EP0781929B1 - Vorrichtung zum Pumpen oder Verdichten eines mehrphasigen Fluids mit einer Tandem Beschaufelung - Google Patents

Vorrichtung zum Pumpen oder Verdichten eines mehrphasigen Fluids mit einer Tandem Beschaufelung Download PDF

Info

Publication number
EP0781929B1
EP0781929B1 EP96402879A EP96402879A EP0781929B1 EP 0781929 B1 EP0781929 B1 EP 0781929B1 EP 96402879 A EP96402879 A EP 96402879A EP 96402879 A EP96402879 A EP 96402879A EP 0781929 B1 EP0781929 B1 EP 0781929B1
Authority
EP
European Patent Office
Prior art keywords
blades
blade
parameter
ratio
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96402879A
Other languages
English (en)
French (fr)
Other versions
EP0781929A1 (de
Inventor
Régis Vilagines
Christian Bratu
Florent Spettel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0781929A1 publication Critical patent/EP0781929A1/de
Application granted granted Critical
Publication of EP0781929B1 publication Critical patent/EP0781929B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2288Rotors specially for centrifugal pumps with special measures for comminuting, mixing or separating

Definitions

  • the present invention relates to a fluid compression device multiphase which, before being compressed and under pressure conditions and of temperature considered, consist of a mixture in particular of a liquid phase and a gaseous phase not dissolved in the liquid, this liquid may or may not be saturated with gas.
  • the compression device or compression cell according to the invention is particularly well suited for pumping a multiphase fluid, for example, but not exclusively, a multiphase petroleum effluent composed of a mixture of water, oil and gas, and possibly particles solid. Pumping such an effluent poses problems all the more difficult to solve that in the thermodynamic conditions where is found the multiphase fluid before pumping, the value of the volumetric ratio of the gas to liquid is greater.
  • volumetric ratio of gas and liquid is defined as the ratio of the volume of fluid in gaseous state to volume of fluid in liquid state, the value of this ratio being in particular function of the thermodynamic conditions of the multiphase fluid.
  • a solution consists in separating the liquid phase from the gas phase before pumping, and process the phases separately, in separate compression circuits respectively adapted to communicate a compression value to a essentially liquid phase or an essentially gaseous phase. Setting using separate circuits is not always possible and often leads to larger, more expensive and more complex pumping systems.
  • blading profiles making it possible to obtain this result, in particular the applicant's patents FR-2,157,437, FR-2,333,139, FR-2,471,501 and FR-2,665,224, which specify blade profiles or even a geometry chosen for the fluid passage section delimited by two successive blasting.
  • these profiles relate to blading simple, that is to say comprising only one piece unlike Blades, called “tandem blading", which include for the same group, at minus two blades.
  • the pumping of multiphase fluid can be improved by using blades tandem or "tandem blading" type with a geometric configuration adapted to compress a multiphase fluid comprising at least one liquid phase and at least one vapor or gas phase, the proportions of these two phases that can vary over time.
  • the device according to the present invention uses tandem blades, comprising blades formed by a or more profiles or blades.
  • the first blade called for example the main blade
  • the second blade is called, for example, auxiliary blade.
  • each of these blades makes it possible to optimize the compression of a multiphase fluid and remixing at least part of the liquid phase coming from a first group of blades with at least one part of the gas phase from the previous group of blades. We thus promotes the meeting of at least part of the gas phase which flows near the upper surface and at least part of the phase liquid which circulates on the side of the lower surface.
  • the different blades forming a blade can be found completely separate from each other or derive from a dawn in which are arranged orifices, or passage lights, each of the parts separated by these orifices which can be assimilated to a blade.
  • the present invention also relates to a device comprising for example at least one impeller comprising two blades or group of blades G 1 , G2 each comprising a first blade A 1j and a second blade A 2j .
  • the device comprises for example a rectifier and / or an impeller comprising at least two groups of blades G 1 , G 2 each comprising a first blade (A 11 , A 12 ) and a second blade (A 21 , A 22 ), the geometric characteristics of said first and second blades of each of the groups of blades and the positioning of the different groups of blades relative to one another are for example determined as a function of three of the parameters given in claims 2 and / or 3, parameter 1, parameter 2 and parameter 3, each of these parameters belonging to the intervals cited above.
  • the geometric characteristics of at least one impeller and / or at least one rectifier of the compression device are for example specified using the fourth parameter, the value of the camber ratio ⁇ j being chosen in combination with the three values of the parameters of claims 2 and / or 3.
  • the ratio of maximum thicknesses of the first and second blading e1 / e2 is for example between 0.5 and 1, for an impeller and / or a rectifier.
  • the thickness e1 of the first blade is between 2 and 10 mm and / or the thickness e2 of the second blade is between 2 and 20 mm.
  • a dawn is for example linked to a previous dawn and / or a dawn next using a mechanical element.
