EP0772010B1 - Burner-head air heater - Google Patents

Burner-head air heater Download PDF

Info

Publication number
EP0772010B1
EP0772010B1 EP96117521A EP96117521A EP0772010B1 EP 0772010 B1 EP0772010 B1 EP 0772010B1 EP 96117521 A EP96117521 A EP 96117521A EP 96117521 A EP96117521 A EP 96117521A EP 0772010 B1 EP0772010 B1 EP 0772010B1
Authority
EP
European Patent Office
Prior art keywords
air
combustion chamber
branch stream
branch
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96117521A
Other languages
German (de)
French (fr)
Other versions
EP0772010A1 (en
Inventor
Willi Frei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flucorrex AG
Original Assignee
Flucorrex AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flucorrex AG filed Critical Flucorrex AG
Publication of EP0772010A1 publication Critical patent/EP0772010A1/en
Application granted granted Critical
Publication of EP0772010B1 publication Critical patent/EP0772010B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • F26B21/002Drying-air generating units, e.g. movable, independent of drying enclosure heating the drying air indirectly, i.e. using a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/087Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using fluid fuel

Definitions

  • the invention relates to an air heating system for indirect heating of air for drying plants after the Preamble of claim 1 and a method for indirect heating of air for drying systems.
  • the first partial air flow flows across the combustion chamber, forms on the entry of the first partial air flow facing away from the combustion chamber with a lee area insufficient air movement on the lateral surface of the Combustion chamber, so that in this area a limitation of Surface temperature not to a maximum of 700 ° C can be ensured.
  • a good flow around the Combustion chamber is essential because the flame is in the Combustion chamber has a temperature above 1000 ° C and therefore Wall temperatures of over 700 ° C can occur.
  • FR-A-1.138.276 describes a burner whose exhaust gases be passed through a heat exchanger.
  • the combustion chamber is with helically arranged rib plates as well an outer jacket around the rib plates, so that a helical flow channel around the Combustion chamber forms around.
  • a first airflow to warming air hits the end of the helical Rib up and flow around the combustion chamber while a second Airflow of the air to be heated in counterflow to the Tubes of the heat exchanger is performed.
  • the invention lies in the The task is based on a single, compact device ensure intensive flue gas cooling and at the same time the surface temperature of all with the drying air in To keep the coming outer surfaces as small as possible.
  • Effective cooling both in the combustion chamber generated flue gas in a flue gas heat exchanger, as the outer surface of the combustion chamber can also be achieved because drying air is in contact with them occurs that has not yet been upstream Heat exchange step has been preheated. This stands for the cooling of the outer surface of the combustion chamber greatest possible driving temperature gradient available, so that an effective cooling of the outer surface is possible.
  • the second partial air stream to be heated Drying air along the outer surface of the Combustion chamber, so that there are no areas with insufficient Form overflow that can overheat, causing Wall temperatures can arise that are above the maximum tolerable lie.
  • the drying air to be heated without mutual Mixing can be performed in the air heating system in a simple and convenient way, for example by Adjust the pressure drop of one or both Partial air flows, the mass fraction of the two partial air flows be regulated
  • the air heating system has one Mass flow ratio adjusting device of the two Partial air flows of the drying air to be heated.
  • the air heating system can be targeted to different Operating areas to be adjusted. If, for example Drying air at a higher or lower temperature should be generated, this can be done by setting the Mass flow ratio of the two partial air flows reached be without causing unwanted overheating can come inside the air heating system.
  • the adjustment device is an axial one sliding baffle.
  • the axially movable Baffle plate narrows or widens the outlet cross section of the flow channel one of the two partial air flows on Leaves the air heating system and thus controls the Pressure loss of the respective partial air flow. This is possible because the first and the second partial air flow the drying air to be heated without mutual Mixing and thus without the possibility of one mutual pressure equalization in the air heating system be performed.
  • the mass fraction of the second is advantageous Partial airflow less than the mass fraction of the first Partial air flow in the air to be heated.
  • the combustion chamber is advantageously essentially the main extension is rotationally symmetrical the combustion chamber in the direction of the axis of rotation of the Combustion chamber. Due to the rotationally symmetrical shape of the Combustion chamber is flow around in the longitudinal direction, ie. H. in Direction of the axis of rotation easier.
  • the second partial air flow is preferably the warming drying air in a closed Flow channel guided, which surrounds the combustion chamber, wherein the closed flow channel ribs or fins has that on the outer surface of the combustion chamber are formed and in the main flow direction of the second Extend partial air flow within the flow channel.
  • the flue gas heat exchanger comprises Pipe bundle in which the flue gases flow, the first Partial air flow of the drying air to be heated in cross-counterflow is guided around the tube bundle.
  • the cross-countercurrent flow of the drying air to the flue gas the best possible use of those used in the burner Primary energy can be achieved by not yet preheated air in heat exchange with the outlet side End of the flue gas pipes is brought.
  • the air heating system shown in Fig. 1 is generally referred to by reference number 10.
  • the Air heating system 10 has a suitable housing 12, its construction with different housing covers, flanges and load-bearing components both ensure that the Air heating system 10 on the stand area 14 as well allows easy access to the individual components, wait for the air heating system 10 and if necessary to be able to clean.
  • An essential component of the air heating system 10 represents the combustion chamber 16 with a burner 18 connected by the combustion of a liquid or gaseous fuel produces flue gases.
  • the tubes of the tube bundle of the flue gas heat exchanger 22 are exposed to the flue gases A and end in one Flue gas outlet 24, from which the flue gases are suitable Way to be dissipated.
  • Flue gas outlet 24 from which the flue gases are suitable Way to be dissipated.
  • Example are the flue gases in a tube bundle loop led and the flow direction of the flue gases on the one hand through a specific bending of the individual pipes in the Deflection area 25 and on the other hand by interposing a deflection bell 26 changed.
  • the tube bundle of the flue gas heat exchanger 22 runs ahead the exit from the air heating system 10 along a Air inlet 28 through which a partial air flow to warming air enters the air heating system 10.
  • not yet preheated air is divided into two partial air flows B and C split up independently of each other by the Air heating system 10 flow and only after the outlet mixed together from the air heating system 10 become.
  • the separation of the two partial air flows can be reduced to one done in any way, for example by installation of separating and air guiding elements, which are in the housing 12 are arranged.
  • a wall of the deflection bell 26 of the Flue gas heat exchanger 22 is part of this required separating elements.
  • the first partial air flow B flows around the tube bundle of the Flue gas heat exchanger 22.
  • the first leaves Partial air flow B after flowing around the tube bundle Flue gas heat exchanger 22 through the air heating system 10 Exit openings 30 to which suitable facilities can connect to the from the outlet openings 30th emerging, heated first partial air stream B. and continue to transport them as intended.
  • the second partial air flow C of the air to be heated is completely separate from the first partial air flow B through the Air heater and is used in a suitable manner, for example via air guide plates 32 to the combustion chamber 16 passed, whereupon the second partial air flow C into one Chamber jacket 34 occurs, which surrounds the combustion chamber 16.
  • the chamber jacket 34 is designed so that the second Partial air flow C the outer surface of the combustion chamber 16 completely flows around.
  • Die Dimensioning of the laminated combustion chamber size is aimed according to the requirement that the flue gases in the Combustion chamber to be cooled down so far that Combustion chamber outlet 20, at which the flue gases enter the Pipe bundles of the flue gas heat exchanger 22 enter Pipe surface temperature not a temperature of 700 ° C exceeds.
  • the second partial air flow C is parallel to Longitudinal axis of the preferably substantially cylindrical formed combustion chamber 16 through the chamber jacket 34 performed and leaves the air heating system 10 on the end of the combustion chamber 16 remote from the burner.
  • the second partial air flow C is preferably at the outlet from the air heating system in two partial flows split, with a first substream Air heating system essentially in the direction of Flow through the chamber jacket 34 leaves, the other stream however, is deflected and the distant, preferably bell-shaped front end of the Combustion chamber 16 flows around before it reaches the air heating system leaves.
  • Moving the baffle plate 38 regulates the Flow resistance at the outlet of the second partial air flow C from the air heating system 10. Because of the inside the air heating system 10 completely separate Flow control of the two partial air streams B and C acts the outlet pressure loss of the second Partial air flow C on the distribution of the two Partial air flows at the air inlet 28. The stronger with help the baffle plate 38 the outlet cross section for the second Partial air flow C is narrowed, the smaller the second Partial air flow C, because the pressure drop with decreasing Flow velocity of the second partial air flow C decreases and the air to be dried still at the air inlet 28 exists together, d. H. the pressure at the air inlet 28 for both partial air flows B and C are the same size.
  • the Dimensioning of the laminated combustion chamber size directs what the flue gases in the combustion chamber so far be cooled that also at the flue gas inlet in the Tube bundle the tube surface temperature is not 700 ° C by using the also cold, second partial air flow C for cooling the combustion chamber 16 these are dimensioned smaller and thus the entire Air heating system despite the optimal use of the used primary fuel energy more compact become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Solid Materials (AREA)
  • Air Supply (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

