EP0783365A1 - Tragbares mischermodul - Google Patents

Tragbares mischermodul

Info

Publication number
EP0783365A1
EP0783365A1 EP95935212A EP95935212A EP0783365A1 EP 0783365 A1 EP0783365 A1 EP 0783365A1 EP 95935212 A EP95935212 A EP 95935212A EP 95935212 A EP95935212 A EP 95935212A EP 0783365 A1 EP0783365 A1 EP 0783365A1
Authority
EP
European Patent Office
Prior art keywords
surge tank
mixture
mixer
eductor
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95935212A
Other languages
English (en)
French (fr)
Other versions
EP0783365B1 (de
EP0783365A4 (de
Inventor
Charles S. Alack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semi Bulk Systems Inc
Original Assignee
Semi Bulk Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semi Bulk Systems Inc filed Critical Semi Bulk Systems Inc
Publication of EP0783365A1 publication Critical patent/EP0783365A1/de
Publication of EP0783365A4 publication Critical patent/EP0783365A4/de
Application granted granted Critical
Publication of EP0783365B1 publication Critical patent/EP0783365B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/501Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use
    • B01F33/5013Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use movable by mechanical means, e.g. hoisting systems, grippers or lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/16Discharge means, e.g. with intermediate storage of fresh concrete
    • B28C7/161Discharge means, e.g. with intermediate storage of fresh concrete with storage reservoirs for temporarily storing the fresh concrete; Charging or discharging devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/502Vehicle-mounted mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/502Vehicle-mounted mixing devices
    • B01F33/5023Vehicle-mounted mixing devices the vehicle being a trailer which is hand moved or coupled to self-propelling vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C9/00General arrangement or layout of plant
    • B28C9/04General arrangement or layout of plant the plant being mobile, e.g. mounted on a carriage or a set of carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers

Definitions

  • This invention relates generally to an eductor- mixer system particularly adapted for the preparation of dispersions, solutions and slurries and, more particularly, to a portable system which can be readily moved into a position close to a source of fluent particulate material (e.g., powder or other pressure transportable fluidizable material) for mixing the particulate material with a pressurized working fluid to form a dispersion, slurry or solution which can then be pumped to a remote location.
  • a source of fluent particulate material e.g., powder or other pressure transportable fluidizable material
  • This invention is generally in the field of co- assigned U.S. patents 4,182,386 and 4,186,772, the former of which relates to a closed system and container for fluidized unloading of powdered material, and the latter of which relates to an eductor-mixer which is operable for receiving fluidized powdered material from the closed container system, for mixing the powdered material with a pressurized working fluid (e.g., water), and for discharging the mixture directly into a suitable receptacle, typically a large tank for processing, storage or the like.
  • a pressurized working fluid e.g., water
  • the only way to eliminate dust completely is to carry out the unloading process in a location remote from (e.g., partitioned off from) the processing area.
  • the container and the eductor-mixer must be positioned relatively close to one another (e.g., within 20 feet) .
  • the eductor-mixer may by necessity also be at a location distant from the processing area, or at least distant from sections of the processing area which must be supplied by the eductor- mixer.
  • a portable mixing module which functions as an in-line mixer capable of mixing a particulate material with a suitable fluid and then pumping the mixture to virtually any desired location, even distant locations; the provision of such a module which provides for flexibility in the placement of the eductor-mixer relative to processing and/or storage tanks which are to receive product discharged by the mixer; the provision of such a module which can be used to mix essentially any fluidizable material with virtually any pressurized working fluid; the provision of such a module which can deliver mixed product in large quantities and at high flow rates to one or more destinations; the provision of such a module which is small and relatively lightweight; and the provision of a module and process for mixing a particulate solid material with a pressurized working fluid to provide a mixture which then can be pumped to a location remote from the eductor-mixer at a rate substantially equal to the rate at which the product is mixed.
  • the eductor-mixer has a first inlet adapted to be connected to a source of fluent particulate material, a second inlet adapted to be connected to a source of pressurized working fluid, and a discharge adapted for discharging a mixture of the fluent particulate material and the working fluid at a first rate.
  • the module also includes a small surge tank mounted on and movable with the frame for receiving the mixture discharged from the eductor-mixer.
  • the surge tank has an outlet.
  • a pump is also mounted on and movable with the frame.
  • the pump has an intake connected to the outlet of the surge tank and a discharge adapted for connection to an outfeed line for delivery of mixture from the surge tank to a remote location.
  • the pump is operable to pump mixture from the surge tank at a second flow rate not substantially less than the first flow rate.
  • This invention also involves an in-line process for mixing a particulate solid material with a pressurized working fluid.
  • the process comprises conveying the particulate material through a first supply line from a source of said particulate material to a first inlet of an eductor-mixer, and pumping pressurized working fluid through a second supply line to a second inlet of the eductor-mixer.
  • the eductor-mixer is operable to mix the particulate material and the working fluid to form a mixture of the partic llate material and the working fluid.
  • the method further includes the steps of discharging the mixture from the eductor-mixer into a small surge tank at a first flow rate, and pumping the mixture out of the tank at a second flow rate approximately equal to said first flow rate for delivery to a remote location via an outfeed line.
  • Fig. 1 is an elevational view of a portable mixing module of this invention for mixing particulate material from a container with a liquid and for pumping the resultant mixture to a processing tank;
  • Fig. 2 is an enlarged portion of part of Fig. 1 showing an alternative embodiment of the frame of the module;
  • Fig. 3 is an enlarged sectional view of a portion of Fig. 1 showing certain connections; and Fig. 4 is a schematic view of a different system using a module of the present invention.
  • a portable mixing module of the present invention for preparing solutions, dispersions and slurries is designated in its entirety by the reference numeral 1.
  • the module comprises a portable frame generally designated 3, an eductor-mixer generally designated 5 mounted on the frame, a surge tank 7 mounted on and movable with the frame for receiving mixture discharged by the eductor-mixer, and a pump indicated at 9 mounted on and movable with the frame 3 for pumping mixed product from the surge tank 7 to a remote location, such as the processing tank indicated at 13.
