.
Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae und Tipula paludosa.
Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus und Latrodectus mactans. Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Omithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..
Insbesondere eignet sich die erfindungsgemäße Kombination von Silafluofen und den insektenpathogenen Pilzen zur Bekämpfung von sensiblen und resistenten Heliothis spp., Anthonomus spp., Hypothememus hampei, Spodoptera spp., Nephotettix spp., Nilaparvata lugens, Trichoplusia spp, Leptinotarsa decemlineata und anderen fressenden (Termiten, Ameisen) und saugenden Insekten, wie z.B. Weiße Fliege, oder Spinnmilben.
Mit den erfindungsgemäßen Wirkstoffkombiπationen wird eine insektizide und akarizide Wirkung erreicht, die über das hinausgeht, was auf Grund der Wirkung der Einzelkomponenten zu erwarten ist. Diese Wirkungssteigerungen erlauben es, die Einsatzmengen der einzelnen Wirkstoffe erheblich zu reduzieren. Die Kombination der Wirkstoffe kann auch ihre Dauerwirkung verbessern oder eine Beschleunigung der Wirkungsgeschwindigkeit verursachen. Solche Eigenschaften bieten dem Anwender erhebliche Vorteile bei der praktischen Insektenbekämpfung. Er kann Insekten billiger, rascher, mit weniger Arbeitsaufwand sowie dauerhafter bekämpfen und dadurch in einem Kulturpflanzenbestand mehr Ertrag ernten.
Eine weitere Wirkungssteigerung läßt sich durch sogenannte "feeding attractants" bzw. Phagostimulantien , wie z.B. Konsume (Fa. Pharmone), ATPIus, Hefe, Stärke, Stirrup (Fa. Atochem. North America Inc., USA) und Coax erzielen.
Obgleich die erfindungsgemäßen Mittel eine ausgezeichnete insektizide und akarizide Aktivität aufweisen, wird die Kulturpflanze gar nicht geschädigt. Die Mittel eignen sich aus diesen Gründen besonders in Kulturen von Baumwolle, Soja und Reis. Die Anwendung in Reis- und Teekulturen bietet sich ganz besonders weil hier die klimatischen Bedingungen für beide Produkte besonders vorteilhaft sind. Sie eignen sich ebenfalls zur Bekämpfung von Schädlingen im Kaffee-, Obst- und Gemüseanbau oder auch Weinbau.
Folgende Beispiele dienen zur Erläuterung der Erfindung, ohne daß diese darauf beschränkt wäre:
A. Biologische Beispiele
In allen Fällen wurde bei den Kombinationen zwischen dem errechneten und dem gefundenen Wirkungsgrad unterschieden.
Ist die tatsächliche Schädigung größer als die rechnerisch zu erwartende, so ist die Wirkung der Kombination mehr als additiv, d. h. es liegt ein synergistischer Wirkungseffekt vor. Die erfindungsgemäßen Wirkstoffkombinationen haben eine insektizide Wirkung, die höher ist als sie auf Grund der beobachteten Wirkungen der Einzelkomponenten bei alleiniger Anwendung zu erwarten ist. Die Wirkstoffkombinationen sind somit synergistisch.
Beispiel 1: Spodoptera littoralis in Kombination mit Silafluofen
Pyrethroidresistente Larven des ägyptischen Baumwollwurms (Spodoptera littoralis, L 3) wurden zusammen mit entsprechendem Futtermaterial mit den Wirkstoffen bzw. deren Mischungen besprüht. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage nach Aufbewahrung bei 25° C und 80 % relative Luftfeuchte bewertet.
Beispiel 2: Anthomomus grandis in Kombination mit Silafluofen
Adulte Baumwollkapselkäfer (Anthonomus grandis) wurden zusammen mit entsprechendem Futtermaterial (synthetisches Futter) mit Wirkstoffen bzw. deren Mischungen besprüht. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 9 Tage nach Aufbewahrung bei 25 °C und 90 % relative Luftfeuchte bewertet.
Beispiel 3: Nilaparvata lugens in Kombination mit Silafluofen
Larven der Reiszikade (Nilaparvata lugens) wurden auf Reispflanzen gesetzt, die vorher in wäßrigen Lösungen, bestehend aus Wirkstoffen bzw. deren Mischungen, getaucht wurden. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage nach Aufbewahrung bei 25 °C und 80 % relative Luftfeuchte bewertet.
Wirkstoff/Komponente Wirkstoff ppm % Mortalität
Silafluofen (A1 ) 63 100
31 70
16 40
8 20
4 20
2 0
Beauveria bassiana (B) 2,3 « 1010 Konidien/ha 28
(Naturalis-L)
(A) + (B) rechnerisch experimentell
(A1 ) + (B) 63 + 2,3 « 1010 100 100
31 + 2,3 « 1010 98 100
16 + 2,3 « 1010 68 90
8 + 2,3 « 1010 48 80
4 + 2,3 « 1010 48 70
2 + 2,3 « 1010 28 50 Beispiel 4: Nilaparvata lugens in Kombination mit Etofenprox
Larven der Reiszikade (Nilaparvata lugens) wurden auf Reispflanzen gesetzt, die vorher in wäßrigen Lösungen, bestehend aus Wirkstoffen bzw. deren Mischungen, getaucht wurden. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage nach Aufbewahrung bei 25°C und 80 % relative Luftfeuchte bewertet.
Beispiel 5: Nilaparvata lugens in Kombination mit Imidachloprid
Larven der Reiszikade (Nilaparvata lugens) wurden auf Reispflanzen gesetzt, die vorher in wäßrigen Lösungen, bestehend aus Wirkstoffen bzw. deren Mischungen, getaucht wurden. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage nach Aufbewahrung bei 25°C und 80 % relative Luftfeuchte bewertet.
Beispiel 6: Spodoptera littoralis in Kombination mit NI25
Pyrethroidresistente Larven des ägyptischen Baumwollwurms (Spodoptera littoralis, L 3) wurden zusammen mit entsprechendem Futtermaterial mit den Wirkstoffen bzw. deren Mischungen besprüht. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage nach Aufbewahrung bei 25°C und 80 % relative Luftfeuchte bewertet.
Beispiel 7: Nilaparvata lugens in Kombination mit Nitenpyram (TI-304)
Larven der Reiszikade (Nilaparvata lugens) wurden auf Reispflanzen gesetzt, die vorher in wäßrigen Lösungen, bestehend aus Wirkstoffen bzw. deren Mischungen, getaucht wurden. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage nach Aufbewahrung bei 25° C und 80 % relative Luftfeuchte bewertet.
Wirkstoff/Komponente Wirkstoff ppm % Mortalität
Nitenpyram 63 70
(TI-304) (A5) 31 30
16 30
8 0
4 0
2 0
Beauveria bassiana (B) 2,3 « 1010 Konidien/ha 28
(Naturalis-L)
(A) + (B) rechnerisch experimentell
(A5) + (B) 63 + 2,3 « 1010 100 100
31 + 2,3 « 1010 58 100
16 + 2,3 « 1010 58 70
8 + 2,3 « 1010 28 50
4 + 2.3 - 1010 28 30
2 + 2,3 « 1010 28 30 Beispiel 8: Spodoptera littoralis in Kombination mit Fenoxycarb
Pyrethroidresistente Larven des ägyptischen Baumwollwurms (Spodoptera littoralis, L 3) wurde zusammen mit entsprechendem Futtermaterial mit den Wirkstoffen bzw. deren Mischungen besprüht. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage (10 Tage bei Fenoxycarb) nach Aufbewahrung bei 25 °C und 80 % relative Luftfeuchte bewertet.
Beispiel 9: Spodoptera littoralis in Kombination mit Fipronil
Pyrethroidresistente Larven des ägyptischen Baumwollwurms (Spodoptera littoralis, L 3) wurden zusammen mit entsprechendem Futtermaterial mit den Wirkstoffen bzw. deren Mischungen besprüht. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 6 Tage nach Aufbewahrung bei 25 °C und 80 % relative Luftfeuchte bewertet.
Wirkstoff/Komponente Wirkstoff ppm % Mortalität
Fipronil (A7) 125 40
63 20
31 0
16 0
8 0
Beauveria bassiana (B) 2,3 « 1010 Konidien/ha 4
(Naturalis-L)
(A) + (B) rechnerisch experimentell
(A7) + (B) 125 + 2,3 « 1010 44 100
63 + 2,3 « 1010 24 80
31 + 2,3 « 1010 4 40
16 + 2.3 - 1010 4 30
8 + 2,3 « 1010 4 20
Beispiel 10: Anthomomus grandis in Kombination mit Fipronil
Adulte Baumwollkapselkäfer (Anthonomus grandis) wurden zusammen mit entsprechendem Futtermaterial (synthetisches Futter) mit Wirkstoffen bzw. deren Mischungen besprüht. Der Effekt der Einzelkomponenten bzw. der Einzelkomponentenmischungen wurde 9 Tage nach Aufbewahrung bei 25 °C und 90 % relative Luftfeuchte bewertet.

Claims

Patentansprüche:
1. Insektizide und/oder akarizide Mittel, gekennzeichnet durch einen wirksamen Gehalt mindestens einer insektiziden Verbindung ausgewählt aus der Gruppe der Nitromethylene, der Gruppe der Parapyrethroide, der Gruppe der Carbamate und der Gruppe der Phenylpyrazole (Komponente A) und mindestens einem insektenpathogenen Pilz (Komponente B).
2. Mittel gemäß Anspruch 1 , in dem das Mycoinsektizid aus der Gruppe der Gattungen Hirsuteila, Verticillium, Metarhizium, Beauveria, Paecilomyces oder Nomouraea ausgewählt wird.
3. Mittel gemäß Anspruch 1, wobei Beauveria bassiana das verwendete Mycoinsektizid ist.
4. Mittel gemäß Anspruch 1 , gekennzeichnet durch einen wirksamen Gehalt an mindestens einer Verbindung ausgewählt aus der Gruppe bestehend aus Silafluofen, Etofenprox, Imidacloprid, N125, Nitempyram, Fenoxycarb und Fipronil.
5. Mittel gemäß Anspruch 1, wobei das Mycoinsektizid aus Blastosporen besteht.
6. Mittel gemäß Anspruch 1 , wobei das Mycoinsektizid aus Mycel oder Mycelfragmenten besteht.
7. Insektizide und/oder akarizide Mittel, dadurch gekennzeichnet, daß sie 1 bis 99 Gew.-% eines Mittels gemäß Anspruch 1 neben üblichen Formulierungsmitteln enthalten.
8. Verfahren zur Bekämpfung von Schadinsekten oder Aka den, dadurch gekennzeichnet, daß man auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge des Mittels gemäß Anspruch 1 appliziert.
9. Verfahren zur Herstellung eines Mittels gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man das Mittel analog einer üblichen Pflanzenschutzmittelformulierung aus der Gruppe, enthaltend Spritzpulver, emulgierbare Konzentrate, wäßrige Lösungen, Emulsionen, versprühbare Lösungen (Tank-mix), Dispersionen auf Öl- und Wasserbasis, Suspoemulsionen, Stäubemittel, Beizmittel, Boden- oder Streugranulate, wasserdispergierbare Granulate, ULV-Formulierungen, Mikrokapseln oder Wachse formuliert.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Nutzpflanzenkultur Baumwolle, Soja, Reis oder Kaffee ist.
EP95942121A 1994-12-21 1995-12-12 Neue synergistische mittel zur bekämpfung von insekten und akarina Withdrawn EP0798961A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4445732 1994-12-21
DE4445732A DE4445732A1 (de) 1994-12-21 1994-12-21 Neue synergistische Mittel zur Bekämpfung von Insekten und Akarina
PCT/EP1995/004897 WO1996019112A1 (de) 1994-12-21 1995-12-12 Neue synergistische mittel zur bekämpfung von insekten und akarina

Publications (1)

Publication Number Publication Date
EP0798961A1 true EP0798961A1 (de) 1997-10-08

Family

ID=6536552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95942121A Withdrawn EP0798961A1 (de) 1994-12-21 1995-12-12 Neue synergistische mittel zur bekämpfung von insekten und akarina

Country Status (15)

Country Link
US (1) US5888989A (de)
EP (1) EP0798961A1 (de)
JP (1) JPH11507010A (de)
CN (1) CN1171032A (de)
AP (1) AP837A (de)
AU (1) AU715520B2 (de)
BR (1) BR9510378A (de)
CA (1) CA2208507A1 (de)
DE (1) DE4445732A1 (de)
GE (1) GEP20002170B (de)
HU (1) HUT77792A (de)
OA (1) OA10431A (de)
PL (1) PL320888A1 (de)
TW (1) TW350755B (de)
WO (1) WO1996019112A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707178A1 (de) * 1997-02-22 1998-08-27 Hauptmann Georg Gerhart Dipl B Biologisches Pflanzenschutzmittel zur Kontrolle von Schädlingszikaden-Populationen des Bewässerungs-Reisanbaus
BR9812318A (pt) * 1997-09-17 2000-08-29 Univ Florida Processos e materiais para controle de cupins
US8753656B2 (en) * 2000-10-04 2014-06-17 Paul Stamets Controlling zoonotic disease vectors from insects and arthropods using preconidial mycelium and extracts of preconidial mycelium from entomopathogenic fungi
US6660290B1 (en) 2000-10-04 2003-12-09 Myco Pesticides Llc Mycopesticides
US6839305B2 (en) * 2001-02-16 2005-01-04 Neil Perlman Habit cessation aide
AU2006226413A1 (en) * 2005-03-21 2006-09-28 Basf Aktiengesellschaft Insecticidal mixtures
US20100192452A1 (en) * 2005-10-07 2010-08-05 Km Investors Llc Dry powder formulation for low-toxicity insect bait
WO2008070612A2 (en) * 2006-12-04 2008-06-12 Km Investors, Llc Dry powder formulations for low-toxicity insect bait
WO2009060012A2 (en) * 2007-11-06 2009-05-14 Basf Se Plant health compositions comprising a beneficial microorganism and a pesticide
US8110608B2 (en) 2008-06-05 2012-02-07 Ecolab Usa Inc. Solid form sodium lauryl sulfate (SLS) pesticide composition
WO2012050857A1 (en) * 2010-09-29 2012-04-19 Smithsonian Institution Method of biologically controlling leaf-cutting ants
US8968757B2 (en) 2010-10-12 2015-03-03 Ecolab Usa Inc. Highly wettable, water dispersible, granules including two pesticides
JP2013544081A (ja) * 2010-10-29 2013-12-12 ノボザイムス バイオロジカルズ,インコーポレイティド 臭気制御用菌類
WO2012171914A1 (en) * 2011-06-14 2012-12-20 Bayer Intellectual Property Gmbh Use of an enaminocarbonyl compound in combination with a biological control agent
CA2891207C (en) * 2012-11-22 2023-08-22 Basf Corporation A pesticidal composition comprising beauveria bassiana
CA2890635C (en) 2012-11-22 2022-12-06 Basf Corporation Synergistic pesticidal mixtures comprising bacillus subtilis mbi-600
WO2014086756A1 (en) * 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
MX360582B (es) 2012-12-13 2018-11-07 Inst De Ecologia A C Star Biocontrol de nemátodos fitoparásitos mediante paecilomyces.
UA119331C2 (uk) 2013-11-08 2019-06-10 Новозімес Біоаґ А/С Композиції та способи для обробки від шкідників
AU2015263304B2 (en) 2014-05-23 2018-11-15 Basf Se Mixtures comprising a bacillus strain and a pesticide
CO7550090A1 (es) * 2014-09-17 2016-03-18 Hurtado Luis Augusto Mazariegos Composición pesticida
BR112017009282A2 (pt) 2014-11-07 2018-01-30 Basf Se misturas fungicidas, composição pesticida, métodos para controlar pragas fitopatogênicas, para melhorar a fitossanidade e para proteção de material de propagação de plantas contra pragas, e, material de propagação de plantas.
US10905122B2 (en) 2016-03-16 2021-02-02 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on cereals
EP3429358A1 (de) 2016-03-16 2019-01-23 Basf Se Verwendung von tetrazolinonen zur bekämpfung resistenter phytopathogener pilze auf obst
BR112018068705B1 (pt) 2016-03-16 2022-09-06 Basf Se Método para controlar fungos fitopatogênicos
US20190191712A1 (en) * 2016-07-13 2019-06-27 Novozymes A/S Method for Control of Insect on Poultry
CN108244141A (zh) * 2018-02-09 2018-07-06 广东省林业科学研究院 绿僵菌与苯氧威的复配杀虫剂及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397864A (en) * 1980-05-02 1983-08-09 Mitsuitoatsu Chemicals Inc. 2-Arylpropyl ether or thioether derivatives and insecticidal and acaricidal agents containing said derivatives
US4751082A (en) * 1985-04-19 1988-06-14 Bruno Schaerffenberg Insecticide and method for its distribution
US4883789A (en) * 1986-06-02 1989-11-28 Fmc Corporation Substituted phenyltrialkylsilane insecticides
CA2086351C (en) * 1992-01-09 2003-12-16 Walter M. Zeck Combined use of chemicals and microbials in termite control
DE4238311A1 (de) * 1992-11-13 1994-05-19 Hoechst Ag Synergistische Mittel zur Bekämpfung von Insekten und Akariden
AU687383B2 (en) * 1993-06-02 1998-02-26 Bayer Corporation Combined use of chemicals and microbials in cockroach control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9619112A1 *

Also Published As

Publication number Publication date
US5888989A (en) 1999-03-30
CN1171032A (zh) 1998-01-21
AU715520B2 (en) 2000-02-03
CA2208507A1 (en) 1996-06-27
HUT77792A (hu) 1998-08-28
OA10431A (fr) 2001-12-07
JPH11507010A (ja) 1999-06-22
AP9701011A0 (en) 1997-07-31
DE4445732A1 (de) 1996-06-27
MX9704725A (es) 1997-10-31
BR9510378A (pt) 1998-06-02
WO1996019112A1 (de) 1996-06-27
AP837A (en) 2000-05-15
AU4343596A (en) 1996-07-10
GEP20002170B (en) 2000-07-25
PL320888A1 (en) 1997-11-10
TW350755B (en) 1999-01-21

Similar Documents

Publication Publication Date Title
US5888989A (en) Synergistic compositions for controlling insects and acarina
EP0668722B1 (de) Synergistische mittel zur bekämpfung von insekten und akarina
US5792755A (en) Synergistic combinations of ammonium salts
US5730973A (en) Water-dispersible granules of spores or live Beauveria bassiana
EP0354593B1 (de) Schädlingsbekämpfungsmittel
EP0845944B2 (de) Wirkstoffkombinationen aus pyrethroiden und insekten-entwicklungshemmern
EP1609361A2 (de) Mittel zur Bekämpfung von Pflanzenschädlingen
DE19519007A1 (de) Insektizide Mittel
EP1339288B1 (de) Wirkstoffkombinationen
EP0335225B1 (de) Schädlingsbekämpfungsmittel
DE19829113A1 (de) Mittel zur Bekämpfung von Pflanzenschädlingen
US5139785A (en) Pesticides
MXPA97004725A (en) New insecticides and synergistic acaricides
DE19829075A1 (de) Mittel zur Bekämpfung von Pflanzenschädlingen
DE3607287A1 (de) Verfahren zur herstellung von borrelidin und seine verwendung zur schaedlingsbekaempfung
DE4331092A1 (de) Synergistische Fenpyroximate enthaltende Schädlingsbekämpfungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19980616

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVENTIS CROPSCIENCE GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVENTIS CROPSCIENCE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LST LIVE SYSTEMS TECHNOLOGY S.A.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20001213