EP0793006B1 - Cooling circuit of an internal combustion engine - Google Patents

Cooling circuit of an internal combustion engine Download PDF

Info

Publication number
EP0793006B1
EP0793006B1 EP96119729A EP96119729A EP0793006B1 EP 0793006 B1 EP0793006 B1 EP 0793006B1 EP 96119729 A EP96119729 A EP 96119729A EP 96119729 A EP96119729 A EP 96119729A EP 0793006 B1 EP0793006 B1 EP 0793006B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
internal
valve
cooling circuit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96119729A
Other languages
German (de)
French (fr)
Other versions
EP0793006A1 (en
Inventor
Klaus Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of EP0793006A1 publication Critical patent/EP0793006A1/en
Application granted granted Critical
Publication of EP0793006B1 publication Critical patent/EP0793006B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a cooling circuit of an internal combustion engine according to the Preamble of claim 1.
  • Such a cooling circuit is described for example in DE 37 18 697 A1.
  • the short circuit is below one specified opening temperature of the thermostatic valve, i.e. while the cold start and the warm-up phase of the internal combustion engine.
  • This Short circuit is circulated only a part of the coolant without the cooler flow through to reduce the heating time.
  • this Cooling circuit provided an expansion tank, which as a coolant storage and as Compensation reservoir for temperature-related fluctuations in the volume of the coolant serves.
  • this expansion tank serves as an air or gas separator, for what Vent lines from high points of the internal combustion engine and / or of the cooler open into this expansion tank.
  • the expansion tank is usually integrated into the circuit so that it is independent of the Operating temperature of the coolant and thus both in the main circuit and in Short circuit of its storage, compensation and ventilation function fulfilled. Consequently must also when the engine is cold started or during the warm-up phase the coolant volume in the expansion tank is also heated. Thereby the engine warms up, resulting in higher consumption and leads to higher pollution levels.
  • the ventilation line is advantageously blocked in Dependence on the operating temperature of the coolant and / or on the pressure in the Reservoirs.
  • the pressure in the expansion tank depends on the temperature-dependent change in volume of the coolant, so that indirectly a temperature-dependent blocking or opening of the ventilation line to Expansion tank is done.
  • Such a pressure or temperature-dependent connection and disconnection of the Vent line is advantageously done by the check valve on Reservoir arranged and its valve member by a pressure in the Expansion piston loaded piston is adjusted. It can in particular advantageously the valve member itself as a pressurizable piston be trained.
  • the opening point is set.
  • the opening pressure or the Opening temperature is in the range of the opening temperature of the thermostatic valve. An opening temperature or an opening pressure that indicates an earlier opening of the Check valve compared to the thermostatic valve, but is also possible.
  • Vent lines are provided in such a cooling circuit, the for example with the cooler of the cooling circuit (heat exchanger) and the housing the internal combustion engine are connected, they can advantageously on Check valve are merged. So that are both through the valve member Vent lines or all vent lines can be blocked, thereby reducing the construction effort is significantly reduced.
  • the check valve regardless of the pressure in the Expansion tank can be operated manually, so that for an initial filling, Refilling or during maintenance and repair the filling of the cooling circuit and of the expansion tank can be done in a simple manner.
  • the cooling circuit according to the invention is not restricted to this Embodiment in Fig. 1 schematically using the example of a two-row Internal combustion engine with cylinders 1 to 6 shown.
  • the not shown Housing 7 of the internal combustion engine has cavities which are also in the region of the Cylinder block and cylinder head, not shown, are arranged. This are flowed through by the coolant during operation of the internal combustion engine.
  • the Circulation of the coolant is carried out by a coolant pump 8, which is in this Embodiment on the suction side with a thermostatic valve 9 known per se connected is.
  • This thermostatic valve 9 is a function of the Operating temperature of the coolant, the connection between the coolant pump 8 and Housing 7 of the internal combustion engine released to a cooler 10 (heat exchanger) or blocked.
  • the coolant pump 8 rolls the coolant in one Short circuit in which the cavities in the housing 7 of the internal combustion engine and a heating heat exchanger 11 are flowed through without the Cooler 10 is flowed through.
  • Exceeds that Operating temperature of the coolant is the predetermined opening temperature of the Thermostat valve 9, the connection of the coolant pump 8 to the radiator 10 opened so that all of the coolant is circulated through the radiator 10 (Main circuit).
  • the suction side of the coolant pump 8 is one Expansion tank 12 connected as a storage and buffer tank for the Coolant is used.
  • the expansion tank 12 is known per se Pressure relief valve 13 provided, depending on the internal pressure of the container Connection to the environment enabled. The above the coolant level 14 in Expansion tank 12 located gas can be exceeded when a predetermined maximum pressure can be relaxed.
  • the Connection of the vent lines 15 and 16 to the expansion tank 12 is in each case lockable via a check valve 17.
  • FIG. 2 shows the housing 18 of the expansion tank 12, which is only partially shown, the top of which has an opening 19 into which the valve housing 20 of the Check valve 17 is used.
  • the cylindrical valve housing 20 of the check valve 17 is inserted with its open underside 21 into the opening 19 of the housing 18 and sealed by a sealing ring 22.
  • Above the Expansion tank 12 open into the interior of the valve housing 20 two Vent connections 23, 24, of which the vent connection 23 with the Vent line 15 and the vent connection 24 with the vent line 16 connected is.
  • a piston-shaped valve member 25 Inside the cylindrical valve housing 20 is a piston-shaped valve member 25 axially movable, the end face 26 of the pressure p inside the Expansion tank 12 is acted upon. On the opposite inside of the Valve member 25 is supported on one end of a compression spring 27, the other End rests on an end face 28 of the valve housing 20.
  • the valve member 25 has furthermore on the side facing away from the expansion tank 12 a pin 29, which is embraced by the compression spring 27 and the end face 28 of the valve housing 20th penetrates. Outside the valve housing 20, this pin 29 is one Disc 30 includes, in the end position shown in FIG. 2, the valve member 25th abuts as an end stop on the outside of the valve housing 20. In the in Fig.
  • the valve member 25 is in its lower end position or the closed position. In this switch position are the two vent connections 23 and 24 through the valve member 25 on one side closed, i.e. there is no connection of the ventilation lines 15 and 16 to the expansion tank 12. If the internal pressure in the expansion tank 12 exceeds due to the temperature-dependent increase in volume of the coolant Biasing the compression spring 27 predetermined opening pressure, the valve member 25th raised against the action of the compression spring 27, so that the connection of the Vent connections 23 and 24 and thus the vent lines 15 and 16 for Expansion tank 12 is released.
  • the coolant level / coolant volume is in the Expansion tank low and the tank pressure corresponds to that Ambient pressure. If the volume of the coolant increases as a result of the heating, it increases the coolant level in the expansion tank and thus its internal pressure. exceeds the internal pressure a predetermined maximum pressure, the pressure relief valve opens Environment, and the gas in the expansion tank can escape, so that the pressure drops. The pressure difference between the tank pressure and Ambient pressure acts on the valve member or the piston, which on the other hand through the Effect of the spring is applied. If a predetermined is exceeded Opening pressure, the valve member is displaced and the vent connections be released.
  • the compression spring is designed so that its preload is straight sufficient to cool the coolant, the valve member against the friction of the To move the seal back to its original position.
  • a higher design by appropriate design of the spring element Opening force and thus a higher opening temperature / a higher To specify the opening pressure.
  • the valve housing lower part 37 consists of an outer ring 39, the outer Ridge 31 of the housing 18A engages over and is screwed to it. With this ring 39 is connected to an inner ring 40, which is the inner annular web 32 overlaps and includes.
  • the ring 40 has two through openings 41, 42 connected to the channels 35 and 36 of the housing 18A. Between Both rings 39 and 40, the valve housing lower part 37 has a plurality of passages 43 on that with the annular space 44 between the inner and outer web 31, 32 of Housing 18A are connected. Again, the connection is through an individual Passage also possible.
  • the cup-shaped piston 46 lies with its bottom 48 on the inside 49 of the Roll membrane 45 and has a circumferential circumferential annular groove 50 into which a encircling ring 51 of the rolling membrane 45 engages.
  • the piston still has one Pin 52, which is guided in the valve housing upper part 38 and penetrates this.
  • the Pin 52 is surrounded by a compression spring 53, which is on the one hand at the bottom 48 of the Pistons 46 and on the other hand supported on the valve housing upper part 38.
  • the internal pressure of the expansion tank does not act in this embodiment the piston but via the openings 33, the annular space 44 and the passages 43 on the outer area of the rolling membrane 45, while the inner area of the Roll membrane the vent closures 41.42; 35, 36 closes or opens.
  • bracket element 54 On the pin 52 is a pivotable outside of the valve housing upper part 38 Fixed bracket element 54 with which the piston 46 and thus the rolling membrane 45th can be raised manually regardless of the pressure in the expansion tank 12.
  • the bracket element 54 has two pivot positions (solid or dashed shown), wherein in the pivoted position shown in dashed lines the piston 46 in is held in a position in which the check valve is open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Description

Die Erfindung betrifft einen Kühlkreislauf einer Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a cooling circuit of an internal combustion engine according to the Preamble of claim 1.

Ein derartiger Kühlkreislauf ist beispielsweise in der DE 37 18 697 A1 beschrieben. In diesem Gesamt-Kühlkreislauf sind ein Hauptkreislauf und ein Kurzschlußkreislauf ausgebildet, die in Abhängigkeit von der Betriebstemperatur des Kühlmittels durch ein Thermostatventil geschaltet werden. Der Kurzschlußkreislauf ist unterhalb einer vorgegebenen Öffnungstemperatur des Thermostatventils geschaltet, d.h. während des Kaltstarts und der Aufwärmphase der Brennkraftmaschine. In diesem Kurzschlußkreislauf wird nur ein Teil des Kühlmittels umgewälzt, ohne den Kühler zu durchströmen, um damit die Autwärmzeit zu verringern. Zusätzlich ist in diesem Kühlkreislauf ein Ausgleichbehälter vorgesehen, der als Kühlmittelspeicher und als Ausgleichsreservoir für temperaturbedingte Volumenschwankungen des Kühlmittels dient. Gleichzeitig dient dieser Ausgleichbehälter als Luft- bzw. Gasabscheider, wozu Entlüftungsleitungen von hochgelegenen Punkten der Brennkraftmaschine und/oder des Kühlers in diesen Ausgleichbehälter münden. Der Ausgleichbehälter ist üblicherweise so in den Kreislauf integriert, daß er unabhängig von der Betriebstemperatur des Kühlmittels und damit sowohl im Hauptkreislauf als auch im Kurzschlußkreislauf seiner Speicher-, Ausgleichs- und Entlüftungsfunktion erfüllt. Somit muß auch beim Kaltstart der Brennkraftmaschine bzw. während der Aufwärmphase das im Ausgleichbehälter befindliche Kühlmittelvolumen mit erwärmt werden. Dadurch verlängert sich die Aufwärmphase des Motors, was zu höheren Verbräuchen und höheren Schadstoffbelastungen führt. In der eingangs angeführten DE 37 18 697 A1 wird zur Verkürzung der Warmlaufphase vorgeschlagen, das Volumen des Ausgleichbehälters so aufzuteilen, daß wenigstens zwei das Kühlmittel speichernde Räume vorgesehen sind, von denen nur der kleinere Speicherraum in den Kurzschlußkreislauf der Brennkraftmaschine eingebunden ist, so daß das wesentlich geringere Volumen schneller aufzuheizen ist. Such a cooling circuit is described for example in DE 37 18 697 A1. There is a main circuit and a short circuit in this overall cooling circuit formed by a depending on the operating temperature of the coolant Thermostat valve can be switched. The short circuit is below one specified opening temperature of the thermostatic valve, i.e. while the cold start and the warm-up phase of the internal combustion engine. In this Short circuit is circulated only a part of the coolant without the cooler flow through to reduce the heating time. In addition, in this Cooling circuit provided an expansion tank, which as a coolant storage and as Compensation reservoir for temperature-related fluctuations in the volume of the coolant serves. At the same time, this expansion tank serves as an air or gas separator, for what Vent lines from high points of the internal combustion engine and / or of the cooler open into this expansion tank. The expansion tank is usually integrated into the circuit so that it is independent of the Operating temperature of the coolant and thus both in the main circuit and in Short circuit of its storage, compensation and ventilation function fulfilled. Consequently must also when the engine is cold started or during the warm-up phase the coolant volume in the expansion tank is also heated. Thereby the engine warms up, resulting in higher consumption and leads to higher pollution levels. In the above-mentioned DE 37 18 697 A1 is proposed to shorten the warm-up phase, the volume of the To divide the expansion tank so that at least two storing the coolant Rooms are provided, of which only the smaller storage space in the Short circuit of the engine is involved, so that is essential smaller volumes can be heated up more quickly.

Demgegenüber ist es Aufgabe der Erfindung, einen Kühlkreislauf einer Brennkraftmaschine dahingehend zu verbessern, daß die Aufwärmphase darüber hinaus deutlich reduziert wird und bei dem die im Kurzschlußkreislauf umgewälzte Kühlmittelmenge weitestgehend reduziert wird.In contrast, it is an object of the invention to provide a cooling circuit To improve the internal combustion engine so that the warm-up phase above it is also significantly reduced and in which the circulated in the short circuit Coolant amount is largely reduced.

Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Durch die Anordnung eines Sperrventiles in der Entlüftungsleitung, mit dem die Verbindung zum Ausgleichbehälter sperrbar ist, kann in der Aufwärmphase das im Ausgleichbehälter gespeicherte Kühlmittelvolumen weitgehend aus dem Kühlkreislauf abgekoppelt werden. Dieses Kühlmittel muß dadurch in der Aufwärmphase nicht mit aufgeheizt werden, so daß sich die Aufwärmphase deutlich verkürzt. Wird bei Erreichen einer vorgegebenen Betriebsmitteltemperatur oder anderer von der Betriebsmitteltemperatur abhängiger Betriebsgrößen die Sperrung der Entlüftungsleitung aufgehoben, ist der Ausgleichbehälter mit dem gespeicherten Kühlmittelvolumen auf an sich bekannte Weise in den Kurzschlußkreislauf bzw. den Gesamtkreislauf des Kühlmittels eingebunden.This object is achieved with the characterizing features of Claim 1 solved. By arranging a check valve in the Vent line, with which the connection to the expansion tank can be blocked, in during the warm-up phase, the coolant volume stored in the expansion tank largely decoupled from the cooling circuit. This coolant must thereby not be heated up in the warm-up phase, so that the Warm-up phase significantly shortened. Is reached when a predetermined Resource temperature or other dependent on the resource temperature Operating variables the blocking of the ventilation line is lifted Expansion tank with the stored coolant volume on known per se Way in the short circuit or the total circuit of the coolant involved.

Die erfindungsgemäße Sperrung der Entlüftungsleitung erfolgt vorteilhafter Weise in Abhängigkeit von der Betriebstemperatur des Kühlmittels und/oder vom Druck im Ausgleichbehälter. Der Druck im Ausgleichbehälter ist abhängig von der temperaturabhängigen Volumenänderung des Kühlmittels, so daß auch damit indirekt eine temperaturabhängige Sperrung bzw. Öffnung der Entlüftungsleitung zum Ausgleichbehälter erfolgt.The ventilation line is advantageously blocked in Dependence on the operating temperature of the coolant and / or on the pressure in the Reservoirs. The pressure in the expansion tank depends on the temperature-dependent change in volume of the coolant, so that indirectly a temperature-dependent blocking or opening of the ventilation line to Expansion tank is done.

Eine derartige druck- bzw. temperaturabhängige Zu- und Abschaltung der Entlüftungsleitung erfolgt vorteilhafter Weise, indem das Sperrventil am Ausgleichbehälter angeordnet und sein Ventilglied durch einen vom Druck im Ausgleichbehälter beaufschlagten Kolben verstellt wird. Dabei kann in besonders vorteilhafter Weise das Ventilglied selbst als druckbeaufschlagbarer Kolben ausgebildet sein. Such a pressure or temperature-dependent connection and disconnection of the Vent line is advantageously done by the check valve on Reservoir arranged and its valve member by a pressure in the Expansion piston loaded piston is adjusted. It can in particular advantageously the valve member itself as a pressurizable piston be trained.

Wird das als druckbeaufschlagbarer Kolben ausgebildete Ventilglied gegen die Wirkung einer Feder beaufschlagt, kann auf vorteilhafte Weise eine definierbare Einstellung des Öffnungspunktes erfolgen. Dabei kann der Öffriungsdruck bzw. die Öffnungstemperatur im Bereich der Öffnungstemperatur des Thermostatventils liegen. Eine Öffnungstemperatur bzw. ein Öffnungsdruck, der ein früheres Öffnen des Sperrventils im Vergleich zum Thermostatventil bewirkt, ist jedoch ebenfalls möglich.Is the valve member designed as a pressurizable piston against the Action of a spring can be advantageously a definable The opening point is set. The opening pressure or the Opening temperature is in the range of the opening temperature of the thermostatic valve. An opening temperature or an opening pressure that indicates an earlier opening of the Check valve compared to the thermostatic valve, but is also possible.

Sind in einem derartigen Kühlkreislauf mehrere Entlüftungsleitungen vorgesehen, die beispielsweise mit dem Kühler des Kühlkreislaufes (Wärmetauscher) und dem Gehäuse der Brennkraftmaschine verbunden sind, können diese auf vorteilhafter Weise am Sperrventil zusammengeführt werden. Damit sind dann durch das Ventilglied beide Entlüftungsleitungen bzw. alle Entlüftungsleitungen sperrbar, wodurch der Bauaufwand deutlich reduziert wird.Are several ventilation lines provided in such a cooling circuit, the for example with the cooler of the cooling circuit (heat exchanger) and the housing the internal combustion engine are connected, they can advantageously on Check valve are merged. So that are both through the valve member Vent lines or all vent lines can be blocked, thereby reducing the construction effort is significantly reduced.

Eine getrennte Führung der unterschiedlichen Entlüftungsleitungen bis zum Ventilglied hat dabei den Vorteil, daß Druckunterschiede in den Leitungen aufgrund unterschiedlicher Längen nicht zu einem Kühlmittelfluß zwischen den einzelnen Entlüftungsleitungen unter Umgehung des Ausgleichbehälters führen können. Bei einer Zusammenführung der Entlüftungsleitungen vor dem Ventilglied würden aufgrund unterschiedlicher Leitungslängen unterschiedliche Leitungsdruckverluste auftreten, die dazu führen könnten, daß erwämtes Kühlmittel von einer Entlüftungsleitung in die andere gedrückt würde und somit wieder in den Kreislauf eingespeist werden könnte.Separate routing of the different ventilation lines to the valve element has the advantage that due to pressure differences in the lines different lengths do not result in a coolant flow between each Can lead ventilation lines bypassing the expansion tank. At a Merging of the vent lines before the valve member would be due different line lengths different line pressure losses occur that could lead to coolant from a vent line in the others would be pressed and thus could be fed back into the cycle.

Im Hinblick auf eine verbesserte Wartung bzw. eine kostengünstigere Reparatur eines derartigen Kühlkreislaufes, ist es vorteilhaft, werin das Sperrventil lösbar am Ausgleichbehälter befestigt ist.With regard to improved maintenance or a cheaper repair of a Such a cooling circuit, it is advantageous to who in the check valve releasably Expansion tank is attached.

Weiterhin ist es vorteilhaft, wenn das Sperrventil unabhängig vom Druck im Ausgleichbehälter manuell betätigt werden kann, so daß für eine Erstbefüllung, Neubefüllung oder bei Wartung und Reparatur die Befüllung des Kühlkreislaufes und des Ausgleichbehälters auf einfache Weise erfolgen kann. It is also advantageous if the check valve regardless of the pressure in the Expansion tank can be operated manually, so that for an initial filling, Refilling or during maintenance and repair the filling of the cooling circuit and of the expansion tank can be done in a simple manner.

Weitere Vorteile und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung.Further advantages and advantageous developments of the invention result from the Subclaims and the description.

Ein Ausführungsbeispiel der Erfindung ist in der nachfolgenden Beschreibung und Zeichnung näher erläutert. Letztere zeigt in

Fig. 1
ein schematisch dargestelltes Schaltbild des Kühlkreislaufes,
Fig. 2
einen Schnitt durch ein erfindungsgemäßes Sperrventil und
Fig. 3
einen Schnitt durch ein zweites Ausführungsbeispiel des Sperrventils.
An embodiment of the invention is explained in more detail in the following description and drawing. The latter shows in
Fig. 1
a schematically illustrated circuit diagram of the cooling circuit,
Fig. 2
a section through an inventive check valve and
Fig. 3
a section through a second embodiment of the check valve.

Der erfindungsgemäße Kühlkreislauf ist ohne Beschränkung auf diese Ausführungsform in Fig. 1 schematisch am Beispiel einer zweireihigen Brennkraftmaschine mit Zylindern 1 bis 6 dargestellt. Das nicht näher dargestellte Gehäuse 7 der Brennkraftmaschine weist Hohlräume auf, die im Bereich des ebenfalls nicht näher dargestellten Zylinderblockes und Zylinderkopfes angeordnet sind. Diese werden im Betrieb der Brennkraftmaschine vom Kühlmittel durchströmt. Die Umwälzung des Kühlmittels erfolgt durch eine Kühlmittelpumpe 8, die in diesem Ausführungsbeispiel saugseitig mit einem an sich bekannten Thermostatventil 9 verbunden ist. Durch dieses Thermostatventil 9 wird in Abhängigkeit von der Betriebstemperatur des Kühlmittels die Verbindung zwischen Kühlmittelpumpe 8 und Gehäuse 7 der Brennkraftmaschine zu einem Kühler 10 (Wärmetauscher) freigegeben bzw. gesperrt. Unterhalb einer vorgegebenen Öffnungstemperatur des Thermostatventils 9 wälzt die Kühlmittelpumpe 8 das Kühlmittel in einem Kurzschlußkreislauf um, bei dem die Hohlräume im Gehäuse 7 der Brennkraftmaschine und ein Heizungswärmetauscher 11 durchströmt werden, ohne daß gleichzeitig der Kühler 10 durchströmt wird. Damit wird einerseits nur ein Teil des Kühlmittels umgewälzt, andererseits wird eine während der Auswärmphase nicht gewünschte Abkühlung beim Durchströmen des Kühlers vermieden. Übersteigt die Betriebstemperatur des Kühlmittels die vorgegebene Öffnungstemperatur des Thermostatventils 9, wird die Verbindung der Kühlmittelpumpe 8 zum Kühler 10 geöffnet, so daß das gesamte Kühlmittel durch den Kühler 10 umgewälzt wird (Hauptkreislauf). The cooling circuit according to the invention is not restricted to this Embodiment in Fig. 1 schematically using the example of a two-row Internal combustion engine with cylinders 1 to 6 shown. The not shown Housing 7 of the internal combustion engine has cavities which are also in the region of the Cylinder block and cylinder head, not shown, are arranged. This are flowed through by the coolant during operation of the internal combustion engine. The Circulation of the coolant is carried out by a coolant pump 8, which is in this Embodiment on the suction side with a thermostatic valve 9 known per se connected is. This thermostatic valve 9 is a function of the Operating temperature of the coolant, the connection between the coolant pump 8 and Housing 7 of the internal combustion engine released to a cooler 10 (heat exchanger) or blocked. Below a predetermined opening temperature of the Thermostat valve 9, the coolant pump 8 rolls the coolant in one Short circuit in which the cavities in the housing 7 of the internal combustion engine and a heating heat exchanger 11 are flowed through without the Cooler 10 is flowed through. On the one hand, this means that only part of the coolant circulated, on the other hand, one that is not desired during the warm-up phase Cooling when flowing through the cooler avoided. Exceeds that Operating temperature of the coolant is the predetermined opening temperature of the Thermostat valve 9, the connection of the coolant pump 8 to the radiator 10 opened so that all of the coolant is circulated through the radiator 10 (Main circuit).

In beiden Kreisläufen ist die Saugseite der Kühlmittelpumpe 8 mit einem Ausgleichbehälter 12 verbunden, der als Speicher und Pufferbehälter für das Kühlmittel dient. Der Ausgleichbehälter 12 ist mit einem an sich bekannten Überdruckventil 13 versehen, das in Abhängigkeit vom Behälterinnendruck eine Verbindung zur Umgebung ermöglicht. Das sich oberhalb des Kühlmittelspiegels 14 im Ausgleichbehälter 12 befindliche Gas kann dadurch bei Überschreiten eines vorgegebenen Höchstdruckes entspannt werden. Mit dem Ausgleichbehälter sind zwei Entlüftungsleitungen 15 und 16 verbunden, von denen die Entlüftungsleitung 15 mit dem Kühler 10 der Brennkraftmaschine verbunden ist, während die Entlüftungsleitung 16 zu einer hochgelegenen Stelle des Gehäuses 7 der Brennkraftmaschine führt. Die Verbindung der Entlüftungsleitungen 15 und 16 zum Ausgleichbehälter 12 ist jeweils über ein Sperrventil 17 sperrbar.In both circuits, the suction side of the coolant pump 8 is one Expansion tank 12 connected as a storage and buffer tank for the Coolant is used. The expansion tank 12 is known per se Pressure relief valve 13 provided, depending on the internal pressure of the container Connection to the environment enabled. The above the coolant level 14 in Expansion tank 12 located gas can be exceeded when a predetermined maximum pressure can be relaxed. There are two with the expansion tank Vent lines 15 and 16 connected, of which the vent line 15 with the radiator 10 of the internal combustion engine is connected, while the ventilation line 16 leads to a high point of the housing 7 of the internal combustion engine. The Connection of the vent lines 15 and 16 to the expansion tank 12 is in each case lockable via a check valve 17.

Fig. 2 zeigt das nur teilweise dargestellte Gehäuse 18 des Ausgleichbehälters 12, dessen Oberseite eine Öffnung 19 aufweist, in die das Ventilgehäuse 20 des Sperrventils 17 eingesetzt ist. Das zylinderförmige Ventilgehäuse 20 des Sperrventils 17 ist mit seiner offenen Unterseite 21 in die Öffnung 19 des Gehäuses 18 eingesetzt und durch einen Dichtring 22 abgedichtet. Durch Einschrauben des Ventilgehäuses 20 in diese Öffnung 19, durch Verschrauben mittels zusätzlicher Schrauben am Gehäuse 18 des Ausgleichbehälters 12, durch Rastmittel oder ähnliche Befestigungsmittel ist das Sperrventil 17 lösbar am Ausgleichbehälter 12 befestigt. Oberhalb des Ausgleichbehälters 12 münden in das Innere des Ventilgehäuses 20 zwei Entlüftungsanschlüsse 23, 24, von denen der Entlüftungsanschluß 23 mit der Entlüftungsleitung 15 und der Entlüftungsanschluß 24 mit der Entlüftungsleitung 16 verbunden ist.2 shows the housing 18 of the expansion tank 12, which is only partially shown, the top of which has an opening 19 into which the valve housing 20 of the Check valve 17 is used. The cylindrical valve housing 20 of the check valve 17 is inserted with its open underside 21 into the opening 19 of the housing 18 and sealed by a sealing ring 22. By screwing in the valve housing 20 in this opening 19, by screwing by means of additional screws on the housing 18 of the expansion tank 12, by locking means or similar fasteners the check valve 17 releasably attached to the surge tank 12. Above the Expansion tank 12 open into the interior of the valve housing 20 two Vent connections 23, 24, of which the vent connection 23 with the Vent line 15 and the vent connection 24 with the vent line 16 connected is.

Im Inneren des zylindrischen Ventilgehäuses 20 ist ein kolbenförmiges Ventilglied 25 axial beweglich geführt, dessen Stirnseite 26 vom Druck p im Inneren des Ausgleichbehälters 12 beaufschlagt ist. An der gegenüberliegenden Innenseite des Ventilgliedes 25 stützt sich das eine Ende einer Druckfeder 27 ab, deren anderes Ende an einer Stirnseite 28 des Ventilgehäuses 20 anliegt. Das Ventilglied 25 weist weiterhin auf der dem Ausgleichbehälter 12 abgewandten Seite einen Zapfen 29 auf, der von der Druckfeder 27 umfaßt wird und die Stirnseite 28 des Ventilgehäuses 20 durchdringt. Außerhalb des Ventilgehäuses 20 wird dieser Zapfen 29 von einer Scheibe 30 umfaßt, die in der in Fig. 2 dargestellten Endstellung des Ventilgliedes 25 als Endanschlag an der Außenseite des Ventilgehäuses 20 anliegt. In der in Fig. 2 dargestellten Schaltstellung des Sperrventils 17 befindet sich das Ventilglied 25 in seiner unteren Endstellung bzw. der Schließstellung. In dieser Schaltstellung sind die beiden Entlüftungsanschlüsse 23 und 24 durch das Ventilglied 25 einseitig verschlossen, d.h. es besteht keine Verbindung der Entlüftungsleitungen 15 und 16 zum Ausgleichbehälter 12. Übersteigt der Innendruck im Ausgleichbehälter 12 aufgrund der temperaturabhängigen Volumenzunahme des Kühlmittels einen durch die Vorspannung der Druckfeder 27 vorgegebenen Öffnungsdruck, wird das Ventilglied 25 gegen die Wirkung der Druckfeder 27 angehoben, so daß die Verbindung der Entlüftungsanschlüsse 23 und 24 und damit der Entlüftungsleitungen 15 und 16 zum Ausgleichbehälter 12 freigegeben wird.Inside the cylindrical valve housing 20 is a piston-shaped valve member 25 axially movable, the end face 26 of the pressure p inside the Expansion tank 12 is acted upon. On the opposite inside of the Valve member 25 is supported on one end of a compression spring 27, the other End rests on an end face 28 of the valve housing 20. The valve member 25 has furthermore on the side facing away from the expansion tank 12 a pin 29, which is embraced by the compression spring 27 and the end face 28 of the valve housing 20th penetrates. Outside the valve housing 20, this pin 29 is one Disc 30 includes, in the end position shown in FIG. 2, the valve member 25th abuts as an end stop on the outside of the valve housing 20. In the in Fig. 2nd Switch position of the check valve 17 shown, the valve member 25 is in its lower end position or the closed position. In this switch position are the two vent connections 23 and 24 through the valve member 25 on one side closed, i.e. there is no connection of the ventilation lines 15 and 16 to the expansion tank 12.If the internal pressure in the expansion tank 12 exceeds due to the temperature-dependent increase in volume of the coolant Biasing the compression spring 27 predetermined opening pressure, the valve member 25th raised against the action of the compression spring 27, so that the connection of the Vent connections 23 and 24 and thus the vent lines 15 and 16 for Expansion tank 12 is released.

Beim Kaltstart der Brennkraftmaschine ist das Kühimlttelniveau/Kühlmittelvolumen im Ausgleichbehälter niedrig und der Behälterinnendruck entspricht dem Umgebungsdruck. Bei Volumenzunahme des Kühlmittels infolge der Erwärmung steigt der Kühlmittelspiegel im Ausgleichbehälter und damit dessen Innendruck. Übersteigt der Innendruck einen vorgegebenen Maximaldruck, öffnet das Überdruckventil zur Umgebung, und das im Ausgleichbehälter befindliche Gas kann entweichen, so daß der Druck absinkt. Die Druckdifferenz zwischen Behälterinnendruck und Umgebunsdruck wirkt auf das Ventilglied bzw. den Kolben, der andererseits durch die Wirkung der Feder beaufschlagt ist. Bei Überschreiten eines vorgegebenen Öffnungsdruckes wird das Ventilglied verschoben und die Entlüftungsanschlüsse werden freigegeben. Die Druckfeder ist so ausgelegt, daß ihre Vorspannung gerade ausreicht, um bei Abkühlung des Kühlmittels das Ventilglied gegen die Reibung der Dichtung wieder in seine Ausgangsstellung zurückzubewegen. Es ist jedoch auch möglich, über entsprechende Auslegung des Federelementes eine höhere Öffnungskraft und damit eine höhere Öffnungstemperatur/einen höheren Öffnungsdruck vorzugeben. When the internal combustion engine starts cold, the coolant level / coolant volume is in the Expansion tank low and the tank pressure corresponds to that Ambient pressure. If the volume of the coolant increases as a result of the heating, it increases the coolant level in the expansion tank and thus its internal pressure. exceeds the internal pressure a predetermined maximum pressure, the pressure relief valve opens Environment, and the gas in the expansion tank can escape, so that the pressure drops. The pressure difference between the tank pressure and Ambient pressure acts on the valve member or the piston, which on the other hand through the Effect of the spring is applied. If a predetermined is exceeded Opening pressure, the valve member is displaced and the vent connections be released. The compression spring is designed so that its preload is straight sufficient to cool the coolant, the valve member against the friction of the To move the seal back to its original position. However, it is also possible, a higher design by appropriate design of the spring element Opening force and thus a higher opening temperature / a higher To specify the opening pressure.

Bei der in Fig. 3 dargestellten zweiten Ausführungsform des Sperrventils 17A hat das Gehäuse 18A des Ausgleichbehälters 12 an seiner Außenseite zwei konzentrisch umlaufende, ringförmige Stege 31, 32. Zwischen dem äußeren Steg 31 und dem inneren Steg 32 ist das Gehäuse 18A von mehreren Öffnungen 33 durchsetzt, die mit dem Innenraum des Ausgleichbehälters 12 verbunden sind. Die Verbindung über eine einzelne Öffnung wäre ebenfalls möglich. In dem durch den inneren ringförmigen Steg 32 begrenzten Behälterabschnitt 34 verlaufen zwei getrennte Kanäle 35, 36, die - auf nicht näher dargestellte Weise und nur gestrichelt angedeutet - abgedichtet bis zur Außenseite des Gehäuses 18A geführt sind und dort mit den Entlüftungsleitungen 15 und 16 verbunden sind. Auf die beiden konzentrischen Stege 31 und 32 ist ein Ventilgehäuseunterteil 37 aufgesetzt, das wiederum von einem Ventilgehäuseoberteil 38 abgedeckt ist.In the second embodiment of the check valve 17A shown in FIG Housing 18A of the expansion tank 12 concentrically on its outside circumferential, annular webs 31, 32. Between the outer web 31 and the inner web 32, the housing 18A is penetrated by a plurality of openings 33 which the interior of the expansion tank 12 are connected. The connection via a single opening would also be possible. In the through the inner annular web 32 limited container section 34 run two separate channels 35, 36, which - on way not shown and only indicated by dashed lines - sealed up to Are guided on the outside of the housing 18A and there with the ventilation lines 15 and 16 are connected. On the two concentric webs 31 and 32 is a Valve housing lower part 37 placed, which in turn from a valve housing upper part 38 is covered.

Das Ventilgehäuseunterteil 37 besteht aus einem äußeren Ring 39, der den äußeren Steg 31 des Gehäuses 18A übergreift und umfaßt und mit diesem verschraubt ist. Mit diesem Ring 39 ist ein innerer Ring 40 verbunden, der den inneren ringförmigen Steg 32 übergreift und umfaßt. Der Ring 40 weist zwei durchgehende Öffnungen 41, 42 auf, die mit den Kanälen 35 und 36 des Gehäuses 18A verbunden sind. Zwischen den beiden Ringen 39 und 40 weist das Ventilgehäuseunterteil 37 mehrere Durchgänge 43 auf, die mit dem Ringraum 44 zwischen dem inneren und äußeren Steg 31, 32 des Gehäuses 18A verbunden sind. Auch hier ist die Verbindung über einen einzelnen Durchgang ebenfalls möglich.The valve housing lower part 37 consists of an outer ring 39, the outer Ridge 31 of the housing 18A engages over and is screwed to it. With this ring 39 is connected to an inner ring 40, which is the inner annular web 32 overlaps and includes. The ring 40 has two through openings 41, 42 connected to the channels 35 and 36 of the housing 18A. Between Both rings 39 and 40, the valve housing lower part 37 has a plurality of passages 43 on that with the annular space 44 between the inner and outer web 31, 32 of Housing 18A are connected. Again, the connection is through an individual Passage also possible.

Zwischen dem Ventilgehäuseoberteil 38 und dem Ventilgehäuseunterteil 37 ist eine Rollmembran 45 eingespannt, die unter der Wirkung eines federbelasteten Kolbens 46 auf der als Dichtfläche ausgebildeten Stirnfläche 47 des inneren Ringes 40 aufliegt und so die Öffnungen 41, 42 und damit die Kanäle 35, 36 einseitig verschließt. Der becherförmige Kolben 46 liegt dazu mit seinem Boden 48 an der Innenseite 49 der Rollmembran 45 an und hat eine umfangsseitig umlaufende Ringnut 50, in die ein umlaufender Ring 51 der Rollmembran 45 eingreift. Der Kolben hat weiterhin einen Zapfen 52, der im Ventilgehäuseoberteil 38 geführt ist und dieses durchdringt. Der Zapfen 52 wird von einer Druckfeder 53 umfaßt, die sich einerseits am Boden 48 des Kolbens 46 und andererseits am Ventilgehäuseoberteil 38 abstützt.Between the valve housing upper part 38 and the valve housing lower part 37 is one Rolled membrane 45 clamped under the action of a spring-loaded piston 46 rests on the end face 47 of the inner ring 40 designed as a sealing face and thus closes the openings 41, 42 and thus the channels 35, 36 on one side. The cup-shaped piston 46 lies with its bottom 48 on the inside 49 of the Roll membrane 45 and has a circumferential circumferential annular groove 50 into which a encircling ring 51 of the rolling membrane 45 engages. The piston still has one Pin 52, which is guided in the valve housing upper part 38 and penetrates this. The Pin 52 is surrounded by a compression spring 53, which is on the one hand at the bottom 48 of the Pistons 46 and on the other hand supported on the valve housing upper part 38.

Der Innendruck des Ausgleichbehälters wirkt in diesem Ausführungsbeispiel nicht auf den Kolben sondern über die Öffnungen 33, den Ringraum 44 und die Durchgänge 43 auf den äußeren Bereich der Rollmembran 45, während der innere Bereich der Rollmembran die Entlüftungsabschlüsse 41,42; 35, 36 verschließt bzw. öffnet.The internal pressure of the expansion tank does not act in this embodiment the piston but via the openings 33, the annular space 44 and the passages 43 on the outer area of the rolling membrane 45, while the inner area of the Roll membrane the vent closures 41.42; 35, 36 closes or opens.

An dem Zapfen 52 ist außerhalb des Ventilgehäuseoberteils 38 ein schwenkbares Bügelelement 54 befestigt, mit dem der Kolben 46 und damit die Rollmembran 45 unabhängig vom Druck im Ausgleichbehälter 12 manuell angehoben werden können. Das Bügelelement 54 hat zwei Schwenkstellungen (durchgezogen bzw. getrichelt dargestellt), wobei in der gestrichelt dargestellten Schwenkstellung der Kolben 46 in einer Position festgehalten ist, in der das Sperrventil geöffnet ist.On the pin 52 is a pivotable outside of the valve housing upper part 38 Fixed bracket element 54 with which the piston 46 and thus the rolling membrane 45th can be raised manually regardless of the pressure in the expansion tank 12. The bracket element 54 has two pivot positions (solid or dashed shown), wherein in the pivoted position shown in dashed lines the piston 46 in is held in a position in which the check valve is open.

Claims (11)

  1. A cooling circuit of an internal-combustion engine, with coolant which flows through cavities in the housing (7) of the said internal-combustion engine, with a coolant pump (8), a thermostat valve (9) for switching between a main circuit and a bypass circuit, a radiator (10) arranged in the main circuit, a compensating reservoir (12) which is provided with a pressure-control valve (13) and which is integrated in the bypass circuit and/or the main circuit of the coolant and through which the latter flows, characterized in that a shut-off valve (17, 17A), by which the connexion to the compensating reservoir (12) can be shut off, is arranged in an aerating line (15, 16) opening into the compensating reservoir (12), so that in the warming-up phase of the internal-combustion engine the volume of coolant stored in the compensating reservoir (12) is substantially disconnected from the circuit.
  2. A cooling circuit of an internal-combustion engine according to Claim 1, characterized in that the shut-off valve (17; 17A) is actuated as a function of the operating temperature of the coolant.
  3. A cooling circuit of an internal-combustion engine according to Claim 1 or 2, characterized in that the shut-off valve (17; 17A) is actuated as a function of the pressure in the compensating reservoir (12).
  4. A cooling circuit of an internal-combustion engine according to one of the preceding Claims, characterized in that the shut-off valve (17; 17A) is arranged on the compensating reservoir (12) and has a valve member (25; 45, 46) which is actuated by a setting unit (25; 46) acted upon by the pressure in the compensating reservoir (12).
  5. A cooling circuit of an internal-combustion engine according to Claim 4, characterized in that the valve member (25) is constructed in the form of a piston which can be acted upon by pressure.
  6. A cooling circuit of an internal-combustion engine according to Claim 4, characterized in that the valve member is connected to a diaphragm (45) which is acted upon by pressure.
  7. A cooling circuit of an internal-combustion engine according to one of Claims 4 to 6,
    characterized in that the valve member (25; 45, 46) is acted upon by the pressure in the compensating reservoir (12) against the action of a spring (27; 53).
  8. A cooling circuit of an internal-combustion engine according to one of the preceding Claims, characterized in that the valve member (25; 45, 46) co-operates with at least two aerating lines (15, 16), one of which is connected to the radiator (10) and the other of which is connected to one of the cavities in the housing (7) of the internal-combustion engine.
  9. A cooling circuit of an internal-combustion engine according to one of the preceding Claims, characterized in that the shut-off valve (17; 17A) is fastened to the compensating reservoir (12) in a releasable manner.
  10. A cooling circuit of an internal-combustion engine according to one of the preceding Claims, characterized in that the valve member (25; 45, 46) can be actuated manually independently of the pressure in the compensating reservoir (12).
  11. A cooling circuit of an internal-combustion engine according to Claim 10, characterized in that the valve member (25; 45, 46) comprises a pin (29; 52) which passes through the valve housing (20; 38) and which is accessible from the outside.
EP96119729A 1996-02-29 1996-12-10 Cooling circuit of an internal combustion engine Expired - Lifetime EP0793006B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19607638 1996-02-29
DE19607638A DE19607638C1 (en) 1996-02-29 1996-02-29 Internal combustion engine coolant circuit

Publications (2)

Publication Number Publication Date
EP0793006A1 EP0793006A1 (en) 1997-09-03
EP0793006B1 true EP0793006B1 (en) 2002-09-18

Family

ID=7786755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96119729A Expired - Lifetime EP0793006B1 (en) 1996-02-29 1996-12-10 Cooling circuit of an internal combustion engine

Country Status (6)

Country Link
US (1) US5836269A (en)
EP (1) EP0793006B1 (en)
JP (1) JPH09329021A (en)
KR (1) KR100381353B1 (en)
CN (1) CN1160123A (en)
DE (2) DE19607638C1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728814A1 (en) * 1997-07-05 1999-01-07 Behr Thermot Tronik Gmbh & Co Cooling system for an internal combustion engine of a motor vehicle
DE19831922A1 (en) * 1998-07-16 2000-01-20 Man Nutzfahrzeuge Ag Drive device in a motor vehicle
DE19948160B4 (en) * 1999-10-07 2010-07-15 Wilhelm Kuhn Cooling device for a liquid-cooled internal combustion engine of a motor vehicle
FR2804722B1 (en) * 2000-02-03 2002-03-08 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2804720B1 (en) 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2804719B1 (en) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2806444B1 (en) 2000-03-17 2002-06-07 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
US6532910B2 (en) 2001-02-20 2003-03-18 Volvo Trucks North America, Inc. Engine cooling system
US7152555B2 (en) * 2001-02-20 2006-12-26 Volvo Trucks North America, Inc. Engine cooling system
DE10127219A1 (en) * 2001-05-23 2002-11-28 Behr Thermot Tronik Gmbh Cooling system for internal combustion engine has coolant outlet of one row of cylinders connected to radiator inlet, that of another connected to thermostatic valve short circuit inlet
US6634322B2 (en) 2001-04-12 2003-10-21 Cold Fire, Llc Heat exchanger tempering valve
US6668766B1 (en) 2002-07-22 2003-12-30 Visteon Global Technologies, Inc. Vehicle engine cooling system with variable speed water pump
US6802283B2 (en) 2002-07-22 2004-10-12 Visteon Global Technologies, Inc. Engine cooling system with variable speed fan
US6668764B1 (en) 2002-07-29 2003-12-30 Visteon Global Techologies, Inc. Cooling system for a diesel engine
US6745726B2 (en) 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine
US7885627B2 (en) * 2003-07-07 2011-02-08 Advanced Micro Devices, Inc. Optimal initial gain selection for wireless receiver
US7194986B2 (en) * 2003-08-07 2007-03-27 Brp Us Inc. Actuator assisted blow-off assembly to control coolant flow in an internal combustion engine
DE102004058869B4 (en) 2004-12-06 2021-09-30 Att Automotivethermotech Gmbh Method and device for hot cooling of internal combustion engines
DE102004058865B4 (en) * 2004-12-06 2020-08-20 Att Automotivethermotech Gmbh Method and device for needs-based cooling and venting of internal combustion engines
JP4659769B2 (en) * 2007-01-25 2011-03-30 トヨタ自動車株式会社 Cooling system
SE530868C2 (en) * 2007-02-09 2008-09-30 Volvo Lastvagnar Ab Cooling
EP2039902A3 (en) * 2007-06-27 2010-03-17 Geiger Automotive GmbH Device for calibrating the flow of a cooling agent in a cooling circuit and cooling circuit
DE102008030567A1 (en) * 2008-06-27 2009-12-31 Bayerische Motoren Werke Aktiengesellschaft A fuel cell assembly having storage means for storing and providing liquid coolant
US8397681B2 (en) * 2009-09-02 2013-03-19 International Engine Intellectual Property Company, Llc Expansion tank for vehicle cooling system
DE102010018089B3 (en) * 2010-04-24 2011-07-14 Audi Ag, 85057 Valve arrangement for ventilation of refrigerant circuit of internal combustion engine, has valve by which primary and secondary ventilation lines are combined to joint
DE102010017766B4 (en) * 2010-07-06 2013-11-14 Ford Global Technologies, Llc. Cooling arrangement for internal combustion engines
DE102010033715A1 (en) * 2010-08-07 2012-02-09 Audi Ag Expansion tank for a coolant circuit
DE102011078293B4 (en) * 2011-06-29 2017-06-29 Röchling Automotive AG & Co. KG Expansion tank with a liquid check valve body and a relative to this movably received on this gas vacuum valve body and such a valve structure supporting lid for a surge tank
US20130073190A1 (en) * 2011-09-21 2013-03-21 Honda Motor Co., Ltd. Engine Start Up Control For A Motor Vehicle
DE102011116202B3 (en) 2011-10-15 2012-10-04 Audi Ag Coolant circuit for an internal combustion engine
KR101875620B1 (en) * 2012-04-10 2018-07-06 현대자동차 주식회사 Engine cooling system and electronic thermostat control system and method thereof
DE102012218392A1 (en) * 2012-10-09 2014-04-10 Reutter Gmbh Directional valve for surge tank of cooling system of combustion engine for e.g. passenger car, has pressure spring that is acted on valve element such that valve blocking operation is performed based on screwing of lid of surge tank
CN103437880A (en) * 2013-08-30 2013-12-11 重庆长安汽车股份有限公司 Engine cooling system and exhaust structure
WO2015168313A1 (en) * 2014-04-30 2015-11-05 Cummins Inc. System and method for optimizing the integration of engines and vehicle driveline retarders
DE102015105921B4 (en) 2015-04-17 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle and method for operating the same
DE102015109691A1 (en) 2015-06-17 2016-12-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Bleed valve for use in a cooling system of a motor vehicle
DE102015109690A1 (en) 2015-06-17 2016-12-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for use in a motor vehicle
CN107542572B (en) * 2016-06-24 2019-07-19 北汽福田汽车股份有限公司 Cooling system and vehicle with it
GB2554443A (en) * 2016-09-28 2018-04-04 Mclaren Automotive Ltd Coolant header tank
DE102016119181A1 (en) * 2016-10-10 2018-04-12 Volkswagen Aktiengesellschaft Internal combustion engine
DE102017204824B3 (en) 2017-03-22 2018-06-14 Ford Global Technologies, Llc Cooling system of a vehicle engine having a separation unit
KR20200014540A (en) * 2018-08-01 2020-02-11 현대자동차주식회사 Control method of cooling system for vehicle
DE102020100895B3 (en) * 2020-01-16 2021-02-25 Audi Aktiengesellschaft Expansion tank for a cooling circuit of a drive device of a motor vehicle and a corresponding drive device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2058995B2 (en) * 1970-12-01 1973-08-09 DEVICE FOR VENTILATING THE COOLING LIQUID OF AN COMBUSTION ENGINE
DE3718697C2 (en) * 1986-06-14 1997-06-19 Volkswagen Ag Cooling arrangement for an internal combustion engine of a vehicle
DE3716555A1 (en) * 1987-05-18 1988-12-08 Bayerische Motoren Werke Ag FILLING, VENTILATION AND PRESSURE CONTROL DEVICE FOR THE LIQUID COOLING CIRCUIT OF ENGINE AND WORKING MACHINES, IN PARTICULAR COMBUSTION ENGINES
FR2722244B1 (en) * 1994-07-07 1996-08-23 Valeo Thermique Moteur Sa THERMOREGULATION DEVICE OF A HEAT ENGINE
FR2722833B1 (en) * 1994-07-21 1996-09-06 Valeo Thermique Moteur Sa FAST FILLING ENGINE COOLING CIRCUIT

Also Published As

Publication number Publication date
JPH09329021A (en) 1997-12-22
KR970062273A (en) 1997-09-12
DE59609688D1 (en) 2002-10-24
KR100381353B1 (en) 2003-07-22
US5836269A (en) 1998-11-17
EP0793006A1 (en) 1997-09-03
DE19607638C1 (en) 1997-06-19
CN1160123A (en) 1997-09-24

Similar Documents

Publication Publication Date Title
EP0793006B1 (en) Cooling circuit of an internal combustion engine
DE2755466C3 (en) Thermostatic control valve
DE3433370C2 (en)
DE102004020588B4 (en) Engine cooling system
DE2314301A1 (en) CIRCULATION COOLING DEVICE FOR PISTON ENGINE ENGINE
DE102007056949B4 (en) Two coolant temperature controlled thermostat for an engine cooling system
DE10061546A1 (en) Cooling system for an internal combustion engine of a motor vehicle cooled with liquid coolant
DE2755464A1 (en) THERMOSTATIC CONTROL VALVE
DE69707980T2 (en) Cooling device of an internal combustion engine
DE2546273A1 (en) DEVICE FOR CONTROLLING THE PISTON OIL COOLING FOR A PISTON ENGINE
DE102010044026A1 (en) Hybrid cooling system of an internal combustion engine
DE2847057A1 (en) INTERNAL COMBUSTION ENGINE WITH COOLING SYSTEM
DE102004020589A1 (en) Temperature-dependent flow control valves for engine cooling systems
DE102016209592B4 (en) valve for a vehicle
EP3523524A1 (en) Internal combustion engine
DE19814252A1 (en) Thermostatic valve
EP0671552A1 (en) Cooling system for an internal combustion engine
DE2923523A1 (en) Thermostatic engine coolant control - has heat-up and by=pass valves operated by expansion element in independent coolant circuit
DE69819653T2 (en) Cooling water return device for an internal combustion engine
DE4102853A1 (en) EVAPORATION COOLED INTERNAL COMBUSTION ENGINE
DE3718697C2 (en) Cooling arrangement for an internal combustion engine of a vehicle
DE112018004425T5 (en) Active heating system and heating process
DE4426435A1 (en) Thermostatic valve for the coolant circuit of an internal combustion engine
DE4040323A1 (en) Thermostatic valve for engine cooling system - is designed to provide limited by=pass flow of coolant
DE102006048527A1 (en) Cooling circuit for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980204

17Q First examination report despatched

Effective date: 20010330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609688

Country of ref document: DE

Date of ref document: 20021024

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030619

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110310 AND 20110316

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110331 AND 20110406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151207

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609688

Country of ref document: DE