  • the device comprises for example at least one rectifier and at least an impeller, the impeller is for example placed before the impeller when we consider the direction of fluid flow.
  • the device comprises for example at least one impeller and at least two rectifiers, the impeller being for example disposed between the two rectifiers.
  • the invention also relates to a compression or pumping a multiphase fluid comprising at least one gaseous phase and at least one liquid phase, the device comprising a hollow casing having a inlet port and an outlet port for said multiphase fluid, at at least one rotor which can rotate inside said casing along an axis of Ox rotation, said rotor consisting of a hub and at least one blade integral with this hub, said blade comprising a first face or upper surfaces and a second face designated lower surface.
  • the device for compressing or pumping a multiphase fluid is characterized in that said blade is provided on at least part of its length of one or more openings allowing communication the two said lower and upper surfaces, in order to promote the encounter at least part of the gaseous phase flowing near the upper surface and at least part of the liquid phase flowing from the side of the lower surface.
  • the invention also relates to a multiphase pump intended for example with the pumping of multiphase petroleum type effluents. She is characterized in that it comprises at least one impeller and at least one rectifier which has one of the geometric characteristics for example previously mentioned.
  • a multiphase pump intended pumping multiphase petroleum effluent comprising for example a liquid phase, a gas phase and possibly a solid phase in the form of particles.
  • a fluid multiphase including in particular a liquid phase and a gas phase, and possibly a solid phase which can be in the form of solid particles for example sand or viscous particles such as hydrate agglomerates.
  • the liquid phase can in particular consist of liquids of different natures, just as the gas phase can be made up of gases of different types.
  • the fluid has phases of different natures inside and outside.
  • the exterior of the compression device unlike fluids monophasics which can undergo transformations inside the device.
  • Figures 1 and 1A schematically show in axial section a particular, non-limiting embodiment of the device according to the invention intended for pumping a multiphase petroleum effluent.
  • the pumping device comprises a hollow casing 1, which is by cylindrical example to be easily introduced into a well, for non-limiting applications of the device according to the invention relating to pumping effluent in a production well.
  • the casing 1 is provided with at least one orifice 2 for admitting the multiphase fluid and at least one orifice discharge 3, which communicates with the flow circuit of the pumped fluid.
  • This circuit is shown diagrammatically by a pipe or pipe 4 at the end of which the housing 1 is fixed by any suitable means known to those skilled in the art loom for example a thread referenced 5 in the figure.
  • the intake port 2 is present in the form of lights made in the wall of the casing 1, and the pumping device comprises at these orifices a deflector 14 integral with the casing 1 to deflect the fluid after it enters the casing and it print a speed having a substantially axial direction, that is to say substantially parallel to the axis of rotation of the pump.
  • a rotor comprising a shaft 6 rotated by motor means 7 ( Figure 1), such as for example, but not exclusively, an electric motor, and possibly a transmission, shown schematically at 8 ( Figure 1) allowing in particular to adapt the rotational speed of the motor shaft at the rotational speed at which be trained tree 6.
  • motor means 7 such as for example, but not exclusively, an electric motor, and possibly a transmission, shown schematically at 8 ( Figure 1) allowing in particular to adapt the rotational speed of the motor shaft at the rotational speed at which be trained tree 6.
  • the shaft 6 is for example held in position by at least two separate bearings 9 and 10, for example described in the applicant's patent FR-2471501.
  • the bearing 10 is made integral with the casing 1 by radial arms 11, of so that the spaces between these radial arms allow the fluid to flow in the direction indicated by the arrow F.
  • At least one element or stage adapted to increase the total energy of the fluid.
  • the device also includes one or more elements rectifiers.
  • a rectifier 24, 25, 26
  • each rectifier being secured to housing 1, for example, by means of fixing screws 27.
  • rectifiers is not necessary for the implementation of the device according to the invention. Nevertheless, it offers a significant advantage because it allows to guide the fluid or effluent through the different stages of the compression device.
  • FIG. 2 shows, in perspective view, a non-limiting embodiment of a pressurizing element or impeller stage essentially comprising a hub 28 integral with the shaft 6 which, during the operation of the device, is rotated in the direction indicated by the arrow R .
  • This hub 28 comprises at least one blade 30 composed of two blades 30a and 30b, hereinafter called first blade or main blade and second blade or auxiliary blade, whose geometric characteristics and positioning relative to each other are given in connection with FIG. 3.
  • the number of blades 29, 30 is in no way limiting and given by way of example only. In general, this number is chosen to facilitate the static and dynamic balancing of the rotor.