The air is indirectly heated by the heater. It is separated into two streams (B,C). One stream (B) is heated in cross-counterflow with flue gas in a heat exchanger (22). The other stream (C) is heated by passing uniformly around a combustion chamber (16) jacket. The two streams are passed through the heating plant without intermixing. Preferably, the combustion chamber is rotationally-symmetrical and the main dimension of the chamber is in the direction of the axis of rotation. The second air stream passes through an enclosed flow duct (34) which surrounds the combustion chamber.

Description

Die Erfindung betrifft eine Lufterhitzungsanlage zur indirekten Erwärmung von Luft für Trocknungsanlagen nach dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur indirekten Erwärmung von Luft für Trocknungsanlagen.The invention relates to an air heating system for indirect heating of air for drying plants after the Preamble of claim 1 and a method for indirect heating of air for drying systems.

Die Aufgabe solcher Lufterhitzungsanlagen zur indirekten Erwärmung von Luft für Trocknungsanlagen besteht darin, daß die für einen Trocknungsprozeß erforderliche Luft auf eine vorgegebene Temperatur erwärmt wird, ohne daß diese direkt durch eine Brennerflamme erhitzt wird. Aufgrund der in Rauchgasen enthaltenen Schadstoffe, die über die Brennerabluft auf das zu trocknende Gut übertragen werden könnten, muß im Fall einer Trocknung von Lebensmitteln, wie beispielsweise Braumalz, Milchpulver oder Kaffee, die Trocknungsluft indirekt erwärmt werden.The task of such air heating systems for indirect Air heating for drying plants is that the air required for a drying process to a predetermined temperature is heated without this directly is heated by a burner flame. Due to the in Flue gases contain pollutants that exceed the Burner exhaust air can be transferred to the material to be dried could, in the case of drying of food, such as for example, brewing malt, powdered milk or coffee Drying air can be heated indirectly.

Diese Aufgabe brennerbeheizter Lufterhitzer, wird in der DE 43 08 522 eingehend beschrieben. Zur Lösung dieser Aufgabe wird in der DE 43 08 522 ein Gerät vorgestellt, bei dem der Feuerungsraum mit Hilfe eines flüssigen Zwischenmediums, zum Beispiel Wasser, gekühlt wird. Durch die Kühlung des Feuerungsraumes wird die Oberflächentemperatur der mit der zu erwärmenden Luft in Berührung kommenden Oberflächen, insbesondere die Oberfläche des Feuerungsraumes, auf eine Temperatur unter 700 °C begrenzt. Hierdurch kann eine Kontamination der zu erwärmenden Luft durch Stickoxide oder andere unerwünschte Verbrennungsrückstände wirksam verhindert werden. Des weiteren führt die Verwendung eines flüssigen Zwischenmediums zu einer guten Verwertung der Abwärme aus Eigenstrom-Erzeugungsanlagen, zum Beispiel aus Blockheizkraftwerken.This task of burner-heated air heaters is carried out in the DE 43 08 522 described in detail. To solve this Task is presented in DE 43 08 522, a device which the furnace with the help of a liquid Intermediate medium, for example water, is cooled. By the cooling of the furnace is the Surface temperature of the air to be heated in Touching surfaces, especially the surface of the furnace, to a temperature below 700 ° C limited. This can lead to contamination of the warming air due to nitrogen oxides or other undesirable Combustion residues can be prevented effectively. Of further leads the use of a liquid Intermediate medium to a good utilization of the waste heat Own power generation plants, for example CHP plants.

Um die für Trocknungsprozesse üblicherweise technologisch erforderlichen Lufttemperaturen zu erzielen, sind hohe Temperaturen im flüssigen Zwischenmedium notwendig, die in der Praxis bei über 120 °C liegen. Dies bedeutet, daß im Falle eines Einsatzes von Wasser als flüssiges Zwischenmedium, alle im Kreislauf installierten Apparate und Geräte unter die Druckbehälterverordnung fallen. Dieser Umstand erhöht die Investitionskosten einer derartigen Anlage und erschwert den Betrieb durch die Notwendigkeit behördlicher Auflagen bzw. Abnahmen.Technologically for drying processes to achieve the required air temperatures are high Temperatures in the liquid intermediate medium necessary in in practice are above 120 ° C. This means that in If water is used as liquid Intermediate medium, all devices installed in the circuit and Devices fall under the Pressure Vessel Ordinance. This Circumstances increase the investment cost of such Plant and complicates the operation due to the need official requirements or approvals.

Bei Anwendungsfällen, in denen keine Abwärme in Form von flüssigem Zwischenmedium zur Verwertung zur Verfügung steht, ist es deshalb sinnvoll, auf den Einsatz eines flüssigen Zwischenmediums zu verzichten und die Kühlung des Feuerungsraumes direkt durch die zu erwärmende Luft herbeizuführen.In applications where there is no waste heat in the form of liquid intermediate medium is available for recycling, it therefore makes sense to use a liquid Dispense with the intermediate medium and the cooling of the Furnace directly through the air to be heated bring about.

Die DE 30 39 065 beschreibt einen brennerbeheizten Lufterhitzer ohne Einsatz eines Zwischenmediums. Ein Teilluftstrom der zu erwärmenden Luft strömt um die Brennkammer und durch einen Vorwärmetauscher, in dem die in der Brennkammer entstehenden Rauchgase gekühlt werden. Ein zweiter Teilluftstrom wird in einem getrennten Nachwärmetauscher erwärmt, der von den bereits im Vorwärmetauscher abgekühlten Rauchgasen durchströmt wird. Die beiden Teilluftströme unterschiedlicher Temperatur werden im Lufterhitzer zu einem Gesamtluftstrom vermischt und verlassen gemeinsam den Lufterhitzer.DE 30 39 065 describes a burner heated Air heater without the use of an intermediate medium. On Partial air flow of the air to be heated flows around the Combustion chamber and through a preheater in which the in the flue gases generated in the combustion chamber are cooled. On second partial air flow is in a separate Reheated heat exchanger, which is already in the Pre-heat exchanger is flowed through cooled flue gases. The two partial air flows of different temperatures are mixed into a total air flow in the air heater and leave the air heater together.

