WO2017047387A1 - Ejector and vacuum generation device with same - Google Patents

Ejector and vacuum generation device with same Download PDF

Info

Publication number
WO2017047387A1
WO2017047387A1 PCT/JP2016/075519 JP2016075519W WO2017047387A1 WO 2017047387 A1 WO2017047387 A1 WO 2017047387A1 JP 2016075519 W JP2016075519 W JP 2016075519W WO 2017047387 A1 WO2017047387 A1 WO 2017047387A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
ejector
diffuser
nozzle
orifice plate
Prior art date
Application number
PCT/JP2016/075519
Other languages
French (fr)
Japanese (ja)
Inventor
黒田淳司
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to JP2016570360A priority Critical patent/JP6088719B1/en
Priority to EP16846258.8A priority patent/EP3351805A4/en
Publication of WO2017047387A1 publication Critical patent/WO2017047387A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/04Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42

Definitions

  • the technique disclosed herein relates to an ejector and a vacuum generation apparatus including the ejector.
  • an ejector and a vacuum generator equipped with the ejector are known.
  • the vacuum generator disclosed in Patent Document 1 circulates a fluid stored in a tank as a first fluid through a pump and an ejector, thereby generating a suction force in the ejector and sucking a second fluid. ing.
  • the nozzle and the diffuser are designed so that the second fluid can be sucked as desired.
  • an ejector having a nozzle and a diffuser designed as such is difficult to suck the second fluid as desired unless it functions properly as an ejector.
  • the fluid passing through the diffuser may not be sufficiently boosted, in which case the ejector will not function properly.
  • the ejector disclosed herein includes a nozzle that ejects the first fluid, a suction chamber that sucks the second fluid due to a pressure drop caused by the ejection of the first fluid from the nozzle, and the first ejected from the nozzle.
  • a diffuser that discharges the first fluid and the second fluid sucked into the suction chamber while increasing the pressure, and a fluid resistance portion provided downstream of the diffuser.
  • the vacuum generator disclosed herein is connected to the ejector, the tank for storing the first fluid and the second fluid that have passed through the diffuser, and the tank, and the fluid in the tank is A pump that pumps the fluid as one fluid to the ejector, and recirculates the fluid in the tank through the pump and the ejector, thereby sucking the second fluid through the ejector.
  • the ejector by providing the fluid resistance portion downstream of the diffuser, the fluid passing through the diffuser can be sufficiently boosted. As a result, the ejector can function properly.
  • the fluid passing through the diffuser can be sufficiently boosted by providing the fluid resistance portion downstream of the diffuser.
  • the ejector can function properly, and as a result, the second fluid can be sucked appropriately.
  • FIG. 1 is a piping system diagram illustrating a schematic configuration of a vacuum steam heating system according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of the vacuum generator.
  • FIG. 3 is a graph showing the relationship between the vacuum failure phenomenon, the opening ratio of the orifice plate, and the circulating water temperature.
  • FIG. 4 is a graph showing the relationship between the degree of vacuum and the amount of suction in the ejector.
  • FIG. 1 is a piping system diagram showing a schematic configuration of a vacuum steam heating system 1 according to an embodiment.
  • a vacuum steam heating system (hereinafter referred to as “heating system”) 1 includes a reaction kettle 20 that heats an object with steam, a steam supply rod 11 that feeds steam from a steam generation unit (not shown) to the reaction kettle 20, A discharge pipe 13 for discharging the drain generated in the reaction kettle 20 and a vacuum generator 30 for sucking the drain through the discharge pipe 13 are provided.
  • the heating system 1 includes a fluid circuit 10, and the fluid circuit 10 includes a steam supply tank 11, a reaction kettle 20, a discharge pipe 13, and a vacuum generator 30. The heating system 1 heats the object accommodated in the reaction kettle 20 with saturated steam below atmospheric pressure.
  • the reaction kettle 20 includes a kettle main body 21 in which an object is accommodated and a jacket portion 22 formed over substantially the entire circumference of the kettle main body 21.
  • a steam supply rod 11 is connected to the jacket portion 22.
  • the steam supply rod 11 is provided with a supply valve 14 that is an on-off valve.
  • the steam generated by the steam generation unit is supplied to the jacket unit 22 through the steam supply pipe 11.
  • the steam supplied to the jacket portion 22 indirectly heat exchanges with the object inside the kettle body 21 to condense (liquefy), and the object is heated. That is, the target object is heated by being given the latent heat of condensation of steam.
  • the discharge pipe 13 has one end (inflow end) connected to the lower end of the jacket portion 22 and the other end (outflow end) connected to the vacuum generator 30.
  • the discharge pipe 13 discharges drain (condensate) generated by condensing steam in the jacket portion 22.
  • the discharge pipe 13 is provided with a steam trap 15 that automatically discharges only the drained water.
  • the vacuum generator 30 includes a drain tank 31 that stores drain, a pump 32 that pumps the drain in the drain tank 31, and an ejector 40 that sucks drain from the reaction kettle 20 through the discharge pipe 13. .
  • the drain tank 31, the pump 32, and the ejector 40 are connected by a pipe 34, and a circulation channel including the drain tank 31, the pump 32, and the ejector 40 is formed.
  • the vacuum generator 30 circulates the drain stored in the drain tank 31 via the pump 32 and the ejector 40, thereby generating a suction force in the ejector 40 and sucking the drain from the reaction kettle 20.
  • FIG. 2 shows a schematic configuration diagram of the vacuum generator 30.
  • the pipe 34 includes a first pipe 34 a that connects the drain tank 31 and the pump 32, a second pipe 34 b that connects the pump 32 and the ejector 40, and a third pipe 34 c that connects the ejector 40 and the drain tank 31. have.
  • the drain tank 31 is an example of a tank.
  • the pump 32 is driven by a motor 35.
  • the ejector 40 includes a nozzle 41 that ejects the first fluid, a suction chamber 42 that sucks the second fluid by the negative pressure generated by the ejection of the first fluid from the nozzle 41, and the first fluid ejected from the nozzle 41 and the suction A diffuser 43 that discharges the second fluid sucked into the chamber 42 while increasing the pressure, and two orifice plates 44 provided downstream of the diffuser 43 are provided.
  • the nozzle 41 is connected to the downstream end of the second pipe 34b. At least the ejection port 41 a of the nozzle 41 is accommodated in the suction chamber 42.
  • the suction chamber 42 also accommodates at least the upstream end of the diffuser 43.
  • the suction chamber 42 is connected to the outflow end of the discharge pipe 13.
  • the second fluid is sucked from the discharge pipe 13 by the negative pressure (pressure drop) generated when the first fluid is ejected from the nozzle 41. That is, in the suction chamber 42, a suction force for sucking the second fluid is generated by the negative pressure generated by the jet pump effect of the first fluid.
  • the diffuser 43 has a linear flow path.
  • the flow passage cross-sectional area of the diffuser 43 increases from the upstream toward the downstream. Therefore, the fluid passing through the diffuser 43 decelerates and pressurizes as it flows through the diffuser 43 from upstream to downstream.
  • a third pipe 34 c is connected to the downstream end of the diffuser 43.
  • the orifice plate 44 is a disk-shaped member having a circular opening 44a at the center.
  • the orifice plate 44 is an example of a fluid resistance portion.
  • the orifice plate 44 is disposed in the third pipe 34c.
  • the upstream orifice plate 44 is disposed at the upstream end of the third pipe 34c, that is, at the connection portion between the diffuser 43 and the third pipe 34c.
  • the downstream orifice plate 44 is disposed at the downstream end of the third pipe 34 c, that is, at the connection portion between the third pipe 34 c and the drain tank 31.
  • the diffuser 43 and the third pipe 34c are connected to each other via a flange portion, and the upstream orifice plate 44 is sandwiched between the flange portion of the diffuser 43 and the flange portion of the third pipe 34c.
  • the third pipe 34 c and the drain tank 31 are connected to each other via a flange portion, and the downstream orifice plate 44 is sandwiched between the flange portion of the third pipe 34 c and the flange portion of the drain tank 31.
  • the area of the opening 44a of the upstream orifice plate 44 is smaller than the flow path cross-sectional area of the downstream portion of the orifice plate 44 in the third pipe 34c.
  • the area of the opening 44a of the downstream orifice plate 44 is smaller than the flow path cross-sectional area of the upstream portion of the orifice plate 44 in the third pipe 34c. That is, the upstream and downstream orifice plates 44 have a function of reducing the flow passage cross-sectional area of the flow passage on the downstream side of the diffuser 43.
  • the area of the opening 44 a of the upstream orifice plate 44 is the same as the area of the opening 44 a of the downstream orifice plate 44.
