EP0779937B1 - Process for case hardening higher molybdenum-alloyed sintered steels - Google Patents

Process for case hardening higher molybdenum-alloyed sintered steels Download PDF

Info

Publication number
EP0779937B1
EP0779937B1 EP96919584A EP96919584A EP0779937B1 EP 0779937 B1 EP0779937 B1 EP 0779937B1 EP 96919584 A EP96919584 A EP 96919584A EP 96919584 A EP96919584 A EP 96919584A EP 0779937 B1 EP0779937 B1 EP 0779937B1
Authority
EP
European Patent Office
Prior art keywords
sintered
molybdenum
heat treatment
iron
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96919584A
Other languages
German (de)
French (fr)
Other versions
EP0779937A1 (en
Inventor
Rudolf Schneider
Bernhard Schelb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinterwerke Herne GmbH
Original Assignee
BT Magnet Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BT Magnet Technologie GmbH filed Critical BT Magnet Technologie GmbH
Publication of EP0779937A1 publication Critical patent/EP0779937A1/en
Application granted granted Critical
Publication of EP0779937B1 publication Critical patent/EP0779937B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/30Carburising atmosphere

Definitions

  • the invention relates to a method for case hardening higher molybdenum alloyed sintered steels.
  • the inventive method with the in claim 1 offers the advantage that higher molybdenum alloyed sintered steels are case hardened can without the formation of a brittle Carbide net is coming.
  • the additional heat treatment is applied immediately after the sintering is carried out in one step, the Protective gas atmosphere present during sintering or the vacuum through a carbon donor Means, that is, carbon-containing atmosphere, is replaced.
  • the presence of one Minimum proportion of ⁇ iron of 40% for case hardening Sintered steels necessary. would be from room temperature hoisted, the supply of carbon during the High heating can be blocked because it is also below the two-phase area only ⁇ -iron is present (see Figure 2) and the harmful iron carbide is created in this area would.
  • a long heating-up phase would be necessary ultimately represents a dead process time.
  • To avoid this dead time is from the sintering temperature to the Temperature of the two-phase area ( ⁇ and ⁇ iron) cooled down. This also makes the sintering process supplied thermal energy is used.
  • the heat treatment is preferably at a temperature of 1120 ° C, 40% of the Material volume of the higher molybdenum alloyed sintered steel in the necessary lattice structure area of the ⁇ -iron, if the Molybdenum content is 3.5% by weight. This will make the initial intake of carbon favors.
  • case hardening in addition to the additional heat treatment after sintering then the case hardening in the usual Carry out case hardening temperatures of 840 to 950 ° C. This ensures that by means of between the Sintering and case hardening performed additional Heat treatment activates the higher molybdenum alloy Sintered steel takes place so that the installation of carbon becomes possible without it forming a brittle Carbide network is coming.
  • FIG. 1 shows a block diagram of the method for Case hardening of higher molybdenum alloyed sintered steels
  • Figure 2 is a state diagram of molybdenum alloys Sintered steels.
  • a first method step 10 the in Molybdenum-containing steel in powder form Molded body of any geometric shape pressed.
  • the molybdenum content of the steel is, for example, 3.5%.
  • a second method step 12 then takes place Sintering of the previously pressed molded body at a Sintering temperature of 1250 ° C.
  • Sintered material such as that shown in Figure 2
  • State diagram of sintered steels containing molybdenum Höganäs is illustrated exclusively in Lattice structure area of the ⁇ -iron.
  • the sintering takes place under a protective gas atmosphere, for example under Hydrogen or in a vacuum.
  • a next method step 14 the previous one sintered higher molybdenum alloy sintered steel of another Heat treatment at a temperature of, for example Subjected to 1120 ° C.
  • This heat treatment takes place under supply of carbon-containing atmosphere instead.
  • the Sintered steel expediently from the sintering temperature cooled down.
  • the heat treatment takes place immediately after sintering.
  • Case hardening of the previously sintered and according Process step 14 heat treated higher molybdenum alloys Sintered steel.
  • This case hardening takes place at temperatures from 840 ° C to 950 ° C while supplying the carbonaceous Atmosphere or other - not to be considered here - carbon donor.
  • the molybdenum alloy was thus activated Sintered steel, so that by case hardening in the Method step 18 also among those given here lower temperatures the installation of carbon in the Edge zones of the molded body is possible without it Formation comes from a brittle carbide network.
  • a special one designated 16 here Use can be supplied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Einsatzhärten von höhermolybdänlegierten Sinterstählen.The invention relates to a method for case hardening higher molybdenum alloyed sintered steels.