Da der erste Teilluftstrom die Brennkammer quer anströmt, bildet sich auf der dem Eintritt des ersten Teilluftstromes abgewandten Seite der Brennkammer ein Lee-Bereich mit ungenügender Luftbewegung an der Mantelfläche der Brennkammer, so daß in diesem Bereich eine Begrenzung der Oberflächentemperatur auf maximal 700 °C nicht sichergestellt werden kann. Eine gute Umströmung der Brennkammer ist unabdingbar, weil die Flamme in der Brennkammer eine Temperatur über 1000 °C aufweist und daher Wandtemperaturen von über 700 °C auftreten können.Since the first partial air flow flows across the combustion chamber, forms on the entry of the first partial air flow facing away from the combustion chamber with a lee area insufficient air movement on the lateral surface of the Combustion chamber, so that in this area a limitation of Surface temperature not to a maximum of 700 ° C can be ensured. A good flow around the Combustion chamber is essential because the flame is in the Combustion chamber has a temperature above 1000 ° C and therefore Wall temperatures of over 700 ° C can occur.

Eine verbesserte Beeinflussung der Oberflächentemperatur der Brennkammer ist in der DE-OS 23 29 305 beschrieben. Hier wird die Mantelfläche der Brennkammer parallel zur Längsachse der Brennkammer angeströmt, so daß kein Lee-Bereich mit ungenügender Luftbewegung und demzufolge reduzierter Kühlwirkung entstehen kann. Jedoch sind entlang des sich an die Brennkammer anschließenden Rauchgaskanals derartige Oberflächen vorhanden, die nur unzureichend gekühlt werden und daher zu einer unerwünschten Kontamination der zu erwärmenden Trocknungsluft mit Stickoxiden führen können. Des weiteren ist die Brennstoffausnutzung nur gering, weil die Trocknungsluft in Gleichstrom zum Rauchgas von der Brennkammer zu einem Rohrbündel-Wärmetauscher strömt, in dem die Trocknungsluft im Kreuz-Gleichstrom zum Rauchgas geführt wird. Durch die serielle Anordnung der einzelnen Wärmetauschelemente sowie der im wesentlichen Gleichstromführung von Trocknungsluft und Rauchgas in diesen ist eine intensive Rauchgasabkühlung, die eine Voraussetzung für eine optimale Energieausnutzung darstellt, nicht gegeben.An improved influence on the surface temperature of the Combustion chamber is described in DE-OS 23 29 305. Here the surface of the combustion chamber is parallel to Flows against the longitudinal axis of the combustion chamber, so that no lee area with insufficient air movement and consequently reduced cooling effect can arise. However, are along of the flue gas duct adjoining the combustion chamber such surfaces exist that are inadequate to be cooled and therefore undesirable Contamination of the drying air to be heated with Can lead to nitrogen oxides. Furthermore, it is Fuel utilization is low because the drying air in DC to flue gas from the combustion chamber to one Tube bundle heat exchanger flows in which the drying air is led to the flue gas in cross-direct current. Through the serial arrangement of the individual heat exchange elements as well the essentially direct current flow of drying air and flue gas in these is an intensive flue gas cooling, which is a prerequisite for optimal energy utilization represents, not given.

Dieser Nachteil wird mit der in der DE 33 30 924 beschriebenen Vorrichtung behoben. Bei diesem Lufterhitzer strömt die Luft im Gegenstrom zum Rauchgas und entlang der Mantelfläche der Brennkammer. Das Anströmen des von Rauchgas durchströmten Rohrbündels mit kalter Luft führt zwar zu einer intensiven Rauchgasabkühlung und damit einer guten Energieausnutzung; allerdings wird diese bereits vorerhitzte Luft zur Kühlung der Mantelfläche der Brennkammer herangezogen. Dies führt dazu, daß die Kühlung der Mantelfläche der Brennkammer deutlich verschlechtert ist, weil das proportional in die Bestimmung des Wärmeübergangs eingehende treibende Temperaturgefälle deutlich verringert ist. Aus diesem Grund kann eine ausreichende Wärmeabfuhr von der Mantelfläche der Brennkammer nur mit unverhältnismäßig großem Brennkammerdurchmesser ermöglicht werden, weil hierdurch die Wärmeübertragungsfläche, die ebenfalls proportional zur abgegebenen Wärmemenge ist, vergrößert wird. This disadvantage is with that in DE 33 30 924 described device fixed. With this air heater the air flows in counterflow to the flue gas and along the Shell surface of the combustion chamber. The inflow of flue gas flow of cold air through the tube bundle leads to an intensive flue gas cooling and thus a good one Energy utilization; however, this is already preheated Air for cooling the outer surface of the combustion chamber used. This leads to the cooling of the Lateral surface of the combustion chamber has deteriorated significantly, because that's proportional in the determination of heat transfer incoming driving temperature drops significantly reduced is. For this reason, adequate heat dissipation from the outer surface of the combustion chamber is disproportionate large combustion chamber diameter are made possible because thereby the heat transfer surface, which also is proportional to the amount of heat given off becomes.

Die FR-A-1.138.276 beschreibt einen Brenner, dessen Abgase durch einen Wärmetauscher geführt werden. Die Brennkammer ist mit schraubenförmig angeordneten Rippenblechen sowie einem äußeren Mantel um die Rippenbleche herum versehen, so daß sich ein schraubenlinieger Strömungskanal um die Brennkammer herum bildet. Ein erster Luftstrom der zu erwärmenden Luft trifft auf das Ende der schraubenförmigen Rippe auf und umströmt die Brennkammer, während ein zweiter Luftstrom der zu erwärmenden Luft im Gegenstrom zu den Röhren des Wärmetauschers geführt wird.FR-A-1.138.276 describes a burner whose exhaust gases be passed through a heat exchanger. The combustion chamber is with helically arranged rib plates as well an outer jacket around the rib plates, so that a helical flow channel around the Combustion chamber forms around. A first airflow to warming air hits the end of the helical Rib up and flow around the combustion chamber while a second Airflow of the air to be heated in counterflow to the Tubes of the heat exchanger is performed.

Ausgehend von der FR-A-1.138.276liegt der Erfindung die Aufgabe zugrunde, in einem einzigen, kompakten Gerät eine intensive Rauchgasabkühlung sicherzustellen und gleichzeitig die Oberflächentemperatur aller mit der Trocknungsluft in Berührung kommenden Außenflächen möglichst gering zu halten. Starting from FR-A-1.138.276, the invention lies in the The task is based on a single, compact device ensure intensive flue gas cooling and at the same time the surface temperature of all with the drying air in To keep the coming outer surfaces as small as possible.

Dieses technische Problem wird durch eine Lufterhitzungsanlage mit den Merkmalen des Anspruchs 1 sowie ein Verfahren zur indirekten Erwärmung von Luft nach Anspruch 7 gelöst.This technical problem is caused by an air heating system with the features of claim 1 and a method for indirect heating of air solved according to claim 7.