  • the frame 3 comprises a generally rectangular metal base 15 on legs 17.
  • the legs 17 support the base 15 above the floor so the module can readily be moved by forklift truck.
  • the base is provided with rollers 21 so the module can be readily moved by hand.
  • a platform 23 may be provided adjacent one end of the base to facilitate access to the inside of the surge tank 7.
  • a vertical frame structure 27 extends up from the base at its opposite end (its left end as viewed in Fig. 1) .
  • the eductor-mixer 5 is of the type disclosed in co-assigned U.S. Patent No. 4,186,772, which is incorporated herein by reference.
  • the eductor-mixer is supported on the frame 3 by means of a post 31 extending up from the base 15 of the frame.
  • the mixer has a first inlet 33 connected to a source 35 of fluent particulate material (e.g., powdered milk, sugar, dry chemicals) via a first supply line designated 37.
  • the source 35 may be a flexible bag/pallet container of the type disclosed in co-assigned U.S. Patent No. 4,182,386, or a hopper system of the type described in co-assigned U.S. Patent No.
  • the particulate material is fluidized and then conveyed in a fluidized state to the first inlet 33 of the eductor- mixer through the supply line 37.
  • the eductor-mixer 5 further has a second inlet 41 adapted to be connected to a source 43 of pressurized working fluid via a second supply line indicated at 45.
  • This source may be a pump, for example, which pumps a suitable working fluid (e.g., liquid) to the educator-mixer.
  • a suitable working fluid e.g., liquid
  • the eductor-mixer operates to mix the particulate material and working fluid supplied via respective lines 37 and 45 and to discharge the resulting mixture into the surge tank 7 via a discharge conduit 47.
  • the working fluid supply line 45 is sealingly connected to one end of a flanged tubular fitting 51 mounted (e.g., welded) in horizontal position on the vertical frame structure 27.
  • the connection is preferably made by a suitable quick- connect, quick-disconnect device such as a quick-action (e.g., toggle-action) hoop clamp 53 of the type commercially available under the trademark TRI-CLAMP ® from Tri-Clover, Inc. of Kenosha, WI.
  • a flange 55 on the end of the tubular fitting 51 is drawn into sealing engagement with a flange 57 on the end of the supply line 45 to provide a sealing connection.
  • the opposite end of the tubular fitting is sealingly connected by a similar clamping device 53 to the second inlet 41 of the eductor-mixer 5. Other devices may be used to make these connections.
  • the surge tank 7 is a relatively small, open- top tank of appropriate material (e.g., stainless steel) mounted on the frame 3 by means of legs 61 extending up from the base 15.
  • the tank has an inlet tube 63 coupled by suitable means to the outlet end of the discharge tube 47 of the eductor-mixer 5, and a. generally conical bottom 67 with a cylindric outlet 71 extending down from its lower end.
  • the tank 7 is open to atmospheric pressure to avoid any build-up of pressure which might interfere with the proper operation of the eductor-mixer 5 (which must generate a vacuum to draw the fluidized material through line 37) .
  • mixture from the eductor-mixer 5 enters the surge tank 7 at a first rate (e.g., 500-5000 lbs per minute), and mixture exits the tank at a second rate not substantially less than, and preferably substantially equal to, the first rate.
  • a first rate e.g., 500-5000 lbs per minute
  • the tank 7 can be small in size, preferably having a maximum capacity of less than the stated first flow rate (in gallons of mixture per minute) multiplied times about two minutes, and even more preferably a maximum capacity of less than the stated first flow rate (in gallons of mixture per minute) multiplied times about 0.2 minutes.
  • the small size of the tank increases the portability of the module.
  • the outlet 71 of the surge tank 7 is connected to the intake of the pump 9 by means of an elbow indicated at 75 in Fig 1.
  • the pump 9 may be a positive displacement pump or a centrifugal pump, depending on the product to be pumped, under the control of an ac variable drive 77.
  • the pump has a discharge 81 connected to a discharge line 83 which is connected to one end of a second flanged tubular fitting 87 mounted (e.g., welded) in horizontal position on the vertical frame structure 27.
  • the connection is preferably made by a suitable quick-connect, quick-disconnect device such as a quick- action hoop clamp 53 of the type described above.
  • the opposite end of the tubular fitting 87 is connected by a similar clamping device 53 to an outfeed line 91 through which product can be pumped to a desired location, such as a processing area, or to a mix tank, or to a storage or holding tank (e.g., tank 13).
  • a desired location such as a processing area, or to a mix tank, or to a storage or holding tank (e.g., tank 13).
  • the location can be nearby (e.g., less than 20 feet) or distant (several hundred feet) ; it makes no difference. The distance is limited only by the size of the pump 9 and line losses.