Stand der TechnikState of the art

Es ist bekannt, aus metallischen Pulvern, beispielsweise aus Stahlpulvern, durch Sintern Formkörper beliebiger Geometrie herzustellen. Die metallischen Pulver werden hierbei unter einer bestimmten Temperatur, die wenig unter dem Schmelzpunkt der Sintermaterialien liegt, wärmebehandelt. Bei der Wärmebehandlung von Sinterstählen stellen sich bekannterweise Bereiche mit unterschiedlichen Gitterstrukturen ein, in denen sich sogenanntes α-Eisen, γ-Eisen oder eine Mischstruktur aus α- und γ-Eisen einstellt. Übliche Sinterstähle, die in der Regel Kohlenstoff enthalten, sintern im Bereich des γ-Eisens. Hierbei läuft die Sinterung 102 bis 103 mal langsamer ab als im α-Eisenbereich bei gleicher Temperatur. Werden beispielsweise Stahlpulver mit einem erhöhten Molybdängehalt gesintert, läuft die Sinterung bei Sintertemperaturen von zirka 1250°C im Bereich des α-Eisens ab. Hierbei ist nachteilig, da eine völlig kohlenstoffreine Sinterung stattfinden muß, daß bei einem anschließend erforderlich werdenden Einsatzhärten eine Kohlenstoffaufnahme in den Randbereichen des gesinterten Formkörpers nur schwer möglich ist und es zur Bildung eines spröden Karbidnetzes kommt.It is known to produce shaped bodies of any geometry from metallic powders, for example from steel powders, by sintering. The metallic powders are heat-treated at a certain temperature, which is slightly below the melting point of the sintered materials. As is known, the heat treatment of sintered steels results in areas with different lattice structures in which so-called α-iron, γ-iron or a mixed structure of α- and γ-iron is established. Common sintered steels, which usually contain carbon, sinter in the area of γ-iron. Here, the sintering 10 2 to 10 3 times slower than in the α-iron region at the same temperature. If, for example, steel powder with an increased molybdenum content is sintered, the sintering takes place at sintering temperatures of approximately 1250 ° C. in the area of the α-iron. The disadvantage here is that a completely carbon-free sintering must take place, that if a subsequent hardening becomes necessary, it is difficult to absorb carbon in the edge regions of the sintered shaped body and a brittle carbide network is formed.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den im Anspruch 1 genannten Merkmalen bietet demgegenüber den Vorteil, daß höhermolybdänlegierte Sinterstähle einsatzgehärtet werden können, ohne daß es zu einer Bildung von einem spröden Karbidnetz kommt. Dadurch, daß die Sinterstähle nach dem Sintern einer Wärmebehandlung unter Anwesenheit von Kohlenstoff bei Temperaturen unterzogen werden, bei denen im Sinterstahl ein Mindestanteil an γ-Eisen von 40 % vorliegt, ist es vorteilhaft möglich, insbesondere in den Randbereichen des Sinterstahls, eine derartige Gitterstruktur zu schaffen, die anschließend zur Aufnahme von Kohlenstoff geeignet ist. Die zusätzliche Wärmebehandlung wird unmittelbar anschließend an das Sintern in einem Arbeitsschritt durchgeführt, wobei die während des Sinterns vorhandene Schutzgasatmosphäre beziehungsweise das Vakuum durch ein kohlenstoffabgebendes Mittel, das heißt, Kohlenstoff enthaltende Atmosphäre, ersetzt wird.The inventive method with the in claim 1 Features mentioned offers the advantage that higher molybdenum alloyed sintered steels are case hardened can without the formation of a brittle Carbide net is coming. The fact that the sintered steels after Sintering a heat treatment in the presence of Carbon are subjected to temperatures at which Sintered steel has a minimum γ-iron content of 40%, it is advantageously possible, especially in the peripheral areas of the Sintered steel to create such a lattice structure that is then suitable for the absorption of carbon. The additional heat treatment is applied immediately after the sintering is carried out in one step, the Protective gas atmosphere present during sintering or the vacuum through a carbon donor Means, that is, carbon-containing atmosphere, is replaced.