Eine wirkungsvolle Kühlung sowohl des in der Brennkammer erzeugten Rauchgases in einem Rauchgas-Wärmetauscher, als auch der äußeren Mantelfläche der Brennkammer kann erzielt werden, weil jeweils Trocknungsluft mit diesen in Kontakt tritt, die noch nicht in einem vorgeschalteten Wärmeaustauschschritt vorerwärmt wurde. Hierdurch steht für die Kühlung der Mantelfläche der Brennkammer das größtmögliche, treibende Temperaturgefälle zur Verfügung, so daß eine wirksame Kühlung der Mantelfläche möglich ist. Des weiteren strömt der zweite Teilluftstrom an zu erwärmender Trocknungsluft entlang der äußeren Mantelfläche der Brennkammer, so daß sich keine Bereiche mit ungenügender Überströmung bilden, die überhitzen können, wodurch Wandtemperaturen entstehen können, die oberhalb der maximal tolerierbaren liegen. Indem die beiden Teilluftströme ohne gegenseitige Vermischung innerhalb der Lufterhitzungsanlage geführt werden, können diese jeweils speziell auf die beiden Teilaufgaben, eine intensive Rauchgaskühlung mit dem ersten Teilluftstrom und eine ausreichende Kühlung der mit dem Luftstrom in Berührung tretenden Außenflächen mit dem zweiten Teilluftstrom abgestimmt werden. Effective cooling both in the combustion chamber generated flue gas in a flue gas heat exchanger, as the outer surface of the combustion chamber can also be achieved because drying air is in contact with them occurs that has not yet been upstream Heat exchange step has been preheated. This stands for the cooling of the outer surface of the combustion chamber greatest possible driving temperature gradient available, so that an effective cooling of the outer surface is possible. Of further flows the second partial air stream to be heated Drying air along the outer surface of the Combustion chamber, so that there are no areas with insufficient Form overflow that can overheat, causing Wall temperatures can arise that are above the maximum tolerable lie. By the two partial air flows without mutual mixing within the air heating system can be performed, each of them specifically for the two Partial tasks, intensive flue gas cooling with the first Partial air flow and sufficient cooling with the Airflow contacting outer surfaces with the second partial air flow can be coordinated.

Indem der erste Teilluftstrom und der zweite Teilluftstrom der zu erwärmenden Trocknungsluft ohne gegenseitige Vermischung in der Lufterhitzungsanlage geführt werden, kann auf einfache und bequeme Weise, beispielsweise durch Einstellen des Druckverlustes eines oder beider Teilluftströme, der Massenanteil der beiden Teilluftströme reguliert werdenBy the first partial air flow and the second partial air flow the drying air to be heated without mutual Mixing can be performed in the air heating system in a simple and convenient way, for example by Adjust the pressure drop of one or both Partial air flows, the mass fraction of the two partial air flows be regulated

Die Lufterhitzungsanlage besitzt eine Einstellvorrichtung des Massenstromverhältnisses der zwei Teilluftströme der zu erwärmenden Trocknungsluft. Hierdurch kann die Lufterhitzungsanlage gezielt auf verschiedene Betriebsbereiche angepaßt werden. Wenn beispielsweise Trocknungsluft einer höheren oder niedrigeren Temperatur erzeugt werden soll, kann dies durch eine Einstellung des Massenstromverhältnisses der zwei Teilluftströme erreicht werden, ohne daß es zu einer unerwünschten Überhitzung innerhalb der Lufterhitzungsanlage kommen kann.The air heating system has one Mass flow ratio adjusting device of the two Partial air flows of the drying air to be heated. Hereby the air heating system can be targeted to different Operating areas to be adjusted. If, for example Drying air at a higher or lower temperature should be generated, this can be done by setting the Mass flow ratio of the two partial air flows reached be without causing unwanted overheating can come inside the air heating system.

Die Einstellvorrichtung ist eine axial verschiebbare Prallscheibe. Die axial verschiebbare Prallscheibe verengt bzw. erweitert den Austrittsquerschnitt des Strömungskanals eines der beiden Teilluftströme am Austritt aus der Lufterhitzungsanlage und steuert somit den Druckverlust des jeweiligen Teilluftstromes. Dies ist deshalb möglich, weil der erste und der zweite Teilluftstrom der zu erwärmenden Trocknungsluft ohne gegenseitige Vermischung und somit ohne die Möglichkeit eines gegenseitigen Druckausgleiches in der Lufterhitzungsanlage geführt werden.The adjustment device is an axial one sliding baffle. The axially movable Baffle plate narrows or widens the outlet cross section of the flow channel one of the two partial air flows on Leaves the air heating system and thus controls the Pressure loss of the respective partial air flow. This is possible because the first and the second partial air flow the drying air to be heated without mutual Mixing and thus without the possibility of one mutual pressure equalization in the air heating system be performed.

Bevorzugte Ausführungsformen der Erfindung sind durch die übrigen Ansprüche gekennzeichnet. Preferred embodiments of the invention are characterized by the other claims marked.

Vorteilhafterweise ist der Massenanteil des zweiten Teilluftstromes kleiner als der Massenanteil des ersten Teilluftstromes an zu erwärmender Luft.The mass fraction of the second is advantageous Partial airflow less than the mass fraction of the first Partial air flow in the air to be heated.

Vorteilhafterweise ist die Brennkammer im wesentlichen rotationssymmetrisch geformt und liegt die Haupterstreckung der Brennkammer in Richtung der Rotationsachse der Brennkammer. Durch die rotationssymmetrische Form der Brennkammer wird deren Umströmung in Längsrichtung, d. h. in Richtung der Rotationsachse erleichtert.The combustion chamber is advantageously essentially the main extension is rotationally symmetrical the combustion chamber in the direction of the axis of rotation of the Combustion chamber. Due to the rotationally symmetrical shape of the Combustion chamber is flow around in the longitudinal direction, ie. H. in Direction of the axis of rotation easier.

Vorzugsweise wird der zweite Teilluftstrom der zu erwärmenden Trocknungsluft in einem geschlossenen Strömungskanal geführt, der die Brennkammer umgibt, wobei der geschlossene Strömungskanal Rippen oder Lamellen aufweist, die an der äußeren Mantelfläche der Brennkammer gebildet sind und sich in Hauptströmungsrichtung des zweiten Teilluftstromes innerhalb des Strömungskanals erstrecken.The second partial air flow is preferably the warming drying air in a closed Flow channel guided, which surrounds the combustion chamber, wherein the closed flow channel ribs or fins has that on the outer surface of the combustion chamber are formed and in the main flow direction of the second Extend partial air flow within the flow channel.

Das Vorsehen eines geschlossenen Strömungskanales sowie die in Hauptströmungsrichtung darin angeordneten Rippen oder Lamellen stellen eine kontrollierte und gleichmäßige Überströmung der äußeren Mantelfläche der Brennkammer sicher. Hierdurch wird die Gefahr einer ungleichmäßigen und lokal ungenügenden Überströmung mit der daraus resultierenden örtlichen Überhitzung vermieden. Die auf der Luftseite, d. h. äußeren Mantelfläche, der Brennkammer aufgebrachten, wärmeleitenden Lamellen bewirken eine deutliche Vergrößerung der Wärmeaustauschfläche, wodurch die Kühlwirkung stark verbessert wird. Hierdurch kann der Volumenstrom des zweiten Teilluftstromes bei gleicher Wärmeübertragung von der Brennkammer auf den zweiten Teilluftstrom verringert werden.The provision of a closed flow channel as well as the ribs arranged therein in the main flow direction or Slats provide a controlled and even Overflow of the outer surface of the combustion chamber for sure. This will reduce the risk of uneven and locally insufficient overflow with the resulting resulting local overheating avoided. The one on the Air side, d. H. outer surface, the combustion chamber applied, heat-conducting fins cause a significant increase in the heat exchange area, which the Cooling effect is greatly improved. This allows the Volume flow of the second partial air flow at the same Heat transfer from the combustion chamber to the second Partial air flow can be reduced.

Vorzugsweise umfaßt der Rauchgas-Wärmetauscher ein Rohrbündel, in dem die Rauchgase strömen, wobei der erste Teilluftstrom der zu erwärmenden Trocknungsluft im Kreuz-Gegenstrom um das Rohrbündel geführt wird. Durch die Kreuz-Gegenstromführung der Trocknungsluft zu dem Rauchgas kann eine bestmögliche Ausnutzung der im Brenner eingesetzten Primärenergie erzielt werden, indem die noch nicht vorgewärmte Luft in Wärmeaustausch mit dem austrittsseitigen Ende der Rauchgas-Rohre gebracht wird. Preferably the flue gas heat exchanger comprises Pipe bundle in which the flue gases flow, the first Partial air flow of the drying air to be heated in cross-counterflow is guided around the tube bundle. Through the cross-countercurrent flow of the drying air to the flue gas the best possible use of those used in the burner Primary energy can be achieved by not yet preheated air in heat exchange with the outlet side End of the flue gas pipes is brought.

Nachfolgend wird die Erfindung rein beispielhaft anhand der beigefügten Figuren beschrieben, in denen:

Fig. 1
ein Längsschnitt durch die Lufterhitzungsanlage mit schematisch eingezeichneten Pfeilen zur Verdeutlichung der Strömungsrichtung der Rauchgassowie Teilluftströme; und
Fig. 2
ein Querschnitt durch die Lufterhitzungsanlage gemäß Fig. 1 darstellt.
The invention is described below purely by way of example with reference to the attached figures, in which:
Fig. 1
a longitudinal section through the air heating system with schematically drawn arrows to illustrate the flow direction of the flue gas as well as partial air flows; and
Fig. 2
a cross section through the air heating system shown in FIG. 1.

Die in Fig. 1 dargestellte Lufterhitzungsanlage ist allgemein mit Referenznummer 10 bezeichnet. Die Lufterhitzungsanlage 10 besitzt ein geeignetes Gehäuse 12, dessen Aufbau mit verschiedenen Gehäusedeckeln, Flanschen und tragenden Bauteilen sowohl ein sicheres Aufstellen der Lufterhitzungsanlage 10 auf der Standfläche 14 als auch eine gute Zugänglichkeit zu den einzelnen Baugruppen ermöglicht, um die Lufterhitzungsanlage 10 warten und gegebenenfalls reinigen zu können. The air heating system shown in Fig. 1 is generally referred to by reference number 10. The Air heating system 10 has a suitable housing 12, its construction with different housing covers, flanges and load-bearing components both ensure that the Air heating system 10 on the stand area 14 as well allows easy access to the individual components, wait for the air heating system 10 and if necessary to be able to clean.

Ein wesentliches Bauelement der Lufterhitzungsanlage 10 stellt die Brennkammer 16 dar, die mit einem Brenner 18 fest verbunden ist, der durch die Verbrennung eines flüssigen oder gasförmigen Brennstoffes Rauchgase erzeugt. Der Betrieb des Brenners 18, dessen Brennerflamme 19 schematisch in den Figuren dargestellt ist, wird im folgenden nicht näher erläutert, da es sich hier um eine in der Technik übliche Anbindung eines Brenners an eine Brennkammer handelt.An essential component of the air heating system 10 represents the combustion chamber 16 with a burner 18 connected by the combustion of a liquid or gaseous fuel produces flue gases. The operation of the burner 18, the burner flame 19 schematically in the Figures is shown, is not described in more detail below explained, since this is a common in technology Connection of a burner to a combustion chamber.

Für eine Konvektionstrocknung von Lebensmittel ist es nicht zulässig, die für die Trocknung verwendete Luft direkt durch die Brennerflamme zu erhitzen. Dies rührt daher, weil die im Rauchgas enthaltenen Schadstoffe über die Trocknungsluft auf das zu trocknende Gut, beispielsweise Braumalz, Milchpulver, Kaffee oder andere Lebensmittel, übertragen werden können. Daher muß die Erwärmung indirekt erfolgen, indem die bei der Verbrennung entstehenden, heißen Rauchgase in Wärmeaustausch zu der zu erwärmenden Luft gebracht werden.It is not for convection drying of food permissible, the air used for drying directly through to heat the burner flame. This is because the im Flue gas contained pollutants in the drying air the goods to be dried, e.g. brewing malt, milk powder, Coffee or other foods that can be transferred. Therefore, the heating must be done indirectly, by the Combustion, hot flue gases in heat exchange be brought to the air to be heated.

Die in der Brennkammer 16 entstehenden Rauchgase A, deren Bewegungsrichtung schematisch durch die mit "A" gekennzeichneten Pfeile dargestellt ist, verlassen die Brennkammer 16 am Brennkammeraustritt 20, durch einen Rauchgas-Wärmetauscher 22, der sich an der Brennkammer anschließt.The smoke gases A arising in the combustion chamber 16, the Direction of movement schematically through the "A" marked arrows, leave the Combustion chamber 16 at the combustion chamber outlet 20, through a Flue gas heat exchanger 22 located on the combustion chamber connects.

Die Rohre des Rohrbündels des Rauchgas-Wärmetauschers 22 werden mit den Rauchgasen A beaufschlagt, und enden in einem Rauchgasauslaß 24, von dem aus die Rauchgase in geeigneter Weise abgeführt werden. In dem in Fig. 1 dargestellten Beispiel werden die Rauchgase in einer Rohrbündelschleife geführt und die Strömungsrichtung der Rauchgase einerseits durch eine gezielte Biegung der einzelnen Rohre im Umlenkbereich 25 und andererseits durch Zwischenschalten einer Umlenkglocke 26 verändert.The tubes of the tube bundle of the flue gas heat exchanger 22 are exposed to the flue gases A and end in one Flue gas outlet 24, from which the flue gases are suitable Way to be dissipated. In that shown in Fig. 1 Example are the flue gases in a tube bundle loop led and the flow direction of the flue gases on the one hand through a specific bending of the individual pipes in the Deflection area 25 and on the other hand by interposing a deflection bell 26 changed.

Das Rohrbündel des Rauchgas-Wärmetauschers 22 verläuft vor dem Austritt aus der Lufterhitzungsanlage 10 entlang eines Lufteintritts 28, durch den ein Teilluftstrom der zu erwärmenden Luft in die Lufterhitzungsanlage 10 eintritt.The tube bundle of the flue gas heat exchanger 22 runs ahead the exit from the air heating system 10 along a Air inlet 28 through which a partial air flow to warming air enters the air heating system 10.

Die durch den Lufteintritt 28 eintretende, noch nicht vorgewärmte Luft wird in zwei Teilluftströme B und C aufgespalten, die voneinander unabhängig durch die Lufterhitzungsanlage 10 strömen und erst nach dem Austritt aus der Lufterhitzungsanlage 10 miteinander vermischt werden. Die Trennung der beiden Teilluftströme kann auf eine beliebige Weise erfolgen, beispielsweise durch den Einbau von Trenn- und Luftführungselementen, die im Gehäuse 12 angeordnet sind.The one entering through the air inlet 28, not yet preheated air is divided into two partial air flows B and C split up independently of each other by the Air heating system 10 flow and only after the outlet mixed together from the air heating system 10 become. The separation of the two partial air flows can be reduced to one done in any way, for example by installation of separating and air guiding elements, which are in the housing 12 are arranged.

In dem in Fig. 1 dargestellten Ausführungsbeispiel bildet beispielsweise eine Wandung der Umlenkglocke 26 des Rauchgas-Wärmetauschers 22 einen Teil der hierfür erforderlichen Trennelemente.In the embodiment shown in Fig. 1 forms for example a wall of the deflection bell 26 of the Flue gas heat exchanger 22 is part of this required separating elements.

Der erste Teilluftstrom B, dessen Strömungsverlauf in Fig. 1 durch die "B" gekennzeichneten Pfeile dargestellt ist, umströmt das mit Rauchgas beaufschlagte Rohrbündel des Rauchgas-Wärmetauschers 22. Wie bereits vorstehend erläutert wurde, befindet sich bei einem mehrgängigen Rauchgas-Wärmetauscher der letzte Durchgang vor dem Austritt des Rauchgases aus der Lufterhitzungsanlage in unmittelbarer Nähe zu dem durch den Lufteintritt 28 eintretenden, ersten Teilluftstrom B. Hierdurch entsteht eine Kreuz-Gegenstromführung zwischen dem zu kühlenden Rauchgas sowie dem zu erwärmenden Teilluftstrom B der zu erwärmenden Luft, wodurch eine bestmögliche Ausnutzung der im Brenner eingesetzten Primär-Brennstoffenergie erzielt wird.The first partial air flow B, the flow course of which is shown in FIG. 1 is represented by the arrows marked "B", flows around the tube bundle of the Flue gas heat exchanger 22. As already explained above is in a multi-pass flue gas heat exchanger the last pass before the exit of the Smoke gas from the air heating system in the immediate vicinity Proximity to the first entering through the air inlet 28 Partial airflow B. This creates a cross-counterflow between the flue gas to be cooled and the partial air flow B to be heated of the air to be heated, thereby making the best possible use of the burner primary fuel energy is achieved.

Wie am besten aus Fig. 2 ersichtlich ist, verläßt der erste Teilluftstrom B nach dem Umströmen der Rohrbündel des Rauchgas-Wärmetauschers 22 die Lufterhitzungsanlage 10 durch Austrittsöffnungen 30, an die sich geeignete Einrichtungen anschließen können, um den aus den Austrittsöffnungen 30 austretenden, erwärmten ersten Teilluftstrom B aufzunehmen und bestimmungsgemäß weiterzufördern.As best seen in Fig. 2, the first leaves Partial air flow B after flowing around the tube bundle Flue gas heat exchanger 22 through the air heating system 10 Exit openings 30 to which suitable facilities can connect to the from the outlet openings 30th emerging, heated first partial air stream B. and continue to transport them as intended.

Der zweite Teilluftstrom C der zu erwärmenden Luft wird vollkommen getrennt vom ersten Teilluftstrom B durch den Lufterhitzer geführt und wird in geeigneter Weise, beispielsweise über Luftführungsbleche 32, zur Brennkammer 16 geleitet, woraufhin der zweite Teilluftstrom C in einen Kammermantel 34 eintritt, der die Brennkammer 16 umgibt.The second partial air flow C of the air to be heated is completely separate from the first partial air flow B through the Air heater and is used in a suitable manner, for example via air guide plates 32 to the combustion chamber 16 passed, whereupon the second partial air flow C into one Chamber jacket 34 occurs, which surrounds the combustion chamber 16.

Der Kammermantel 34 ist so ausgebildet, daß der zweite Teilluftstrom C die äußere Mantelfläche der Brennkammer 16 vollständig umströmt. Wie in Fig. 1 dargestellt ist, sind vorzugsweise Rippen bzw. Lamellen 36 an der äußeren Mantelfläche der Brennkammer 16 ausgebildet. Diese Lamellen 36 vergrößern die wärmeabgebende Fläche der Brennkammer 16 und vergrößern somit die Kühlwirkung durch den im Kammermantel 34 geführten zweiten Teilluftstrom C. Die Dimensionierung der lamellierten Brennkammergröße richtet sich nach der Vorgabe, wonach die Rauchgase in der Brennkammer soweit abgekühlt werden, daß auch am Brennkammeraustritt 20, an dem die Rauchgase in das Rohrbündel des Rauchgas-Wärmetauschers 22 eintreten, die Rohroberflächentemperatur eine Temperatur von 700 °C nicht übersteigt. Der zweite Teilluftstrom C wird parallel zur Längsachse der vorzugsweise im wesentlichen zylinderförmig ausgebildeten Brennkammer 16 durch den Kammermantel 34 geführt und verläßt die Lufterhitzungsanlage 10 an dem brennerfernen Ende der Brennkammer 16.The chamber jacket 34 is designed so that the second Partial air flow C the outer surface of the combustion chamber 16 completely flows around. As shown in Fig. 1, are preferably ribs or slats 36 on the outer Shell surface of the combustion chamber 16 is formed. These slats 36 enlarge the heat-emitting area of the combustion chamber 16 and thus increase the cooling effect by the im Chamber jacket 34 guided second partial air flow C. Die Dimensioning of the laminated combustion chamber size is aimed according to the requirement that the flue gases in the Combustion chamber to be cooled down so far that Combustion chamber outlet 20, at which the flue gases enter the Pipe bundles of the flue gas heat exchanger 22 enter Pipe surface temperature not a temperature of 700 ° C exceeds. The second partial air flow C is parallel to Longitudinal axis of the preferably substantially cylindrical formed combustion chamber 16 through the chamber jacket 34 performed and leaves the air heating system 10 on the end of the combustion chamber 16 remote from the burner.

Vorzugsweise wird der zweite Teilluftstrom C beim Austritt aus der Lufterhitzungsanlage in zwei Teilströme aufgespalten, wobei ein erster Teilstrom die Lufterhitzungsanlage im wesentlichen in Richtung der Strömung durch den Kammermantel 34 verläßt, der andere Strom jedoch umgelenkt wird und das brennerferne, vorzugsweise glockenförmig ausgebildete, stirnseitige Ende der Brennkammer 16 umströmt, bevor er die Lufterhitzungsanlage verläßt.The second partial air flow C is preferably at the outlet from the air heating system in two partial flows split, with a first substream Air heating system essentially in the direction of Flow through the chamber jacket 34 leaves, the other stream however, is deflected and the distant, preferably bell-shaped front end of the Combustion chamber 16 flows around before it reaches the air heating system leaves.