  • the flow passage cross-sectional area of the third pipe 34c is uniform from upstream to downstream, so the ratio of the area of the opening 44a to the flow passage cross-sectional area of the third pipe 34c in the upstream orifice plate 44 (opening The area of 44a / the cross-sectional area of the third pipe 34c, hereinafter referred to as "opening ratio") is equal to the opening ratio of the downstream orifice plate 44.
  • the drain in the drain tank 31 is pressurized by the pump 32 and supplied to the nozzle 41 of the ejector 40 as the first fluid.
  • a negative pressure is generated around the nozzle 41, and the drain of the reaction vessel 20 is sucked into the suction chamber 42 as the second fluid through the discharge pipe 13.
  • the drain sprayed from the nozzle 41 and the drain sucked from the discharge pipe 13 are mixed in the suction chamber 42 and discharged through the diffuser 43.
  • the drain decelerates and pressurizes as it flows through the diffuser 43 to the downstream side.
  • the drain flows into the drain tank 41.
  • the drain in the reaction kettle 20 is collected in the drain tank 31.
  • the ejector 40 can be appropriately functioned, and the drain can be appropriately sucked from the reaction kettle 20.
  • the orifice plate 44 on the downstream side of the diffuser 43, the fluid resistance in the flow path on the downstream side of the diffuser 43 can be increased, and the pressure in the flow path on the downstream side of the diffuser 43 can be increased. . Thereby, the pressure of the fluid passing through the diffuser 43 can be sufficiently increased. If the pressure on the downstream side of the diffuser 43 is small, the fluid passing through the diffuser 43 is not sufficiently boosted.
  • the nozzle 41 and the diffuser 43 are designed on the premise of a pressure difference between the inlet of the nozzle 41 and the outlet of the diffuser 43. Therefore, if the pressure difference becomes too small, the negative pressure in the suction chamber 42 is appropriately set. Can not be generated.
  • the ejector 40 can function appropriately.
  • whether or not the fluid can be sufficiently increased by the diffuser 43 is determined not only by the pressure on the downstream side of the diffuser 43 but also the water temperature of the drain circulating in the vacuum generator 30 (hereinafter referred to as “circulation water temperature”). Also depends on. As the circulating water temperature increases, the viscosity of the drain decreases, so that the pressure increase (pressure recovery) when the drain passes through the diffuser 43 is reduced. That is, the higher the circulating water temperature, the more appropriately the negative pressure in the suction chamber 42 cannot be generated.
  • FIG. 3 shows the relationship between a phenomenon in which a negative pressure cannot be appropriately generated in the suction chamber 42 (hereinafter referred to as “vacuum non-occurrence phenomenon”), the opening ratio of the orifice plate 44 and the circulating water temperature.
  • a solid line in FIG. 3 indicates a boundary line where a vacuum failure phenomenon occurs when only one orifice plate 44 is provided.
  • a vacuum non-occurrence phenomenon occurs in a region above the boundary line (that is, the side where the circulating water temperature is high) (the hatched region in the figure in the case of the solid line).
  • a broken line in FIG. 3 indicates a boundary line where a vacuum failure phenomenon occurs when two orifice plates 44 are provided.
  • the boundary water temperature (hereinafter referred to as “boundary water temperature”) that becomes a boundary where the vacuum non-occurrence phenomenon does not occur is T1.
  • the boundary water temperature can be increased as the opening 44a of the orifice plate 44 is reduced. That is, it is possible to increase the circulating water temperature that does not cause a vacuum failure phenomenon.
  • the boundary water temperature can be further increased by changing the number of orifice plates 44 from one to two (see the broken line). This is because as the orifice plate 44 increases, the pressure in the flow path on the downstream side of the diffuser 43 increases.
  • the opening ratio of the orifice plate 44 is reduced to increase the fluid resistance too much, the flow rate of the drain flowing through the third pipe 34c, that is, the flow rate of the drain passing through the diffuser 43 is reduced. As a result, the flow rate of drain sucked from the reaction kettle 20 through the discharge pipe 13 is also reduced.
  • FIG. 4 is a graph showing the relationship between the degree of vacuum and the amount of suction in the ejector.
  • the solid line indicates a case where only one orifice plate 44 having an aperture ratio of 60% is provided, and the broken line indicates a case where two orifice plates 44 having an aperture ratio of 75% are provided.
  • the degree of vacuum is high (for example, when the degree of vacuum is 100 kPaG), that is, when the ejector 40 is functioning properly, the configuration in which two orifice plates 44 having an opening ratio of 75% are provided is an orifice having an opening ratio of 60%.
  • the amount of suction is larger than the configuration in which only one plate 44 is provided.
  • the configuration in which only one orifice plate 44 with an opening ratio of 60% is provided can sufficiently increase the boundary water temperature (see FIG. 3), but the opening ratio is too small and the suction amount is reduced.
  • the configuration in which two orifice plates 44 having an aperture ratio of 75% are provided can not only sufficiently increase the boundary water temperature (see FIG. 3), but also ensure a suction amount. That is, by increasing the number of orifice plates 44, the boundary water temperature can be increased while increasing the aperture ratio and securing the suction amount.
  • the ejector 40 is ejected from the nozzle 41 that ejects the first fluid, the suction chamber 42 that sucks the second fluid due to the pressure drop caused by the ejection of the first fluid from the nozzle 41, and the nozzle 41.
  • a diffuser 43 that discharges the first fluid and the second fluid sucked into the suction chamber 42 while increasing the pressure, and an orifice plate 44 provided downstream of the diffuser 43 are provided.
  • the orifice plate 44 downstream of the diffuser 43 by providing the orifice plate 44 downstream of the diffuser 43, the pressure in the flow path on the downstream side of the diffuser 43 can be increased. Thereby, the fluid passing through the diffuser 43 can be sufficiently boosted, and as a result, the ejector 40 can function properly.
  • the pipe 34 (particularly, the third pipe 34c) may be short.
  • the pressure on the downstream side of the diffuser 43 tends to be small, and the pressure of the fluid passing through the diffuser 43 may be insufficient.
  • the fluid passing through the diffuser 43 can be sufficiently pressurized by providing the orifice plate 44. That is, the configuration in which the orifice plate 44 is provided is particularly effective for the small ejector 40 and the vacuum generator 30.
  • the orifice plate 44 restricts the cross-sectional area of the flow path from the outside, it is possible to give an appropriate pressure loss to the fluid without excessively impeding the flow of the fluid flowing while spreading outward.
  • the pressure in the flow path downstream of the diffuser 43 can be increased without making the flow rate of the fluid passing through the diffuser 43 too small.
  • the area of the opening 44a of the orifice plate 44 is smaller than the cross-sectional area of the flow path before and after the resistance portion of the orifice plate 44.
  • the orifice plate 44 increases the fluid resistance by restricting the flow path.
  • the vacuum generator 30 is connected to the ejector 40, the drain tank 31 that stores the first fluid and the second fluid that have passed through the diffuser 43, and the drain tank 31, and the fluid in the drain tank 31 is used as the first fluid. And a pump 32 that pumps the ejector 40.
  • the fluid in the drain tank 31 is recirculated through the pump 32 and the ejector 40 to suck the second fluid through the ejector 40.
  • the second fluid can be appropriately sucked through the ejector 40.
  • the ejector 40 and the vacuum generator 30 can be applied not only to the vacuum steam heating system 1 but also to other systems.
  • the ejector 40 and the vacuum generator 30 may be applied to a system that performs not only steam heating but also cooling.
  • the steam used in the system is not limited to steam below atmospheric pressure.
  • the ejector 40 circulates water, it is not limited to a liquid ejector. That is, the ejector 40 may circulate gas.
  • the orifice plate is adopted as the fluid resistance portion.
  • the fluid resistance portion may adopt any configuration as long as the fluid resistance is increased more than the front and rear portions.
  • the fluid resistance portion may be a throttle portion that gradually narrows the cross-sectional area of the flow path, a valve that can reduce the cross-sectional area of the flow path, a bellows tube, or the like.
  • two orifice plates 44 are provided as fluid resistance parts, but the number of fluid resistance parts may be one or three or more.
  • the technique disclosed herein is useful for an ejector and a vacuum generator provided with the ejector.
  • Vacuum Steam Heating System 30 Vacuum Generator 31 Drain Tank (Tank) 32 Pump 40 Ejector 41 Nozzle 42 Suction chamber 43 Diffuser 44 Orifice (fluid resistance part)

Abstract

An ejector (40) is provided with: a nozzle (41) for ejecting a first fluid; a suction chamber (42) for sucking in a second fluid by means of a reduction in pressure caused by the ejection of the first fluid from the nozzle (41); a diffuser (43) which, while increasing the pressure of the first fluid, which has been ejected from the nozzle (41), and the pressure of the second fluid, which has been sucked-in into the suction chamber (42), discharges the first and second fluids; and an orifice plate (44) provided downstream of the diffuser (43).

Description

エゼクタ及びそれを備えた真空発生装置Ejector and vacuum generator equipped with the same
 ここに開示された技術は、エゼクタ及びそれを備えた真空発生装置に関するものである。 The technique disclosed herein relates to an ejector and a vacuum generation apparatus including the ejector.
 従来より、エゼクタ及びそれを備えた真空発生装置が知られている。例えば、特許文献1に開示された真空発生装置は、タンクに貯留された流体を第1流体としてポンプ及びエゼクタを介して循環させることによって、エゼクタに吸引力を発生させ、第2流体を吸引している。 Conventionally, an ejector and a vacuum generator equipped with the ejector are known. For example, the vacuum generator disclosed in Patent Document 1 circulates a fluid stored in a tank as a first fluid through a pump and an ejector, thereby generating a suction force in the ejector and sucking a second fluid. ing.
特開2014-156814号公報JP 2014-156814 A
 このようなエゼクタにおいては、第2流体を所望の通りに吸引できるようにノズル及びディフューザが設計されている。 In such an ejector, the nozzle and the diffuser are designed so that the second fluid can be sucked as desired.
 しかしながら、そのように設計されたノズル及びディフューザを備えたエゼクタであっても、エゼクタとして適切に機能しなければ、第2流体を所望の通りに吸引することは難しい。例えば、ディフューザを通過する流体が十分に昇圧しない場合があり、そのような場合には、エゼクタが適切に機能しない。 However, even an ejector having a nozzle and a diffuser designed as such is difficult to suck the second fluid as desired unless it functions properly as an ejector. For example, the fluid passing through the diffuser may not be sufficiently boosted, in which case the ejector will not function properly.
 ここに開示された技術は、かかる点に鑑みてなされたもので、その目的は、エゼクタを適切に機能させることにある。 The technology disclosed herein has been made in view of such points, and the purpose thereof is to make the ejector function properly.
 ここに開示されたエゼクタは、第1流体を噴出するノズルと、上記ノズルからの上記第1流体の噴出により生じる圧力低下によって第2流体を吸引する吸引室と、上記ノズルから噴出された上記第1流体と上記吸引室に吸引された上記第2流体とを昇圧させながら排出するディフューザと、上記ディフューザの下流に設けられた流体抵抗部とを備えている。 The ejector disclosed herein includes a nozzle that ejects the first fluid, a suction chamber that sucks the second fluid due to a pressure drop caused by the ejection of the first fluid from the nozzle, and the first ejected from the nozzle. A diffuser that discharges the first fluid and the second fluid sucked into the suction chamber while increasing the pressure, and a fluid resistance portion provided downstream of the diffuser.
 また、ここに開示された真空発生装置は、上記エゼクタと、上記ディフューザを通過した上記第1流体及び上記第2流体を貯留するタンクと、上記タンクに接続され、該タンク内の流体を上記第1流体として上記エゼクタに圧送するポンプとを備え、上記タンク内の流体を上記ポンプ及び上記エゼクタを介して還流させることによって、上記エゼクタを介して上記第2流体を吸引する。 Further, the vacuum generator disclosed herein is connected to the ejector, the tank for storing the first fluid and the second fluid that have passed through the diffuser, and the tank, and the fluid in the tank is A pump that pumps the fluid as one fluid to the ejector, and recirculates the fluid in the tank through the pump and the ejector, thereby sucking the second fluid through the ejector.
 上記エゼクタによれば、上記ディフューザの下流に上記流体抵抗部を設けることによって、ディフューザを通過する流体を十分に昇圧させることができる。その結果、エゼクタを適切に機能させることができる。 According to the ejector, by providing the fluid resistance portion downstream of the diffuser, the fluid passing through the diffuser can be sufficiently boosted. As a result, the ejector can function properly.
 上記真空発生装置によれば、上記ディフューザの下流に上記流体抵抗部を設けることによって、ディフューザを通過する流体を十分に昇圧させることができる。その結果、エゼクタを適切に機能させることができ、ひいては、第2流体を適切に吸引することができる。 According to the vacuum generating device, the fluid passing through the diffuser can be sufficiently boosted by providing the fluid resistance portion downstream of the diffuser. As a result, the ejector can function properly, and as a result, the second fluid can be sucked appropriately.
図1は、実施形態に係る真空蒸気加熱システムの概略構成を示す配管系統図である。FIG. 1 is a piping system diagram illustrating a schematic configuration of a vacuum steam heating system according to an embodiment. 図2は、真空発生装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the vacuum generator. 図3は、真空不発現象とオリフィス板の開口率及び循環水温との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the vacuum failure phenomenon, the opening ratio of the orifice plate, and the circulating water temperature. 図4は、エゼクタにおける真空度と吸引量との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the degree of vacuum and the amount of suction in the ejector.
 以下、例示的な実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, exemplary embodiments will be described with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 図1は、実施形態に係る真空蒸気加熱システム1の概略構成を示す配管系統図である。 FIG. 1 is a piping system diagram showing a schematic configuration of a vacuum steam heating system 1 according to an embodiment.
 真空蒸気加熱システム(以下、「加熱システム」という)1は、対象物を蒸気で加熱する反応釜20と、蒸気生成部(図示省略)から蒸気を反応釜20に供給する蒸気供給菅11と、反応釜20で発生したドレンを排出する排出管13と、排出管13を介してドレンを吸引する真空発生装置30とを備えている。加熱システム1は、流体回路10を備えており、流体回路10には、蒸気供給菅11と、反応釜20と、排出管13と、真空発生装置30とが含まれている。加熱システム1は、反応釜20に収容された対象物を大気圧以下の飽和蒸気によって加熱する。 A vacuum steam heating system (hereinafter referred to as “heating system”) 1 includes a reaction kettle 20 that heats an object with steam, a steam supply rod 11 that feeds steam from a steam generation unit (not shown) to the reaction kettle 20, A discharge pipe 13 for discharging the drain generated in the reaction kettle 20 and a vacuum generator 30 for sucking the drain through the discharge pipe 13 are provided. The heating system 1 includes a fluid circuit 10, and the fluid circuit 10 includes a steam supply tank 11, a reaction kettle 20, a discharge pipe 13, and a vacuum generator 30. The heating system 1 heats the object accommodated in the reaction kettle 20 with saturated steam below atmospheric pressure.
 反応釜20は、対象物が収容される釜本体21と、釜本体21の略全周に亘って形成されたジャケット部22とを有している。ジャケット部22には、蒸気供給菅11が接続されている。蒸気供給菅11には、開閉弁である供給弁14が設けられている。蒸気生成部で生成された蒸気が、蒸気供給管11を介してジャケット部22に供給される。反応釜20では、ジャケット部22に供給された蒸気が釜本体21の内部の対象物と間接的に熱交換して凝縮(液化)し、対象物が加熱される。つまり、対象物は、蒸気の凝縮潜熱が与えられることで加熱される。 The reaction kettle 20 includes a kettle main body 21 in which an object is accommodated and a jacket portion 22 formed over substantially the entire circumference of the kettle main body 21. A steam supply rod 11 is connected to the jacket portion 22. The steam supply rod 11 is provided with a supply valve 14 that is an on-off valve. The steam generated by the steam generation unit is supplied to the jacket unit 22 through the steam supply pipe 11. In the reaction kettle 20, the steam supplied to the jacket portion 22 indirectly heat exchanges with the object inside the kettle body 21 to condense (liquefy), and the object is heated. That is, the target object is heated by being given the latent heat of condensation of steam.