  • the height of the blades is such that the shape which they define during their rotation is complementary to the bore which, in this embodiment, is cylindrical.
  • the effective profile of a tandem blade or a group of blades corresponding to the profile that dawn would have if it were made up of a single part, may be substantially identical to one of the profiles described in the FR-2,157,437, FR-2,333,139, FR-2,471,501 and FR-2,665,224 of the applicant, the latter defining the profile of a blade from the section variation of an orthoradial canal defined by two successive blades.
  • the profile of a blade tandem comprising a first blade 30a and a second blade 30b can effect be assimilated to an effective profile taking into account the profiles of each of the blades. It is also possible to define an orthoradial channel as the channel delimited by two effective blades or group of blades.
  • each blade of a tandem blade can be chosen according to one profiles described in these patents.
  • the number of tandem blades i.e. groups of blades arranged in tandem with each other, is always preferably greater than 2.
  • this number of blades can be between 3 and 8, and preferably between 4 and 6, in particular for impellers with a large outer diameter of the blades, understood by example between 200 and 400mm.
  • the blades forming a blade or a group of blades and the arrangement of the blades and / or blades relative to each other inside the device compression have geometrical characteristics determined, by example using at least one of the parameters given in FIG. 3.
  • each group of blades G j comprises, for example two blades A 1j and A 2j arranged one after the other, but could without departing from the scope of the invention be extended to groups of blades with a number of blades greater than 2.
  • the groups of blades are designated in FIG. 3, respectively by G 1 and G 2 .
  • Each of the groups includes a first dawn A 1j or main dawn and a second dawn A 2j or auxiliary dawn.
  • a representation to describe a blade in a simple way is to define its geometric layout on the developed surface of the envelope cylindrical to the outside radius.
  • the axis of rotation is represented by the line m, and the line p corresponds to the peripheral or tangential direction of the compression device.
  • the arrow E corresponds to the direction of flow of the multiphase fluid entering the compression device.
  • a blade A ij has a leading edge referenced in the figure "a ij " and a trailing edge "f ij ", where i is the number of a blade A ij inside group d 'vanes indexed j.
  • a group of blades G j is associated with a first blade labeled A 1i and a second blade labeled A 2j , for example, A 11 corresponds to the first blade of the first blade group G 1 and A 21 corresponds to the second dawn of this same group of blades.
  • chord is defined for a blade as the distance between its leading edge a ij and its trailing edge f ij . It is marked on the right m respectively by C Fj for the first dawn A 1j and C Rj for the second dawn A 2j .
  • the characteristics of the compression device are determined by example, from at least one parameter chosen from a set of characteristic parameters, specific to the blades and to the position of the groups blade. The choice thus makes it possible to delimit a field of operation optimal for the compression device.
  • the values of at least one of the three previously defined parameters are compared to a preferred embodiment for the pumping device or compression according to the invention.
  • the three parameters are chosen from the three intervals previously given and a fourth parameter chosen in combination with the first three is associated with them to optimize the compression operation.
  • This fourth parameter is, for example the camber ratio ⁇ j determined for a group of blades and defined as the ratio of the value of the camber ⁇ Fj of the first blade A 1j to the value of the camber ⁇ Rj of the second dawn A 2d for a given dawn group.
  • This parameter is preferably chosen in the range [0.5; 1].
  • the camber ratio ⁇ j determined for a group of blades of a rectifier is preferably chosen from the interval [0.10; 1].
  • the following three parameters are selected to produce the impellers and / or for the rectifiers: the tangential offset h relative to the pitch t, the ratio r j / C Tj and the chord ratio R Cj .
  • This defines a field of pumping or compression devices adapted to communicate to a multiphase type fluid, for example an oil effluent, a compression value sufficient to ensure its transfer from a production location for example a source or a well. production to a place of destination, such as a processing platform or even an intermediate place, without having to separate the phases.
  • a section offered for the flow of fluid in an impeller and / or a rectifier is for example defined by the total area of passage of the fluid in a plane Pi perpendicular to the axis of rotation of the device and located between the input and the output of the device.
  • the total area changes for example according to a law that is substantially constant and bounded by a minimum value of area and a maximum value, chosen so that the ratio of two areas chosen for two Pi planes as defined above is preferably included in the interval [2.2; 0.45].
  • the impellers have a fluid passage area considered in their plane of limited exit according to the value of the corresponding area in their plan input.
  • the ratio of the thicknesses maximum of the first and second vane e1 / e2 is preferably chosen in the interval [0.6; 1] for an impeller and preferably chosen in the interval [0.5; 1] for a rectifier.
  • the characteristics geometric groups of blades for the moving or impeller wheels are defined for example by values chosen so that the diameter ratio outside of the wheel expressed in mm, on the number of blades belongs to the interval [40; 60].
  • the multiphase fluid is animated by a speed having at least one axial component and one component circumferentially.
  • a rectifier increases the static pressure by removing or less by reducing the circumferential components of speed fluid flow.
  • a multi-stage pumping or compression device is formed for example by a succession of several compression stages formed for example by a movable wheel (impeller) preceded or succeeded by a fixed wheel (rectifier), according to the direction of flow of the fluid.
  • the section of passage offered to the fluid is for example substantially continuous and the flow of the fluid takes place in a preferential direction aligned with the axis of rotation of the device.
  • Figure 4 illustrates the different flows of the different phases, liquid and gaseous in a pumping or compression device, in particular when they flow into a channel delimited by two tandem blades.
  • FIG. 4 there is shown in a diagram identical to that of FIG. 3, two groups of blades G 1 and G 2 and dashed lines corresponding to the groups of blades G 0 and G 3 arranged on one side and the other of the two groups previously defined.
  • a flow passage is defined between the lower surface I 1j of the first blade and upper surface E 2j of the second blade, for example.
  • the passage p 1 corresponds to the flow passage located between the two blades A 11 , A 12 of the first group of blades and p 2 the flow passage located between the blades A 12 , A 22 of the second group of blades, the flow passages each having a width the value of which is fixed by the positioning of the two blades within the same group of blades.
  • This flow channel remixes at least part of the liquid phase from a flow channel with at least part of the gas phase flowing in an adjacent flow channel.
  • the multiphase fluid to which it is desired to communicate a certain energy value circulates between two groups of successive tandem blades, for example the flow channel E 1 and according to the arrow E for example.
  • the fluid decomposes into a liquid fraction l 1 which migrates towards the lower surface side I 11 of the vane A 11 and a gaseous fraction g 1 which is attracted towards the upper surface E21 of the first vane At 12 of the second group of blades.
  • the liquid fraction l 1 attracted by the pressure side I 11 flows through the flow passage p 1 and also opens into the flow channel E 0 , continues to circulate until it mixes with at least part of the gas fraction g 0 coming from the separation of the liquid and gas phases in the flow channel E 0 .
  • the gas g 0 and liquid l 1 phases by remixing at least partially compensate for the phenomenon of segregation of the liquid and gas phases which appears during the pumping of a multiphase fluid and which contributes to the reduction in efficiency for pumping. .
  • the presence of a flow passage between two blades of a group of blades significantly improves the performance of the devices compression compared to the yield obtained with a formed blade a single blade with substantially identical surface and equivalent geometry.
  • the dimension of the flow passage is for example chosen from of the set of parameters previously defined.
  • Figure 5 is a perspective view of a group of blades which are by example linked together by at least one mechanical element 40.
  • a first dawn is for example connected to at least the following dawn (by taking the flow direction) and / or at a previous dawn.
  • This mechanical element 40 can be positioned anywhere along and / or across the width of a blade and can take any geometric shape that respects the flow of the fluid, that is to say which does not disturb the flow of the fluid.
  • the presence of at least one mechanical element allows to maintain the distance between the blades, and to respect the provision specific of the blades between them. It thus plays the role of mechanical reinforcement of the device.
  • Figure 6 shows schematically an alternative embodiment of the device according to the invention for which a group of blades is obtained from a blade provided with one or more orifices distributed over at least part of its length.
  • the parts of the blade separated by these orifices thus form "sub-blades" which each have a function substantially identical to the function fulfilled by the blades A ij described in FIG. 3.
  • the lights or orifices distributed along the blade 50 thus allow the passage of the liquid and gaseous fractions circulating respectively in the vicinity on the lower side of the dawn and on the upper side of the dawn and coming from channels adjacent, for example as described in Figure 3.
  • Figure 6 there is shown a shape which can be taken by a gas pocket or liquid pocket.
  • the liquid fraction tends to pass through at least one of the lights 51 to mix with the gaseous fraction circulating on the upper side and thus form a multiphase mixture.
  • we decrease notably the value of the GLR ratio due to the enrichment of the fraction gas with a liquid part and the compression of the fluid is improved multiphase, by compensating for the separation from the compression of the multiphase fluid as previously described in relationship to Figure 4.
  • Mixing ports or lights may have geometries different sizes chosen, in particular depending on the nature of the phases constituting the fluid to facilitate the passage of these phases one towards the other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (14)