Das austrittsseitige Aufteilen des zweiten Teilluftstromes C in die wiederum zwei Teilströme wird mit einer Prallscheibe 38 erreicht, die gleichzeitig dem Einstellen des Massenstromverhältnisses der beiden Teilluftströme B und C der zu erwärmenden Luft dient. Hierzu kann die Prallscheibe 38 in axialer Richtung, d. h. in Richtung der Längsachse der im wesentlichen zylinderförmigen Brennkammer 16, verschoben und lagefixiert werden.The outlet-side division of the second partial air flow C in which two partial flows are made with a baffle plate 38 reached, the same time the setting of Mass flow ratio of the two partial air flows B and C serves the air to be heated. For this, the baffle plate 38 in the axial direction, d. H. in the direction of the longitudinal axis of the essentially cylindrical combustion chamber 16, shifted and be fixed in position.

Das Verschieben der Prallscheibe 38 regelt den Strömungswiderstand am Austritt des zweiten Teilluftstromes C aus der Lufterhitzungsanlage 10. Aufgrund der innerhalb der Lufterhitzungsanlage 10 vollständig getrennten Strömungsführung der beiden Teilluftströme B und C wirkt sich der ausgangsseitige Druckverlust des zweiten Teilluftstromes C auf die Verteilung der beiden Teilluftströme am Lufteintritt 28 aus. Je stärker mit Hilfe der Prallscheibe 38 der Austrittsquerschnitt für den zweiten Teilluftstrom C verengt wird, desto kleiner wird der zweite Teilluftstrom C, weil der Druckverlust mit sinkender Strömungsgeschwindigkeit des zweiten Teilluftstromes C abnimmt und am Lufteintritt 28 die zu trocknende Luft noch gemeinsam vorliegt, d. h. der Druck am Lufteintritt 28 für beide Teilluftströme B und C gleich groß ist.Moving the baffle plate 38 regulates the Flow resistance at the outlet of the second partial air flow C from the air heating system 10. Because of the inside the air heating system 10 completely separate Flow control of the two partial air streams B and C acts the outlet pressure loss of the second Partial air flow C on the distribution of the two Partial air flows at the air inlet 28. The stronger with help the baffle plate 38 the outlet cross section for the second Partial air flow C is narrowed, the smaller the second Partial air flow C, because the pressure drop with decreasing Flow velocity of the second partial air flow C decreases and the air to be dried still at the air inlet 28 exists together, d. H. the pressure at the air inlet 28 for both partial air flows B and C are the same size.

Nach dem Austritt aus der Lufterhitzungsanlage 10 wird auch der zweite Teilluftstrom C in geeigneter Weise aufgenommen und bestimmungsgemäß weitergefördert.After exiting the air heating system 10, too the second partial air flow C is taken up in a suitable manner and promoted as intended.

Durch die Aufteilung der beiden Teilluftsströme B und C wird zum einen eine optimale Ausnutzung der eingesetzten Primär-Brennstoffenergie erreicht, indem der erste, noch nicht erwärmte, Teilluftstrom B im Kreuz-Gegenstrom zu den Rauchgasen im Rauchgas-Wärmeaustauscher 22 geführt wird, zum anderen eine ausreichende Kühlung der Brennkammer 16 durch die vollständige Umströmung derselben durch den zweiten, ebenfalls noch nicht erwärmten, Teilluftstrom C sichergestellt. Da der zweite Teilluftstrom C ebenfalls beim Eintritt in die Lufterhitzungsanlage 10 kalt ist, wird die Brennkammeroberfläche wirkungsvoll gekühlt. Hierzu trägt die Gestaltung der äußeren Mantelfläche der Brennkammer bei, die über sämtlichen Oberflächen eine ausreichende Luftzirkulation gewährleistet, aber insbesondere die Umströmung in Längsrichtung der Brennkammer. Da sich die Bemessung der lamellierten Brennkammergröße nach der Vorgabe richtet, wonach die Rauchgase in der Brennkammer soweit abgekühlt werden, daß auch am Rauchgaseintritt in das Rohrbündel die Rohroberflächentemperatur 700 °C nicht übersteigt, kann durch die Verwendung des ebenfalls kalten, zweiten Teilluftstromes C zur Kühlung der Brennkammer 16 diese kleiner dimensioniert werden und somit die gesamte Lufterhitzungsanlage trotz der optimalen Ausnutzung der eingesetzten Primär-Brennstoffenergie kompakter gestaltet werden.By dividing the two partial air flows B and C. on the one hand, optimal use of the primary fuel energy used achieved by the first, not yet heated, partial air flow B in cross-counterflow to the Flue gases in the flue gas heat exchanger 22 is led to other sufficient cooling of the combustion chamber 16 the complete flow around the same through the second, also not yet heated, partial air flow C ensured. Since the second partial air flow C also at Entry into the air heating system 10 is cold, the Combustion chamber surface effectively cooled. The Design of the outer surface of the combustion chamber, which sufficient over all surfaces Ensures air circulation, but especially that Flow in the longitudinal direction of the combustion chamber. Since the Dimensioning of the laminated combustion chamber size according to the specification directs what the flue gases in the combustion chamber so far be cooled that also at the flue gas inlet in the Tube bundle the tube surface temperature is not 700 ° C by using the also cold, second partial air flow C for cooling the combustion chamber 16 these are dimensioned smaller and thus the entire Air heating system despite the optimal use of the used primary fuel energy more compact become.

Claims (9)

  1. Air-heating unit for the indirect heating of air for drying installations having:
    a splitting device which divides the stream of air to be heated into two branch streams of air, a first branch stream of air (B) and a second branch stream of air (C), which are conveyed inside the air-heating unit without being mixed with one another;
    a flue gas heat exchanger (22) which brings the flue gases (A) produced in a combustion chamber (16) into heat-exchanging contact with the air to be heated, the flue gas heat exchanger (22) being supplied with the first branch stream of air (B) which has not yet been heated in cross-countercurrent flow; and
    a combustion chamber (16) around whose outer jacket surface the second branch stream of air (C) which has not yet been heated flows completely and uniformly;
    characterised in that
    the air-heating unit possesses an adjusting device for the adjustment of the mass flow ratio of the two branch streams of air,
    the adjusting device being an axially displaceable baffle disk.
  2. Air-heating unit according to Claim 1, characterised in that the combustion chamber (16) has a substantially rotationally symmetrical shape and the principle dimension of the combustion chamber is aligned in the direction of the axis of rotation of the combustion chamber.
  3. Air-heating unit according to Claim 2, characterised in that the second branch stream of air (C) flowing around the combustion chamber is conveyed in the direction of the axis of rotation of the combustion chamber.
  4. Air-heating unit according to one of the preceding claims, characterised in that the second branch stream of air (C) is conveyed in a closed flow channel (34) surrounding the combustion chamber (16).
  5. Air-heating unit according to Claim 4, characterised in that the closed flow channel possesses fins or blades (36) which are formed on the outer jacket surface of the combustion chamber and extend inside the flow channel (34) in the principle direction of flow of the second branch stream of air (C).
  6. Air-heating unit according to one of the preceding claims, characterised in that the flue gas heat exchanger (22) comprises a tube bundle in which the flue gases (A) flow.
  7. Method for the indirect heating of air for drying installations comprising the following steps:
    splitting of the stream of air to be heated into two branch streams of air, a first branch stream of air and a second branch stream of air;
    heating of the first branch stream of air which has not yet been heated by exchange of heat with a flue gas heat exchanger, the first branch stream of air being conveyed in cross-countercurrent flow with respect to the hot flue gas;
    heating of the second branch stream of air which has not yet been heated by exchange of heat with the jacket surface of a combustion chamber, the second branch stream of air flowing around the combustion chamber completely;
    adjustment of the mass flow ratio between a first branch stream of air and second branch stream of air by changing the pressure loss of one of the two branch streams of air which the latter undergoes on passing through the air-heating unit; and
    separate extraction of the first branch stream of air and of the second branch stream of air from the air-heating unit.
  8. Method for heating air in an air-heating unit according to Claim 7, characterised in that the second branch stream of air is conveyed along heat-emitting blades in a flow channel surrounding the combustion chamber.
  9. Method for heating air in an air-heating unit according to Claim 7 or 8, characterised in that the mass fraction of drying air in the second branch stream of air (C) is set to be smaller than the mass fraction of drying air in the first branch stream of air (B).
EP96117521A 1995-11-03 1996-10-31 Burner-head air heater Expired - Lifetime EP0772010B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19541035A DE19541035C1 (en) 1995-11-03 1995-11-03 Burner-heated air heater
DE19541035 1995-11-03

Publications (2)

Publication Number Publication Date
EP0772010A1 EP0772010A1 (en) 1997-05-07
EP0772010B1 true EP0772010B1 (en) 2001-05-23

Family

ID=7776560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96117521A Expired - Lifetime EP0772010B1 (en) 1995-11-03 1996-10-31 Burner-head air heater

Country Status (5)

Country Link
EP (1) EP0772010B1 (en)
AT (1) ATE201504T1 (en)
DE (1) DE19541035C1 (en)
DK (1) DK0772010T3 (en)
ES (1) ES2157384T3 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19937901C2 (en) * 1999-08-11 2001-06-21 Eisenmann Kg Maschbau Dryer for a paint shop
IT249409Y1 (en) * 2000-08-08 2003-05-07 Piovan Spa AIR-AIR HEAT EXCHANGER STRUCTURE PARTICULARLY FOR GRANULAR PLASTIC DRYERS FOR MOLDING.
DE10125960A1 (en) * 2001-05-29 2002-12-05 Brueckner Trockentechnik Gmbh Assembly for drying spread wet fabric goods has an indirect heating system, for the recirculating gas to dry the material, with a cross counter-flow recuperator
EP1262726A1 (en) * 2001-05-29 2002-12-04 Brückner Trockentechnik GmbH & Co. KG Apparatus for the treatment of textile webs
GB2402465B (en) * 2003-05-27 2005-12-07 * Robinson Edwin A split-flow heat exchanger
CN103884093B (en) * 2012-12-20 2016-02-24 岳阳远东节能设备有限公司 A kind of novel full-steel structure direct combustion jacket type hot-blast stove
CN103499193B (en) * 2013-10-15 2015-04-01 李菊泉 Special hot blast furnace for drying shed
CN104006647A (en) * 2014-06-11 2014-08-27 李雪奎 Heat exchanger
CN106319908B (en) * 2015-06-16 2020-02-14 青岛海尔智能技术研发有限公司 Clothes dryer
DE102015008253A1 (en) 2015-06-26 2016-12-29 Eisenmann Se Heat exchanger and method for operating a heat exchanger
CN105241212A (en) * 2015-09-18 2016-01-13 广西节得乐生物质能源科技有限公司 Biomass particle combustion drying equipment
CN106679174B (en) * 2016-12-29 2023-09-08 广东工业大学 High-temperature hot-air furnace
CN108645025B (en) * 2018-05-14 2020-10-16 哈尔滨工业大学达通热能工程有限公司 Gas hot-blast stove
CN112856813A (en) * 2021-01-21 2021-05-28 济南宇弘热能设备有限公司 Large-scale components of a whole that can function independently indirect heat transfer formula gas hot-blast furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353606A (en) * 1941-04-23 1944-07-11 Watts Albert Edward Hot-air furnace
US2725051A (en) * 1953-01-06 1955-11-29 Delta Heating Corp Forced air recirculation floor furnace
US2737173A (en) * 1953-08-11 1956-03-06 Delta Heating Corp Combustion type unit heater
FR1138276A (en) * 1955-03-22 1957-06-12 Hot fluid generator
FR1353375A (en) * 1963-04-11 1964-02-21 Breitenstein Gmbh J Air heater
CS159037B1 (en) * 1972-06-12 1974-12-27
DE3039065C2 (en) * 1980-10-16 1984-05-24 Nordklima Lohner Klimatechnik GmbH, 2842 Lohne Warm air heater
FR2522796A1 (en) * 1982-03-05 1983-09-09 Sequipag Drier for granular material - heats drying air by passing in spiral round hearth or through heat exchanger
DE3330924A1 (en) * 1983-08-27 1985-03-07 Hans Huras Gmbh, 6437 Kirchheim Heat exchanger
DE4308522A1 (en) * 1993-03-17 1994-09-22 Flucorrex Ag Flawil Air-heating installation for indirect heating of air for drying installations

Also Published As

Publication number Publication date
EP0772010A1 (en) 1997-05-07
DE19541035C1 (en) 1997-06-12
DK0772010T3 (en) 2001-07-30
ES2157384T3 (en) 2001-08-16
ATE201504T1 (en) 2001-06-15

Similar Documents

Publication Publication Date Title
EP0772010B1 (en) Burner-head air heater
EP1384502B1 (en) Mixer, heat exchanger
DD297697A5 (en) ROHRBUENDEL-HEAT EXCHANGER
DE102005001952A1 (en) Tube bundle reactor for carrying out exothermic or endothermic gas phase reactions
DE69300289T2 (en) Device for cleaning exhaust gases.
DE10233754B4 (en) Textile machine with convection heating by gas-heated heat exchangers
DE2536657A1 (en) HEAT EXCHANGER
DE2149536A1 (en) Method for heating a heat transfer liquid
DE3333735C2 (en)
DE2524151C2 (en) Air heater with post-combustion of the exhaust air from paint drying ovens
EP1724544A1 (en) Method of heat exchanging and heat exchanger
DE3931685A1 (en) HEAT EXCHANGER FOR COOLING REACTION GAS
EP0994322B1 (en) Heat exchanger with connecting element
DE19538364C5 (en) Device for rapid heating of metal press studs
DE3039065C2 (en) Warm air heater
DE4308522A1 (en) Air-heating installation for indirect heating of air for drying installations
DE7726866U1 (en) TANGENTIAL GAS FIRED MUFFLE
EP3868459B1 (en) Device for utilizing waste heat and / or for purification of a flue gas
DE2514888C3 (en) Heating boiler
DE8704049U1 (en) Device for process gas cooling
DE3909465C2 (en)
DE3317490A1 (en) Heat exchanger
DE69728746T2 (en) Heater with radiant tube
DE3701317C1 (en) Device for cooling process gas
DE1601167C3 (en) Mixed heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19970605

17Q First examination report despatched

Effective date: 19990525

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20010523

REF Corresponds to:

Ref document number: 201504

Country of ref document: AT

Date of ref document: 20010615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010523

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2157384

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010905

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010911

Year of fee payment: 6

Ref country code: IE

Payment date: 20010911

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010913

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20010920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010926

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20011003

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011004

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011025

Year of fee payment: 6

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011031

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

BERE Be: lapsed

Owner name: *FLUCORREX A.G.

Effective date: 20021031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030501

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150929

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL