EP0772743B1 - Fluid pump - Google Patents

Fluid pump Download PDF

Info

Publication number
EP0772743B1
EP0772743B1 EP96900268A EP96900268A EP0772743B1 EP 0772743 B1 EP0772743 B1 EP 0772743B1 EP 96900268 A EP96900268 A EP 96900268A EP 96900268 A EP96900268 A EP 96900268A EP 0772743 B1 EP0772743 B1 EP 0772743B1
Authority
EP
European Patent Office
Prior art keywords
delivery channel
pump impeller
rotation
edge section
inner edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96900268A
Other languages
German (de)
French (fr)
Other versions
EP0772743A1 (en
Inventor
Klaus Dobler
Michael Huebel
Willi Strohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0772743A1 publication Critical patent/EP0772743A1/en
Application granted granted Critical
Publication of EP0772743B1 publication Critical patent/EP0772743B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/007Details of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/503Inlet or outlet of regenerative pumps

Definitions

  • the invention relates to a liquid pump according to the preamble of claim 1.
  • Such a liquid pump is known from US-5,310,308.
  • This liquid pump is used to deliver fuel and has a pump impeller with vanes which is driven in rotation.
  • the pump impeller is arranged in a pump chamber which is delimited by a wall part in the direction of the axis of rotation of the pump impeller.
  • a suction opening is formed in one wall part and an outlet opening is formed in the other wall part.
  • a delivery channel is formed which extends in the circumferential direction from the suction opening to the outlet opening. The suction opening opens into the conveyor channel beginning of the one wall part and the outlet opening opens into the conveyor channel end of the other wall part.
  • the outlet opening has a conveying channel, into which it opens, which delimits the direction of rotation of the pump impeller Opening wall that ends on the end face of the wall part facing the pump impeller in an edge that is rounded. This opening wall also extends approximately perpendicular to the end face of the wall part facing the pump impeller.
  • the liquid pump according to the invention with the features according to claim 1 has the advantage that the inclined arrangement of the inner portion of the edge of the outlet opening achieves a favorable flow in the region of the outlet opening and the liquid pump has a higher delivery pressure and a higher efficiency compared to the known liquid pump having.
  • FIG. 1 shows a section of a liquid pump in a longitudinal section
  • FIG. 2 shows a section of a cross section through the liquid pump along the line II-II in FIG. 1 in the region of the outlet opening
  • FIG. 3 shows a section of a cross section through the liquid pump along the line III-III in FIG. 1 at the end of the delivery channel
  • FIG. 4 a section of the liquid pump in a cylinder jacket section along the line IV-IV in FIG. 2 and FIG. 3.
  • a liquid pump shown in FIGS. 1 to 4 which is used, in particular, to convey fuel from a storage tank to the internal combustion engine of a motor vehicle, has a pump impeller 10 which, starting from its two end faces, has a ring with a spacing from one another over the circumference of the pump impeller 10 arranged wings 12 or blades.
  • the wings 12 can be connected to one another at their radially outer ends via a ring 13.
  • the pump impeller 10 is driven, for example, by an electric motor, not shown, via a shaft 14 rotating around an axis 16.
  • the pump impeller 10 is arranged in a pump chamber 17 which is delimited in the direction of the axis of rotation 16 of the pump impeller 10 by a wall part 19 and 20, respectively.
  • the pump chamber 17 is through a limited cylindrical wall part 22, which can be arranged as a separate ring between the two wall parts 19 and 20 or as shown in Figure 1 is integrally formed with one of the wall parts 19 or 20.
  • the wall part 20 arranged towards the drive motor is designed as an intermediate housing and the other wall part 19 is designed as an intake cover.
  • the shaft 14 driving the pump impeller 10 projects through the intermediate housing 20 into the pump chamber 17.
  • annular delivery channel 25 is formed, which lies opposite the wing rim 12 of the pump impeller 10 and in the beginning of which a suction opening 26 opens, which is open to the outside of the liquid pump.
  • annular conveyor channel 29 is also formed opposite the wing rim 12 of the pump impeller 10, into which an outlet opening 30 opens at the end of the latter.
  • the delivery channels 25 and 29 are arranged approximately congruently and extend in the direction of rotation 11 of the pump impeller 10 from the suction opening 26 to the outlet opening 30.
  • the delivery channels 25 and 29 are in the area between the suction opening 26 and the outlet opening 30 through an interrupter 32 and 33 respectively separated from each other.
  • the conveying channels 25 and 29 are approximately semicircular in cross section.
  • FIG. 2 shows an enlarged cross section through the liquid pump, in which the intermediate housing 20 can be seen, with the delivery channel 29 formed therein.
  • the delivery channel 29 is delimited radially inwards to the axis of rotation 16 of the pump impeller 10 by an inner edge 34 and outwards by an outer edge 35.
  • the central region of the conveying channel 29 in the radial direction with respect to the axis of rotation 16 is indicated by its center line 36.
  • the outlet opening 30 extends from the delivery channel 29 to the outer surface 39 of the intermediate housing 20, the outlet opening 30 being arranged inclined with respect to the axis of rotation 16 of the pump impeller 10, namely in the direction of rotation 11 of the pump impeller 10 from the end face 28 of the intermediate housing 20 the outer surface 39 out.
  • the wall 40 delimiting the outlet opening 30 in the direction of rotation 11 is inclined at an angle ⁇ of approximately 20 to 40 ° to the end face 28 of the intermediate housing 20 facing the pump impeller 10.
  • the wall 40 can taper to the end face 28 or, as shown in FIG. 4, the transition from the wall 40 to the end face 28 can also be rounded.
  • the outlet opening 30 is designed in such a way that its effective flow cross-section downstream remains constant between the points designated A and B in FIG. 4 or only increases slightly, that is to say by no more than about 20%.
  • the wall 41 delimiting the outlet opening 30 counter to the direction of rotation 11 is arranged inclined at approximately the same angle a as the wall 40.
  • the outlet opening 30 is approximately circular in cross section.
  • the wall 40 delimiting the outlet opening 30 in the direction of rotation 11 runs out on the end face 28 of the intermediate housing 20 facing the pump impeller 10 in an edge 42 which forms the transition from the delivery channel 29 to the interrupter 33.
  • the edge 42 has an inner edge section 42a which extends from the inner edge 34 of the conveying channel 29 to its central region 36 and which is opposite an imaginary radial arrangement which is shown in dash-dot lines in FIG. 2 and with 42 ', is inclined in the direction of rotation 11 of the pump impeller 10.
  • the inner edge section 42a is arranged at an angle ⁇ of approximately 20 to 50 °, in particular of approximately 30 to 40 ° in the direction of rotation 11 inclined to the radial arrangement.
  • the angle ⁇ is included referred to the central region 36 of the conveyor channel 29 as the center.
  • the inner edge section 42a can be slightly curved, in particular when viewed in the direction of rotation 11, it has a convex curve, and the transition from the inner edge 34 of the conveying channel 29 to the edge section 42a is rounded.
  • the inner edge section 42a is thus approximately normal, that is to say perpendicular to the resulting path lines of the flow of the liquid conveyed by the liquid pump, which are indicated in FIG. 2 by arrows 43, so that the flow of the liquid in the inner section of the conveying channel 29 occurs at an early stage is led out of the pump and thus a re-entry into the spaces between the vanes 12 of the impeller 10 is prevented.
  • the mass flow fraction of the circulating liquid in the interrupter area 32, 33 is significantly reduced, which leads to significantly lower pressure surges in the interrupter area 32, 33, since less kinetic energy of the circulation flow has to be reduced in the interrupter area. This is associated with a significant reduction in noise.
  • the edge 42 has an outer edge section 42b starting from the central region 36 of the conveying channel 29 to the outer edge 35 thereof.
  • the outer edge section 42b extends further in the direction of rotation 11 of the pump impeller 10 than the imaginary straight radial extension of the inner edge section 42a, so that the conveying channel 29 has an extension 44 on its outer edge 35 which extends further in the direction of rotation 11 relative to its inner edge 34 .
  • the outer edge section 42b extends on the outer edge 35 of the conveying channel 29 in the direction of rotation 11 by a distance s than in the case of an imaginary straight extension of the inner edge section 42a. The distance s corresponds approximately to half to the full width b of the delivery channel 29.
  • the width b of the delivery channel 29 in front of the area of the outlet opening 30 is used as a basis.
  • the outer edge section 42b is curved, preferably with a course in the form of a mirror-inverted S viewed in the direction of rotation 11, and runs out towards the outer edge 35 of the conveying channel 29 approximately radially with respect to the axis of rotation 16.
  • FIG. 3 shows an enlarged cross section through the liquid pump, in which the suction cover 19 can be seen, with the delivery channel 25 formed therein.
  • the delivery channel 25 is delimited radially inwards to the axis of rotation 16 of the pump impeller 10 by an inner edge 46 and outwards by an outer edge 47.
  • the central region of the conveying channel 25 in the radial direction with respect to the axis of rotation 16 is indicated by the center line 48 thereof.
  • the delivery channel 25 is delimited at its end in the direction of rotation 11 of the pump impeller 10 by a wall 50, which ends at the end face 24 of the suction cover 19 facing the pump impeller 10 in an edge 52 which forms the transition from the delivery channel 25 to the interrupter 32.
  • the wall 50 extends from the bottom of the conveying channel 25 to the end face 24 of the suction cover 19 inclined in the direction of rotation 11.
  • the edge 52 When viewed in the radial direction with respect to the axis of rotation 16, the edge 52 has an inner section 52a which extends from the inner edge 46 of the conveying channel 25 to its central region 48 and which is opposite an imaginary radial arrangement which is shown in dash-dot lines in FIG. 3 and with 52 ', is inclined in the direction of rotation 11 of the pump impeller 10.
  • the inner edge section 52a is at an angle ⁇ of approximately 20 to 50 °, in particular approximately 30 to 40 ° in the direction of rotation 11 arranged inclined to the radial arrangement.
  • the angle ⁇ is related to the central region 48 of the delivery channel 25 as the center.
  • the inner edge section 52a can be designed to be slightly curved, in particular when viewed in the direction of rotation 11, it has a convex curve, and the transition from the inner edge 46 of the conveying channel 25 to the edge section 52a is rounded.
  • the inner edge section 52a on the suction cover 19 is thus, like the inner edge section 42a on the intermediate housing 20, also arranged approximately normal to the resulting path lines of the liquid conveyed, so that here the overflow to the outlet opening 30 in the intermediate housing 20 is initiated as early as possible.
  • the edge 52 When viewed in the radial direction with respect to the axis of rotation 16, the edge 52 has an outer edge section 52b starting from the central region 48 of the conveying channel 25 to the outer edge 47 thereof.
  • the outer edge section 52b extends further in the direction of rotation 11 of the pump impeller 10 than the imaginary straight radial extension of the inner edge section 52a, so that the delivery channel 25 has an extension 54 on its outer edge 47 which extends further in the direction of rotation 11 than its inner edge 46 .
  • the outer edge section 52b extends in the direction of rotation 11 on the outer edge 47 of the conveying channel 25 by a distance 1 than in the case of an imaginary straight extension of the inner edge section 52a.
  • the distance 1 corresponds approximately to half to the full width d of the conveyor channel 25.
  • the width b of the conveyor channel 25 is used as a basis in front of its end region.
  • the outer edge section 52b is curved, preferably with an approximately S-shaped course when viewed in the direction of rotation 11, and runs towards the outer edge 47 of the conveying channel 25 approximately radially with respect to the axis of rotation 16.
  • the extension 54 of the conveyor channel 25 is approximately in cross section semicircular.
  • the wall 50 is arranged inclined in such a way that it extends in the central region 48 of the conveying channel 25 in the direction of rotation 11 over an area which extends approximately half to the entire width b of the conveying channel 25.
  • the edge 42, which forms the transition of the delivery channel 29 to the interrupter 33 on the intermediate housing 20 and the edge 52, which forms the transition of the delivery channel 25 to the interrupter 32 on the suction cover 19, are preferably offset from one another in the circumferential direction with respect to the axis of rotation 16 of the pump impeller 10 arranged. Relative to the axis of rotation 16 of the pump impeller 10, the edge 42 on the intermediate housing 20 is arranged in the direction of rotation 11 by an angle ⁇ after the edge 52 on the suction cover 19. The angle ⁇ in the central region 36 or 48 of the delivery channels 25 and 29 is approximately 5 to 15 °.
  • the start of the delivery channel 29 is, viewed in the direction of the axis of rotation 16 of the pump impeller 10, approximately coincident with the start of the delivery channel 25, into which the suction opening 24 opens.
  • the above-described configuration of the end region of the delivery channel 25 in the intake cover 19 also reduces the noise generated by the liquid pump during its operation, since the favorable flow guidance in particular does not excite or only slightly excite the intake cover 19 to vibrate.
  • the liquid pump During the operation of the liquid pump, it sucks fuel through the suction opening 26 in the suction cover 19, which fuel is conveyed in the delivery channels 25 and 29. At the end of the delivery channels 25 and 29, the fuel flows out through the outlet opening 30 under increased pressure, flowing through the drive motor (not shown) and reaching the internal combustion engine via lines (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Flüssigkeitspumpe nach der Gattung des Anspruchs 1.The invention relates to a liquid pump according to the preamble of claim 1.

Eine solche Flüssigkeitspumpe ist durch die US-5,310,308 bekannt. Diese Flüssigkeitspumpe dient zum Fördern von Kraftstoff und weist ein mit Flügeln versehenes Pumpenlaufrad auf, das umlaufend angetrieben wird. Das Pumpenlaufrad ist in einer Pumpenkammer angeordnet, die in Richtung der Drehachse des Pumpenlaufrads durch jeweils ein Wandungsteil begrenzt ist. Im einen Wandungsteil ist dabei eine Saugöffnung ausgebildet und im anderen Wandungsteil ist eine Auslaßöffnung ausgebildet. In den dem Pumpenlaufrad zugewandten Stirnflächen der beiden Wandungsteile ist jeweils ein sich in Umfangsrichtung von der Saugöffnung bis zur Auslaßöffnung erstreckender Förderkanal ausgebildet. Die Saugöffnung mündet dabei im Förderkanalanfang des einen Wandungsteils und die Auslaßöffnung mündet im Förderkanalende des anderen Wandungsteils. Die Auslaßöffnung weist einen den Förderkanal, in den diese mündet, in Drehrichtung des Pumpenlaufrads begrenzende Öffnungwand auf, die an der dem Pumpenlaufrad zugewandten Stirnfläche des Wandungsteils in einer Kante ausläuft, die gerundet ausgebildet ist. Diese Öffnungswand verläuft außerdem etwa senkrecht zur dem Pumpenlaufrad zugewandten Stirnfläche des Wandungsteils. Bei dieser Ausbildung der Flüssigkeitspumpe entstehen im Bereich der Auslaßöffnung starke Strömungsturbulenzen und Verwirbelungen, die zu Verlusten an Förderdruck und Wirkungsgrad bei der Flüssigkeitspumpe führen. Außerdem entstehen während des Betriebs dieser Flüssigkeitspumpe störende Geräusche, die ebenfalls durch die ungünstigen Strömungsverhältnisse im Bereich der Auslaßöffnung hervorgerufen werden, durch die Teile der Flüssigkeitspumpe, insbesondere die Wandungsteile in Schwingungen versetzt werden.Such a liquid pump is known from US-5,310,308. This liquid pump is used to deliver fuel and has a pump impeller with vanes which is driven in rotation. The pump impeller is arranged in a pump chamber which is delimited by a wall part in the direction of the axis of rotation of the pump impeller. A suction opening is formed in one wall part and an outlet opening is formed in the other wall part. In the end faces of the two wall parts facing the pump impeller, a delivery channel is formed which extends in the circumferential direction from the suction opening to the outlet opening. The suction opening opens into the conveyor channel beginning of the one wall part and the outlet opening opens into the conveyor channel end of the other wall part. The outlet opening has a conveying channel, into which it opens, which delimits the direction of rotation of the pump impeller Opening wall that ends on the end face of the wall part facing the pump impeller in an edge that is rounded. This opening wall also extends approximately perpendicular to the end face of the wall part facing the pump impeller. With this configuration of the liquid pump, strong flow turbulence and turbulence arise in the area of the outlet opening, which lead to losses in the delivery pressure and efficiency in the liquid pump. In addition, disturbing noises occur during the operation of this liquid pump, which are also caused by the unfavorable flow conditions in the region of the outlet opening, through which parts of the liquid pump, in particular the wall parts, are set in vibration.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Flüssigkeitspumpe mit den Merkmalen gemäß dem Anspruch 1 hat demgegenüber den Vorteil, daß durch die geneigte Anordnung des inneren Abschnitts der Kante der Auslaßöffnung ein günstiger Strömungsverlauf im Bereich der Auslaßöffnung erreicht wird und die Flüssigkeitspumpe gegenüber der bekannten Flüssigkeitspumpe einen höheren Förderdruck und einen höheren Wirkungsgrad aufweist.The liquid pump according to the invention with the features according to claim 1 has the advantage that the inclined arrangement of the inner portion of the edge of the outlet opening achieves a favorable flow in the region of the outlet opening and the liquid pump has a higher delivery pressure and a higher efficiency compared to the known liquid pump having.

In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Flüssigkeitspumpe angegeben. Durch die Weiterbildung gemäß Anspruch 3 und 4 wird eine mit geringeren Verlusten behaftete Ausströmung aus dem Förderkanal, in den die Einlaßöffnung mündet, und damit eine Steigerung von Förderdruck und Wirkungsgrad erreicht. Außerdem wird durch diese Weiterbildung eine Reduzierung des von der Flüssigkeitspumpe während deren Betriebs erzeugten Geräuschs erreicht. Die Merkmale der Ansprüche 10 und 11 ermöglichen ebenfalls eine mit geringeren Verlusten behaftete Ausströmung aus dem Förderkanal, in den die Einlaßöffnung mündet und damit ebenfalls eine Steigerung von Förderdruck und Wirkungsgrad.Advantageous refinements and developments of the liquid pump according to the invention are specified in the dependent claims. The further development according to claims 3 and 4 results in an outflow with lower losses from the delivery channel into which the inlet opening opens, and thus an increase in delivery pressure and efficiency. In addition, this development reduces the noise generated by the liquid pump during its operation. The features of claims 10 and 11 also enable one with lower losses Affected outflow from the delivery channel into which the inlet opening opens and thus also an increase in delivery pressure and efficiency.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Flüssigkeitspumpe abschnittsweise in einem Längsschnitt, Figur 2 ausschnittsweise einen Querschnitt durch die Flüssigkeitspumpe entlang der Linie II-II in Figur 1 im Bereich der Auslaßöffnung, Figur 3 ausschnittsweise einen Querschnitt durch die Flüssigkeitspumpe entlang der Linie III-III in Figur 1 am Ende des Förderkanals und Figur 4 ausschnittsweise die Flüssigkeitspumpe in einem Zylindermantelschnitt entlang der Linie IV-IV in Figur 2 und Figur 3.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. 1 shows a section of a liquid pump in a longitudinal section, FIG. 2 shows a section of a cross section through the liquid pump along the line II-II in FIG. 1 in the region of the outlet opening, FIG. 3 shows a section of a cross section through the liquid pump along the line III-III in FIG. 1 at the end of the delivery channel and FIG. 4, a section of the liquid pump in a cylinder jacket section along the line IV-IV in FIG. 2 and FIG. 3.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Eine in den Figuren 1 bis 4 dargestellte Flüssigkeitspumpe, die insbesondere zum Fördern von Kraftstoff aus einem Vorratstank zur Brennkraftmaschine eines Kraftfahrzeugs dient, weist ein Pumpenlaufrad 10 auf, das ausgehend von seinen beiden Stirnseiten jeweils einen Kranz von mit Abstand zueinander über den Umfang des Pumpenlaufrads 10 angeordneten Flügeln 12 oder Schaufeln aufweist. Die Flügel 12 können an ihren radial äußeren Enden über einen Ring 13 miteinander verbunden sein. Das Pumpenlaufrad 10 wird beispielsweise durch einen nicht dargestellten Elektromotor über eine Welle 14 um eine Achse 16 umlaufend angetrieben. Das Pumpenlaufrad 10 ist in einer Pumpenkammer 17 angeordnet, die in Richtung der Drehachse 16 des Pumpenlaufrads 10 durch jeweils ein Wandungsteil 19 und 20 begrenzt ist. In radialer Richtung bezüglich der Drehachse 16 ist die Pumpenkammer 17 durch ein zylinderförmiges Wandungsteil 22 begrenzt, das als separater Ring zwischen den beiden Wandungsteilen 19 und 20 angeordnet sein kann oder wie in Figur 1 dargestellt einstückig mit einem der Wandungsteile 19 oder 20 ausgebildet ist. Das zum Antriebsmotor hin angeordnete Wandungsteil 20 ist als ein Zwischengehäuse ausgebildet und das andere Wandungsteil 19 ist als Ansaugdeckel ausgebildet. Die das Pumpenlaufrad 10 antreibende Welle 14 ragt durch das Zwischengehäuse 20 hindurch in die Pumpenkammer 17 hinein.A liquid pump shown in FIGS. 1 to 4, which is used, in particular, to convey fuel from a storage tank to the internal combustion engine of a motor vehicle, has a pump impeller 10 which, starting from its two end faces, has a ring with a spacing from one another over the circumference of the pump impeller 10 arranged wings 12 or blades. The wings 12 can be connected to one another at their radially outer ends via a ring 13. The pump impeller 10 is driven, for example, by an electric motor, not shown, via a shaft 14 rotating around an axis 16. The pump impeller 10 is arranged in a pump chamber 17 which is delimited in the direction of the axis of rotation 16 of the pump impeller 10 by a wall part 19 and 20, respectively. In the radial direction with respect to the axis of rotation 16, the pump chamber 17 is through a limited cylindrical wall part 22, which can be arranged as a separate ring between the two wall parts 19 and 20 or as shown in Figure 1 is integrally formed with one of the wall parts 19 or 20. The wall part 20 arranged towards the drive motor is designed as an intermediate housing and the other wall part 19 is designed as an intake cover. The shaft 14 driving the pump impeller 10 projects through the intermediate housing 20 into the pump chamber 17.

In der dem Pumpenlaufrad 10 zugewandten Stirnfläche 24 des Ansaugdeckels 19 ist ein ringförmiger Förderkanal 25 ausgebildet, der dem Flügelkranz 12 des Pumpenlaufrads 10 gegenüberliegt und in dessen Anfang eine Saugöffnung 26 mündet, die zur Außenseite der Flüssigkeitspumpe offen ist. In der dem Pumpenlaufrad 10 zugewandten Stirnfläche 28 des Zwischengehäuses 20 ist ebenfalls dem Flügelkranz 12 des Pumpenlaufrads 10 gegenüberliegend ein ringförmiger Förderkanal 29 ausgebildet, in den an dessen Ende eine Auslaßöffnung 30 mündet. Die Förderkanäle 25 und 29 sind etwa deckungsgleich angeordnet und erstrecken sich in Drehrichtung 11 des Pumpenlaufrads 10 von der Saugöffnung 26 bis zur Auslaßöffnung 30. Die Förderkanäle 25 und 29 sind im Bereich zwischen der Saugöffnung 26 und der Auslaßöffnung 30 durch einen Unterbrecher 32 bzw. 33 voneinander getrennt. Die Förderkanäle 25 und 29 sind im Querschnitt etwa halbkreisförmig ausgebildet.In the end face 24 of the suction cover 19 facing the pump impeller 10, an annular delivery channel 25 is formed, which lies opposite the wing rim 12 of the pump impeller 10 and in the beginning of which a suction opening 26 opens, which is open to the outside of the liquid pump. In the end face 28 of the intermediate housing 20 facing the pump impeller 10, an annular conveyor channel 29 is also formed opposite the wing rim 12 of the pump impeller 10, into which an outlet opening 30 opens at the end of the latter. The delivery channels 25 and 29 are arranged approximately congruently and extend in the direction of rotation 11 of the pump impeller 10 from the suction opening 26 to the outlet opening 30. The delivery channels 25 and 29 are in the area between the suction opening 26 and the outlet opening 30 through an interrupter 32 and 33 respectively separated from each other. The conveying channels 25 and 29 are approximately semicircular in cross section.

In Figur 2 ist vergrößert ein Querschnitt durch die Flüssigkeitspumpe dargestellt, in dem das Zwischengehäuse 20 erkennbar ist, mit dem in diesem ausgebildeten Förderkanal 29. Der Förderkanal 29 ist radial nach innen zur Drehachse 16 des Pumpenlaufrads 10 hin durch einen Innenrand 34 begrenzt und nach außen durch einen Außenrand 35. Der in radialer Richtung bezüglich der Drehachse 16 mittlere Bereich des Förderkanals 29 ist durch dessen Mittellinie 36 angedeutet.FIG. 2 shows an enlarged cross section through the liquid pump, in which the intermediate housing 20 can be seen, with the delivery channel 29 formed therein. The delivery channel 29 is delimited radially inwards to the axis of rotation 16 of the pump impeller 10 by an inner edge 34 and outwards by an outer edge 35. The central region of the conveying channel 29 in the radial direction with respect to the axis of rotation 16 is indicated by its center line 36.

Die Auslaßöffnung 30 verläuft wie in Figur 4 dargestellt kanalartig vom Förderkanal 29 zur Außenfläche 39 des Zwischengehäuses 20, wobei die Auslaßöffnung 30 bezüglich der Drehachse 16 des Pumpenlaufrads 10 geneigt angeordnet ist und zwar in Drehrichtung 11 des Pumpenlaufrads 10 von der Stirnfläche 28 des Zwischengehäuses 20 zu dessen Außenfläche 39 hin. Die die Auslaßöffnung 30 in Drehrichtung 11 begrenzende Wand 40 ist dabei unter einem Winkel α von etwa 20 bis 40° zur dem Pumpenlaufrad 10 zugewandten Stirnfläche 28 des Zwischengehäuses 20 geneigt. Die Wand 40 kann zur Stirnfläche 28 hin spitz auslaufen oder, wie in Figur 4 dargestellt, kann der Übergang von der Wand 40 zur Stirnfläche 28 auch gerundet sein. Die Auslaßöffnung 30 ist so ausgebildet, daß deren effektiver Durchströmquerschnitt stromabwärts zwischen den in Figur 4 mit A und B bezeichneten Stellen konstant bleibt oder sich nur wenig vergrößert, das heißt um nicht mehr als etwa 20%. Die die Auslaßöffnung 30 entgegen Drehrichtung 11 begrenzende Wand 41 ist etwa um denselben Winkel a geneigt angeordnet wie die Wand 40. Die Auslaßöffnung 30 ist im Querschnitt etwa kreisförmig ausgebildet.As shown in FIG. 4, the outlet opening 30 extends from the delivery channel 29 to the outer surface 39 of the intermediate housing 20, the outlet opening 30 being arranged inclined with respect to the axis of rotation 16 of the pump impeller 10, namely in the direction of rotation 11 of the pump impeller 10 from the end face 28 of the intermediate housing 20 the outer surface 39 out. The wall 40 delimiting the outlet opening 30 in the direction of rotation 11 is inclined at an angle α of approximately 20 to 40 ° to the end face 28 of the intermediate housing 20 facing the pump impeller 10. The wall 40 can taper to the end face 28 or, as shown in FIG. 4, the transition from the wall 40 to the end face 28 can also be rounded. The outlet opening 30 is designed in such a way that its effective flow cross-section downstream remains constant between the points designated A and B in FIG. 4 or only increases slightly, that is to say by no more than about 20%. The wall 41 delimiting the outlet opening 30 counter to the direction of rotation 11 is arranged inclined at approximately the same angle a as the wall 40. The outlet opening 30 is approximately circular in cross section.

Die die Auslaßöffnung 30 in Drehrichtung 11 begrenzende Wand 40 läuft an der dem Pumpenlaufrad 10 zugewandten Stirnfläche 28 des Zwischengehäuses 20 in einer Kante 42 aus, die den Übergang vom Förderkanal 29 zum Unterbrecher 33 bildet. Die Kante 42 weist in radialer Richtung bezüglich der Drehachse 16 betrachtet einen inneren Kantenabschnitt 42a auf, der sich ausgehend vom Innenrand 34 des Förderkanals 29 bis zu dessen mittlerem Bereich 36 erstreckt und der gegenüber einer gedachten radialen Anordnung, die in Figur 2 strichpunktiert eingezeichnet und mit 42' bezeichnet ist, in Drehrichtung 11 des Pumpenlaufrads 10 geneigt ist. Der innere Kantenabschnitt 42a ist um einen Winkel β von etwa 20 bis 50°, insbesondere von etwa 30 bis 40° in Drehrichtung 11 zur radialen Anordnung geneigt angeordnet. Der Winkel β ist dabei auf den mittleren Bereich 36 des Förderkanals 29 als Mittelpunkt bezogen. Der innere Kantenabschnitt 42a kann wie in Figur 2 dargestellt leicht gekrümmt ausgebildet sein, insbesondere in Drehrichtung 11 betrachtet konvex gekrümmt, und der Übergang vom Innenrand 34 des Förderkanals 29 zum Kantenabschnitt 42a ist gerundet. Der innere Kantenabschnitt 42a ist somit etwa normal, das heißt senkrecht, zu den resultierenden Bahnlinien der Strömung der von der Flüssigkeitspumpe geförderten Flüssigkeit angeordnet, die in Figur 2 durch Pfeile 43 angedeutet sind, so daß die Strömung der Flüssigkeit im inneren Abschnitt des Förderkanals 29 frühzeitig aus der Pumpe herausgeführt wird und damit ein Wiedereintreten in die Zwischenräume zwischen den Flügeln 12 des Laufrads 10 verhindert wird. Durch Vermeidung des Wiedereintretens der Strömung wird der Massenstromanteil der zirkulierenden Flüssigkeit im Unterbrecherbereich 32,33 deutlich reduziert, was zu deutlich geringeren Druckstößen im Unterbrecherbereich 32,33 führt, da weniger kinetische Energie der Zirkulationsströmung im Unterbrecherbereich abgebaut werden muß. Hiermit ist eine deutliche Geräuschreduzierung verbunden.The wall 40 delimiting the outlet opening 30 in the direction of rotation 11 runs out on the end face 28 of the intermediate housing 20 facing the pump impeller 10 in an edge 42 which forms the transition from the delivery channel 29 to the interrupter 33. When viewed in the radial direction with respect to the axis of rotation 16, the edge 42 has an inner edge section 42a which extends from the inner edge 34 of the conveying channel 29 to its central region 36 and which is opposite an imaginary radial arrangement which is shown in dash-dot lines in FIG. 2 and with 42 ', is inclined in the direction of rotation 11 of the pump impeller 10. The inner edge section 42a is arranged at an angle β of approximately 20 to 50 °, in particular of approximately 30 to 40 ° in the direction of rotation 11 inclined to the radial arrangement. The angle β is included referred to the central region 36 of the conveyor channel 29 as the center. As shown in FIG. 2, the inner edge section 42a can be slightly curved, in particular when viewed in the direction of rotation 11, it has a convex curve, and the transition from the inner edge 34 of the conveying channel 29 to the edge section 42a is rounded. The inner edge section 42a is thus approximately normal, that is to say perpendicular to the resulting path lines of the flow of the liquid conveyed by the liquid pump, which are indicated in FIG. 2 by arrows 43, so that the flow of the liquid in the inner section of the conveying channel 29 occurs at an early stage is led out of the pump and thus a re-entry into the spaces between the vanes 12 of the impeller 10 is prevented. By avoiding the re-entry of the flow, the mass flow fraction of the circulating liquid in the interrupter area 32, 33 is significantly reduced, which leads to significantly lower pressure surges in the interrupter area 32, 33, since less kinetic energy of the circulation flow has to be reduced in the interrupter area. This is associated with a significant reduction in noise.

In radialer Richtung bezüglich der Drehachse 16 betrachtet weist die Kante 42 ausgehend vom mittleren Bereich 36 des Förderkanals 29 zu dessen Außenrand 35 hin einen äußeren Kantenabschnitt 42b auf. Der äußere Kantenabschnitt 42b verläuft gegenüber der mit gestrichelter Linie eingezeichneten gedachten geradlinigen radialen Verlängerung des inneren Kantenabschnitts 42a weiter in Drehrichtung 11 des Pumpenlaufrads 10, so daß der Förderkanal 29 an dessen Außenrand 35 einen sich gegenüber dessen Innenrand 34 weiter in Drehrichtung 11 erstreckenden Fortsatz 44 aufweist. Der äußere Kantenabschnitt 42b erstreckt sich am Außenrand 35 des Förderkanals 29 in Drehrichtung 11 um eine Strecke s weiter als bei gedachter geradliniger Verlängerung des inneren Kantenabschnitts 42a. Die Strecke s entspricht dabei etwa der halben bis ganzen Breite b des Förderkanals 29. Dabei wird die Breite b des Förderkanals 29 vor dem Bereich der Auslaßöffnung 30 zugrunde gelegt. Der äußere Kantenabschnitt 42b verläuft gekrümmt, vorzugsweise mit einem in Drehrichtung 11 betrachteten Verlauf in Form eines spiegelverkehrten S, und läuft zum Außenrand 35 des Förderkanals 29 hin etwa radial bezüglich der Drehachse 16 aus.Viewed in the radial direction with respect to the axis of rotation 16, the edge 42 has an outer edge section 42b starting from the central region 36 of the conveying channel 29 to the outer edge 35 thereof. The outer edge section 42b extends further in the direction of rotation 11 of the pump impeller 10 than the imaginary straight radial extension of the inner edge section 42a, so that the conveying channel 29 has an extension 44 on its outer edge 35 which extends further in the direction of rotation 11 relative to its inner edge 34 . The outer edge section 42b extends on the outer edge 35 of the conveying channel 29 in the direction of rotation 11 by a distance s than in the case of an imaginary straight extension of the inner edge section 42a. The distance s corresponds approximately to half to the full width b of the delivery channel 29. The width b of the delivery channel 29 in front of the area of the outlet opening 30 is used as a basis. The outer edge section 42b is curved, preferably with a course in the form of a mirror-inverted S viewed in the direction of rotation 11, and runs out towards the outer edge 35 of the conveying channel 29 approximately radially with respect to the axis of rotation 16.

Vorzugsweise ist zusätzlich auch der Endbereich des Förderkanals 25 im Ansaugdeckel 19 wie nachstehend beschrieben besonders ausgebildet. In Figur 3 ist vergrößert ein Querschnitt durch die Flüssigkeitspumpe dargestellt, in dem der Ansaugdeckel 19 erkennbar ist, mit dem in diesem ausgebildeten Förderkanal 25. Der Förderkanal 25 ist radial nach innen zur Drehachse 16 des Pumpenlaufrads 10 hin durch einen Innenrand 46 begrenzt und nach außen durch einen Außenrand 47. Der in radialer Richtung bezüglich der Drehachse 16 mittlere Bereich des Förderkanals 25 ist durch dessen Mittellinie 48 angedeutet. Der Förderkanal 25 ist an seinem Ende in Drehrichtung 11 des Pumpenlaufrads 10 durch eine Wand 50 begrenzt, die an der dem Pumpenlaufrad 10 zugewandten Stirnfläche 24 des Ansaugdeckels 19 in einer Kante 52 ausläuft, die den Übergang vom Förderkanal 25 zum Unterbrecher 32 bildet. Die Wand 50 verläuft vom Grund des Förderkanals 25 ausgehend zur Stirnfläche 24 des Ansaugdeckels 19 in Drehrichtung 11 geneigt. Die Kante 52 weist in radialer Richtung bezüglich der Drehachse 16 betrachtet einen inneren Abschnitt 52a auf, der sich ausgehend vom Innenrand 46 des Förderkanals 25 bis zu dessen mittlerem Bereich 48 erstreckt und der gegenüber einer gedachten radialen Anordnung, die in Figur 3 strichpunktiert eingezeichnet und mit 52' bezeichnet ist, in Drehrichtung 11 des Pumpenlaufrads 10 geneigt ist. Der innere Kantenabschnitt 52a ist um einen Winkel γ von etwa 20 bis 50°, insbesondere von etwa 30 bis 40° in Drehrichtung 11 zur radialen Anordnung geneigt angeordnet. Der Winkel γ ist dabei auf den mittleren Bereich 48 des Förderkanals 25 als Mittelpunkt bezogen. Der innere Kantenabschnitt 52a kann wie in Figur 3 dargestellt leicht gekrümmt ausgebildet sein, insbesondere in Drehrichtung 11 betrachtet konvex gekrümmt, und der Übergang vom Innenrand 46 des Förderkanals 25 zum Kantenabschnitt 52a ist gerundet. Der innere Kantenabschnitt 52a am Ansaugdeckel 19 ist somit wie der innere Kantenabschnitt 42a am Zwischengehäuse 20 ebenfalls etwa normal zu den resultierenden Bahnlinien der geförderten Flüssigkeit angeordnet, so daß hier die Überströmung zur Auslaßöffnung 30 im Zwischengehäuse 20 möglichst frühzeitig eingeleitet wird.In addition, the end region of the conveying channel 25 in the suction cover 19 is preferably also specially configured, as described below. FIG. 3 shows an enlarged cross section through the liquid pump, in which the suction cover 19 can be seen, with the delivery channel 25 formed therein. The delivery channel 25 is delimited radially inwards to the axis of rotation 16 of the pump impeller 10 by an inner edge 46 and outwards by an outer edge 47. The central region of the conveying channel 25 in the radial direction with respect to the axis of rotation 16 is indicated by the center line 48 thereof. The delivery channel 25 is delimited at its end in the direction of rotation 11 of the pump impeller 10 by a wall 50, which ends at the end face 24 of the suction cover 19 facing the pump impeller 10 in an edge 52 which forms the transition from the delivery channel 25 to the interrupter 32. The wall 50 extends from the bottom of the conveying channel 25 to the end face 24 of the suction cover 19 inclined in the direction of rotation 11. When viewed in the radial direction with respect to the axis of rotation 16, the edge 52 has an inner section 52a which extends from the inner edge 46 of the conveying channel 25 to its central region 48 and which is opposite an imaginary radial arrangement which is shown in dash-dot lines in FIG. 3 and with 52 ', is inclined in the direction of rotation 11 of the pump impeller 10. The inner edge section 52a is at an angle γ of approximately 20 to 50 °, in particular approximately 30 to 40 ° in the direction of rotation 11 arranged inclined to the radial arrangement. The angle γ is related to the central region 48 of the delivery channel 25 as the center. As shown in FIG. 3, the inner edge section 52a can be designed to be slightly curved, in particular when viewed in the direction of rotation 11, it has a convex curve, and the transition from the inner edge 46 of the conveying channel 25 to the edge section 52a is rounded. The inner edge section 52a on the suction cover 19 is thus, like the inner edge section 42a on the intermediate housing 20, also arranged approximately normal to the resulting path lines of the liquid conveyed, so that here the overflow to the outlet opening 30 in the intermediate housing 20 is initiated as early as possible.

In radialer Richtung bezüglich der Drehachse 16 betrachtet weist die Kante 52 ausgehend vom mittleren Bereich 48 des Förderkanals 25 zu dessen Außenrand 47 hin einen äußeren Kantenabschnitt 52b auf. Der äußere Kantenabschnitt 52b verläuft gegenüber der mit gestrichelter Linie eingezeichneten gedachten geradlinigen radialen Verlängerung des inneren Kantenabschnitts 52a weiter in Drehrichtung 11 des Pumpenlaufrads 10, so daß der Förderkanal 25 an dessen Außenrand 47 einen sich gegenüber dessen Innenrand 46 weiter in Drehrichtung 11 erstreckenden Fortsatz 54 aufweist. Der äußere Kantenabschnitt 52b erstreckt sich in Drehrichtung 11 am Außenrand 47 des Förderkanals 25 um eine Strecke 1 weiter als bei gedachter geradliniger Verlängerung des inneren Kantenabschnitts 52a. Die Strecke 1 entspricht dabei etwa der halben bis ganzen Breite d des Förderkanals 25. Dabei wird die Breite b des Förderkanals 25 vor dessen Endbereich zugrunde gelegt. Der äußere Kantenabschnitt 52b verläuft gekrümmt, vorzugsweise mit einem in Drehrichtung 11 betrachtet annähernd s-förmigen Verlauf und läuft zum Außenrand 47 des Förderkanals 25 hin etwa radial bezüglich der Drehachse 16 aus. Der Fortsatz 54 des Förderkanals 25 ist im Querschnitt etwa halbkreisförmig ausgebildet. Die Wand 50 ist derart geneigt angeordnet, daß sie sich im mittleren Bereich 48 des Förderkanals 25 in Drehrichtung 11 über einen Bereich erstreckt, der etwa der halben bis ganzen Breite b des Förderkanals 25 erstreckt.When viewed in the radial direction with respect to the axis of rotation 16, the edge 52 has an outer edge section 52b starting from the central region 48 of the conveying channel 25 to the outer edge 47 thereof. The outer edge section 52b extends further in the direction of rotation 11 of the pump impeller 10 than the imaginary straight radial extension of the inner edge section 52a, so that the delivery channel 25 has an extension 54 on its outer edge 47 which extends further in the direction of rotation 11 than its inner edge 46 . The outer edge section 52b extends in the direction of rotation 11 on the outer edge 47 of the conveying channel 25 by a distance 1 than in the case of an imaginary straight extension of the inner edge section 52a. The distance 1 corresponds approximately to half to the full width d of the conveyor channel 25. The width b of the conveyor channel 25 is used as a basis in front of its end region. The outer edge section 52b is curved, preferably with an approximately S-shaped course when viewed in the direction of rotation 11, and runs towards the outer edge 47 of the conveying channel 25 approximately radially with respect to the axis of rotation 16. The extension 54 of the conveyor channel 25 is approximately in cross section semicircular. The wall 50 is arranged inclined in such a way that it extends in the central region 48 of the conveying channel 25 in the direction of rotation 11 over an area which extends approximately half to the entire width b of the conveying channel 25.

Die Kante 42, die den Übergang des Förderkanals 29 zum Unterbrecher 33 am Zwischengehäuse 20 bildet und die Kante 52, die den Übergang des Förderkanals 25 zum Unterbrecher 32 am Ansaugdeckel 19 bildet, sind vorzugsweise in Umfangsrichtung bezogen auf die Drehachse 16 des Pumpenlaufrads 10 zueinander versetzt angeordnet. Bezogen auf die Drehachse 16 des Pumpenlaufrads 10 ist dabei die Kante 42 am Zwischengehäuse 20 in Drehrichtung 11 um einen Winkel ϕ nach der Kante 52 am Ansaugdeckel 19 angeordnet. Der Winkel ϕ beträgt im mittleren Bereich 36 bzw. 48 der Förderkanäle 25 und 29 etwa 5 bis 15°. Der Anfang des Förderkanals 29 ist in Richtung der Drehachse 16 des Pumpenlaufrads 10 betrachtet etwa deckungsgleich mit dem Anfang des Förderkanals 25 angeordnet, in den die Saugöffnung 24 mündet.The edge 42, which forms the transition of the delivery channel 29 to the interrupter 33 on the intermediate housing 20 and the edge 52, which forms the transition of the delivery channel 25 to the interrupter 32 on the suction cover 19, are preferably offset from one another in the circumferential direction with respect to the axis of rotation 16 of the pump impeller 10 arranged. Relative to the axis of rotation 16 of the pump impeller 10, the edge 42 on the intermediate housing 20 is arranged in the direction of rotation 11 by an angle ϕ after the edge 52 on the suction cover 19. The angle ϕ in the central region 36 or 48 of the delivery channels 25 and 29 is approximately 5 to 15 °. The start of the delivery channel 29 is, viewed in the direction of the axis of rotation 16 of the pump impeller 10, approximately coincident with the start of the delivery channel 25, into which the suction opening 24 opens.

Durch die von den mittleren Bereichen 36 bzw. 48 bis zu den Außenrändern 35 bzw. 47 der Förderkanäle 29 bzw. 25 ausgebildeten Fortsätze 44 bzw. 54 wird erreicht, daß die geförderte Flüssigkeit aus dem Förderkanal 25 im Ansaugdeckel 19 mit geringen Verlusten durch die Auslaßöffnung 30 ausströmen kann. Durch die vorstehend beschriebene Ausbildung des Endbereichs des Förderkanals 25 im Ansaugdeckel 19 wird außerdem eine Reduzierung des von der Flüssigkeitspumpe während ihres Betriebs erzeugten Geräuschs erreicht, da durch die günstige Strömungsführung insbesondere der Ansaugdeckel 19 nicht oder nur in geringem Maße zu Schwingungen angeregt wird.The extensions 44 and 54 formed from the central regions 36 and 48 to the outer edges 35 and 47 of the delivery channels 29 and 25 ensure that the liquid conveyed from the delivery channel 25 in the suction cover 19 with little loss through the outlet opening 30 can flow out. The above-described configuration of the end region of the delivery channel 25 in the intake cover 19 also reduces the noise generated by the liquid pump during its operation, since the favorable flow guidance in particular does not excite or only slightly excite the intake cover 19 to vibrate.

Während des Betriebs der Flüssigkeitspumpe saugt diese durch die Saugöffnung 26 im Ansaugdeckel 19 Kraftstoff an, der in den Förderkanälen 25 und 29 gefördert wird. Am Ende der Förderkanäle 25 und 29 strömt der Kraftstoff unter erhöhtem Druck durch die Auslaßöffnung 30 aus, wobei er den nicht dargestellten Antriebsmotor durchströmt und über nicht dargestellte Leitungen zur Brennkraftmaschine gelangt.During the operation of the liquid pump, it sucks fuel through the suction opening 26 in the suction cover 19, which fuel is conveyed in the delivery channels 25 and 29. At the end of the delivery channels 25 and 29, the fuel flows out through the outlet opening 30 under increased pressure, flowing through the drive motor (not shown) and reaching the internal combustion engine via lines (not shown).

Claims (12)

  1. Hydraulic pump, in particular for delivering fuel, having a pump impeller (10) which is provided with blades (12), is driven in a rotating fashion and is arranged in a pump chamber (17) bounded in the direction of the rotation axis (16) of said pump impeller by a respective wall part (19, 20), having a suction opening (26) in one wall part (19) and having an outlet opening (30) in the other wall part (20), having in each case an annular delivery channel (25, 29) which is arranged in the end faces (24, 28), facing the pump impeller (10), of the wall parts (19, 20) and extends from the suction opening (26) up to the outlet opening (30), the suction opening (26) opening into the start of the delivery channel of one wall part (19), and the outlet opening (30) opening into the region of the end of the delivery channel of the other wall part (20), the outlet opening (30) having a wall (40) which, in the direction of rotation (11) of the pump impeller (10), bounds the delivery channel (29) into which this outlet opening opens, and which finishes in an edge (42) at the end face (28) facing the pump impeller (10), characterized in that, seen in the radial direction with reference to the rotation axis (16) of the pump impeller (10), the edge (42) has an inner edge section (42a) which, starting from an inner edge (34) bounding the delivery channel (29) radially towards the rotation axis (16), runs, in a fashion inclined to an imaginary radial arrangement (42') in the direction of rotation (11) of the pump impeller (10), to a middle region (36), seen in the radial direction with reference to the rotation axis (16), of the delivery channel (29) .
  2. Hydraulic pump according to Claim 1, characterized in that the inner edge section (42a) runs inclined at an angle (β) of approximately 20 to 50°, preferably from approximately 30 to 40°, to the imaginary radial arrangement with the middle region (36) of the delivery channel (29) as midpoint.
  3. Hydraulic pump according to Claim 1 or 2, characterized in that, starting from the middle region (36), seen in the radial direction with reference to the rotation axis (16) of the pump impeller (10), of the delivery channel (29), the edge (42) has an outer edge section (42b) which reaches to the outer edge (35) bounding the delivery channel (29) radially outwards and runs further in the direction of rotation (11) of the pump impeller (10) by comparison with the imaginary rectilinear radial extension of the inner edge section (42a).
  4. Hydraulic pump according to Claim 3, characterized in that, by comparison with the imaginary rectilinear radial extension of the inner edge section (42a), the outer edge section (42b) runs further on the outer edge (35) of the delivery channel (29) by approximately half to all of the width (b) of the delivery channel (29) in the direction of rotation (11) of the pump impeller (10).
  5. Hydraulic pump according to one of the preceding claims, characterized in that, with reference to the end face (28), facing the pump impeller (10), of the wall part (20), the wall (40) bounding the outlet opening (30) in the direction of rotation (11) of the pump impeller (10) runs away inclined in the direction of rotation (11) from the end face (28).
  6. Hydraulic pump according to Claim 5, characterized in that the wall (40) runs inclined at an angle (α) of approximately 20 to 40° to the end face (28) of the wall part (20).
  7. Hydraulic pump according to one of the preceding claims, characterized in that the effective passage area of the outlet opening (30), starting from the delivery channel (29) up to its opening at the end face (39), averted from the pump impeller (10) of the wall part (20), increases by at most 20% or is essentially constant.
  8. Hydraulic pump according to one of the preceding claims, characterized in that the delivery channel (25), into the start of which the suction opening (26) opens, is bounded at its end in the direction of rotation (11) of the pump impeller (10) by a wall (50) which finishes in an edge (52) at the end face (24), facing the pump impeller (10), of the wall part (19), and in that seen in the radial direction with reference to the rotation axis (16) of the pump impeller (10), the edge (52) has an inner edge section (52a) which, starting from an inner edge (46) bounding the delivery channel (25) radially towards the axis of rotation (16), runs, in a fashion inclined to an imaginary radial arrangement (52') in the direction of rotation (11) of the pump impeller (10), to a middle region (48), seen in the radial direction with reference to the rotation axis (16), of the delivery channel (25).
  9. Hydraulic pump according to Claim 8, characterized in that the inner edge section (52a) runs inclined at an angle (γ) of approximately 20 to 50°, preferably from approximately 30 to 40°, to an imaginary radial arrangement with the middle region (48) of the delivery channel (25) as midpoint.
  10. Hydraulic pump according to Claim 8 or 9, characterized in that starting from the middle region (48), seen in the radial direction with reference to the rotation axis (16) of the pump impeller (10), of the delivery channel (25), the edge (52) has an outer edge section (52b) which reaches to the outer edge (47) bounding the delivery channel (25) radially outwards and runs further in the direction of rotation (11) of the pump impeller (10) by comparison with the imaginary rectilinear radial extension of the inner edge section (52a).
  11. Hydraulic pump according to Claim 10, characterized in that, by comparison with the imaginary rectilinear radial extension of the inner edge section (52a), the outer edge section (52b) runs further on the outer edge (47) of the delivery channel (25) by approximately half to all of the width (d) of the delivery channel (25) in the direction of rotation (11) of the pump impeller (10).
  12. Hydraulic pump according to one of Claims 8 to 11, characterized in that in the middle region (36, 48), seen in the radial direction with reference to the rotation axis (16), of the delivery channels (29, 25), the edge (42) of the delivery channel (29) into which the outlet opening (30) opens, is arranged in the direction of rotation (11) of the pump impeller (10) by an angle (ϕ) of approximately 5 to 15° after the edge (52) of the delivery channel (25) into which the suction opening (26) opens.
EP96900268A 1995-02-11 1996-01-11 Fluid pump Expired - Lifetime EP0772743B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19504564A DE19504564A1 (en) 1995-02-11 1995-02-11 Liquid pump
DE19504564 1995-02-11
PCT/DE1996/000028 WO1996024770A1 (en) 1995-02-11 1996-01-11 Fluid pump

Publications (2)

Publication Number Publication Date
EP0772743A1 EP0772743A1 (en) 1997-05-14
EP0772743B1 true EP0772743B1 (en) 2000-04-05

Family

ID=7753711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96900268A Expired - Lifetime EP0772743B1 (en) 1995-02-11 1996-01-11 Fluid pump

Country Status (8)

Country Link
US (1) US5785490A (en)
EP (1) EP0772743B1 (en)
JP (1) JP3734506B2 (en)
KR (1) KR100382682B1 (en)
CN (1) CN1071421C (en)
BR (1) BR9605306A (en)
DE (2) DE19504564A1 (en)
WO (1) WO1996024770A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615322A1 (en) 1996-04-18 1997-10-23 Vdo Schindling Peripheral pump
JP3638818B2 (en) 1999-05-20 2005-04-13 愛三工業株式会社 Wesco type pump
DE19927789A1 (en) 1999-06-18 2000-12-21 Bosch Gmbh Robert Fluid pump for supplying fuel has an impeller fitted with a blade and driven to rotate in a pump chamber bounded in the direction of the impeller's rotational axis by partitioning components.
DE10245619B4 (en) * 2002-09-11 2004-08-26 Fresenius Medical Care Deutschland Gmbh Method for returning blood from a blood treatment device and device for carrying out the method
JP4396750B2 (en) * 2007-09-14 2010-01-13 株式会社デンソー Fuel pump
US9249806B2 (en) * 2011-02-04 2016-02-02 Ti Group Automotive Systems, L.L.C. Impeller and fluid pump
DE102012222336B4 (en) * 2012-12-05 2018-02-08 Continental Automotive Gmbh flow machine
US10167770B1 (en) * 2017-09-12 2019-01-01 Paragon Technology, Inc. Automotive water pump spacer with volute extension
DE102020205531A1 (en) * 2020-04-30 2021-11-04 Mahle International Gmbh Side channel compressor for compressing gas

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1026174B (en) * 1955-10-12 1958-03-13 Geraetebau G M B H Deutsche Self-priming centrifugal pump
US3356033A (en) * 1965-10-22 1967-12-05 Ford Motor Co Centrifugal fluid pump
US3459130A (en) * 1967-02-28 1969-08-05 Lucas Industries Ltd Liquid displacement pumps
AT316313B (en) * 1972-04-18 1974-07-10 Diosgyoeri Gepgyar Centrifugal pump
JPS5724493A (en) * 1980-07-21 1982-02-09 Hitachi Ltd Vortex flow blower
US4508492A (en) * 1981-12-11 1985-04-02 Nippondenso Co., Ltd. Motor driven fuel pump
ATE29698T1 (en) * 1982-04-28 1987-10-15 Ase Uk Ltd ADJUSTABLE VEHICLE SEAT BELT ATTACHMENT.
JPH0642489A (en) * 1992-04-04 1994-02-15 Miura Kenkyusho:Kk Noise reducing structure for westco pump
US5273394A (en) * 1992-09-24 1993-12-28 General Motors Corporation Turbine pump
US5401143A (en) * 1993-06-07 1995-03-28 Ford Motor Company Multi-stage automotive fuel pump having angeled fuel transfer passage
DE4446537C2 (en) * 1994-12-24 2002-11-07 Bosch Gmbh Robert liquid pump

Also Published As

Publication number Publication date
US5785490A (en) 1998-07-28
KR970702437A (en) 1997-05-13
JP3734506B2 (en) 2006-01-11
DE19504564A1 (en) 1996-08-14
KR100382682B1 (en) 2003-10-04
WO1996024770A1 (en) 1996-08-15
BR9605306A (en) 1997-10-07
EP0772743A1 (en) 1997-05-14
CN1071421C (en) 2001-09-19
CN1146795A (en) 1997-04-02
DE59604876D1 (en) 2000-05-11
JPH09512323A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
DE19504079B4 (en) Flow pump for delivering fuel from a reservoir to the internal combustion engine of a motor vehicle
DE4343078B4 (en) Aggregate for conveying fuel from a storage tank to an internal combustion engine
WO1992000449A1 (en) Assembly for feeding fuel from the fuel tank of a motor vehicle to its internal combustion engine
DE4318122C2 (en) Unit for delivering fuel from a storage tank to the internal combustion engine of a motor vehicle
EP1828609B1 (en) Vane cell pump
EP0772743B1 (en) Fluid pump
DE10019911A1 (en) Feed pump esp. in surge chamber of motor vehicle fuel tank has rotor with several planes and rings of guide blades located in different planes
EP0618369B1 (en) Barrel-type pump
DE4039712C2 (en) Peripheral pump
DE3118534A1 (en) PUMP FOR PROCESSING FUEL FROM A STORAGE TANK TO AN INTERNAL COMBUSTION ENGINE
DE4221184A1 (en) Fuel delivery pump for vehicle IC engine - uses space between impeller and delivery channel to control direction of flow
DE4340011B4 (en) Peripheral pump, in particular for conveying fuel from a storage tank to the internal combustion engine of a motor vehicle
DE4326505C2 (en) Peripheral pump, in particular for delivering fuel from a storage tank to the internal combustion engine of a motor vehicle
EP3728859A1 (en) Side channel blower, in particular secondary air blower for an internal combustion engine
EP0783632A1 (en) Peripheral pump, in particular for feeding fuel from the tank to the internal combustion engine of a motor vehicle
EP1039140B1 (en) Feed pump
DE102007048019A1 (en) Liquid pump i.e. coolant pump, for internal-combustion engine, has radially inward projecting flow guide rib aligned towards rotation axis and provided in housing and/or section of suction pipe that is adjoined to transport wheel
DE8908579U1 (en) Unit for pumping fuel
EP1105649A1 (en) Liquid pump, especially for delivering fuel
DE102007026533A1 (en) Fuel pump
DE3012406A1 (en) Centrifugal pump with vaned impeller - has shrouded guide vanes, with shroud rotating synchronously with main impeller
DE4240592A1 (en) Fuel supply unit from storage tank to IC engine - has opening to relief chamber close to suction side wall and has same radial extension as suction opening
WO2002093014A1 (en) Flow-type pump, particularly for delivering fuel out of a tank to an internal combustion engine of a motor vehicle
WO2019120633A1 (en) Side channel blower, in particular secondary air blower for an internal combustion engine
DE9104728U1 (en) Unit for pumping fuel from a storage tank to the internal combustion engine of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990624

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59604876

Country of ref document: DE

Date of ref document: 20000511

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120126

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130207

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140325

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59604876

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140111