  • the rate at which the mixture enters the surge tank 7 is preferably approximately equal to the rate at which the mixture exits the tank (i.e., the rate at which the pump 9 pumps mixture from the tank) . Inevitably, however, these rates will not always match exactly. Accordingly, provision is made for monitoring the level of mixture in the tank 7 and for controlling the speed of the pump 9 accordingly.
  • a level sensor 95 e.g., a pressure sensor
  • variable drive 77 of the pump (which may broadly be referred to as pump control means) is responsive to these output signals for increasing the speed and discharge rate of the pump 9 if the level of mixture in the surge tank rises to or above a first predetermined level, and for decreasing the speed and discharge rate of the pump if the level of mixture in the surge tank falls to or below a second predetermined level.
  • This design maintains the level of mixture in the tank 7 within predetermined limits, which allows the size of the tank to be minimized while avoiding over and under filling.
  • An electronic control panel 99 mounted on the frame has the controls necessary to operate the pump 9 and valving associated with the eductor mixer.
  • the portable module is simply moved to a location close to a container (e.g., 35) of particulate material to be mixed with a working fluid.
  • the module should be positioned close to (prefereably within 20 feet of) the container because the conveyance of fluidized material from the conveyor is effected by a vacuum created by the eductor-mixer during its operation, as described in U.S. Patent 4,186,772.
  • Fig. 1 illustrates a typical use of the invention where the container is located on one side of a wall W to isolate any dust resulting from unloading of the container, and the module of this invention is located close by on the other side of the wall in a
  • both the module and the container can be located outside the “clean-room” environment.
  • the supply line 37 from the container is connected to the first inlet 33 of the eductor-mixer; the supply line 45 from pump 43 is connected to the first tubular fitting 51 on the frame 3; and the outfeed line 91 is connected to the second tubular fitting 87 on the frame.
  • pump 43 is turned on to supply working fluid (e.g., a suitable liquid) to the eductor-mixer.
  • working fluid e.g., a suitable liquid
  • the take-away pump 9 operates to pump mixture from the surge tank at a rate substantially equal to the rate at which product enters the tank, the level of mixture in the tank being monitored by the aforementioned level sensor 95 to ensure that the level of mixture in the tank remains within desired limits.
  • Product pumped from the surge tank flows through outfeed line 91 to one or more locations, such as one or more processing or storage tanks (e.g., 13), which may be nearby or distant. If desired, the product may be recirculated via pump 43 back to the eductor-mixer 5 for additional mixing (thickening) .
  • Fig. 4 shows a alternative arrangement where the eductor-mixer 5 has a plurality of first inlets 33A, 33B adapted for connection to a plurality of sources 35A, 35B of particulate material.
  • the sources may be any type of container, including those referred to above, capable of fluidizing particulate material.
  • the containers may contain the same material, or they may contain different materials. In a situation where they contain the same material, material from one container (e.g., 35A) is conveyed to a respective inlet (e.g., 33A) to effect mixing of the material with working fluid.
  • a second container e.g., 35B
  • the appropriate inlet e.g., 33B
  • Suitable valving associated with the inlets 33A, 33B of the eductor-mixer 5 is provided for permitting change-over from one container/inlet to the other. If the containers hold different materials, this valving can be operated to switch between containers/inlets as needed. It will be understood that the eductor-mixer 5 may have more than the two inlets 33A, 33B shown in Fig. 4.
  • the mixing module of the present invention and process carried out by the mixing module reduces problematic powder handling by virtue of the fact that the powder can be unloaded and mixed at one location and the resultant mixture pumped to a remote location for subsequent use. Moreover, the mixture is pumped immediately after it is mixed at a very high rate, i.e., a rate which is substantially equal to the rate of discharge from the mixer.
  • the entire process is essentially an "in- line" process which does not require the need for a large holding tank.
  • only a small surge tank is needed, the function of which is to hold product discharged by the eductor-mixer for only a very short duration of time before it is pumped to its final destination.
  • the module can be made very compact for easy portability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Food-Manufacturing Devices (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
EP95935212A 1994-09-30 1995-09-28 Mischermodul Expired - Lifetime EP0783365B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/316,649 US5544951A (en) 1994-09-30 1994-09-30 Mixing module for mixing a fluent particulate material with a working fluid
US316649 1994-09-30
PCT/US1995/012501 WO1996010455A1 (en) 1994-09-30 1995-09-28 Portable mixing module

Publications (3)

Publication Number Publication Date
EP0783365A1 true EP0783365A1 (de) 1997-07-16
EP0783365A4 EP0783365A4 (de) 1998-08-12
EP0783365B1 EP0783365B1 (de) 2003-01-02

Family

ID=23230007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95935212A Expired - Lifetime EP0783365B1 (de) 1994-09-30 1995-09-28 Mischermodul

Country Status (6)

Country Link
US (1) US5544951A (de)
EP (1) EP0783365B1 (de)
AT (1) ATE230300T1 (de)
DE (1) DE69529291T2 (de)
ES (1) ES2189831T3 (de)
WO (1) WO1996010455A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947596A (en) * 1997-06-10 1999-09-07 U.S. Filter/Stranco Dry powder batch activation system
US6190461B1 (en) * 1997-10-28 2001-02-20 Semi-Bulk Systems, Inc. Sugar liquification system and process
US6200937B1 (en) 1998-06-09 2001-03-13 Neutrogena Corporation Anti-residue shampoo and liquid toiletry production method
US6694796B2 (en) * 2001-01-23 2004-02-24 B3 Systems, Inc. Device and method for introducing a known dust concentration spike for calibrating particulate matter continuous emission monitoring systems
US7311270B2 (en) * 2003-12-23 2007-12-25 M-I L.L.C. Device and methodology for improved mixing of liquids and solids
US7296599B2 (en) * 2005-03-31 2007-11-20 3D Systems, Inc. Pneumatic powder transport system
EP1745840A1 (de) * 2005-07-22 2007-01-24 Services Petroliers Schlumberger Vorrichtung und Verfahren zum Mischen eines flüssigen und eines fliessfähigen pulverförmigen Materials zur Herstellung einer Suspension
US7862225B2 (en) * 2006-07-25 2011-01-04 Stone Soap Company, Inc. Apparatus and method for mixing a cleaning solution for a vehicle washing system
US8646493B2 (en) * 2009-03-02 2014-02-11 Envirotower Inc. Method and apparatus for changeover of container in a fluid dispenser
JP5832775B2 (ja) * 2011-04-19 2015-12-16 株式会社菊水製作所 攪拌フィードシュー及び粉体圧縮成形機
US11478765B2 (en) 2016-11-10 2022-10-25 Gel Systems Canada Inc. Gel production system and method
WO2020256737A1 (en) 2019-06-21 2020-12-24 Halliburton Energy Services, Inc. Continuous solids discharge
NO20211309A1 (en) 2019-06-21 2021-10-29 Halliburton Energy Services Inc Continuous Extruded Solids Discharge
US11713633B2 (en) * 2021-07-28 2023-08-01 Stewart & Stevenson Llc Dry product additive unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2357400A1 (fr) * 1976-07-08 1978-02-03 Henot Lucien Installation mobile et autonome pour le stockage et/ou le melange de produits solides divises et de liquides, utilisable comme centrale pour la preparation de beton
EP0121998A2 (de) * 1983-03-11 1984-10-17 Halliburton Company Mischungen, beispielsweise anwendbar für das Tiefbohren
US4915505A (en) * 1980-04-28 1990-04-10 Geo Condor, Inc. Blender apparatus
US4919540A (en) * 1988-05-27 1990-04-24 Halliburton Company Self-leveling mixer apparatus
DE3921143A1 (de) * 1989-06-28 1991-01-10 Bohle L B Pharmatech Gmbh Mischgranulator
EP0419280A1 (de) * 1989-09-21 1991-03-27 Halliburton Company Mischapparat
EP0419281A2 (de) * 1989-09-21 1991-03-27 Halliburton Company Verfahren zum Zementieren eines Bohrloches

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1849945A (en) * 1929-05-11 1932-03-15 Roy H Mobley Method and means for mixing and applying insulating material
US2017867A (en) * 1930-02-05 1935-10-22 Merle E Nantz Mixing device
US2795403A (en) * 1954-10-28 1957-06-11 William H Mead Slurry mixing method and apparatus
US3491949A (en) * 1967-08-09 1970-01-27 Forrest City Machine Works Inc Mobile apparatus for batching and applying liquid and particulate fertilizer material or the like
US3547409A (en) * 1968-05-23 1970-12-15 Jacuzzi Bros Inc Assembly for producing detergent foam
US3777775A (en) * 1972-10-10 1973-12-11 Monsanto Co Portable system for the preparation of slurries and solutions
US3819157A (en) * 1973-02-01 1974-06-25 Universal Oil Prod Co Mixing apparatus
US4007921A (en) * 1976-01-19 1977-02-15 The Dow Chemical Company Apparatus for mixing dry particles with a liquid
US4054161A (en) * 1976-04-22 1977-10-18 Semi-Bulk Systems, Inc. Apparatus for filling a container and method of de-aerating material
US4100614A (en) * 1976-06-18 1978-07-11 Houdaille Industries, Inc. Method for polymer dissolution
US4186772A (en) * 1977-05-31 1980-02-05 Handleman Avrom Ringle Eductor-mixer system
US4149755A (en) * 1977-05-31 1979-04-17 Handleman Avrom Ringle Fluidizable material handling apparatus
US4863277A (en) * 1988-12-22 1989-09-05 Vigoro Industries, Inc. Automated batch blending system for liquid fertilizer
GB8915978D0 (en) * 1989-07-12 1989-08-31 Mcdermott Matthew Apparatus for dissolving solids in liquids

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2357400A1 (fr) * 1976-07-08 1978-02-03 Henot Lucien Installation mobile et autonome pour le stockage et/ou le melange de produits solides divises et de liquides, utilisable comme centrale pour la preparation de beton
US4915505A (en) * 1980-04-28 1990-04-10 Geo Condor, Inc. Blender apparatus
EP0121998A2 (de) * 1983-03-11 1984-10-17 Halliburton Company Mischungen, beispielsweise anwendbar für das Tiefbohren
US4919540A (en) * 1988-05-27 1990-04-24 Halliburton Company Self-leveling mixer apparatus
DE3921143A1 (de) * 1989-06-28 1991-01-10 Bohle L B Pharmatech Gmbh Mischgranulator
EP0419280A1 (de) * 1989-09-21 1991-03-27 Halliburton Company Mischapparat
EP0419281A2 (de) * 1989-09-21 1991-03-27 Halliburton Company Verfahren zum Zementieren eines Bohrloches

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9610455A1 *

Also Published As

Publication number Publication date
EP0783365B1 (de) 2003-01-02
ATE230300T1 (de) 2003-01-15
DE69529291D1 (de) 2003-02-06
US5544951A (en) 1996-08-13
EP0783365A4 (de) 1998-08-12
ES2189831T3 (es) 2003-07-16
DE69529291T2 (de) 2009-09-17
WO1996010455A1 (en) 1996-04-11

Similar Documents

Publication Publication Date Title
US5544951A (en) Mixing module for mixing a fluent particulate material with a working fluid
KR0170757B1 (ko) 초미세분말의 정량 뱃치 공급방식 및 그 장치
US5378089A (en) Apparatus for automatically feeding hot melt tanks
US8480336B2 (en) Method and apparatus for pneumatically conveying bulk material which does not flow readily
CA2366659C (en) System for handling bulk particulate materials
US20100025041A1 (en) Portable well treating fluid mixing system and method
US7475793B2 (en) Bulk bag unloader with flow regulation
JP2001502650A (ja) 粉状物質を空気力で搬送する装置および方法、ならびにその使用方法
US4511291A (en) Vacuum material conveying apparatus
US4082124A (en) Handling fluent media
US4152029A (en) Fluent solid material handling means
EP3113876B1 (de) Temporäres zugabe- oder injektionssystem
US7234493B2 (en) Device and method for transferring a dusty powdery grain-like or granular conveyed material out of a storage receptacle and into a working or transfer receptacle or a similar accomodating space
US3840155A (en) Nuclear fuel handling powder container
US3905650A (en) Material transfer system
US5868319A (en) Adhesive dispensing system
US4744701A (en) Drum unloader
JPH0852342A (ja) 粉粒体ミキサープラントにおける粉粒体の移送制御方法とこれに用いられる装置
US2767030A (en) Apparatus for conveying pulverulent material in fixed installations
US3208799A (en) Dry material transfer apparatus
US11820274B2 (en) Apparatus and methods for offloading cargo from tank trailers
WO2003089346A1 (en) Transportable pressure silo
US20220347639A1 (en) Apparatus and method for providing active agent compositions from fluid
CN212167397U (zh) 反应装置
US3578814A (en) Method and apparatus for conveying dust

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19990406

RTI1 Title (correction)

Free format text: MIXING MODULE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

REF Corresponds to:

Ref document number: 230300

Country of ref document: AT

Date of ref document: 20030115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: 20030102

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69529291

Country of ref document: DE

Date of ref document: 20030206

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030402

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030402

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2189831

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100928

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69529291

Country of ref document: DE

Representative=s name: W.P.THOMPSON & CO., GB

Ref country code: DE

Ref legal event code: R082

Ref document number: 69529291

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130926

Year of fee payment: 19

Ref country code: ES

Payment date: 20130926

Year of fee payment: 19

Ref country code: DE

Payment date: 20130927

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130927

Year of fee payment: 19

Ref country code: FR

Payment date: 20130919

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130927

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69529291

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140929