EP0798469A1 - Device for feeding pressurised water to the water source of a steam injector - Google Patents

Device for feeding pressurised water to the water source of a steam injector Download PDF

Info

Publication number
EP0798469A1
EP0798469A1 EP19970400639 EP97400639A EP0798469A1 EP 0798469 A1 EP0798469 A1 EP 0798469A1 EP 19970400639 EP19970400639 EP 19970400639 EP 97400639 A EP97400639 A EP 97400639A EP 0798469 A1 EP0798469 A1 EP 0798469A1
Authority
EP
European Patent Office
Prior art keywords
water
injector
steam
pressure
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19970400639
Other languages
German (de)
French (fr)
Other versions
EP0798469B1 (en
Inventor
Guy-Marie Gautier
Patrick Aujollet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0798469A1 publication Critical patent/EP0798469A1/en
Application granted granted Critical
Publication of EP0798469B1 publication Critical patent/EP0798469B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/003Emergency feed-water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87571Multiple inlet with single outlet
    • Y10T137/87587Combining by aspiration
    • Y10T137/87643With condition responsive valve

Definitions

  • the present invention relates to a device for injecting water into a pressure tank using a source of steam.
  • this pressure tank consists of the steam production balloon of steam boilers.
  • balloons are for example the steam generators that are usually encountered in pressurized water nuclear reactors, or the tank of a boiling water reactor, or else any thermal power plant producing steam.
  • the advantage of this device is to be able to inject water into these reservoirs producing steam by using the steam itself, from a reservoir of water maintained at low pressure such as, for example, atmospheric pressure.
  • a particular application of this device is an emergency power supply for a steam generator in a nuclear installation.
  • One of the safety devices in pressurized water nuclear reactors is an emergency power supply for steam generators.
  • This emergency power supply is used mainly for the removal of residual heat when the nuclear reactor is shut down.
  • the role of this supply is to supply water to the steam generator when the normal supply fails. Because of the mission that is entrusted to the emergency power supply, it must be very reliable.
  • this emergency power supply is carried out using electric motor pumps or turbo-pumps. These devices are delicate in design due to the rotating parts, and some are dependent on electrical sources.
  • steam injectors To make the emergency power supply of the steam generators passive (that is to say to remove the rotating parts and the electrical power supply), attempts have been made to use steam injectors. These devices use the energy of the steam from the steam generator to raise the pressure of the water in the low pressure tank to a pressure higher than that of the steam.
  • the start of the injector is quite difficult because during the priming period, it is necessary to draw off the drains 10 and 12 and adjust the flow rates drawn off by the valves 11 and 13, as well as the flow rate from the source 14 using the valve 15 Once the injector is primed, it is possible to close the drain 10 using the valve 11.
  • This injector makes it possible to continuously supply a steam generator whose pressure can be 60 bars, with a source of water at a pressure of a few bars; on the other hand the disadvantages of this injector are the difficulty of priming, and the maintenance of a slight pressure of the source which makes it difficult to use a reservoir of water at atmospheric pressure. Indeed, such a tank must be located a few tens of meters above the injector in order to maintain a slight pressure at the source. To this must be added that this injector is not very stable and susceptible to defusing, which makes it insufficiently reliable.
  • the device described during a presentation at the same congress in Plaisance, consists of a steam injector of a type similar to that of the ENEL, but without the drains. This device is described in Figure 2.
  • the particularity of the installation resides in that the water source comes directly from the steam generator G.
  • the water intake takes place in the part of the steam generator containing the liquid water. This water, being at the temperature close to steam, must be cooled in the exchanger 26 immersed in a swimming pool 33, before supplying the source 21 of the steam injector.
  • the injector is started by opening a valve 27 at the inlet of a priming balloon 28.
  • the valve 30 allowing the water to pass in the direction of arrow 32 has the effect of preventing the water contained in the steam generator G to come out through the pipe 31 when the injector starts.
  • the water leaving the injector at 22 is at a pressure a few bars higher than the vapor pressure, which allows it to be reinjected into the steam generator G by through the pipe 31.
  • This installation therefore makes it possible to extract heat from the steam generator through the heat exchanger 26 which is immersed in the swimming pool 33.
  • the pressure of the water source is at a pressure close to that of steam because water and steam come from the same steam generator.
  • this system operates at a pressure of several tens of bars without draw-off drain, and without priming difficulty.
  • this steam injector plays the role of circulator, but not that of a lift pump to inject water from a tank at low pressure, in a pressure circuit.
  • the present invention specifically relates to a device for supplying liquid to a boiler using the energy contained in this same liquid when the latter is in the form of vapor.
  • this liquid is water
  • the boiler is a steam generator of a pressurized water nuclear reactor.
  • This same device can also be used in a boiler constituted by a boiling water nuclear reactor, or in any other type of boiler producing steam.
  • the present invention overcomes these drawbacks by creating a pressurized water supply from the source of the steam injector, characterized in that the water supply device comprises on the one hand, during the starting regime, at less a pressurized water supply circuit comprising a steam pressurized water tank, an outlet pipe, and a non-return device, on the other hand, during the established regime, an ejector supplied with low water pressure from a reservoir and high pressure water from a draw-off circuit connected to the outlet of the injector.
  • the operation of the steam injector with this new source allows a marked improvement in the performance of current injectors. It is indeed possible to obtain water at the outlet of the steam injector at a pressure higher than the pressure of the steam, the latter already being at a pressure of several tens of bars, from a very low pressure water tank, such as atmospheric pressure, which current injectors are not able to do.
  • the peculiarity of the source of the injector is that it is located at an intermediate pressure between the vapor pressure and the atmospheric pressure.
  • the water supplying the source comes from a low pressure tank, and is raised in pressure thanks to the vapor pressure at first, and thanks to the water pressure at the outlet of the injector in a second step. Maintaining pressure at the source, as well start-up that in operation, eliminates the drains, facilitates priming, which makes it possible to continuously supply the steam generator from a low-pressure water tank.
  • Figure 1 describes the operating principle of a steam injector.
  • Figure 1A describes the same type of injector as the previous figure, but with the installation of drains for use at higher pressure.
  • FIG. 2 describes an installation for removing heat from a steam generator towards a swimming pool by means of a circulation of water obtained using a steam injector.
  • Figure 3 describes the water supply device, that is to say the source of the steam injector, at an intermediate pressure between atmospheric pressure and steam pressure.
  • Figure 4 describes the same device, but with an injector and its water supply system submerged in a swimming pool.
  • FIG. 4A shows the same device, but with, on the return loop, an exchanger immersed in a swimming pool independent of the swimming pool where the steam injector is immersed.
  • FIG. 5 describes a supply of water to the source during the start-up phase directly from a tank supplied with steam.
  • FIG. 6 describes a device for supplying the source using steam, a device which only intervenes when the injector starts.
  • FIG 3 we recognize the steam injector B with its steam supply 40, its source 41, and its high pressure outlet 42.
  • the outlet 42 is directed to a user of high pressure water, for example towards a steam generator G, through a valve 43 allowing the water to pass in the direction of arrow 44.
  • the pipe 53 represents the connection between the steam generator and the outlet of the valve 43.
  • part of the water is directed to an ejector C via a pipe 45 and a valve 46, letting the water pass in the direction of arrow 47.
  • the outlet of this valve is carried out by a pipe 50 to the ejector C.
  • a priming balloon 48 is connected to the high pressure outlet 42 by means of a pipe 49. All of the pipes 45, 50, of the valve 46 and of the ejector C constitutes a return loop R to participate in the supply of the source 41 of the injector.
  • the steam inlet consists of a valve 60, which feeds the steam supply 40 to the injector B, using a pipe 61.
  • the steam comes from the steam generator G, thanks to a pipe symbolized by the connection 54.
  • On the pipe 61 is connected a pipe of small section 62, which extends by a tank 63, represented here by a pipe of larger diameter than the pipe 62.
  • the end of this tank 63 is extended by a pipe 64 and a valve 65, letting the water pass in the direction of the arrow 66.
  • This assembly forms a circuit D for supplying water under pressure during the starting regime.
  • the water joins the pipe 50 upstream of the ejector C.
  • the valve 65 could also be placed on the inlet pipe 62 of the reservoir 63.
  • the source 41 of the steam injector B is produced by the pipe 70 which comes from the outlet 71 of the ejector C.
  • This ejector is supplied with pressure by the pipe 50 and the circuit D, and at low pressure, by the pipe 72 coming from a water tank 73. Obtaining the low pressure can be obtained by opening the tank 73 to the atmosphere.
  • the operating principle of the present invention is as follows. At the start, when the injector is not in service, the valve 60 is closed, all the inlets and outlets of the injector B and the ejector C, as well as the pipes connecting these components, are filled with water at a pressure close to that of the water in reservoir 73, which is open to the atmosphere.
  • the valve 43 prevents water from the steam generator from entering the steam injector.
  • the priming balloon 48 is filled with a neutral gas, for example air which remains trapped therein. This gas is at a pressure close to that of the atmosphere.
  • the water level 75 is located at the base of the balloon 48.
  • the actuator is put into action by simply opening the valve 60. Once this valve is open, the steam pushes the water contained in the pipe 61 through the inlet 40 of the injector, and through the pipe 62 and tank 63. Steam plays the role of a piston on the water contained in the reservoir 63. A steam-water interface 76 is established in the reservoir 63. The water thus expelled leaves the injector through the outlet 42 and is gradually sent into the balloon d priming 48 by compressing the inert gas contained in this balloon. The flushing of the water from the reservoir 63 takes place through the ejector C, then through the pipe 70, and therefore through the source of the steam injector. This flushing cannot be carried out by the return loop R, because of the valve 46.
  • the water coming from the reservoir 63 passes through the ejector with a high speed thanks to a convergent 80, and causes water from the reservoir 73, via the pipe 72, giving it part of its momentum.
  • the source 41 of the injector is therefore supplied with water at a pressure intermediate between that of the steam generator and atmospheric pressure.
  • the volumes of the pipe 61 and of the reservoir 63 must be such that the steam arrives in the steam injector through its inlet 40, well before the capacity is filled with steam.
  • the injector is primed like current injectors, and the outlet 42 begins to increase in pressure by gradually compressing the gas contained in the balloon 48.
  • the valve 43 opens, allowing its water supply.
  • the valve 46 also opens under the effects of pressure.
  • the inlet pressure of the ejector increases slightly and becomes higher than that of the reservoir 63 which is always at the pressure of the vapor. Therefore the valve 65 closes.
  • the ejector continues to operate by drawing water from the reservoir 73.
  • the working fluid of the ejector is no longer the water of the capacity pushed by the vapor, but a part of the water leaving the injector. At this time the injector reaches its steady state.
  • the injector stops by closing the valve 60.
  • the pressure in the injector, the ejector and the pipes connecting these components drop, the valve 43 closes, the water contained in the tank 48 is emptied under the effect of compressed gas and fills the parts of the pipes that remain in vapor. Indeed it condenses on contact with water.
  • the entire installation is in the same configuration as that of the flow, ready for a new start-up.
  • FIG. 4 shows another way of carrying out the invention, by immersing the main components in a swimming pool 90 open to atmospheric pressure.
  • the injector B the ejector C
  • the reservoir 63 used for starting by piston effect
  • the valve 65 between the reservoir 63 and the ejector C
  • the valve 46 between the high pressure outlet 42 of the injector and the ejector.
  • the valve 43 between the outlet 42 and the steam generator G, the priming flask 48, and the valve 60 between the steam generator and the injector were placed outside the swimming pool 90.
  • Valves, valve, reservoir 63, or priming ball 48 can be placed either in the pool or out of the pool depending on the convenience of the embodiment.
  • the advantage of placing the injector and its ejector in a swimming pool can represent a gain in bulk: when placed at the bottom of the swimming pool, the pressure at the source is increased by the static pressure due to the height of water located above these components.
  • a condition for the proper functioning of the steam injector, in particular with regard to the pressure gain, is the temperature of the source which must be as cold as possible.
  • the return loop R between the outlet 42 and the ejector provides hot water. This is cooled at the ejector by mixing with the cold pool water which is sucked into the ejector.
  • FIG. 4 it has been arranged downstream of the valve 46, but it may be arranged upstream of this valve according to the facilities of realization: in FIG. 4A , there is shown the same diagram as Figure 4, except that the exchanger 91 of the loop R has been moved. The purpose of this exchanger is to cool the flow circulating in the loop R before mixing it in the ejector C with the water coming from the pool 90, all to obtain water supplying the source of the coldest injector B possible.
  • the water in the loop R therefore heats the water in the swimming pool 90 via the exchanger 91.
  • the swimming pool 90 heats up, and consequently the temperature of the water supplying the source of l injector also heats up.
  • the performance of the injector degrades.
  • we placed on the return loop R of the FIG. 4A an exchanger 92 in a swimming pool 93 independent of the swimming pool 90.
  • the water of the return loop R cools in the swimming pool 93, and the water of the swimming pool 90 remains cold, which makes it possible to keep a supply in cold water from the injector source and therefore to keep the performance of the steam injector.
  • FIG. 5 shows another device for pressurizing the source during the priming period of the steam injector.
  • the injector B its high pressure outlet 42, its source 41, its steam inlet 40, the priming flask 48, the outlet valve 43, the valve 60, the steam generator G.
  • the loop R of Figures 3 and 4 is replaced by a loop R 'comprising the pipe 99 between the outlet 42 and the ejector C.
  • the exchanger 91 on the return loop R has not been shown on the loop R ', because it is not essential for operation.
  • the high pressure supply to the ejector is carried out only by the return loop R '.
  • a valve 100 Just downstream of the ejector C, a valve 100, the outlet of which is connected to the source 41 by the pipe 170, lets the water pass in the direction of the arrow 101. This valve 100 replaces the valve 46 in FIGS. 3 and 4.
  • the priming reservoir 63 which supplied the source 41 via the ejector C, is replaced here by a reservoir 102.
  • Said capacity has the same function of supplying the source during priming, except that this supply takes place directly without go through the ejector. The operation of this capacity must allow supplying the source only during the start-up period. So that the tank 102 fulfills its mission, a way of making this tank is described here by way of illustration.
  • This consists of a cylinder in which a piston 103 can slide.
  • the outlet 104 of this cylinder joins the outlet of the valve 100 at the supply pipe 170 from the source 41.
  • a spring 105 is located in the part downstream of the cylinder 102.
  • the cylinder 102 is vertical and is immersed in the swimming pool 90. Depending on the space available for carrying out the present invention, the position of the cylinder can be arbitrary or situated outside the swimming pool .
  • the steam drives out the water contained at the inlet of the steam injector B, and pushes the piston 103.
  • the water located in the part of the cylinder containing the spring is driven out by the pipe. 104. It feeds the source 41, because it cannot pass through the valve 100.
  • the majority of the water expelled by the steam or by the piston is directed into the balloon 48 via the outlet 42 of the injector B, and compresses the gas of this capacity to gradually build up the pressure.
  • the quantity of water not going into the balloon 48 escapes into the pool via the loop R 'and the low pressure inlet 107 of the ejector C. This passage of the water towards the pool takes place as long as the pressure at the outlet of the injector is not higher than the pressure downstream of the valve 100.
  • This pressure downstream of the valve 100 is equal to the vapor pressure via the cylinder 102 minus the pressure drops in the pipe 104. These pressure drops must be adjusted according to the desired operating conditions by placing a diaphragm 110 downstream of the cylinder 102, for example at the inlet of the pipe 104.
  • the valve opens, the ejector comes into action, driving water to low pressure coming from the pool 90 via its inlet 107.
  • the source is supplied by the cylinder and the ejector, as long as the piston 103, pushed by steam, is not in abutment on the downstream outlet of the cylinder. Once this phase is complete, the water supply to the source only comes from the outlet of the ejector at an intermediate pressure between steam pressure and pressure in the pool 90.
  • the injector is primed when the mixing chamber of injector B is supplied on the one hand with steam via the inlet 40, and on the other hand with water from the source 41, and the outlet 42 is at low pressure. This low pressure is obtained by the priming balloon 48.
  • the dimension of the cylinder 102 playing the role of priming capacity must be such that the pipe upstream of the inlet 40 fills with vapor much faster than the cylinder 102 This condition must be respected in order to allow priming of the injector, then the rise in pressure, then the supply of the source by the ejector and the loop R 'succeeding the supply by the cylinder.
  • the operation of the injector is stopped by closing the valve 60.
  • the valve 43 closes. All components between this valve and the valve 43 fill with water due to the expansion of the compressed gas in the balloon 48 and a spring 105 which replaces the piston in the upstream part of the cylinder 102.
  • the entire installation is found in the initial conditions, and is ready for further action.
  • a diaphragm 110 makes it possible to adjust the flow rate and the outlet pressure of the cylinder 102.
  • FIG. 6 another way of adjusting this flow rate is described.
  • the outlet pipe 104 comprises a valve 121 allowing water to pass only in the direction of the arrow 122. This valve is located before the connection 125 to the pipe connecting the outlet of the valve 100 and the source 41 of the injector.
  • the injector starts, that is to say when the valve 60 opens, the water from the reservoir 102 expelled by the piston 103 is evacuated both by the pipe 104 and the orifice 120
  • the water passing through the pipe 104 crosses the valve 121 before joining the source 21.
  • the dimensions of the orifice 120 and of the diaphragm 110 must be such that the flow and pressure at the source 41 are sufficient to allow the priming. To meet this constraint, the diaphragm could possibly be removed.
  • the role of the valve 121 is to prevent a leak on the flow supplying the source, when it is supplied by the ejector via the valve 100.
  • the return of the piston 103 in the upstream part of the cylinder 102 is carried out using the spring 105. Water enters the downstream part of this cylinder through the orifice 120.

Abstract

The emergency feed injector (B) for a steam generator (G) is fed by steam from the generator itself, and by pressurised water from an ejector (C). Initially, the ejector is fed by a water circuit (D) that consists of a reservoir (63) pressurised by the steam and an exit pipe (64) with a non-return valve (65). Eventually, the ejector is fed by low pressure water from a reservoir (73) and by high pressure water from a bleed circuit (R) branching off downstream (42) of the injector (B). This arrangement allows water from the low pressure reservoir to be driven into the injector for pressurising to a pressure higher than that of the steam.

Description

DOMAINE D'APPLICATIONAPPLICATION DOMAIN

La présente invention a pour objet un dispositif d'injection d'eau dans un réservoir sous pression à l'aide d'une source de vapeur. Généralement ce réservoir sous pression est constitué du ballon de production de vapeur des chaudières à vapeur. De tels ballons sont par exemple les générateurs de vapeur que l'on rencontre habituellement dans les réacteurs nucléaires à eau sous pression, ou la cuve d'un réacteur à eau bouillante, ou bien toute centrale thermique produisant de la vapeur. L'intérêt de ce dispositif est de pouvoir injecter de l'eau dans ces réservoirs produisant de la vapeur en utilisant la vapeur elle-même, à partir d'un réservoir d'eau maintenu à basse pression comme par exemple la pression atmosphérique. Une application particulière de ce dispositif est une alimentation de secours de générateur de vapeur dans une installation nucléaire.The present invention relates to a device for injecting water into a pressure tank using a source of steam. Generally, this pressure tank consists of the steam production balloon of steam boilers. Such balloons are for example the steam generators that are usually encountered in pressurized water nuclear reactors, or the tank of a boiling water reactor, or else any thermal power plant producing steam. The advantage of this device is to be able to inject water into these reservoirs producing steam by using the steam itself, from a reservoir of water maintained at low pressure such as, for example, atmospheric pressure. A particular application of this device is an emergency power supply for a steam generator in a nuclear installation.

ÉTAT DE L'ARTSTATE OF THE ART

Dans les réacteurs nucléaires à eau sous pression, un des dispositifs de sécurité est constitué par une alimentation de secours des générateurs de vapeur. Cette alimentation de secours est utilisée principalement pour l'évacuation de la chaleur résiduelle lorsque le réacteur nucléaire est à l'arrêt. Cette alimentation a pour rôle d'apporter de l'eau au générateur de vapeur quand l'alimentation normale est défaillante. En raison de la mission qui est confiée à l'alimentation de secours, celle-ci doit être très fiable. Sur les centrales nucléaires, cette alimentation de secours est réalisée à l'aide de motopompes électriques ou de turbo-pompes. Ces dispositifs sont de conception délicate en raison des pièces tournantes, et certains sont dépendants de sources électriques. Pour rendre passive l'alimentation de secours des générateurs de vapeur (c'est-à-dire supprimer les pièces tournantes et l'alimentation électrique), on a cherché à utiliser des injecteurs à vapeur. Ces appareils utilisent l'énergie de la vapeur du générateur à vapeur pour élever la pression de l'eau du réservoir à basse pression à une pression supérieure à celle de la vapeur.One of the safety devices in pressurized water nuclear reactors is an emergency power supply for steam generators. This emergency power supply is used mainly for the removal of residual heat when the nuclear reactor is shut down. The role of this supply is to supply water to the steam generator when the normal supply fails. Because of the mission that is entrusted to the emergency power supply, it must be very reliable. On nuclear power plants, this emergency power supply is carried out using electric motor pumps or turbo-pumps. These devices are delicate in design due to the rotating parts, and some are dependent on electrical sources. To make the emergency power supply of the steam generators passive (that is to say to remove the rotating parts and the electrical power supply), attempts have been made to use steam injectors. These devices use the energy of the steam from the steam generator to raise the pressure of the water in the low pressure tank to a pressure higher than that of the steam.

Nous rappellerons tout d'abord le principe de fonctionnement d'un injecteur à vapeur en nous référant à la figure 1. La vapeur arrive en pression par le tuyau 1 et est détendue au travers d'un rétrécissement 2, suivi d'une tuyère 3. A la fin de cette tuyère, l'eau liquide et froide arrive à une pression inférieure à celle de la vapeur. Généralement cette arrivée d'eau s'effectue grâce à un espace annulaire 4. L'eau est amenée à cet espace annulaire par un conduit 14 sur lequel se trouve une vanne 15 pour régler le débit. Dans la suite de la description, l'arrivée d'eau liquide par ce tuyau 14 sera dénommée source de l'injecteur. La vapeur cède son énergie à l'eau en se mélangeant à celle-ci dans une chambre de mélange 5. Cette chambre de mélange est généralement de forme conique et converge vers un col 6. A cet endroit la vapeur s'est toute condensée, le mélange est total, et toute l'eau est dans l'état liquide avec une très forte vitesse, pouvant parfois même atteindre une vitesse sonique. Au passage du col 6, la forte énergie cinétique se transforme en énergie de pression. Le diffuseur 7 en sortie du col 6 permet d'accroître la pression de sortie. La valeur de pression atteinte en sortie 8 du diffuseur est supérieure à la pression d'entrée de la vapeur motrice en 1. Ce type d'injecteur à vapeur fonctionne très bien pour une gamme de pression de vapeur inférieure à 15 ou 20 bars.We will first recall the operating principle of a steam injector by referring to Figure 1. The steam comes into pressure through the pipe 1 and is expanded through a narrowing 2, followed by a nozzle 3 At the end of this nozzle, the liquid and cold water arrives at a pressure lower than that of the vapor. Generally, this water inlet takes place through an annular space 4. The water is brought to this annular space through a conduit 14 on which there is a valve 15 for regulating the flow rate. In the following description, the arrival of liquid water through this pipe 14 will be referred to as the source of the injector. The steam gives up its energy to the water by mixing with it in a mixing chamber 5. This mixing chamber is generally conical in shape and converges towards a neck 6. At this point the steam has all condensed, the mixture is total, and all the water is in the liquid state with a very high speed, sometimes even reaching sonic speed. When passing through the neck 6, the high kinetic energy is transformed into pressure energy. The diffuser 7 at the outlet of the neck 6 makes it possible to increase the outlet pressure. The pressure value reached at outlet 8 of the diffuser is greater than the inlet pressure of the driving steam at 1. This type of steam injector works very well for a steam pressure range of less than 15 or 20 bars.

Pour des pressions supérieures, le fonctionnement de l'injecteur à vapeur nécessite des drains, c'est-à-dire des prélèvements d'eau situés au niveau de la chambre de mélange 5. Ainsi la société ENEL en Italie a présenté à Plaisance (Piacenza) en Italie lors de l"'European two phases flow Top Meeting" en juin 1994, un injecteur à vapeur comportant deux drains. Cet injecteur est représenté sur la figure 1A. Sur cette figure on reconnaît le même type d'injecteur que la figure 1, mais avec les deux drains, l'un 10 situé vers le milieu de la chambre de mélange 5, l'autre 12, situé aux environs du col 6. Pour obtenir une pression d'eau de plusieurs dizaines de bars en sortie 8 de l'injecteur, il faut une source d'eau 14 avec une légère pression de quelques bars et un léger soutirage d'eau au drain 12. Le démarrage de l'injecteur est assez difficile car pendant la période d'amorçage, il faut effectuer un soutirage aux drains 10 et 12 et régler les débits soutirés par les vannes 11 et 13, ainsi que le débit de la source 14 à l'aide de la vanne 15. Une fois l'injecteur amorcé, il est possible de fermer le drain 10 à l'aide de la vanne 11. Cet injecteur permet d'alimenter en continu un générateur de vapeur dont la pression peut être de 60 bars, avec une source d'eau à une pression de quelques bars ; par contre les inconvénients de cet injecteur sont la difficulté de l'amorçage, et le maintien d'une légère pression de la source qui rend difficile l'emploi d'un réservoir d'eau à la pression atmosphérique. En effet un tel réservoir devra être situé à quelques dizaines de mètres au-dessus de l'injecteur afin de maintenir une légère pression à la source. Il faut ajouter à cela que cet injecteur est peu stable et susceptible de désamorçage, ce qui le rend insuffisamment fiable.For higher pressures, the operation of the steam injector requires drains, that is to say water samples located at the level of the mixing chamber 5. Thus the company ENEL in Italy presented to Plaisance ( Piacenza) in Italy during the " European two phases flow Top Meeting" in June 1994, a steam injector with two drains. This injector is shown in Figure 1A. In this figure we recognize the same type of injector as in Figure 1, but with the two drains, one 10 located in the middle of the mixing chamber 5, the other 12, located around the neck 6. For obtain a water pressure of several tens of bars at outlet 8 of the injector, a water source 14 is required with a slight pressure of a few bars and a slight withdrawal of water from the drain 12. The start of the injector is quite difficult because during the priming period, it is necessary to draw off the drains 10 and 12 and adjust the flow rates drawn off by the valves 11 and 13, as well as the flow rate from the source 14 using the valve 15 Once the injector is primed, it is possible to close the drain 10 using the valve 11. This injector makes it possible to continuously supply a steam generator whose pressure can be 60 bars, with a source of water at a pressure of a few bars; on the other hand the disadvantages of this injector are the difficulty of priming, and the maintenance of a slight pressure of the source which makes it difficult to use a reservoir of water at atmospheric pressure. Indeed, such a tank must be located a few tens of meters above the injector in order to maintain a slight pressure at the source. To this must be added that this injector is not very stable and susceptible to defusing, which makes it insufficiently reliable.

Un autre injecteur évite ces inconvénients en utilisant une source d'eau à une pression proche de la vapeur. Le dispositif, décrit lors d'une présentation au même congrès à Plaisance, est constitué d'un injecteur à vapeur d'un type similaire à celui de l'ENEL, mais sans les drains. Ce dispositif est décrit sur la figure 2. On y reconnaît l'injecteur à vapeur A avec son alimentation en vapeur 20, sa source d'eau 21, et sa sortie d'eau à haute pression 22. La particularité de l'installation réside en ce que la source d'eau provient directement du générateur de vapeur G. La prise d'eau s'effectue dans la partie du générateur de vapeur contenant l'eau liquide. Cette eau, étant à la température proche de la vapeur, doit être refroidie dans l'échangeur 26 immergé dans une piscine 33, avant d'alimenter la source 21 de l'injecteur à vapeur. Le démarrage de l'injecteur s'effectue en ouvrant une vanne 27 en entrée d'un ballon d'amorçage 28. Le clapet 30 laissant passer l'eau dans le sens de la flèche 32 a pour effet d'empêcher l'eau contenue dans le générateur de vapeur G de sortir par le tuyau 31 lors du démarrage de l'injecteur. Dans cette installation, l'eau sortant de l'injecteur en 22 est à une pression supérieure de quelques bars à la pression de vapeur, ce qui permet de la réinjecter dans le générateur de vapeur G par l'intermédiaire du tuyau 31. Cette installation permet donc d'extraire de la chaleur du générateur de vapeur à travers l'échangeur 26 de chaleur qui est immergé dans la piscine 33. Dans cette installation, la pression de la source d'eau est à une pression proche de celle de la vapeur car l'eau et la vapeur proviennent du même générateur de vapeur. A la différence de l'injecteur précédent, ce système fonctionne à une pression de plusieurs dizaines de bars sans drain de soutirage, et sans difficulté d'amorçage. Par contre, comme l'injecteur précédent, il ne permet pas de monter à haute pression (quelques dizaines de bars) de l'eau issue d'un réservoir à la pression atmosphérique, pour l'injecter dans le générateur de vapeur, ou pour toute autre utilisation. Par conception de montage, cet injecteur à vapeur joue le rôle de circulateur, mais pas celui d'une pompe de relevage pour injecter de l'eau provenant d'une bâche à basse pression, dans un circuit en pression.Another injector avoids these drawbacks by using a source of water at a pressure close to steam. The device, described during a presentation at the same congress in Plaisance, consists of a steam injector of a type similar to that of the ENEL, but without the drains. This device is described in Figure 2. We recognize the steam injector A with its steam supply 20, its water source 21, and its high pressure water outlet 22. The particularity of the installation resides in that the water source comes directly from the steam generator G. The water intake takes place in the part of the steam generator containing the liquid water. This water, being at the temperature close to steam, must be cooled in the exchanger 26 immersed in a swimming pool 33, before supplying the source 21 of the steam injector. The injector is started by opening a valve 27 at the inlet of a priming balloon 28. The valve 30 allowing the water to pass in the direction of arrow 32 has the effect of preventing the water contained in the steam generator G to come out through the pipe 31 when the injector starts. In this installation, the water leaving the injector at 22 is at a pressure a few bars higher than the vapor pressure, which allows it to be reinjected into the steam generator G by through the pipe 31. This installation therefore makes it possible to extract heat from the steam generator through the heat exchanger 26 which is immersed in the swimming pool 33. In this installation, the pressure of the water source is at a pressure close to that of steam because water and steam come from the same steam generator. Unlike the previous injector, this system operates at a pressure of several tens of bars without draw-off drain, and without priming difficulty. On the other hand, like the previous injector, it does not make it possible to raise the water coming from a reservoir at atmospheric pressure at high pressure (a few tens of bars), to inject it into the steam generator, or to any other use. By mounting design, this steam injector plays the role of circulator, but not that of a lift pump to inject water from a tank at low pressure, in a pressure circuit.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention a précisément pour objet un dispositif d'alimentation en liquide d'une chaudière à l'aide de l'énergie contenue dans ce même liquide lorsque celui-ci est sous forme de vapeur. Dans la suite de la description de la présente invention, on supposera que ce liquide est de l'eau, et que la chaudière est un générateur de vapeur d'un réacteur nucléaire à eau pressurisée. Ce même dispositif peut également être utilisé dans une chaudière constituée par un réacteur nucléaire à eau bouillante, ou dans toute autre type de chaudière produisant de la vapeur.The present invention specifically relates to a device for supplying liquid to a boiler using the energy contained in this same liquid when the latter is in the form of vapor. In the following description of the present invention, it will be assumed that this liquid is water, and that the boiler is a steam generator of a pressurized water nuclear reactor. This same device can also be used in a boiler constituted by a boiling water nuclear reactor, or in any other type of boiler producing steam.

Les dispositifs d'injecteur à vapeur existants, comme ceux qui ont été décrits ci-dessus, nécessitent une source d'eau liquide sous pression qui est soit obtenue par une conduite venant du générateur de vapeur, ou par un réservoir d'eau placé à plusieurs mètres ou dizaines de mètres au-dessus de l'injecteur. La présente invention permet de supprimer ces inconvénients en créant une alimentation en eau sous pression de la source de l'injecteur à vapeur, caractérisée en ce que le dispositif d'alimentation en eau comprend d'une part, pendant le régime de démarrage, au moins un circuit d'alimentation en eau sous pression comportant un réservoir d'eau pressurisé par la vapeur, un tuyau de sortie, et un dispositif anti-retour, d'autre part, pendant le régime établi, un éjecteur alimenté en eau à basse pression provenant d'un réservoir et en eau à haute pression provenant d'un circuit de soutirage branché à la sortie de l'injecteur.Existing steam injector devices, such as those described above, require a source of pressurized liquid water which is either obtained by a pipe coming from the steam generator, or by a water tank placed several meters or tens of meters above the injector. The present invention overcomes these drawbacks by creating a pressurized water supply from the source of the steam injector, characterized in that the water supply device comprises on the one hand, during the starting regime, at less a pressurized water supply circuit comprising a steam pressurized water tank, an outlet pipe, and a non-return device, on the other hand, during the established regime, an ejector supplied with low water pressure from a reservoir and high pressure water from a draw-off circuit connected to the outlet of the injector.

Le fonctionnement de l'injecteur à vapeur avec cette nouvelle source permet une nette amélioration des performances des injecteurs actuels. Il est en effet possible d'obtenir de l'eau en sortie de l'injecteur à vapeur à une pression supérieure à la pression de la vapeur, celle-ci étant déjà à une pression de plusieurs dizaines de bars, à partir d'un réservoir d'eau à très basse pression, comme par exemple la pression atmosphérique, ce que ne sont pas capables de faire les injecteurs actuels. La particularité de la source de l'injecteur est qu'elle se situe à une pression intermédiaire entre la pression de la vapeur et la pression atmosphérique. L'eau alimentant la source provient d'un réservoir à basse pression, et est élevée en pression grâce à la pression de vapeur dans un premier temps, et grâce à la pression d'eau en sortie de l'injecteur dans un deuxième temps. Le maintien en pression de la source, aussi bien au démarrage qu'en fonctionnement, permet de supprimer les drains, facilite l'amorçage, ce qui permet d'alimenter en continu le générateur de vapeur à partir d'un réservoir d'eau à basse pression.The operation of the steam injector with this new source allows a marked improvement in the performance of current injectors. It is indeed possible to obtain water at the outlet of the steam injector at a pressure higher than the pressure of the steam, the latter already being at a pressure of several tens of bars, from a very low pressure water tank, such as atmospheric pressure, which current injectors are not able to do. The peculiarity of the source of the injector is that it is located at an intermediate pressure between the vapor pressure and the atmospheric pressure. The water supplying the source comes from a low pressure tank, and is raised in pressure thanks to the vapor pressure at first, and thanks to the water pressure at the outlet of the injector in a second step. Maintaining pressure at the source, as well start-up that in operation, eliminates the drains, facilitates priming, which makes it possible to continuously supply the steam generator from a low-pressure water tank.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

La figure 1 décrit le principe de fonctionnement d'un injecteur à vapeur.Figure 1 describes the operating principle of a steam injector.

La figure 1A décrit le même type d'injecteur que la figure précédente, mais avec la mise en place de drains pour une utilisation à plus haute pression.Figure 1A describes the same type of injector as the previous figure, but with the installation of drains for use at higher pressure.

La figure 2 décrit une installation d'évacuation de la chaleur d'un générateur de vapeur vers une piscine grâce à une circulation d'eau obtenue à l'aide d'un injecteur à vapeur.FIG. 2 describes an installation for removing heat from a steam generator towards a swimming pool by means of a circulation of water obtained using a steam injector.

La figure 3 décrit le dispositif d'alimentation en eau, c'est-à-dire la source de l'injecteur à vapeur, à une pression intermédiaire entre la pression atmosphérique et la pression vapeur.Figure 3 describes the water supply device, that is to say the source of the steam injector, at an intermediate pressure between atmospheric pressure and steam pressure.

La figure 4 décrit le même dispositif, mais avec un injecteur et son système d'alimentation en eau immergés dans une piscine.Figure 4 describes the same device, but with an injector and its water supply system submerged in a swimming pool.

La figure 4A montre le même dispositif, mais avec, sur la boucle de retour, un échangeur immergé dans une piscine indépendante de la piscine où est immergé l'injecteur à vapeur.FIG. 4A shows the same device, but with, on the return loop, an exchanger immersed in a swimming pool independent of the swimming pool where the steam injector is immersed.

La figure 5 décrit une alimentation en eau de la source au cours de la phase de démarrage directement à partir d'un réservoir alimenté par la vapeur.FIG. 5 describes a supply of water to the source during the start-up phase directly from a tank supplied with steam.

La figure 6 décrit un dispositif d'alimentation de la source à l'aide de la vapeur, dispositif n'intervenant que lors du démarrage de l'injecteur.FIG. 6 describes a device for supplying the source using steam, a device which only intervenes when the injector starts.

DESCRIPTION DÉTAILLÉE DE MODES DE RÉALISATION DE L'INVENTIONDETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Sur la figure 3, on reconnaît l'injecteur à vapeur B avec son alimentation en vapeur 40, sa source 41, et sa sortie à haute pression 42. La sortie 42 est dirigée vers une utilisatrice de l'eau à haute pression, par exemple vers un générateur de vapeur G, au travers d'un clapet 43 laissant passer l'eau dans le sens de la flèche 44. Le tuyau 53 représente la liaison entre le générateur de vapeur et la sortie du clapet 43. A la sortie à haute pression 42 une partie de l'eau est dirigée vers un éjecteur C par l'intermédiaire d'un tuyau 45 et d'un clapet 46, laissant passer l'eau dans le sens de la flèche 47. La sortie de ce clapet s'effectue par un tuyau 50 vers l'éjecteur C. Un ballon d'amorçage 48 est branché sur la sortie à haute pression 42 par l'intermédiaire d'un tuyau 49. L'ensemble des tuyaux 45, 50, du clapet 46 et de l'éjecteur C constitue une boucle de retour R pour participer à l'alimentation de la source 41 de l'injecteur.In Figure 3, we recognize the steam injector B with its steam supply 40, its source 41, and its high pressure outlet 42. The outlet 42 is directed to a user of high pressure water, for example towards a steam generator G, through a valve 43 allowing the water to pass in the direction of arrow 44. The pipe 53 represents the connection between the steam generator and the outlet of the valve 43. At the outlet at high pressure 42 part of the water is directed to an ejector C via a pipe 45 and a valve 46, letting the water pass in the direction of arrow 47. The outlet of this valve is carried out by a pipe 50 to the ejector C. A priming balloon 48 is connected to the high pressure outlet 42 by means of a pipe 49. All of the pipes 45, 50, of the valve 46 and of the ejector C constitutes a return loop R to participate in the supply of the source 41 of the injector.

L'entrée de vapeur est constituée d'une vanne 60, qui alimente l'alimentation en vapeur 40 de l'injecteur B, à l'aide d'un tuyau 61. La vapeur provient du générateur de vapeur G, grâce à un tuyau symbolisé par la liaison 54. Sur le tuyau 61 est branché un tuyau de petite section 62, qui se prolonge par un réservoir 63, représenté ici par un tuyau de plus gros diamètre que le tuyau 62. L'extrémité de ce réservoir 63 se prolonge par un tuyau 64 et un clapet 65, laissant passer l'eau dans le sens de la flèche 66. Cet ensemble forme un circuit D d'alimentation en eau sous pression pendant le régime de démarrage. A la sortie du clapet 65 l'eau rejoint le tuyau 50 en amont de l'éjecteur C.The steam inlet consists of a valve 60, which feeds the steam supply 40 to the injector B, using a pipe 61. The steam comes from the steam generator G, thanks to a pipe symbolized by the connection 54. On the pipe 61 is connected a pipe of small section 62, which extends by a tank 63, represented here by a pipe of larger diameter than the pipe 62. The end of this tank 63 is extended by a pipe 64 and a valve 65, letting the water pass in the direction of the arrow 66. This assembly forms a circuit D for supplying water under pressure during the starting regime. At the outlet of the valve 65 the water joins the pipe 50 upstream of the ejector C.

Le clapet 65 pourrait également être placé sur le tuyau d'entrée 62 du réservoir 63.The valve 65 could also be placed on the inlet pipe 62 of the reservoir 63.

La source 41 de l'injecteur à vapeur B est réalisée par le tuyau 70 qui provient de la sortie 71 de l'éjecteur C. Cet éjecteur est alimenté en pression par le tuyau 50 et le circuit D, et en basse pression, par le tuyau 72 provenant d'un réservoir d'eau 73. L'obtention de la basse pression pourra être obtenue en ouvrant le réservoir 73 à l'atmosphère.The source 41 of the steam injector B is produced by the pipe 70 which comes from the outlet 71 of the ejector C. This ejector is supplied with pressure by the pipe 50 and the circuit D, and at low pressure, by the pipe 72 coming from a water tank 73. Obtaining the low pressure can be obtained by opening the tank 73 to the atmosphere.

Le principe de fonctionnement de la présente invention est le suivant. Au départ, lorsque l'injecteur n'est pas en service, la vanne 60 est fermée, toutes les entrées et sorties de l'injecteur B et de l'éjecteur C, ainsi que les tuyaux reliant ces composants, sont remplies d'eau à une pression proche de celle de l'eau du réservoir 73, qui est ouvert sur l'atmosphère. Le clapet 43 empêche l'eau du générateur de vapeur de pénétrer dans l'injecteur à vapeur. Le ballon d'amorçage 48 est rempli d'un gaz neutre, par exemple de l'air qui y reste emprisonné. Ce gaz est à une pression proche de celle de l'atmosphère. Le niveau d'eau 75 se situe à la base du ballon 48.The operating principle of the present invention is as follows. At the start, when the injector is not in service, the valve 60 is closed, all the inlets and outlets of the injector B and the ejector C, as well as the pipes connecting these components, are filled with water at a pressure close to that of the water in reservoir 73, which is open to the atmosphere. The valve 43 prevents water from the steam generator from entering the steam injector. The priming balloon 48 is filled with a neutral gas, for example air which remains trapped therein. This gas is at a pressure close to that of the atmosphere. The water level 75 is located at the base of the balloon 48.

La mise en action de l'injecteur s'effectue par une simple ouverture de la vanne 60. Une fois cette vanne ouverte, la vapeur pousse l'eau contenue dans le tuyau 61 par l'entrée 40 de l'injecteur, et par le tuyau 62 et le réservoir 63. La vapeur joue le rôle d'un piston sur l'eau contenue dans le réservoir 63. Une interface vapeur-eau 76 s'établit dans le réservoir 63. L'eau ainsi chassée sort de l'injecteur par la sortie 42 et est envoyée progressivement dans le ballon d'amorçage 48 en comprimant le gaz inerte contenu dans ce ballon. La chasse de l'eau du réservoir 63 s'effectue au travers de l'éjecteur C, puis du tuyau 70, et donc par la source de l'injecteur à vapeur. Cette chasse d'eau ne peut pas s'effectuer par la boucle de retour R, en raison du clapet 46. L'eau provenant du réservoir 63 traverse l'éjecteur avec une forte vitesse grâce à un convergent 80, et entraîne de l'eau en provenance du réservoir 73, via le tuyau 72, en lui cédant une partie de sa quantité de mouvement. Ainsi l'eau sortant de l'éjecteur provient à la fois du réservoir 63 qui est soumise à la pression du générateur de vapeur, et du réservoir 73 qui est à la pression atmosphérique. La source 41 de l'injecteur est donc alimentée par de l'eau à une pression intermédiaire entre celle du générateur de vapeur et la pression atmosphérique. Les volumes du tuyau 61 et du réservoir 63 doivent être tels que la vapeur arrive dans l'injecteur de vapeur par son entrée 40, bien avant que la capacité soit remplie de vapeur. L'injecteur s'amorce comme les injecteurs courants, et la sortie 42 commence à monter en pression en comprimant progressivement le gaz contenu dans le ballon 48. Lorsque la pression à la sortie 42 devient supérieure à la pression du générateur de vapeur G, le clapet 43 s'ouvre, permettant son alimentation en eau. En même temps que le clapet 43 s'ouvre, le clapet 46 s'ouvre également sous les effets de la pression. La pression en entrée de l'éjecteur s'accroît légèrement et devient supérieure à celle du réservoir 63 qui est toujours à la pression de la vapeur. De ce fait le clapet 65 se ferme. L'éjecteur continue de fonctionner en aspirant l'eau du réservoir 73. Le fluide moteur de l'éjecteur n'est plus l'eau de la capacité poussée par la vapeur, mais une partie de l'eau sortant de l'injecteur. A ce moment l'injecteur atteint son régime permanent.The actuator is put into action by simply opening the valve 60. Once this valve is open, the steam pushes the water contained in the pipe 61 through the inlet 40 of the injector, and through the pipe 62 and tank 63. Steam plays the role of a piston on the water contained in the reservoir 63. A steam-water interface 76 is established in the reservoir 63. The water thus expelled leaves the injector through the outlet 42 and is gradually sent into the balloon d priming 48 by compressing the inert gas contained in this balloon. The flushing of the water from the reservoir 63 takes place through the ejector C, then through the pipe 70, and therefore through the source of the steam injector. This flushing cannot be carried out by the return loop R, because of the valve 46. The water coming from the reservoir 63 passes through the ejector with a high speed thanks to a convergent 80, and causes water from the reservoir 73, via the pipe 72, giving it part of its momentum. Thus the water leaving the ejector comes both from the reservoir 63 which is subjected to the pressure of the steam generator, and from the reservoir 73 which is at atmospheric pressure. The source 41 of the injector is therefore supplied with water at a pressure intermediate between that of the steam generator and atmospheric pressure. The volumes of the pipe 61 and of the reservoir 63 must be such that the steam arrives in the steam injector through its inlet 40, well before the capacity is filled with steam. The injector is primed like current injectors, and the outlet 42 begins to increase in pressure by gradually compressing the gas contained in the balloon 48. When the pressure at the outlet 42 becomes higher than the pressure of the steam generator G, the valve 43 opens, allowing its water supply. At the same time as the valve 43 opens, the valve 46 also opens under the effects of pressure. The inlet pressure of the ejector increases slightly and becomes higher than that of the reservoir 63 which is always at the pressure of the vapor. Therefore the valve 65 closes. The ejector continues to operate by drawing water from the reservoir 73. The working fluid of the ejector is no longer the water of the capacity pushed by the vapor, but a part of the water leaving the injector. At this time the injector reaches its steady state.

L'arrêt de l'injecteur s'effectue en fermant la vanne 60. La pression dans l'injecteur, l'éjecteur et les tuyaux reliant ces composants chutent, le clapet 43 se ferme, l'eau contenue dans le réservoir 48 se vide sous l'effet du gaz comprimé et remplit les parties des tuyauteries restées en vapeur. En effet celle-ci se condense au contact de l'eau. Quelques instants après la fermeture de la vanne 60, toute l'installation se retrouve dans la même configuration que celle du départ, prête pour une nouvelle mise en route.The injector stops by closing the valve 60. The pressure in the injector, the ejector and the pipes connecting these components drop, the valve 43 closes, the water contained in the tank 48 is emptied under the effect of compressed gas and fills the parts of the pipes that remain in vapor. Indeed it condenses on contact with water. A few moments after closing the valve 60, the entire installation is in the same configuration as that of the flow, ready for a new start-up.

La figure 3 montrait une réalisation de l'invention, et a permis de comprendre le fonctionnement. La figure 4 présente une autre façon de réaliser l'invention, en immergeant les principaux composants dans une piscine 90 ouverte à la pression atmosphérique. Sur cette figure 4, on a placé dans la piscine : l'injecteur B, l'éjecteur C, le réservoir 63 servant au démarrage par effet de piston, le clapet 65 entre le réservoir 63 et l'éjecteur C, le clapet 46 entre la sortie à haute pression 42 de l'injecteur et l'éjecteur. Le clapet 43 entre la sortie 42 et le générateur de vapeur G, le ballon d'amorçage 48, et la vanne 60 entre le générateur de vapeur et l'injecteur ont été placés à l'extérieur de la piscine 90. Clapets, vanne, réservoir 63, ou ballon d'amorçage 48 peuvent être placés indifféremment dans la piscine ou hors de la piscine selon les commodités de la réalisation. L'intérêt de placer l'injecteur et son éjecteur dans une piscine peut représenter un gain en encombrement : lorsqu'ils sont placés dans le fond de la piscine, la pression à la source est accrue de la pression statique due à la hauteur d'eau située au-dessus de ces composants. Une condition de bon fonctionnement de l'injecteur à vapeur, notamment en ce qui concerne le gain en pression, est la température de la source qui doit être la plus froide possible. Or la boucle de retour R entre la sortie 42 et l'éjecteur apporte de l'eau chaude. Celle-ci est refroidie au niveau de l'éjecteur en se mélangeant à l'eau froide de la piscine qui est aspirée à l'éjecteur. Dans le cas où il serait nécessaire d'obtenir un fort gain en pression au niveau de la sortie 42 de l'injecteur, il est possible de refroidir la source de l'injecteur, en refroidissant l'eau circulant dans la boucle de retour R. Pour cela un échangeur de chaleur 91 est placé sur la boucle R. Dans la figure 4, il a été disposé en aval du clapet 46, mais il peut être disposé en amont de ce clapet selon les facilités de réalisation : sur la figure 4A, on a représenté le même schéma que la figure 4, excepté que l'échangeur 91 de la boucle R a été déplacé. Cet échangeur a pour but de refroidir le débit circulant dans la boucle R avant de le mélanger dans l'éjecteur C avec l'eau venant de la piscine 90, le tout pour obtenir une eau alimentant la source de l'injecteur B la plus froide possible. L'eau de la boucle R échauffe donc l'eau de la piscine 90 par l'intermédiaire de l'échangeur 91. A long terme, la piscine 90 se réchauffe, et par conséquence la température de l'eau alimentant la source de l'injecteur se réchauffe également. Lorsque la température de la source de l'injecteur est trop chaude, les performances de l'injecteur se dégradent. Afin d'éviter cette dégradation on a placé, sur la boucle de retour R de la figure 4A, un échangeur 92 dans une piscine 93 indépendante de la piscine 90. L'eau de la boucle de retour R se refroidit dans la piscine 93, et l'eau de la piscine 90 reste froide, ce qui permet de garder une alimentation en eau froide de la source de l'injecteur et par conséquent de garder les performances de l'injecteur à vapeur.Figure 3 shows an embodiment of the invention, and allowed to understand the operation. FIG. 4 shows another way of carrying out the invention, by immersing the main components in a swimming pool 90 open to atmospheric pressure. In this FIG. 4, the following are placed in the pool: the injector B, the ejector C, the reservoir 63 used for starting by piston effect, the valve 65 between the reservoir 63 and the ejector C, the valve 46 between the high pressure outlet 42 of the injector and the ejector. The valve 43 between the outlet 42 and the steam generator G, the priming flask 48, and the valve 60 between the steam generator and the injector were placed outside the swimming pool 90. Valves, valve, reservoir 63, or priming ball 48 can be placed either in the pool or out of the pool depending on the convenience of the embodiment. The advantage of placing the injector and its ejector in a swimming pool can represent a gain in bulk: when placed at the bottom of the swimming pool, the pressure at the source is increased by the static pressure due to the height of water located above these components. A condition for the proper functioning of the steam injector, in particular with regard to the pressure gain, is the temperature of the source which must be as cold as possible. However, the return loop R between the outlet 42 and the ejector provides hot water. This is cooled at the ejector by mixing with the cold pool water which is sucked into the ejector. In the event that it is necessary to obtain a high pressure gain at the outlet 42 of the injector, it is possible to cool the source of the injector, by cooling the water circulating in the return loop R For this, a heat exchanger 91 is placed on the loop R. In FIG. 4, it has been arranged downstream of the valve 46, but it may be arranged upstream of this valve according to the facilities of realization: in FIG. 4A , there is shown the same diagram as Figure 4, except that the exchanger 91 of the loop R has been moved. The purpose of this exchanger is to cool the flow circulating in the loop R before mixing it in the ejector C with the water coming from the pool 90, all to obtain water supplying the source of the coldest injector B possible. The water in the loop R therefore heats the water in the swimming pool 90 via the exchanger 91. In the long term, the swimming pool 90 heats up, and consequently the temperature of the water supplying the source of l injector also heats up. When the temperature of the source of the injector is too hot, the performance of the injector degrades. In order to avoid this degradation, we placed on the return loop R of the FIG. 4A, an exchanger 92 in a swimming pool 93 independent of the swimming pool 90. The water of the return loop R cools in the swimming pool 93, and the water of the swimming pool 90 remains cold, which makes it possible to keep a supply in cold water from the injector source and therefore to keep the performance of the steam injector.

Sur la figure 5, on a représenté un autre dispositif pour mettre la source en pression au cours de la période d'amorçage de l'injecteur à vapeur. Sur cette figure on reconnaît les principaux composants déjà décrits sur les figures précédentes : l'injecteur B, sa sortie à haute pression 42, sa source 41, son entrée vapeur 40, le ballon d'amorçage 48, le clapet de sortie 43, la vanne 60, le générateur de vapeur G.FIG. 5 shows another device for pressurizing the source during the priming period of the steam injector. In this figure we recognize the main components already described in the previous figures: the injector B, its high pressure outlet 42, its source 41, its steam inlet 40, the priming flask 48, the outlet valve 43, the valve 60, the steam generator G.

La boucle R des figures 3 et 4 est remplacée par une boucle R' comprenant le tuyau 99 entre la sortie 42 et l'éjecteur C. Pour simplifier le schéma, l'échangeur 91 sur la boucle de retour R n'a pas été représenté sur la boucle R', car il n'est pas indispensable au fonctionnement. L'alimentation à haute pression de l'éjecteur est réalisée uniquement par la boucle de retour R'. Juste en aval de l'éjecteur C, un clapet 100, dont la sortie est reliée à la source 41 par le tuyau 170, laisse passer l'eau dans le sens de la flèche 101. Ce clapet 100 remplace le clapet 46 des figures 3 et 4.The loop R of Figures 3 and 4 is replaced by a loop R 'comprising the pipe 99 between the outlet 42 and the ejector C. To simplify the diagram, the exchanger 91 on the return loop R has not been shown on the loop R ', because it is not essential for operation. The high pressure supply to the ejector is carried out only by the return loop R '. Just downstream of the ejector C, a valve 100, the outlet of which is connected to the source 41 by the pipe 170, lets the water pass in the direction of the arrow 101. This valve 100 replaces the valve 46 in FIGS. 3 and 4.

Le réservoir d'amorçage 63 qui alimentait la source 41 via l'éjecteur C, est remplacée ici par un réservoir 102. Ladite capacité a la même fonction d'alimentation de la source pendant l'amorçage, sauf que cette alimentation se fait directement sans passer par l'éjecteur. Le fonctionnement de cette capacité doit permettre une alimentation de la source seulement au cours de la période de démarrage. Pour que le réservoir 102 remplisse sa mission, on décrit ici à titre illustratif une façon de réaliser ce réservoir. Celui-ci est composée d'un cylindre dans lequel peut glisser un piston 103. La sortie 104 de ce cylindre rejoint la sortie du clapet 100 au niveau du tuyau d'alimentation 170 de la source 41. Un ressort 105 est situé dans la partie aval du cylindre 102. Sur la figure 5 le cylindre 102 est vertical et est immergé dans la piscine 90. En fonction des disponibilités d'encombrement pour la réalisation de la présente invention, la position du cylindre peut être quelconque ou située hors de la piscine.The priming reservoir 63 which supplied the source 41 via the ejector C, is replaced here by a reservoir 102. Said capacity has the same function of supplying the source during priming, except that this supply takes place directly without go through the ejector. The operation of this capacity must allow supplying the source only during the start-up period. So that the tank 102 fulfills its mission, a way of making this tank is described here by way of illustration. This consists of a cylinder in which a piston 103 can slide. The outlet 104 of this cylinder joins the outlet of the valve 100 at the supply pipe 170 from the source 41. A spring 105 is located in the part downstream of the cylinder 102. In FIG. 5 the cylinder 102 is vertical and is immersed in the swimming pool 90. Depending on the space available for carrying out the present invention, the position of the cylinder can be arbitrary or situated outside the swimming pool .

Avant la mise en route de l'injecteur, tous les composants entre la vanne 60 et le clapet 43 sont remplis d'eau, et sont à la même pression que celle de la piscine 90, excepté le ballon d'amorçage 48 qui est rempli d'un gaz neutre, et qui a son niveau libre 75 situé dans sa partie inférieure. Le piston 103, poussé par le ressort 105, se situe dans l'entrée 106 du cylindre 102.Before starting the injector, all the components between the valve 60 and the valve 43 are filled with water, and are at the same pressure as that of the swimming pool 90, except the priming balloon 48 which is filled of a neutral gas, and which has its free level 75 located in its lower part. The piston 103, pushed by the spring 105, is located in the inlet 106 of the cylinder 102.

Lors de l'ouverture de la vanne 60, la vapeur chasse l'eau contenue en entrée de l'injecteur à vapeur B, et pousse le piston 103. L'eau située dans la partie du cylindre contenant le ressort est chassée par la conduite 104. Elle alimente la source 41, car elle ne peut pas passer par le clapet 100. La majorité de l'eau chassée par la vapeur ou par le piston est dirigée dans le ballon 48 via la sortie 42 de l'injecteur B, et comprime le gaz de cette capacité pour faire monter petit à petit la pression. La quantité d'eau n'allant pas dans le ballon 48 s'échappe dans la piscine via la boucle R' et l'entrée à basse pression 107 de l'éjecteur C. Ce passage de l'eau vers la piscine s'effectue tant que la pression en sortie de l'injecteur n'est pas supérieure à la pression en aval du clapet 100. Cette pression en aval du clapet 100 est égale à la pression de vapeur via le cylindre 102 moins les pertes de charge dans le tuyau 104. Ces pertes de charge devront être ajustées en fonction des conditions de fonctionnement recherchées en disposant un diaphragme 110 en aval du cylindre 102, par exemple en entrée du tuyau 104. Lorsque la pression en amont du clapet 100 devient supérieure à la pression en aval, le clapet s'ouvre, l'éjecteur entre en action en entraînant de l'eau à basse pression provenant de la piscine 90 via son entrée 107. Pendant la phase de transfert de l'alimentation de la source 41 du cylindre à l'éjecteur, la source est alimentée par le cylindre et l'éjecteur, tant que le piston 103, poussé par la vapeur, n'est pas en butée sur la sortie aval du cylindre. Une fois cette phase terminée, l'alimentation en eau de la source ne provient plus que de la sortie de l'éjecteur à une pression intermédiaire entre pression de la vapeur et pression de la piscine 90.When the valve 60 opens, the steam drives out the water contained at the inlet of the steam injector B, and pushes the piston 103. The water located in the part of the cylinder containing the spring is driven out by the pipe. 104. It feeds the source 41, because it cannot pass through the valve 100. The majority of the water expelled by the steam or by the piston is directed into the balloon 48 via the outlet 42 of the injector B, and compresses the gas of this capacity to gradually build up the pressure. The quantity of water not going into the balloon 48 escapes into the pool via the loop R 'and the low pressure inlet 107 of the ejector C. This passage of the water towards the pool takes place as long as the pressure at the outlet of the injector is not higher than the pressure downstream of the valve 100. This pressure downstream of the valve 100 is equal to the vapor pressure via the cylinder 102 minus the pressure drops in the pipe 104. These pressure drops must be adjusted according to the desired operating conditions by placing a diaphragm 110 downstream of the cylinder 102, for example at the inlet of the pipe 104. When the pressure upstream of the valve 100 becomes greater than the pressure downstream, the valve opens, the ejector comes into action, driving water to low pressure coming from the pool 90 via its inlet 107. During the phase of transferring the supply of power from the source 41 from the cylinder to the ejector, the source is supplied by the cylinder and the ejector, as long as the piston 103, pushed by steam, is not in abutment on the downstream outlet of the cylinder. Once this phase is complete, the water supply to the source only comes from the outlet of the ejector at an intermediate pressure between steam pressure and pressure in the pool 90.

L'amorçage de l'injecteur s'effectue quand la chambre de mélange de l'injecteur B est alimentée d'une part en vapeur par l'entrée 40, et d'autre part en eau par la source 41, et que la sortie 42 est à basse pression. Cette basse pression est obtenue par le ballon d'amorçage 48. La dimension du cylindre 102 jouant le rôle de capacité d'amorçage devra être telle que le tuyau en amont de l'entrée 40 se remplisse en vapeur beaucoup plus rapidement que le cylindre 102. Cette condition devra être respectée afin de permettre l'amorçage de l'injecteur, puis la montée en pression, puis l'alimentation de la source par l'éjecteur et la boucle R' succédant à l'alimentation par le cylindre.The injector is primed when the mixing chamber of injector B is supplied on the one hand with steam via the inlet 40, and on the other hand with water from the source 41, and the outlet 42 is at low pressure. This low pressure is obtained by the priming balloon 48. The dimension of the cylinder 102 playing the role of priming capacity must be such that the pipe upstream of the inlet 40 fills with vapor much faster than the cylinder 102 This condition must be respected in order to allow priming of the injector, then the rise in pressure, then the supply of the source by the ejector and the loop R 'succeeding the supply by the cylinder.

L'arrêt du fonctionnement de l'injecteur s'effectue en fermant la vanne 60. Le clapet 43 se ferme. Tous les composants entre cette vanne et le clapet 43 se remplissent d'eau en raison de la détente du gaz comprimé dans le ballon 48 et d'une ressort 105 qui replace le piston dans la partie amont du cylindre 102. Toute l'installation se retrouve dans les conditions initiales, et est prête pour une nouvelle mise en action.The operation of the injector is stopped by closing the valve 60. The valve 43 closes. All components between this valve and the valve 43 fill with water due to the expansion of the compressed gas in the balloon 48 and a spring 105 which replaces the piston in the upstream part of the cylinder 102. The entire installation is found in the initial conditions, and is ready for further action.

Dans la figure 5, un diaphragme 110 permet d'ajuster le débit et la pression de sortie du cylindre 102. Sur la figure 6, on décrit une autre façon de régler ce débit. Pour raison de simplification, on ne représentera que le réservoir 102 et sa partie aval. Dans la partie aval du cylindre, un orifice 120 de faible section de passage est ouvert directement dans la piscine 90, non représentée sur la figure. Le tuyau de sortie 104 comporte un clapet 121 ne laissant passer l'eau que dans le sens de la flèche 122. Ce clapet se situe avant le raccordement 125 au tuyau reliant la sortie du clapet 100 et la source 41 de l'injecteur. Lors du démarrage de l'injecteur, c'est-à-dire de l'ouverture de la vanne 60, l'eau du réservoir 102 chassée par le piston 103 s'évacue à la fois par le tuyau 104 et l'orifice 120. L'eau passant par le tuyau 104 traverse le clapet 121 avant de rejoindre la source 21. Les dimensions de l'orifice 120 et du diaphragme 110 doivent être telles que le débit et la pression à la source 41 soient suffisants pour permettre l'amorçage. Pour répondre à cette contrainte, le diaphragme pourra éventuellement être supprimé. Le rôle du clapet 121 est d'empêcher une fuite sur le débit alimentant la source, lorsqu'elle est alimentée par l'éjecteur via le clapet 100. Lors de l'arrêt du fonctionnement de l'injecteur, le retour du piston 103 dans la partie amont du cylindre 102 s'effectue à l'aide du ressort 105. L'eau pénètre dans la partie aval de ce cylindre par l'orifice 120.In FIG. 5, a diaphragm 110 makes it possible to adjust the flow rate and the outlet pressure of the cylinder 102. In FIG. 6, another way of adjusting this flow rate is described. For reasons of simplification, only the reservoir 102 and its downstream part will be represented. In the downstream part of the cylinder, an orifice 120 of small passage section is opened directly in the pool 90, not shown in the figure. The outlet pipe 104 comprises a valve 121 allowing water to pass only in the direction of the arrow 122. This valve is located before the connection 125 to the pipe connecting the outlet of the valve 100 and the source 41 of the injector. When the injector starts, that is to say when the valve 60 opens, the water from the reservoir 102 expelled by the piston 103 is evacuated both by the pipe 104 and the orifice 120 The water passing through the pipe 104 crosses the valve 121 before joining the source 21. The dimensions of the orifice 120 and of the diaphragm 110 must be such that the flow and pressure at the source 41 are sufficient to allow the priming. To meet this constraint, the diaphragm could possibly be removed. The role of the valve 121 is to prevent a leak on the flow supplying the source, when it is supplied by the ejector via the valve 100. When the operation of the injector is stopped, the return of the piston 103 in the upstream part of the cylinder 102 is carried out using the spring 105. Water enters the downstream part of this cylinder through the orifice 120.

Claims (11)

Dispositif d'alimentation en eau sous pression de la source (41) d'un injecteur à vapeur (B), caractérisé en ce que le dispositif d'alimentation en eau comprend d'une part, pendant le régime de démarrage, au moins un circuit (D) d'alimentation en eau sous pression comportant un réservoir d'eau (63, 102) pressurisé par la vapeur, un tuyau de sortie (64, 104), et un dispositif anti-retour (65, 103), d'autre part, pendant le régime établi, un éjecteur (C) alimenté en eau à basse pression provenant d'un réservoir (73, 90) et en eau à haute pression provenant d'un circuit de soutirage (R, R') branché à la sortie (42) de l'injecteur (B).Device for supplying pressurized water to the source (41) of a steam injector (B), characterized in that the device for supplying water comprises on the one hand, during the starting regime, at least one pressurized water supply circuit (D) comprising a water tank (63, 102) pressurized by steam, an outlet pipe (64, 104), and a non-return device (65, 103), d 'other hand, during the established regime, an ejector (C) supplied with low pressure water from a tank (73, 90) and high pressure water from a withdrawal circuit (R, R') connected at the outlet (42) of the injector (B). Dispositif d'alimentation en eau sous pression selon la revendication 1, caractérisé en ce que le tuyau de sortie (64) du réservoir d'eau (63) est relié à l'éjecteur (C), et le circuit de soutirage (R) est équipé d'un clapet anti-retour (46).Pressurized water supply device according to claim 1, characterized in that the outlet pipe (64) of the water tank (63) is connected to the ejector (C), and the drawing-off circuit (R) is fitted with a non-return valve (46). Dispositif d'alimentation en eau sous pression selon la revendication 1 ou 2, caractérisé en ce que le réservoir en eau à basse pression (73, 90) est ouvert à l'atmosphère.Pressurized water supply device according to claim 1 or 2, characterized in that the low-pressure water tank (73, 90) is open to the atmosphere. Dispositif d'alimentation en eau sous pression selon la revendication 1, caractérisé en ce que le tuyau de sortie (104) du réservoir d'eau (102) est branché directement au tuyau (170) d'alimentation en eau de l'injecteur (B), et isolé de l'éjecteur (C) par un clapet anti-retour (100).Pressure water supply device according to claim 1, characterized in that the outlet pipe (104) of the water tank (102) is connected directly to the water supply pipe (170) of the injector ( B), and isolated from the ejector (C) by a non-return valve (100). Dispositif d'alimentation en eau sous pression selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le dispositif anti-retour (65) est un clapet.Pressure water supply device according to any one of claims 1 to 4, characterized in that the non-return device (65) is a valve. Dispositif d'alimentation en eau sous pression selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le dispositif anti-retour (103) est un piston coulissant dans le réservoir (102) de forme cylindrique.Pressurized water supply device according to any one of claims 1 to 4, characterized in that the non-return device (103) is a piston sliding in the tank (102) of cylindrical shape. Dispositif d'alimentation en eau sous pression selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le réservoir (102) comporte à sa sortie un diaphragme (110).Pressure water supply device according to any one of claims 1 to 6, characterized in that the reservoir (102) comprises at its outlet a diaphragm (110). Dispositif d'alimentation en eau sous pression selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le circuit de soutirage (R, R') est relié à un ballon (48) partiellement empli de gaz qui y reste emprisonné.Pressurized water supply device according to any one of claims 1 to 7, characterized in that the withdrawal circuit (R, R ') is connected to a balloon (48) partially filled with gas which remains trapped there. Dispositif d'alimentation en eau sous pression selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le circuit de soutirage (R, R') est muni d'un échangeur de chaleur (91, 92).Pressure water supply device according to any one of claims 1 to 8, characterized in that the withdrawal circuit (R, R ') is provided with a heat exchanger (91, 92). Dispositif d'alimentation en eau sous pression selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le réservoir d'eau (63, 102) pressurisé par la vapeur, l'injecteur (B), l'éjecteur (C) et le circuit de soutirage (R, R') sont immergés dans un réservoir à basse pression (90).Pressurized water supply device according to any one of claims 1 to 9, characterized in that the water tank (63, 102) pressurized by steam, the injector (B), the ejector (C ) and the drawing-off circuit (R, R ') are immersed in a low pressure tank (90). Dispositif d'alimentation en eau sous pression selon les revendications 9 et 10, caractérisé en ce que l'échangeur de chaleur (92) est immergé dans un réservoir (93) distinct du réservoir (90) à basse pression.Pressurized water supply device according to claims 9 and 10, characterized in that the heat exchanger (92) is immersed in a tank (93) separate from the low pressure tank (90).
EP19970400639 1996-03-25 1997-03-21 Device for feeding pressurised water to the water source of a steam injector Expired - Lifetime EP0798469B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9603680 1996-03-25
FR9603680A FR2746484B1 (en) 1996-03-25 1996-03-25 PRESSURE WATER SUPPLY DEVICE FOR THE WATER SOURCE OF A STEAM INJECTOR

Publications (2)

Publication Number Publication Date
EP0798469A1 true EP0798469A1 (en) 1997-10-01
EP0798469B1 EP0798469B1 (en) 2003-05-21

Family

ID=9490506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970400639 Expired - Lifetime EP0798469B1 (en) 1996-03-25 1997-03-21 Device for feeding pressurised water to the water source of a steam injector

Country Status (4)

Country Link
US (1) US5896435A (en)
EP (1) EP0798469B1 (en)
DE (1) DE69722067T2 (en)
FR (1) FR2746484B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827997A1 (en) * 2001-07-24 2003-01-31 Framatome Anp METHOD AND DEVICE FOR SUPPLYING AT LEAST ONE STEAM GENERATOR OF A PRESSURIZED WATER NUCLEAR REACTOR DURING REACTOR SHUTDOWN PERIODS

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120008A (en) * 1998-04-28 2000-09-19 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
FR2801648B1 (en) * 1999-11-30 2002-06-21 Commissariat Energie Atomique HIGH PRESSURE STEAM INJECTOR HAVING AN AXIAL DRAIN
US8101067B2 (en) * 2004-10-13 2012-01-24 Marathon Oil Canada Corporation Methods for obtaining bitumen from bituminous materials
US8257580B2 (en) 2004-10-13 2012-09-04 Marathon Oil Canada Corporation Dry, stackable tailings and methods for producing the same
US7927565B2 (en) * 2005-01-03 2011-04-19 Marathon Oil Canada Corporation Nozzle reactor and method of use
RU2371246C2 (en) * 2005-01-03 2009-10-27 Вестерн Ойл Сэндс, Инк. Jet reactor and method of its usage
US8449763B2 (en) * 2009-04-15 2013-05-28 Marathon Canadian Oil Sands Holding Limited Nozzle reactor and method of use
US20100263605A1 (en) * 2009-04-17 2010-10-21 Ajit Singh Sengar Method and system for operating a steam generation facility
US20110017642A1 (en) * 2009-07-24 2011-01-27 Duyvesteyn Willem P C System and method for converting material comprising bitumen into light hydrocarbon liquid product
US8663462B2 (en) * 2009-09-16 2014-03-04 Shell Canada Energy Cheveron Canada Limited Methods for obtaining bitumen from bituminous materials
US20110084000A1 (en) * 2009-10-14 2011-04-14 Marathon Oil Canada Corporation Systems and methods for processing nozzle reactor pitch
US8864982B2 (en) * 2009-12-28 2014-10-21 Shell Canada Energy Cheveron Canada Limited Methods for obtaining bitumen from bituminous materials
US8877044B2 (en) * 2010-01-22 2014-11-04 Shell Canada Energy Cheveron Canada Limited Methods for extracting bitumen from bituminous material
US8435402B2 (en) * 2010-03-29 2013-05-07 Marathon Canadian Oil Sands Holding Limited Nozzle reactor and method of use
US8586515B2 (en) 2010-10-25 2013-11-19 Marathon Oil Canada Corporation Method for making biofuels and biolubricants
US8968556B2 (en) 2010-12-09 2015-03-03 Shell Canada Energy Cheveron Canada Limited Process for extracting bitumen and drying the tailings
US8920636B2 (en) 2011-06-28 2014-12-30 Shell Canada Energy and Chervon Canada Limited Methods of transporting various bitumen extraction products and compositions thereof
US8939382B1 (en) 2011-07-13 2015-01-27 Sioux Corporation Steam-heated fluid pressure washer system
CA2783773A1 (en) 2011-07-26 2013-01-26 Marathon Oil Canada Corporation Methods for obtaining bitumen from bituminous materials
US8636958B2 (en) 2011-09-07 2014-01-28 Marathon Oil Canada Corporation Nozzle reactor and method of use
EP3229948A4 (en) * 2014-12-10 2018-08-08 Robert Kremer Multiphase device and system for heating, condensing, mixing, deaerating and pumping
WO2017047387A1 (en) * 2015-09-17 2017-03-23 株式会社テイエルブイ Ejector and vacuum generation device with same
JP6088719B1 (en) * 2015-09-17 2017-03-01 株式会社テイエルブイ Ejector and vacuum generator equipped with the same
CN108766599A (en) * 2018-04-17 2018-11-06 哈尔滨工程大学 A kind of nuclear power station passive residual heat removal system using spraying technique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3005643A1 (en) * 1980-02-15 1981-08-20 Brown, Boveri & Cie Ag, 6800 Mannheim Two=stage emergency feed water system for nuclear power plant - has one or two steam-driven injectors with reflux to feed water vessel
US4687626A (en) * 1985-01-18 1987-08-18 Tong Long S Passive safety device for emergency steam dump and heat removal for steam generators in nuclear power reactors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2658361C2 (en) * 1976-12-23 1984-08-09 Wiegard, geb. Kolling, Brigitte, 5466 Neustadt Safety shut-off valve arrangement for separating liquids
US4440719A (en) * 1981-10-13 1984-04-03 General Electric Company Steam driven water injection
DE3420400A1 (en) * 1984-06-01 1985-12-05 Mannesmann Rexroth GmbH, 8770 Lohr TWO-WAY SEAT VALVE
US5398267A (en) * 1993-10-12 1995-03-14 Reinsch; Arnold O. W. Passive decay heat removal and internal depressurization system for nuclear reactors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3005643A1 (en) * 1980-02-15 1981-08-20 Brown, Boveri & Cie Ag, 6800 Mannheim Two=stage emergency feed water system for nuclear power plant - has one or two steam-driven injectors with reflux to feed water vessel
US4687626A (en) * 1985-01-18 1987-08-18 Tong Long S Passive safety device for emergency steam dump and heat removal for steam generators in nuclear power reactors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827997A1 (en) * 2001-07-24 2003-01-31 Framatome Anp METHOD AND DEVICE FOR SUPPLYING AT LEAST ONE STEAM GENERATOR OF A PRESSURIZED WATER NUCLEAR REACTOR DURING REACTOR SHUTDOWN PERIODS
WO2003010776A1 (en) * 2001-07-24 2003-02-06 Framatome Anp Method and device for supplying pressurised water to a steam generator of a nuclear reactor during shut-down periods of the reactor
US6912263B2 (en) 2001-07-24 2005-06-28 Framatome Anp Method and device for feeding at least one steam generator of a pressurized-water nuclear reactor during periods of reactor shutdown
KR100938768B1 (en) * 2001-07-24 2010-01-27 아레바 엔피 Method and device for supplying pressurized water to a steam generator of a nuclear reactor during shut-down periods of the reactor

Also Published As

Publication number Publication date
DE69722067D1 (en) 2003-06-26
EP0798469B1 (en) 2003-05-21
US5896435A (en) 1999-04-20
FR2746484A1 (en) 1997-09-26
FR2746484B1 (en) 1998-04-24
DE69722067T2 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
EP0798469B1 (en) Device for feeding pressurised water to the water source of a steam injector
FR2801648A1 (en) Nuclear PWR high-pressure steam injector has axial drain tube in mixing chamber outlet neck to reduce neck section and remove some steam
BE1016803A3 (en) DEVICE FOR SUPPLYING FUEL TO AN ENERGY PRODUCTION PLANT IN A SHIP.
BE1005793A3 (en) INDUCED CIRCULATION HEAT RECOVERY BOILER.
EP2618675B1 (en) Thermal fogging device using a liquid, and related method
CA2455337C (en) Method and device for supplying pressurised water to a steam generator of a nuclear reactor during shut-down periods of the reactor
EP2756252B1 (en) Heat transfer device using capillary pumping
EP2715093A2 (en) Device for storing and delivering fluids and method for storing and delivering a compressed gas contained in such a device
WO1994021957A1 (en) Air regulation system for hydropneumatic reservoir
EP1947385B1 (en) Fuel injection device in a turbomachine
BE898425A (en) Vortex device for separating and eliminating a gas from a liquid, and installation comprising the application.
BE1019090A3 (en) DEVICE FOR SUPPLYING FUEL TO AN ENERGY PRODUCTION PLANT IN A SHIP.
FR2580191A1 (en) Method for drying a moist container filled with gas under reduced pressure
FR2507373A1 (en) COOLING DEVICE FOR THE CONFINEMENT ENCLOSURE OF A NUCLEAR REACTOR
WO2015107282A1 (en) Thermal protection system for a cryogenic vessel of a space vehicle
FR3034133A1 (en) DEVICE FOR GENERATING ELECTRICAL ENERGY
EP0779626B1 (en) Pressurizer spray system for a pressurized water nuclear reactor
WO2008015349A2 (en) Method and device for feeding gas to an appartus
FR2699602A1 (en) Diversion system for liquid feed in propulsion units
WO2021152037A1 (en) Device for decompressing a gas network section
FR2819857A1 (en) Method for recovering water from conduit and producing energy, comprises transversely mobile element which removes water from syphon conduit to act as upper reservoir for a water turbine
FR2936016A1 (en) DEVICE AND METHOD FOR SCANNING LIQUID FUEL FOR A MULTI-COMBUSTIBLE GAS TURBINE
EP0852684A1 (en) Hydropneumatic anti-hammer tank with an air intake and control device, and air intake method
CH150389A (en) Hydraulic coupling device.
FR2706580A1 (en) Vapourising unit for LPG tank and LPG tank equipped with such a unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE IT

17P Request for examination filed

Effective date: 19980312

17Q First examination report despatched

Effective date: 20011217

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE IT

REF Corresponds to:

Ref document number: 69722067

Country of ref document: DE

Date of ref document: 20030626

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150325

Year of fee payment: 19

Ref country code: DE

Payment date: 20150311

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150330

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69722067

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160321