 排出管13は、一端(流入端)がジャケット部22の下端部に接続され、他端(流出端)が真空発生装置30に接続されている。排出管13は、ジャケット部22で蒸気が凝縮して発生したドレン(復水)を排出する。排出管13には、流入したドレンのみを自動的に排出するスチームトラップ15が設けられている。 The discharge pipe 13 has one end (inflow end) connected to the lower end of the jacket portion 22 and the other end (outflow end) connected to the vacuum generator 30. The discharge pipe 13 discharges drain (condensate) generated by condensing steam in the jacket portion 22. The discharge pipe 13 is provided with a steam trap 15 that automatically discharges only the drained water.
 真空発生装置30は、ドレンを貯留するドレンタンク31と、ドレンタンク31内のドレンを圧送するポンプ32と、排出管13を介して反応釜20からドレンを吸引するエゼクタ40とを有している。ドレンタンク31、ポンプ32及びエゼクタ40は、配管34で接続されており、ドレンタンク31、ポンプ32及びエゼクタ40を含む循環流路が形成されている。真空発生装置30は、ドレンタンク31に貯留されたドレンをポンプ32及びエゼクタ40を介して循環させることによって、エゼクタ40に吸引力を発生させ、反応釜20からドレンを吸引する。 The vacuum generator 30 includes a drain tank 31 that stores drain, a pump 32 that pumps the drain in the drain tank 31, and an ejector 40 that sucks drain from the reaction kettle 20 through the discharge pipe 13. . The drain tank 31, the pump 32, and the ejector 40 are connected by a pipe 34, and a circulation channel including the drain tank 31, the pump 32, and the ejector 40 is formed. The vacuum generator 30 circulates the drain stored in the drain tank 31 via the pump 32 and the ejector 40, thereby generating a suction force in the ejector 40 and sucking the drain from the reaction kettle 20.
 図2に、真空発生装置30の概略構成図を示す。配管34は、ドレンタンク31とポンプ32とを接続する第1配管34aと、ポンプ32とエゼクタ40とを接続する第2配管34bと、エゼクタ40とドレンタンク31とを接続する第3配管34cとを有している。ドレンタンク31は、タンクの一例である。ポンプ32は、モータ35により駆動される。 FIG. 2 shows a schematic configuration diagram of the vacuum generator 30. The pipe 34 includes a first pipe 34 a that connects the drain tank 31 and the pump 32, a second pipe 34 b that connects the pump 32 and the ejector 40, and a third pipe 34 c that connects the ejector 40 and the drain tank 31. have. The drain tank 31 is an example of a tank. The pump 32 is driven by a motor 35.
 エゼクタ40は、第1流体を噴出するノズル41と、ノズル41からの第1流体の噴出により生じる負圧によって第2流体を吸引する吸引室42と、ノズル41から噴出された第1流体と吸引室42に吸引された第2流体とを昇圧させながら排出するディフューザ43と、ディフューザ43の下流に設けられた2枚のオリフィス板44とを備えている。 The ejector 40 includes a nozzle 41 that ejects the first fluid, a suction chamber 42 that sucks the second fluid by the negative pressure generated by the ejection of the first fluid from the nozzle 41, and the first fluid ejected from the nozzle 41 and the suction A diffuser 43 that discharges the second fluid sucked into the chamber 42 while increasing the pressure, and two orifice plates 44 provided downstream of the diffuser 43 are provided.
 ノズル41は、第2配管34bの下流端に接続されている。ノズル41の少なくとも噴出口41aは、吸引室42に収容されている。 The nozzle 41 is connected to the downstream end of the second pipe 34b. At least the ejection port 41 a of the nozzle 41 is accommodated in the suction chamber 42.
 吸引室42は、ディフューザ43の少なくとも上流端部も収容している。また、吸引室42には、排出管13の流出端が接続されている。吸引室42では、ノズル41から第1流体が噴出することによって生じる負圧(圧力降下)により第2流体が排出管13から吸引される。つまり、吸引室42では、第1流体のジェットポンプ効果によって生じる負圧により、第2流体を吸引するための吸引力が発生する。 The suction chamber 42 also accommodates at least the upstream end of the diffuser 43. The suction chamber 42 is connected to the outflow end of the discharge pipe 13. In the suction chamber 42, the second fluid is sucked from the discharge pipe 13 by the negative pressure (pressure drop) generated when the first fluid is ejected from the nozzle 41. That is, in the suction chamber 42, a suction force for sucking the second fluid is generated by the negative pressure generated by the jet pump effect of the first fluid.
 ディフューザ43は、直線状の流路を有している。ディフューザ43の流路断面積は、上流から下流に向かって拡大している。そのため、ディフューザ43を通過する流体は、ディフューザ43を上流から下流へ流れるに従って減速すると共に昇圧する。ディフューザ43の下流端に第3配管34cが接続されている。 The diffuser 43 has a linear flow path. The flow passage cross-sectional area of the diffuser 43 increases from the upstream toward the downstream. Therefore, the fluid passing through the diffuser 43 decelerates and pressurizes as it flows through the diffuser 43 from upstream to downstream. A third pipe 34 c is connected to the downstream end of the diffuser 43.
 オリフィス板44は、中央に円形の開口44aを有する円盤状の部材である。オリフィス板44は、流体抵抗部の一例である。オリフィス板44は、第3配管34cに配置されている。詳しくは、上流側オリフィス板44は、第3配管34cの上流端、即ち、ディフューザ43と第3配管34cとの接続部に配置されている。下流側オリフィス板44は、第3配管34cの下流端、即ち、第3配管34cとドレンタンク31との接続部に配置されている。ディフューザ43と第3配管34cとは、互いにフランジ部を介して接続されており、上流側オリフィス板44は、ディフューザ43のフランジ部と第3配管34cのフランジ部とに挟み込まれている。第3配管34cとドレンタンク31とは、互いにフランジ部を介して接続されており、下流側オリフィス板44は、第3配管34cのフランジ部とドレンタンク31のフランジ部とに挟み込まれている。 The orifice plate 44 is a disk-shaped member having a circular opening 44a at the center. The orifice plate 44 is an example of a fluid resistance portion. The orifice plate 44 is disposed in the third pipe 34c. Specifically, the upstream orifice plate 44 is disposed at the upstream end of the third pipe 34c, that is, at the connection portion between the diffuser 43 and the third pipe 34c. The downstream orifice plate 44 is disposed at the downstream end of the third pipe 34 c, that is, at the connection portion between the third pipe 34 c and the drain tank 31. The diffuser 43 and the third pipe 34c are connected to each other via a flange portion, and the upstream orifice plate 44 is sandwiched between the flange portion of the diffuser 43 and the flange portion of the third pipe 34c. The third pipe 34 c and the drain tank 31 are connected to each other via a flange portion, and the downstream orifice plate 44 is sandwiched between the flange portion of the third pipe 34 c and the flange portion of the drain tank 31.
 上流側オリフィス板44の開口44aの面積は、第3配管34cのうち当該オリフィス板44の下流側部分の流路断面積よりも小さくなっている。同様に、下流側オリフィス板44の開口44aの面積は、第3配管34cのうち当該オリフィス板44の上流側部分の流路断面積よりも小さくなっている。つまり、上流側及び下流側オリフィス板44は、ディフューザ43の下流側の流路の流路断面積を絞る機能を有している。 The area of the opening 44a of the upstream orifice plate 44 is smaller than the flow path cross-sectional area of the downstream portion of the orifice plate 44 in the third pipe 34c. Similarly, the area of the opening 44a of the downstream orifice plate 44 is smaller than the flow path cross-sectional area of the upstream portion of the orifice plate 44 in the third pipe 34c. That is, the upstream and downstream orifice plates 44 have a function of reducing the flow passage cross-sectional area of the flow passage on the downstream side of the diffuser 43.
 上流側オリフィス板44の開口44aの面積は、下流側オリフィス板44の開口44aの面積と同じである。本実施形態では、第3配管34cの流路断面積は、上流から下流に亘って一様なので、上流側オリフィス板44における第3配管34cの流路断面積に対する開口44aの面積の比(開口44aの面積/第3配管34cの流路断面積であり、以下「開口率」という)は、下流側オリフィス板44の開口率と等しい。 The area of the opening 44 a of the upstream orifice plate 44 is the same as the area of the opening 44 a of the downstream orifice plate 44. In the present embodiment, the flow passage cross-sectional area of the third pipe 34c is uniform from upstream to downstream, so the ratio of the area of the opening 44a to the flow passage cross-sectional area of the third pipe 34c in the upstream orifice plate 44 (opening The area of 44a / the cross-sectional area of the third pipe 34c, hereinafter referred to as "opening ratio") is equal to the opening ratio of the downstream orifice plate 44.
 このように構成された真空発生装置30においては、ドレンタンク31内のドレンがポンプ32により昇圧されエゼクタ40のノズル41に第1流体として供給される。ノズル41から吸引室42へドレンが噴出することによってノズル41の周囲に負圧が生じ、反応釜20のドレンが排出管13を介して第2流体として吸引室42に吸引される。ノズル41から噴出したドレンと排出管13から吸引されたドレンとは吸引室42で混合され、ディフューザ43を介して排出される。このとき、ドレンは、ディフューザ43を下流側へ流れるに従って減速すると共に昇圧する。最終的に、ドレンは、ドレンタンク41へ流入する。こうして、反応釜20のドレンは、ドレンタンク31に回収される。 In the vacuum generator 30 configured as above, the drain in the drain tank 31 is pressurized by the pump 32 and supplied to the nozzle 41 of the ejector 40 as the first fluid. By discharging the drain from the nozzle 41 to the suction chamber 42, a negative pressure is generated around the nozzle 41, and the drain of the reaction vessel 20 is sucked into the suction chamber 42 as the second fluid through the discharge pipe 13. The drain sprayed from the nozzle 41 and the drain sucked from the discharge pipe 13 are mixed in the suction chamber 42 and discharged through the diffuser 43. At this time, the drain decelerates and pressurizes as it flows through the diffuser 43 to the downstream side. Finally, the drain flows into the drain tank 41. Thus, the drain in the reaction kettle 20 is collected in the drain tank 31.
 ここで、ディフューザ43の下流側にオリフィス板44を設けることによって、エゼクタ40を適切に機能させることができ、反応釜20からドレンを適切に吸引することができる。 Here, by providing the orifice plate 44 on the downstream side of the diffuser 43, the ejector 40 can be appropriately functioned, and the drain can be appropriately sucked from the reaction kettle 20.
 詳しくは、ディフューザ43の下流側にオリフィス板44を設けることによって、ディフューザ43の下流側の流路における流体抵抗を大きくして、ディフューザ43の下流側の流路での圧力を増大させることができる。それにより、ディフューザ43を通過する流体を十分に昇圧させることができる。仮に、ディフューザ43の下流側の圧力が小さい場合には、ディフューザ43を通過する流体が十分に昇圧しない。 エゼクタ40においては、ノズル41の入口とディフューザ43の出口との圧力差等を前提にノズル41及びディフューザ43が設計されているので、圧力差が小さくなり過ぎると、吸引室42における負圧を適切に発生させることができない。それに対し、ディフューザ43の下流側にオリフィス板44を設けることによって、ディフューザ43を通過する流体を十分に昇圧させることができるので、吸引室42における負圧を適切に発生させることができる。つまり、エゼクタ40を適切に機能させることができる。 Specifically, by providing the orifice plate 44 on the downstream side of the diffuser 43, the fluid resistance in the flow path on the downstream side of the diffuser 43 can be increased, and the pressure in the flow path on the downstream side of the diffuser 43 can be increased. . Thereby, the pressure of the fluid passing through the diffuser 43 can be sufficiently increased. If the pressure on the downstream side of the diffuser 43 is small, the fluid passing through the diffuser 43 is not sufficiently boosted. In the ejector 40, the nozzle 41 and the diffuser 43 are designed on the premise of a pressure difference between the inlet of the nozzle 41 and the outlet of the diffuser 43. Therefore, if the pressure difference becomes too small, the negative pressure in the suction chamber 42 is appropriately set. Can not be generated. On the other hand, by providing the orifice plate 44 on the downstream side of the diffuser 43, the fluid passing through the diffuser 43 can be sufficiently boosted, so that the negative pressure in the suction chamber 42 can be appropriately generated. That is, the ejector 40 can function appropriately.
 さらに、ディフューザ43により流体を十分に昇圧させることができるか否かは、ディフューザ43の下流側の圧力だけでなく、真空発生装置30を循環するドレンの水温(以下、「循環水温」と称する)にも依存する。循環水温が高くなると、ドレンの粘度が小さくなるので、ドレンがディフューザ43を通過する際の圧力上昇(圧力回復)が低減される。つまり、循環水温が高くなるほど、吸引室42における負圧を適切に発生させることができなくなる。 Further, whether or not the fluid can be sufficiently increased by the diffuser 43 is determined not only by the pressure on the downstream side of the diffuser 43 but also the water temperature of the drain circulating in the vacuum generator 30 (hereinafter referred to as “circulation water temperature”). Also depends on. As the circulating water temperature increases, the viscosity of the drain decreases, so that the pressure increase (pressure recovery) when the drain passes through the diffuser 43 is reduced. That is, the higher the circulating water temperature, the more appropriately the negative pressure in the suction chamber 42 cannot be generated.
 図3に、吸引室42で負圧を適切に発生させることができない現象(以下、「真空不発現象」という)と、オリフィス板44の開口率及び循環水温との関係を示す。図3における実線は、オリフィス板44を1枚だけ設けた場合の真空不発現象が発生する境界線を示している。境界線よりも上側(即ち、循環水温が高い側)の領域(実線の場合は、図中のハッチング領域)において真空不発現象が発生する。図3における破線は、オリフィス板44を2枚設けた場合の真空不発現象が発生する境界線を示している。 FIG. 3 shows the relationship between a phenomenon in which a negative pressure cannot be appropriately generated in the suction chamber 42 (hereinafter referred to as “vacuum non-occurrence phenomenon”), the opening ratio of the orifice plate 44 and the circulating water temperature. A solid line in FIG. 3 indicates a boundary line where a vacuum failure phenomenon occurs when only one orifice plate 44 is provided. A vacuum non-occurrence phenomenon occurs in a region above the boundary line (that is, the side where the circulating water temperature is high) (the hatched region in the figure in the case of the solid line). A broken line in FIG. 3 indicates a boundary line where a vacuum failure phenomenon occurs when two orifice plates 44 are provided.
 オリフィス板44を設けない場合(開口率100%に相当)に真空不発現象が発生しない境界となる循環水温(以下、「境界水温」と称する)は、T1である。図3からわかるように、オリフィス板44の開口44aを小さくするほど、境界水温を高くすることができる。つまり、真空不発現象を生じさせない循環水温を高めることができる。さらに、オリフィス板44を1枚から2枚にすることによって、境界水温をさらに高めることができる(破線参照)。これは、オリフィス板44が増えると、ディフューザ43の下流側の流路での圧力がより上昇するためである。 When the orifice plate 44 is not provided (corresponding to an opening ratio of 100%), the circulating water temperature (hereinafter referred to as “boundary water temperature”) that becomes a boundary where the vacuum non-occurrence phenomenon does not occur is T1. As can be seen from FIG. 3, the boundary water temperature can be increased as the opening 44a of the orifice plate 44 is reduced. That is, it is possible to increase the circulating water temperature that does not cause a vacuum failure phenomenon. Furthermore, the boundary water temperature can be further increased by changing the number of orifice plates 44 from one to two (see the broken line). This is because as the orifice plate 44 increases, the pressure in the flow path on the downstream side of the diffuser 43 increases.
 しかしながら、オリフィス板44の開口率を小さくして流体抵抗が大きくなり過ぎると、第3配管34cを流通するドレンの流量、即ち、ディフューザ43を通過するドレンの流量が減少してしまう。その結果、排出管13を介して反応釜20から吸引するドレンの流量も減少してしまう。 However, if the opening ratio of the orifice plate 44 is reduced to increase the fluid resistance too much, the flow rate of the drain flowing through the third pipe 34c, that is, the flow rate of the drain passing through the diffuser 43 is reduced. As a result, the flow rate of drain sucked from the reaction kettle 20 through the discharge pipe 13 is also reduced.
 それに対し、オリフィス板44を複数設けることによって、流量を確保しつつ流体抵抗を増大させることができる。図4は、エゼクタにおける真空度と吸引量との関係を示すグラフである。図4において、実線は開口率60%のオリフィス板44を1枚だけ設けた場合を示し、破線は開口率75%のオリフィス板44を2枚設けた場合を示している。真空度が高い(例えば、真空度100kPaG)場合、即ち、エゼクタ40が適切に機能している場合において、開口率75%のオリフィス板44を2枚設ける構成の方が、開口率60%のオリフィス板44を1枚だけ設ける構成よりも吸引量が大きくなっている。開口率60%のオリフィス板44を1枚だけ設ける構成は、境界水温を十分に高めることができるものの(図3参照)、開口率が小さ過ぎて吸引量が低減してしまう。それに対し、開口率75%のオリフィス板44を2枚設ける構成は、境界水温を十分に高めることができるだけでなく(図3参照)、吸引量を確保することもできる。つまり、オリフィス板44の枚数を増やすことによって、開口率を大きくして吸引量を確保しつつ、境界水温を高めることができる。 On the other hand, by providing a plurality of orifice plates 44, the fluid resistance can be increased while securing the flow rate. FIG. 4 is a graph showing the relationship between the degree of vacuum and the amount of suction in the ejector. In FIG. 4, the solid line indicates a case where only one orifice plate 44 having an aperture ratio of 60% is provided, and the broken line indicates a case where two orifice plates 44 having an aperture ratio of 75% are provided. When the degree of vacuum is high (for example, when the degree of vacuum is 100 kPaG), that is, when the ejector 40 is functioning properly, the configuration in which two orifice plates 44 having an opening ratio of 75% are provided is an orifice having an opening ratio of 60%. The amount of suction is larger than the configuration in which only one plate 44 is provided. The configuration in which only one orifice plate 44 with an opening ratio of 60% is provided can sufficiently increase the boundary water temperature (see FIG. 3), but the opening ratio is too small and the suction amount is reduced. On the other hand, the configuration in which two orifice plates 44 having an aperture ratio of 75% are provided can not only sufficiently increase the boundary water temperature (see FIG. 3), but also ensure a suction amount. That is, by increasing the number of orifice plates 44, the boundary water temperature can be increased while increasing the aperture ratio and securing the suction amount.
 以上のように、エゼクタ40は、第1流体を噴出するノズル41と、ノズル41からの第1流体の噴出により生じる圧力低下によって第2流体を吸引する吸引室42と、ノズル41から噴出された第1流体と吸引室42に吸引された第2流体とを昇圧させながら排出するディフューザ43と、ディフューザ43の下流に設けられたオリフィス板44とを備えている。 As described above, the ejector 40 is ejected from the nozzle 41 that ejects the first fluid, the suction chamber 42 that sucks the second fluid due to the pressure drop caused by the ejection of the first fluid from the nozzle 41, and the nozzle 41. A diffuser 43 that discharges the first fluid and the second fluid sucked into the suction chamber 42 while increasing the pressure, and an orifice plate 44 provided downstream of the diffuser 43 are provided.
 この構成によれば、ディフューザ43の下流にオリフィス板44を設けることによって、ディフューザ43の下流側の流路の圧力を増大させることができる。これにより、ディフューザ43を通過する流体を十分に昇圧させることができ、その結果、エゼクタ40を適切に機能させることができる。 According to this configuration, by providing the orifice plate 44 downstream of the diffuser 43, the pressure in the flow path on the downstream side of the diffuser 43 can be increased. Thereby, the fluid passing through the diffuser 43 can be sufficiently boosted, and as a result, the ejector 40 can function properly.
 例えば、エゼクタ40、さらには、真空発生装置30の小型化を図る上で、配管34(特に、第3配管34c)が短い場合がある。このような場合、ディフューザ43の下流側の圧力が小さくなる傾向にあり、ディフューザ43を通過する流体の昇圧が不十分となる虞がある。そのような構成であっても、オリフィス板44を設けることによって、ディフューザ43を通過する流体を十分に昇圧させることができる。つまり、オリフィス板44を設ける構成は、小型のエゼクタ40及び真空発生装置30に特に有効である。 For example, in order to reduce the size of the ejector 40 and the vacuum generator 30, the pipe 34 (particularly, the third pipe 34c) may be short. In such a case, the pressure on the downstream side of the diffuser 43 tends to be small, and the pressure of the fluid passing through the diffuser 43 may be insufficient. Even in such a configuration, the fluid passing through the diffuser 43 can be sufficiently pressurized by providing the orifice plate 44. That is, the configuration in which the orifice plate 44 is provided is particularly effective for the small ejector 40 and the vacuum generator 30.
 また、オリフィス板44は流路断面積を外側から絞るので、外側に拡がりながら流れる流体に対して流体の流れを阻害し過ぎることなく、流体に適度な圧損を与えることができる。 In addition, since the orifice plate 44 restricts the cross-sectional area of the flow path from the outside, it is possible to give an appropriate pressure loss to the fluid without excessively impeding the flow of the fluid flowing while spreading outward.
 また、オリフィス板44は複数設けられているので、ディフューザ43を通過する流体の流量を小さくし過ぎることなく、ディフューザ43の下流側の流路の圧力を増大させることができる。 Also, since a plurality of orifice plates 44 are provided, the pressure in the flow path downstream of the diffuser 43 can be increased without making the flow rate of the fluid passing through the diffuser 43 too small.
 さらに、オリフィス板44の開口44aの面積は、オリフィス板44抵抗部の前後の流路断面積よりも小さくなっている。 Furthermore, the area of the opening 44a of the orifice plate 44 is smaller than the cross-sectional area of the flow path before and after the resistance portion of the orifice plate 44.
 つまり、オリフィス板44は、流路を絞ることによって流体抵抗を増大させている。 That is, the orifice plate 44 increases the fluid resistance by restricting the flow path.
 また、真空発生装置30は、エゼクタ40と、ディフューザ43を通過した第1流体及び第2流体を貯留するドレンタンク31と、ドレンタンク31に接続され、ドレンタンク31内の流体を第1流体としてエゼクタ40に圧送するポンプ32とを備え、ドレンタンク31内の流体をポンプ32及びエゼクタ40を介して還流させることによって、エゼクタ40を介して第2流体を吸引する。 The vacuum generator 30 is connected to the ejector 40, the drain tank 31 that stores the first fluid and the second fluid that have passed through the diffuser 43, and the drain tank 31, and the fluid in the drain tank 31 is used as the first fluid. And a pump 32 that pumps the ejector 40. The fluid in the drain tank 31 is recirculated through the pump 32 and the ejector 40 to suck the second fluid through the ejector 40.
 この構成によれば、前述の如くエゼクタ40を適切に機能させることができるので、第2流体をエゼクタ40を介して適切に吸引することができる。 According to this configuration, since the ejector 40 can function properly as described above, the second fluid can be appropriately sucked through the ejector 40.
 尚、エゼクタ40及び真空発生装置30は、真空蒸気加熱システム1だけでなく、それ以外のシステムにも適用し得る。例えば、蒸気加熱だけでなく、冷却も行うシステムにエゼクタ40及び真空発生装置30を適用してもよい。また、システムで用いられる蒸気は、大気圧以下の蒸気に限られるものではない。 The ejector 40 and the vacuum generator 30 can be applied not only to the vacuum steam heating system 1 but also to other systems. For example, the ejector 40 and the vacuum generator 30 may be applied to a system that performs not only steam heating but also cooling. Further, the steam used in the system is not limited to steam below atmospheric pressure.
 さらに、エゼクタ40は、水を流通させているが、液体エゼクタに限られるものではない。すなわち、エゼクタ40は、気体を流通させるものであってもよい。 Furthermore, although the ejector 40 circulates water, it is not limited to a liquid ejector. That is, the ejector 40 may circulate gas.
 また、上記実施形態においては、流体抵抗部としてオリフィス板を採用しているが、流体抵抗部は、その前後の部分よりも流体抵抗を増大させる限りは任意の構成を採用することができる。例えば、流体抵抗部は、流路断面積を徐々に絞る絞り部、流路断面積を小さくすることが可能な弁、蛇腹管等であってもよい。 In the above embodiment, the orifice plate is adopted as the fluid resistance portion. However, the fluid resistance portion may adopt any configuration as long as the fluid resistance is increased more than the front and rear portions. For example, the fluid resistance portion may be a throttle portion that gradually narrows the cross-sectional area of the flow path, a valve that can reduce the cross-sectional area of the flow path, a bellows tube, or the like.
 さらに、上記実施形態においては、流体抵抗部としてのオリフィス板44が2枚設けられているが、流体抵抗部は1つであっても、3つ以上であってもよい。 Furthermore, in the above-described embodiment, two orifice plates 44 are provided as fluid resistance parts, but the number of fluid resistance parts may be one or three or more.
 ここに開示された技術は、エゼクタ及びそれを備えた真空発生装置について有用である。 The technique disclosed herein is useful for an ejector and a vacuum generator provided with the ejector.
1    真空蒸気加熱システム
30   真空発生装置
31   ドレンタンク(タンク)
32   ポンプ
40   エゼクタ
41   ノズル
42   吸引室
43   ディフューザ
44   オリフィス(流体抵抗部)
1 Vacuum Steam Heating System 30 Vacuum Generator 31 Drain Tank (Tank)
32 Pump 40 Ejector 41 Nozzle 42 Suction chamber 43 Diffuser 44 Orifice (fluid resistance part)

Claims (5)

  1.  第1流体を噴出するノズルと、
     上記ノズルからの上記第1流体の噴出により生じる圧力低下によって第2流体を吸引する吸引室と、
     上記ノズルから噴出された上記第1流体と上記吸引室に吸引された上記第2流体とを昇圧させながら排出するディフューザと、
     上記ディフューザの下流に設けられた流体抵抗部とを備えていることを特徴とするエゼクタ。
    A nozzle for ejecting the first fluid;
    A suction chamber for sucking the second fluid by a pressure drop caused by the ejection of the first fluid from the nozzle;
    A diffuser for discharging the first fluid ejected from the nozzle and the second fluid sucked into the suction chamber while increasing the pressure;
    An ejector comprising: a fluid resistance portion provided downstream of the diffuser.
  2.  請求項1に記載のエゼクタにおいて、
     上記流体抵抗部は、複数設けられていることを特徴とするエゼクタ。
    The ejector according to claim 1,
    An ejector comprising a plurality of the fluid resistance portions.
  3.  請求項1又は2に記載のエゼクタにおいて、
     上記流体抵抗部の流路断面積は、該流体抵抗部の前後の流路断面積よりも小さくなっていることを特徴とするエゼクタ。
    The ejector according to claim 1 or 2,
    The ejector according to claim 1, wherein a flow path cross-sectional area of the fluid resistance portion is smaller than a flow path cross-sectional area before and after the fluid resistance portion.
  4.  請求項1乃至3の何れか1つに記載のエゼクタにおいて、
     上記流体抵抗部は、オリフィス板で構成されていることを特徴とするエゼクタ。
    The ejector according to any one of claims 1 to 3,
    The ejector according to claim 1, wherein the fluid resistance portion is formed of an orifice plate.
  5.  請求項1乃至4の何れか1つに記載のエゼクタと、
     上記ディフューザを通過した上記第1流体及び上記第2流体を貯留するタンクと、
     上記タンクに接続され、該タンク内の流体を上記第1流体として上記エゼクタに圧送するポンプとを備え、
     上記タンク内の流体を上記ポンプ及び上記エゼクタを介して還流させることによって、上記エゼクタを介して上記第2流体を吸引する真空発生装置。
    The ejector according to any one of claims 1 to 4,
    A tank for storing the first fluid and the second fluid that have passed through the diffuser;
    A pump connected to the tank and pumping the fluid in the tank as the first fluid to the ejector;
    A vacuum generator for sucking the second fluid through the ejector by recirculating the fluid in the tank through the pump and the ejector.
PCT/JP2016/075519 2015-09-17 2016-08-31 Ejector and vacuum generation device with same WO2017047387A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016570360A JP6088719B1 (en) 2015-09-17 2016-08-31 Ejector and vacuum generator equipped with the same
EP16846258.8A EP3351805A4 (en) 2015-09-17 2016-08-31 Ejector and vacuum generation device with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015184383 2015-09-17
JP2015-184383 2015-09-17

Publications (1)

Publication Number Publication Date
WO2017047387A1 true WO2017047387A1 (en) 2017-03-23

Family

ID=58288904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075519 WO2017047387A1 (en) 2015-09-17 2016-08-31 Ejector and vacuum generation device with same

Country Status (2)

Country Link
EP (1) EP3351805A4 (en)
WO (1) WO2017047387A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033310U (en) * 1973-07-19 1975-04-10
JPS63168300U (en) * 1987-04-24 1988-11-01
US5896435A (en) * 1996-03-25 1999-04-20 Commissariat A L'energie Atomique Pressurized water supply device for a steam injector water source
WO2012132047A1 (en) * 2011-03-28 2012-10-04 株式会社コガネイ Ejector
JP2014156814A (en) * 2013-02-15 2014-08-28 Tlv Co Ltd Ejector type vacuum pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628623A (en) * 1993-02-12 1997-05-13 Skaggs; Bill D. Fluid jet ejector and ejection method
JP3966157B2 (en) * 2002-10-25 2007-08-29 株式会社デンソー Ejector
DE10255472B3 (en) * 2002-11-28 2004-07-01 Festo Ag & Co. Ejector pump for producing vacuum for suction cup has compressed-air connection to Laval nozzle with air jet passing through suction chamber into mixing tube leading to eddy chamber
US7487795B2 (en) * 2005-05-19 2009-02-10 Delaware Capital Formation Chemical dispenser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033310U (en) * 1973-07-19 1975-04-10
JPS63168300U (en) * 1987-04-24 1988-11-01
US5896435A (en) * 1996-03-25 1999-04-20 Commissariat A L'energie Atomique Pressurized water supply device for a steam injector water source
WO2012132047A1 (en) * 2011-03-28 2012-10-04 株式会社コガネイ Ejector
JP2014156814A (en) * 2013-02-15 2014-08-28 Tlv Co Ltd Ejector type vacuum pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351805A4 *

Also Published As

Publication number Publication date
EP3351805A1 (en) 2018-07-25
EP3351805A4 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6452275B2 (en) Thermo compressor
JP6088719B1 (en) Ejector and vacuum generator equipped with the same
JP5384150B2 (en) Heat exchanger
WO2017047387A1 (en) Ejector and vacuum generation device with same
US11315537B2 (en) Silencer
JP4594270B2 (en) Heat exchanger
JP6130160B2 (en) Ejector type vacuum pump
JP6830818B2 (en) Branch pipe
JP6894735B2 (en) Heating and cooling system
JP5384152B2 (en) Air heater
JP5295726B2 (en) Ejector device
JP5295725B2 (en) Ejector device
JP2009257653A (en) Condensate recovering device
JP5188831B2 (en) Vacuum steam heater
JP4885891B2 (en) Vacuum steam heater
JP6812077B2 (en) Heat exchanger
JP5546962B2 (en) Vacuum steam heater
KR101560593B1 (en) Airpump boiler
CN108884840A (en) The setting method of the outlet flow passage of injector, the manufacturing method of injector and diffuser
CN108884839A (en) The setting method of the outlet flow passage of injector, the manufacturing method of injector and diffuser
JP5301199B2 (en) Condensate recovery device
JP2004077050A (en) Steam boiler system
JP2010284621A (en) Heat exchanger
JP2014074530A (en) Condensate recovery device
JP2005121065A (en) Liquid force-feeding device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016570360

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846258

Country of ref document: EP