  1. Vorrichtung zum Verdichten oder Pumpen eines Mehrphasenfluids, das wenigstens eine flüssige Phase und wenigstens eine gasförmige Phase umfasst, wobei die Vorrichtung wenigstens ein hohles Gehäuse (1) mit wenigstens einer Einlassöffnung (2) und wenigstens einer Auslassöffnung (3) für dieses Fluid, wenigstens einen Rotor, der sich im Inneren dieses Gehäuses gemäß einer Drehachse Ox drehen kann und einen Impulsgeber, der über zwei Gruppen von Schaufeln verfügt, umfasst, die je eine erste Schaufel und eine zweite Schaufel umfassen, wobei der Impulsgeber fest bezüglich des Rotors ist und die Laufschaufeln des Impulsgebers eine Anströmkante aij und eine Abströmkante fij haben, wobei der Winkel α, den die Tangente an die Kurve des Skeletts bildet - dieser Winkel gerechnet ausgehend von der Anströmkante aij wenigstens einer der ersten und zweiten Laufschaufeln bezogen auf die Umfangs- und Tangentialrichtung der Vorrichtung - zwischen 0 und 45° liegt, die Vorrichtung einen Gleichrichter mit zwei Gruppen von Schaufeln, je mit einer dritten und einer vierten Schaufel, umfasst, dadurch gekennzeichnet, dass die Charakteristiken und die Positionierung der Schaufeln des Impulsgebers bestimmt werden als Funktion wenigstens eines aus den folgenden vier Parametern gewählten Parameters:
    Parameter 1: die Tangentialverschiebung h, bezogen auf die Teilung t, ausgedrückt in Form des Verhältnisses h/t, wo t die Teilung entsprechend der Entfernung zwischen den beiden Abströmkanten f21 und f22 entsprechend den zweiten Schaufeln jeder Schaufelgruppe ist, der Wert des Parameters 1 im Intervall zwischen 0,95 und 1,05 liegend,
    Parameter 2: das Verhältnis der Axialüberdeckung rj und der Gesamtsehne CTj entsprechend einer Gruppe von Schaufeln im Intervall der Werte zwischen 0,0 und 0,15 liegend,
    Parameter 3: Sehnenverhältnis RCj = (CFj / CRj), definiert für eine Schaufelgruppe durch das Verhältnis der Sehne CFj der ersten Schaufel zum Wert der Sehne der zweiten Schaufel CRj für eine Gruppe von Schaufeln, zwischen 0,5 und 1,5 liegend und
    Parameter 4: das Wölbungsverhältnis zwischen Φj, definiert durch den Wert der Wölbung ΦFj der ersten Schaufel zum Wert der Wölbung ΦRj der zweiten Schaufel ein und der gleichen Schaufelgruppe, zwischen 0,5 und 1 liegend.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Charakteristiken und die Positionierung der Schaufeln des Gleichrichters bestimmt sind als Funktion wenigstens eines unter den folgenden vier Parametern gewählten Parameters:
    Parameter 5: die Tangentialverschiebung h, bezogen auf die Teilung t, ausgedrückt in Form des Verhältnisses h/t, wo t die Teilung entsprechend der Entfernung zwischen den beiden Abströmkanten f21 und f22 entsprechend den vierten Schaufeln jeder Schaufelgruppe ist, der Wert des Parameters 5 im Intervall [0,60; 0,80] liegend,
    Parameter 6: das Verhältnis der axialen Überdeckung rj und der Gesamtsehne CTj entsprechend einer Gruppe von Schaufeln, im Intervall der Werte [-0,01; 0,05] liegend,
    Parameter 7: das Sehnenverhältnis RCj = (CFj / CRj), definiert für eine Gruppe von Schaufeln durch das Verhältnis des Wertes der Sehne CFj der dritten Schaufel zum Wert der Sehne der vierten Schaufel CRj für eine Gruppe von Schaufeln, zwischen [0,5; 1,5] liegend und
    Parameter 8: das Verhältnis der Wölbung Φj, definiert durch den Wert der Wölbung Fj der ersten Schaufel zum Wert der Wölbung Rj der zweiten Schaufel ein und der gleichen Gruppe, zwischen [0,10; 1] liegend.
  3. Vorrichtung nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die geometrischen Charakteristiken der Schaufeln des Impulsgebers als Funktion der Parameter 1, 2 und 3 bestimmt sind.
  4. Vorrichtung nach einem der Ansprüche 2 und 3, dadurch gekennzeichnet, dass die geometrischen Charakteristiken der Schaufeln des Gleichrichters bestimmt sind als Funktion der Parameter 5, 6 und 7.
  5. Vorrichtung nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, dass die geometrischen Charakteristiken der Schaufeln des Impulsgebers mit Hilfe des Parameters 4 präzisiert sind.
  6. Vorrichtung nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, dass die geometrischen Charakteristiken der Schaufeln des Gleichrichters mit Hilfe des Parameters 8 präzisiert sind.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verhältnis der Maximaldicken der ersten und zweiten Schaufel e1/e2 des Impulsgebers zwischen 0,6 und 1 beträgt.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Verhältnis der Maximaldicken der dritten und vierten Schaufel e1/e2 des Gleichrichters zwischen 0,5 und 1 beträgt.
  9. Vorrichtung nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, dass die Dicke der ersten oder der dritten Schaufel zwischen 2 und 10 mm und/oder die Dicke e2 der zweiten oder der vierten Schaufel zwischen 2 und 20 mm beträgt.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Schaufel mit einer vorhergehenden und/oder einer folgenden Schaufel mit Hilfe eines mechanischen Elements (40) verbunden ist.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Impulsgeber vor diesem Gleichrichter in Fluidströmungsrichtung gesehen, angeordnet ist.
  12. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie wenigstens zwei Gleichrichter umfasst, wobei der Impulsgeber zwischen den beiden Gleichrichtern angeordnet ist.
  13. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Schaufeln des Impulsgebers eine erste Fläche oder Saugseite und eine zweite als Druckseite bezeichnete Fläche umfassen, die Schaufeln auf wenigstens einem Teil ihrer Länge mit einer oder mehreren Öffnungen (51) versehen sind, die es ermöglichen, diese saugseitigen und druckseitigen Flächen in Verbindung zu bringen, damit das Aufeinandertreffen wenigstens eines Teils der gasförmigen benachbart der saugseitigen Fläche strömenden Phase und wenigstens eines Teils der flüssigen auf der Seite der druckseitigen Fläche zirkulierenden Phase begünstigt wird.
  14. Verwendung der Vorrichtung nach einem der vorhergehenden Ansprüche zum Pumpen eines Mehrphasenfluids.
EP96402879A 1995-12-28 1996-12-24 Vorrichtung zum Pumpen oder Verdichten eines mehrphasigen Fluids mit einer Tandem Beschaufelung Expired - Lifetime EP0781929B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9515624A FR2743113B1 (fr) 1995-12-28 1995-12-28 Dispositif de pompage ou de compression d'un fluide polyphasique a aubage en tandem
FR9515624 1995-12-28

Publications (2)

Publication Number Publication Date
EP0781929A1 EP0781929A1 (de) 1997-07-02
EP0781929B1 true EP0781929B1 (de) 2003-03-19

Family

ID=9486062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96402879A Expired - Lifetime EP0781929B1 (de) 1995-12-28 1996-12-24 Vorrichtung zum Pumpen oder Verdichten eines mehrphasigen Fluids mit einer Tandem Beschaufelung

Country Status (8)

Country Link
US (2) US5885058A (de)
EP (1) EP0781929B1 (de)
JP (1) JPH09195985A (de)
CN (1) CN1392346A (de)
BR (1) BR9606214A (de)
DE (1) DE69626768T2 (de)
FR (1) FR2743113B1 (de)
NO (1) NO312257B1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743113B1 (fr) * 1995-12-28 1998-01-23 Inst Francais Du Petrole Dispositif de pompage ou de compression d'un fluide polyphasique a aubage en tandem
FR2771024B1 (fr) * 1997-11-19 1999-12-31 Inst Francais Du Petrole Dispositif et procede de compression diphasique d'un gaz soluble dans un solvant
FR2782755B1 (fr) 1998-09-02 2000-09-29 Inst Francais Du Petrole Turmomachine polyphasique a melange de phases ameliore et methode associee
FR2787837B1 (fr) * 1998-12-28 2001-02-02 Inst Francais Du Petrole Impulseur diphasique avec canal incurve dans le plan meridien
FR2787836B1 (fr) * 1998-12-28 2001-02-02 Inst Francais Du Petrole Impulseur diphasique helico-radio-axial avec carenage incurve
US6676366B2 (en) * 2002-03-05 2004-01-13 Baker Hughes Incorporated Submersible pump impeller design for lifting gaseous fluid
US7150600B1 (en) 2002-10-31 2006-12-19 Wood Group Esp, Inc. Downhole turbomachines for handling two-phase flow
FR2865781B1 (fr) * 2004-01-30 2006-06-09 Christian Bratu Pompe a cavites progressives
US7241104B2 (en) * 2004-02-23 2007-07-10 Baker Hughes Incorporated Two phase flow conditioner for pumping gassy well fluid
EP1860325A1 (de) * 2006-05-26 2007-11-28 ABB Turbo Systems AG Diffusor
CN100432445C (zh) * 2006-07-21 2008-11-12 广州市花都区花东南方林业扑火工具厂 一种消防水泵及其运动方法
TWI311611B (en) * 2006-08-25 2009-07-01 Ind Tech Res Inst Impeller structure and the centrifugal fan device using the same
FR2926322B1 (fr) * 2008-01-10 2012-08-03 Snecma Aube bi-pale avec lames.
CN101660542B (zh) * 2008-08-28 2012-07-18 上海大学 一种离心泵叶轮
NO333314B1 (no) 2009-07-03 2013-04-29 Aker Subsea As Turbomaskin og impeller
GB2482861B (en) 2010-07-30 2014-12-17 Hivis Pumps As Pump/motor assembly
IT1401868B1 (it) 2010-08-31 2013-08-28 Nuova Pignone S R L Turbomacchina con stadio a flusso misto e metodo.
CN102384111B (zh) * 2011-12-06 2013-09-04 中国石油天然气集团公司 双层叶片气液混输器
CN102808804A (zh) * 2012-08-09 2012-12-05 势加透博(北京)科技有限公司 串列叶片转子叶轮以及轴流风机
FR3010463B1 (fr) * 2013-09-11 2015-08-21 IFP Energies Nouvelles Impulseur de pompe polyphasique avec des moyens d'amplification et de repartition d'ecoulements de jeu.
CN104389810B (zh) * 2014-09-19 2017-11-17 江苏大学 一种多相混输轴流泵叶轮的多工况设计方法
EP3312432B1 (de) * 2016-10-19 2021-06-23 IFP Energies nouvelles Diffusor für eine fluidverdichtungsvorrichtung, die mindestens eine schaufel mit öffnung umfasst
RU2638423C1 (ru) * 2016-12-07 2017-12-13 Закрытое акционерное общество "РИМЕРА" Установка погружного лопастного насоса компрессионного типа
TWI678471B (zh) 2018-08-02 2019-12-01 宏碁股份有限公司 散熱風扇
CN110259720B (zh) * 2019-06-11 2021-11-30 江苏大学镇江流体工程装备技术研究院 一种用于离心泵的缝隙引流叶轮及具有其的离心泵
CN114607639B (zh) * 2022-02-28 2024-02-20 江西南方锅炉股份有限公司 一种用于蒸汽锅炉设备的输送装置
CN115143138A (zh) * 2022-04-19 2022-10-04 西安理工大学 一种具有串列错位叶片结构的气液混输泵叶轮

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB479427A (en) * 1935-05-31 1938-01-31 Gyoergy Jendrassik Improvements in rotary compressors
FR982027A (fr) * 1943-06-01 1951-06-04 Perfectionnement aux compresseurs axiaux
GB622415A (en) * 1947-03-20 1949-05-02 Jakob Knudsen Jakobsen Improvements in and relating to multi-stage compressors, pumps, turbines, or similar rotary machines or engines
US2576700A (en) * 1947-06-02 1951-11-27 Schneider Brothers Company Blading for fluid flow devices
GB630747A (en) * 1947-07-09 1949-10-20 George Stanley Taylor Improvements in or relating to multi-stage axial-flow compressors
FR1404875A (fr) * 1964-08-10 1965-07-02 Thompson Ramo Wooldridge Inc Turbine centrifuge et procédé de fabrication d'une telle turbine
US3522997A (en) * 1968-07-01 1970-08-04 Rylewski Eugeniusz Inducer
GB1409714A (en) * 1971-10-16 1975-10-15 Rolls Royce Rotary impeller pumps
US3918841A (en) * 1972-12-11 1975-11-11 Dengyosha Mach Works Pump impeller assembly
FR2333139A1 (fr) * 1975-11-27 1977-06-24 Inst Francais Du Petrole Dispositif perfectionne pour le pompage des fluides
FR2471501A1 (fr) * 1979-12-17 1981-06-19 Inst Francais Du Petrole Dispositif de pompage de fluides diphasiques
GB2168764B (en) * 1984-12-22 1989-06-07 Rolls Royce Plc Centrifugal pump impellers
IT1198017B (it) * 1986-08-06 1988-12-21 Nuovo Pignone Spa Pompa centrifuga particolarmente adatta per il pompaggio di fluidi ad elevato contenuto di gas
US4846152A (en) * 1987-11-24 1989-07-11 Nimbus Medical, Inc. Single-stage axial flow blood pump
CH678352A5 (de) * 1988-06-23 1991-08-30 Sulzer Ag
FR2665224B1 (fr) * 1990-07-27 1992-11-13 Inst Francais Du Petrole Dispositif de pompage ou de compression polyphasique et son utilisation.
FR2743113B1 (fr) * 1995-12-28 1998-01-23 Inst Francais Du Petrole Dispositif de pompage ou de compression d'un fluide polyphasique a aubage en tandem

Also Published As

Publication number Publication date
NO965610L (no) 1997-06-30
FR2743113B1 (fr) 1998-01-23
JPH09195985A (ja) 1997-07-29
FR2743113A1 (fr) 1997-07-04
NO312257B1 (no) 2002-04-15
NO965610D0 (no) 1996-12-27
EP0781929A1 (de) 1997-07-02
BR9606214A (pt) 1998-08-25
US6149385A (en) 2000-11-21
CN1392346A (zh) 2003-01-22
DE69626768T2 (de) 2003-08-14
DE69626768D1 (de) 2003-04-24
US5885058A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
EP0781929B1 (de) Vorrichtung zum Pumpen oder Verdichten eines mehrphasigen Fluids mit einer Tandem Beschaufelung
CA2047975C (fr) Dispositif de pompage ou de compression polyphasique et son utilisation
CA2204664C (fr) Systeme de pompage polyphasique et centrifuge
FR2556054A1 (fr) Diffuseur pour compresseur centrifuge
FR2574114A1 (fr) Ameliorations concernant des composants a profils d'ailettes pour moteurs a turbine
FR2782755A1 (fr) Turmomachine polyphasique a melange de phases ameliore et methode associee
CA3117485A1 (fr) Turbomachine a double helices non carenees
CA2320927C (fr) Cellule de pompage d'un effluent polyphasique et pompe comportant au moins une de ces cellules
CA2258350A1 (fr) Dispositif de compression de gaz humide comportant un etage de compression/separation integrees
EP3719283A1 (de) Antriebsrad eines luft-öl-abscheiders eines anbaugerätegehäuses eines turbotriebwerks
EP2029895B1 (de) Kompakte mehrphasenpumpe
FR2652762A1 (fr) Dispositif destine a separer des fluides et des solides d'un fluide porteur.
FR2575235A1 (fr) Turbine de pompe centrifuge
WO2021116621A1 (fr) Système propulsif aéronautique à rendement propulsif amélioré
FR3069290B1 (fr) Machine rotodynamique comprenant des impulseurs helico radio axiaux avec controle du glissement interfacial
FR2525693A1 (fr) Procede et dispositif de degradation de carburant
FR3070368B1 (fr) Helice a calage variable
FR2697870A1 (fr) Pompe axiale à faible débit.
FR2748532A1 (fr) Systeme de pompage polyphasique et centrifuge
EP0003202B1 (de) Vorrichtung zur Umwandlung einer zweiphasigen Primärströmung in mehrere Sekundärströmungen
EP4073366B1 (de) Aeronautisches antriebssystem mit niedriger leckrate und verbesserter antriebseffizienz
BE1025984B1 (fr) Veine de compresseur basse-pression pour turbomachine
WO2023156741A1 (fr) Système de régulation de carburant
WO2022148928A1 (fr) Ensemble de redressement
EP4229286A1 (de) Aeronautisches antriebssystem mit verbesserter antriebseffizienz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19980102

17Q First examination report despatched

Effective date: 20020117

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030319

REF Corresponds to:

Ref document number: 69626768

Country of ref document: DE

Date of ref document: 20030424

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071219

Year of fee payment: 12

Ref country code: FR

Payment date: 20071010

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071220

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081224

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231