Beim erfindungsgemäßen Verfahren wird von der höheren Sintertemperatur auf den Temperaturbereich des Zwei-Phasen-Gebietes, heruntergekühlt, in dem ein Mindestanteil an γ-Eisen von 40 % vorliegt. Insofern ist das Vorhandensein eines Mindestanteils an γ-Eisen von 40 % für das Einsatzhärten von Sinterstählen notwendig. Würde von Raumtemperatur hochgeheißt, müßte die Zufuhr von Kohlenstoff während des Hochheizens gesperrt werden, weil auch unterhalb des Zwei-Phasen-Gebietes lediglich α-Eisen vorliegt (siehe Figur 2) und in diesem Bereich das schädliche Eisenkarbid entstehen würde. Folglich wäre eine lange Aufheizphase notwendig, die letztlich eine tote Prozeßzeit darstellt. Zur Vermeidung dieser Totzeit wird von der Sintertemperatur auf die Temperatur des Zwei-Phasen-Gebietes (α- und γ-Eisen) heruntergekühlt. Dadurch wird zugleich die beim Sintern zugeführte Wärmeenergie ausgenutzt.In the method according to the invention, the higher Sintering temperature to the temperature range of the two-phase area, cooled down in which a minimum proportion of γ-iron of 40% is present. In this respect, the presence of one Minimum proportion of γ iron of 40% for case hardening Sintered steels necessary. Would be from room temperature hoisted, the supply of carbon during the High heating can be blocked because it is also below the two-phase area only α-iron is present (see Figure 2) and the harmful iron carbide is created in this area would. As a result, a long heating-up phase would be necessary ultimately represents a dead process time. To avoid this dead time is from the sintering temperature to the Temperature of the two-phase area (α and γ iron) cooled down. This also makes the sintering process supplied thermal energy is used.

Wird die Wärmebehandlung vorzugsweise bei einer Temperatur von 1120°C durchgeführt, befinden sich 40 % des Werkstoffvolumens des höhermolybdänlegierten Sinterstahls in dem notwendigen Gitterstrukturbereich des γ-Eisens, wenn der Molybdän-Gehalt 3,5 Gew% beträgt. Hierdurch wird die anfängliche Aufnahme von Kohlenstoff begünstigt.The heat treatment is preferably at a temperature of 1120 ° C, 40% of the Material volume of the higher molybdenum alloyed sintered steel in the necessary lattice structure area of the γ-iron, if the Molybdenum content is 3.5% by weight. This will make the initial intake of carbon favors.

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, neben der zusätzlichen Wärmebehandlung nach dem Sintern anschließend die Einsatzhärtung bei den üblichen Einsatzhärtetemperaturen von 840 bis 950°C durchzuführen. Hierdurch wird erreicht, daß mittels der zwischen der Sinterung und der Einsatzhärtung durchgeführten zusätzlichen Wärmebehandlung eine Aktivierung des höhermolybdänlegierten Sinterstahls erfolgt, so daß das Einbauen von Kohlenstoff möglich wird, ohne daß es zur Bildung eines spröden Karbidnetzes kommt.In a preferred embodiment of the invention, in addition to the additional heat treatment after sintering then the case hardening in the usual Carry out case hardening temperatures of 840 to 950 ° C. This ensures that by means of between the Sintering and case hardening performed additional Heat treatment activates the higher molybdenum alloy Sintered steel takes place so that the installation of carbon becomes possible without it forming a brittle Carbide network is coming.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen in den Unteransprüchen genannten Merkmalen.Further advantageous embodiments of the invention result from the others mentioned in the subclaims Characteristics.

Zeichnungdrawing

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen: Figur 1 ein Blockdiagramm des Verfahrens zum Einsatzhärten von höhermolybdänlegierten Sinterstählen und Figur 2 ein Zustandsschaubild von molybdänlegierten Sinterstählen.The invention is described below in one embodiment explained in more detail with reference to the accompanying drawings. It 1 shows a block diagram of the method for Case hardening of higher molybdenum alloyed sintered steels and Figure 2 is a state diagram of molybdenum alloys Sintered steels.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Anhand des in Figur 1 dargestellten Flußdiagramms soll der Ablauf des erfindungsgemäßen Verfahrens zum Einsatzhärten von höhermolybdänlegierten Sinterstählen verdeutlicht werden. In einem ersten Verfahrensschritt 10 wird der in Pulverform vorliegende molybdänhaltige Stahl zu einem Formkörper beliebiger geometrischer Gestalt verpreßt. Der Molybdängehalt des Stahls beträgt beispielsweise 3,5 %. In einem zweiten Verfahrensschritt 12 erfolgt anschließend die Sinterung der zuvor gepreßten Formkörper bei einer Sintertemperatur von 1250°C. Hierbei befindet sich das Sintermaterial, wie anhand des in Figur 2 gezeigten Zustandsschaubildes von molybdänhaltigen Sinterstählen nach Höganäs verdeutlicht wird, ausschließlich im Gitterstrukturbereich des α-Eisens. Die Sinterung erfolgt unter einer Schutzgasatmosphäre, beispielsweise unter Wasserstoff oder im Vakuum.Using the flow chart shown in Figure 1, the Sequence of the case hardening method according to the invention of higher molybdenum alloyed sintered steels become. In a first method step 10 the in Molybdenum-containing steel in powder form Molded body of any geometric shape pressed. The The molybdenum content of the steel is, for example, 3.5%. In A second method step 12 then takes place Sintering of the previously pressed molded body at a Sintering temperature of 1250 ° C. Here is the Sintered material, such as that shown in Figure 2 State diagram of sintered steels containing molybdenum Höganäs is illustrated exclusively in Lattice structure area of the α-iron. The sintering takes place under a protective gas atmosphere, for example under Hydrogen or in a vacuum.

In einem nächsten Verfahrensschritt 14 wird der zuvor gesinterte höhermolybdänlegierte Sinterstahl einer weiteren Wärmebehandlung bei einer Temperatur von beispielsweise 1120°C unterzogen. Diese Wärmebehandlung findet unter Zufuhr von kohlenstoffhaltiger Atmosphäre statt. Dabei wird der Sinterstahl zweckmäßigerweise von der Sintertemperatur heruntergekühlt. Die Wärmebehandlung findet somit unmittelbar nach dem Sintern statt.In a next method step 14, the previous one sintered higher molybdenum alloy sintered steel of another Heat treatment at a temperature of, for example Subjected to 1120 ° C. This heat treatment takes place under supply of carbon-containing atmosphere instead. The Sintered steel expediently from the sintering temperature cooled down. The heat treatment takes place immediately after sintering.

Bei einer Temperatur von 1120°C befinden sich, wie wiederum das Zustandsschaubild in Figur 2 verdeutlicht, 40 % des Werkstoffvolumens des molybdänlegierten Sinterstahls im Bereich des γ-Eisens. Hierdurch wird die Aufnahme von Kohlenstoff aus der umgebenden Atmosphäre in die Gitterstruktur des molybdänlegierten Sinterstahls begünstigt. Die während des Verfahrensschrittes 14 durchgeführte Wärmebehandlung kann sehr vorteilhaft beispielsweise gleich in dem Ofen durchgeführt werden, in dem die Sinterung gemäß dem Verfahrensschritt 12 durchgeführt wird. Bei geringeren Anteilen an gelöstem Kohlenstoff in dem molybdänlegierten Sinterstahl wandelt sich bei der Temperatur von 1120°C, mit der die Wärmebehandlung durchgeführt wird, auch das Restvolumen des Werkstoffs in die Gitterstruktur des γ-Eisens um.At a temperature of 1120 ° C are, as again the state diagram in Figure 2 clarifies, 40% of the material volume of the molybdenum alloyed sintered steel in the Area of γ-iron. This will make the inclusion of Carbon from the surrounding atmosphere into the Lattice structure of the molybdenum alloy sintered steel favored. The process step 14 Heat treatment performed can be very beneficial for example, be carried out in the oven immediately the sintering according to method step 12 is carried out. With smaller proportions of dissolved Carbon converts in the molybdenum alloy sintered steel at the temperature of 1120 ° C, with which the Heat treatment is carried out, also the remaining volume of the Material into the lattice structure of γ-iron.

In einem nächsten Verfahrensschritt 18 erfolgt ein Einsatzhärten des zuvor gesinterten und gemäß Verfahrensschritt 14 wärmebehandelten höhermolybdänlegierten Sinterstahls. Dieses Einsatzhärten erfolgt bei Temperaturen von 840°C bis 950°C unter Zufuhr der kohlenstoffhaltigen Atmosphäre oder anderer - hier nicht näher zu betrachtender - kohlenstoffabgebender Mittel. Durch die zuvor durchgeführte Wärmebehandlung gemäß Verfahrensschritt 14 erfolgte somit eine Aktivierung des molybdänlegierten Sinterstahls, so daß durch die Einsatzhärtung in dem Verfahrensschritt 18 auch unter den hier gegebenen niedrigeren Temperaturen der Einbau von Kohlenstoff in die Randzonen des Formkörpers möglich ist, ohne daß es zur Bildung von einem spröden Karbidnetz kommt. Nach dem Einsatzhärten im Verfahrensschritt 18 kann der insgesamt erfindungsgemäß behandelte molybdänlegierte Sinterstahl einer hier mit 16 bezeichneten speziellen Verwendung zugeführt werden.A takes place in a next method step 18 Case hardening of the previously sintered and according Process step 14 heat treated higher molybdenum alloys Sintered steel. This case hardening takes place at temperatures from 840 ° C to 950 ° C while supplying the carbonaceous Atmosphere or other - not to be considered here - carbon donor. By the before performed heat treatment according to process step 14 the molybdenum alloy was thus activated Sintered steel, so that by case hardening in the Method step 18 also among those given here lower temperatures the installation of carbon in the Edge zones of the molded body is possible without it Formation comes from a brittle carbide network. After this Case hardening in process step 18 can total Molybdenum alloy sintered steel treated according to the invention a special one designated 16 here Use can be supplied.

In der Figur 2 ist das bereits erwähnte Zustandsschaubild von molybdänlegiertem Stahl gezeigt. Über den Gewichtsprozenten GP des Molybdängehaltes in Prozent ist die Temperatur T in °C aufgetragen. Anhand der eingetragenen Trennlinien zwischen den sich in dem molybdänlegierten Sinterstahl einstellenden Gitterstruktur bei unterschiedlichen Temperaturen wird der α-Eisenbereich, der γ-Eisenbereich und der zwischen diesen Bereichen liegende Mischbereich aus γ- beziehungsweise α-Eisen verdeutlicht. Beispielhaft ist ein Molybdängehalt von 3,5 % eingetragen, wobei deutlich wird, daß bei einer Sintertemperatur von 1250°C, wie im Verfahrensschritt 12 zu Figur 1 erläutert, sich der molybdänlegierte Sintrestahl ausschließlich in seinem α-Eisen-Bereich befindet.The state diagram already mentioned is shown in FIG of molybdenum alloy steel. On the Weight percent GP of the molybdenum content in percent is the Temperature T plotted in ° C. Based on the entered Dividing lines between those in the molybdenum alloy Sintered steel adjusting lattice structure different temperatures, the α-iron range, the γ-iron area and the area between these areas Mixing area made of γ or α iron clarified. A molybdenum content of 3.5% is entered as an example, whereby it becomes clear that at a sintering temperature of 1250 ° C, as explained in step 12 of Figure 1, the molybdenum alloyed sintered steel is exclusively in its α-iron region.

Claims (5)

  1. Process for case-hardening molybdenum-alloyed sintered steels with a relatively high molybdenum content of ≥ 2 per cent by weight, characterized in that the sintered steels are cooled immediately after the sintering to a temperature range in which the sintered steel contains at least 40% γ-iron, and in that in this temperature range the sintered steels are subjected to a heat treatment in the presence of carbon.
  2. Process according to Claim 1, characterized in that the heat treatment is carried out in a temperature range of from 1050°C to 1200°C, preferably 1120°C.
  3. Process according to Claim 1 or 2, characterized in that during the heat treatment the molybdenum-alloyed sintered steels are exposed to an agent which releases carbon.
  4. Process according to one of Claims 1 to 3, characterized in that the sintered steel has a molybdenum content of from 2 to 4% by weight, preferably of 3.5% by weight.
  5. Process according to one of the preceding claims, characterized in that the heat treatment is followed by the case-hardening at temperatures of from 840°C to 950°C.
EP96919584A 1995-06-07 1996-05-25 Process for case hardening higher molybdenum-alloyed sintered steels Expired - Lifetime EP0779937B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19520354A DE19520354C2 (en) 1995-06-07 1995-06-07 Process for case hardening of higher molybdenum alloyed sintered steels
DE19520354 1995-06-07
PCT/DE1996/000916 WO1996041031A1 (en) 1995-06-07 1996-05-25 Process for case hardening higher molybdenum-alloyed sintered steels

Publications (2)

Publication Number Publication Date
EP0779937A1 EP0779937A1 (en) 1997-06-25
EP0779937B1 true EP0779937B1 (en) 2001-09-26

Family

ID=7763575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96919584A Expired - Lifetime EP0779937B1 (en) 1995-06-07 1996-05-25 Process for case hardening higher molybdenum-alloyed sintered steels

Country Status (7)

Country Link
US (1) US5881356A (en)
EP (1) EP0779937B1 (en)
JP (1) JPH10504064A (en)
DE (2) DE19520354C2 (en)
ES (1) ES2164895T3 (en)
TW (1) TW384312B (en)
WO (1) WO1996041031A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714306C2 (en) * 1997-03-24 1999-04-08 Mannesmann Ag Process for case hardening of sintered parts
JP3890401B2 (en) * 2000-10-13 2007-03-07 独立行政法人物質・材料研究機構 Separation of metal ions
CN110983090B (en) * 2019-12-31 2021-07-13 金堆城钼业股份有限公司 Sintering method of carbon-containing molybdenum alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1133499A (en) * 1954-06-15 1957-03-27 Federal Mogul Corp Process Improvements for Making a Stainless Steel Article, Which Can Be Heat Treated
FR2015893A1 (en) * 1968-08-19 1970-04-30 Gen Motors Corp Manufacture of iron article by processing powdered - iron
DE2053842A1 (en) * 1969-11-04 1971-05-13 Toyoda Chuo Kenkyusho Kk Sinter bodies from iron and carbon powders - by two step heating process
US3658604A (en) * 1969-12-29 1972-04-25 Gen Electric Method of making a high-speed tool steel
US3897618A (en) * 1972-03-27 1975-08-05 Int Nickel Co Powder metallurgy forging
US3992763A (en) * 1974-09-13 1976-11-23 Federal-Mogul Corporation Method of making powdered metal parts
US4018632A (en) * 1976-03-12 1977-04-19 Chrysler Corporation Machinable powder metal parts
US4071382A (en) * 1976-07-22 1978-01-31 Midland-Ross Corporation Method for case hardening powdered metal parts
GB2038882A (en) * 1978-11-03 1980-07-30 Davy Loewy Ltd Carburising Sintered High Speed Steel
US4880461A (en) * 1985-08-18 1989-11-14 Hitachi Metals, Ltd. Super hard high-speed tool steel
US4964980A (en) * 1988-07-27 1990-10-23 Amoco Corporation Apparatus and process for stabilizing liquid hydrocarbon condensate
DE69117870T2 (en) * 1990-10-31 1996-10-31 Hitachi Metals Ltd High speed steel made by sintering powder and process for producing it

Also Published As

Publication number Publication date
ES2164895T3 (en) 2002-03-01
DE59607766D1 (en) 2001-10-31
JPH10504064A (en) 1998-04-14
US5881356A (en) 1999-03-09
TW384312B (en) 2000-03-11
WO1996041031A1 (en) 1996-12-19
DE19520354C2 (en) 1997-07-10
DE19520354A1 (en) 1996-12-12
EP0779937A1 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
DE102019216995A1 (en) Bearing component with a metallic base body and a coating with alloy steel
DE19651740B4 (en) Process for producing an iron sintered alloy with a quenching structure
EP0747154B1 (en) Process and apparatus for producing sintered parts
EP0779937B1 (en) Process for case hardening higher molybdenum-alloyed sintered steels
EP0719349B1 (en) Process of producing sintered articles
DE10047645A1 (en) Process for treating sintered parts comprises pressing a powder mixture based on iron to form a pressed body, coating with a nickel-phosphorus powder, sintering and hardening by cooling
DE102019213030A1 (en) Process for the powder metallurgical production of components from stainless martensitic steel
DE2160805A1 (en) Process for the heat treatment of a surface layer of metal strips
DE2358720A1 (en) FORGING METAL POWDER
DE2324750B2 (en) HEAT TREATMENT PROCESS FOR STEEL
DE4001899C1 (en)
DE102019212880A1 (en) Process for the production of a metal-foam composite component and a metal-foam composite component
DE736810C (en) Process for the production of hard metal alloys
DE1521593B2 (en) Method for sintering and joining a composite body made of metal powder on a carrier body
DE102019206674A1 (en) Process for recompaction and hardening of components made of martensitic and / or precipitation hardening steels
DE19714306C2 (en) Process for case hardening of sintered parts
DE10243179A1 (en) Case hardening steel used in the manufacture of workpieces e.g. for the construction of vehicles contains alloying additions of chromium, niobium and titanium
DE1190770B (en) Transition piece for the welded connection between ferritic and austenitic steel
DE3001503C2 (en) Process for increasing the hardness of highly stressed valve seats for internal combustion engines
EP0604836B1 (en) Method for making wear-resistant surface coatings on steel pieces and steel pieces with such coatings
DE102020007416A1 (en) Method for producing at least one steel component to be realized in 3D printing and use of 3D printing
EP3611289A1 (en) Method of manufacturing hardened components for gear boxes and gear boxes
DE2263603A1 (en) PROCEDURES FOR CASE HARDENING OR FOR USE CARBON
AT256157B (en) Process for joining iron or iron alloys with objects made of carbon
DE102021213888A1 (en) Method and device for localized nitriding or nitrocarburizing of the surface of a component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19970619

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 20000427

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59607766

Country of ref document: DE

Date of ref document: 20011031

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011206

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2164895

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120522

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120608

Year of fee payment: 17

Ref country code: GB

Payment date: 20120522

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120523

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120723

Year of fee payment: 17

Ref country code: ES

Payment date: 20120525

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130521

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607766

Country of ref document: DE

Effective date: 20131203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130525

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG