EP0765955A1 - Mecanical oscillating device, especially textile machine web comb which oscillation are obtained by means of a monophase induction motor - Google Patents

Mecanical oscillating device, especially textile machine web comb which oscillation are obtained by means of a monophase induction motor Download PDF

Info

Publication number
EP0765955A1
EP0765955A1 EP96490036A EP96490036A EP0765955A1 EP 0765955 A1 EP0765955 A1 EP 0765955A1 EP 96490036 A EP96490036 A EP 96490036A EP 96490036 A EP96490036 A EP 96490036A EP 0765955 A1 EP0765955 A1 EP 0765955A1
Authority
EP
European Patent Office
Prior art keywords
frequency
induction motor
stator
phase induction
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96490036A
Other languages
German (de)
French (fr)
Other versions
EP0765955B1 (en
Inventor
Marc Brabant
Xavier Catry
Didier Deldique
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thibeau SA
Original Assignee
Thibeau SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thibeau SA filed Critical Thibeau SA
Publication of EP0765955A1 publication Critical patent/EP0765955A1/en
Application granted granted Critical
Publication of EP0765955B1 publication Critical patent/EP0765955B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G15/00Carding machines or accessories; Card clothing; Burr-crushing or removing arrangements associated with carding or other preliminary-treatment machines
    • D01G15/02Carding machines
    • D01G15/12Details
    • D01G15/46Doffing or like arrangements for removing fibres from carding elements; Web-dividing apparatus; Condensers
    • D01G15/48Stripping-combs

Definitions

  • the present invention relates to an oscillating mechanical device, the oscillations of which are maintained by means of a single-phase induction motor. It particularly finds its application in the textile field to the production of improved beating combs, which are self-starting and whose amplitude of the oscillations can be easily adjusted up to large values, without risk of overheating of the single-phase induction motor. .
  • the Applicant has already proposed in its French patent No. 1,351,572 an oscillating mechanical device comprising a shaft, which is resiliently biased towards an angular position of equilibrium, in particular by means of a torsion bar housed inside said shaft , and on which is mounted an oscillating member.
  • This shaft is coupled to the rotor of a single-phase induction motor.
  • the shaft oscillates with a given amplitude of oscillations, and at a fixed frequency which is equal to the natural frequency of the mechanical device, and which is independent of the frequency of the alternating signal supplying the motor stator.
  • This natural frequency depends in a known manner only on the torsional characteristics of the elastic return means and on the moment of inertia of the masses driven in rotation, that is to say in particular of the inertia of the shaft, of the member carried by the shaft, and the rotor.
  • Such an oscillating device is more particularly used in the textile field, to produce in a simple manner swing combs used to detach the sails at the exit of the card and having to date a maximum rate less than 4000 strokes / minute, which corresponds to a natural frequency of oscillations of on the order of 66.7 Hz.
  • the frequency of the alternating signal supplying the stator of the induction motor single-phase is adjusted between 53 Hz and 63 Hz. Indeed, it is known that in this frequency range, the amplitude of the oscillations of the comb is stable and reaches a maximum for a frequency of 54 Hz.
  • the oscillation frequency of the comb is fixed and is equal to the natural frequency of the comb.
  • the oscillations of the comb are therefore completely asynchronous with respect to the supply frequency of the stator of the single-phase induction motor.
  • a single phase induction motor is a motor which is simple in design and which is reliable. Its use for making swing combs therefore advantageously makes it possible to reduce maintenance costs, compared to the use of more sophisticated motors, such as for example brushless motors.
  • the first drawback is linked to the fact that the single-phase induction motor consumes a large current, because its rotor undergoes frequent reversals of its direction of rotation, under the effect of the elastic return of the shaft to which this rotor is coupled.
  • This drawback leads to the use of an induction motor which is oversized in power, compared to the mechanical energy which it is necessary to supply to the comb in order to maintain the oscillations.
  • the second drawback is linked to the start of the beating comb using a single-phase induction motor.
  • the motor develops a motor torque which is zero, and it is necessary to communicate to the rotor a preferential direction of rotation to start it.
  • the single-phase induction motor behaves like a single-phase transformer, the primary and secondary of which are crossed by very strong currents. The rotor and thereby the torsion bar then begin to vibrate under the effect of the intense eddy currents which are induced in the magnetic masses of the motor.
  • these vibrations make it possible to automatically start the oscillations of the shaft at the natural frequency of oscillation of the mechanical device, while the angular amplitude of the oscillations tends to increase rapidly until a stable maximum value.
  • the start of the oscillations is not systematic. To start the oscillations, it is therefore necessary either to manually start the comb by communicating a torque to the torsion bar, or to equip the single-phase induction motor with an external starting device.
  • the object of the present invention is to propose an oscillating mechanical device whose oscillations are maintained by means of a single-phase induction motor, but which overcomes the two abovementioned drawbacks, which have hitherto been linked to the use of this particular type of asynchronous motor.
  • the stator of the single-phase induction motor is supplied by an alternating signal whose frequency is adjusted in the vicinity of the frequency clean oscillation of the mechanical device.
  • the frequency of the stator supply signal will be adjusted to the natural oscillation frequency of the mechanical device, with a tolerance of plus or minus one tenth of a hertz.
  • the natural frequency of oscillation of the oscillating mechanical device depends on the inertia of the masses driven in rotation and on the torsional characteristics of the elastic return means. This natural oscillation frequency varies from device to device. To implement the invention, it is therefore necessary to qualify each device by precisely determining its natural frequency oscillation. In order to carry out this qualification automatically, the device of the invention will preferably be equipped with an electronic control system for the single-phase induction motor, which delivers a signal for the stator of the single-phase induction motor.
  • the electrical control system manages at the input a sensor measuring the effective intensity of the supply current of the stator of the single-phase induction motor and is designed to, before starting the device, carry out a frequency sweep over a predetermined frequency range which is chosen to be wide enough to contain the natural frequency of the oscillating mechanical device, acquire and store the value of the effective intensity of the current consumed by the stator of the single-phase induction motor as a function of the supply frequency of this stator, and at the end of the frequency sweep, set the frequency of the stator supply signal to the frequency corresponding to the minimum effective intensity measured during the frequency sweep.
  • the electronic system manages at the input a sensor measuring the amplitude of the oscillations of the shaft of the device, and at the end of the frequency sweep, adjusts the frequency of the stator supply signal on the frequency corresponding to the maximum oscillation amplitude measured during the frequency sweep.
  • the swinging comb represented in FIG. 1 comprises a comb 1 proper, which is mounted on a tubular shaft 2 and secured by one of its ends to the rotor of a single-phase induction motor 3.
  • the shaft 2 contains a bar coaxial torsion allowing the elastic return of said shaft and the comb 1 in a median angular position of equilibrium.
  • the stator of the single-phase induction motor 3 is supplied by an alternating signal 7, delivered by an electronic control system 4.
  • the electronic control system 4 delivers an alternating signal 7, the frequency of which is adjustable, and is adjusted in the vicinity of the natural frequency of oscillation of the comb.
  • the motivation for this particular choice of frequency will be better understood on reading the experimental curves of FIGS. 2 to 4 which will now be detailed and which have been obtained with a comb 1 designed to oscillate at around 3890 strokes / minute.
  • the curve in Figure 2 represents the amplitude of the oscillations of this comb, as a function of the frequency of the power supply signal 7 of the motor 3, and this for a given value of the effective voltage of this signal. in evidence that for the frequencies higher than 70Hz, the amplitude of the oscillations of the comb 1 is almost constant, and is of the order of 30mm.
  • the stator of the single-phase induction motor of such a swinging comb has always been supplied in the aforementioned frequency range, since it is known that in this particular range on the one hand the amplitude of the oscillations is stable and varies very little as a function of the supply frequency of the stator, and on the other hand that the comb oscillates at a fixed frequency, which is independent of the stator supply frequency and which is equal to what is called the natural frequency of the comb.
  • FIG. 3 represents the effective intensity of the current consumed by the motor 3 as a function of the frequency of the supply signal 7. This curve makes it possible to note that in the vicinity of the particular frequency of 64.7 Hz, this intensity drops suddenly for reach around 4.4 A, while it was close to 8A in the frequency range usually recommended, that is to say for frequencies above 70Hz.
  • FIG. 4 represents the frequency of oscillation of the shaft 2 of the comb as a function of the frequency of the supply signal 7. This curve shows that for frequencies greater than 65.9 Hz, the comb oscillates with a natural frequency of 64 , 7Hz, which corresponds to a comb oscillating very exactly at 3882 strokes / minute.
  • the particular frequency of the power signal 7 for which the effective intensity of the current consumed by the single-phase induction motor is minimum ( Figure 3) and the amplitude of oscillations is maximum (Figure 2) therefore corresponds to the natural frequency of oscillation of the beating comb.
  • FIG. 4 also makes it possible to highlight that unexpectedly, for frequencies between 62.6 Hz and 64.9 Hz, the oscillation of the comb is not asynchronous as one might have believed, but is on the contrary synchronous with the frequency of the power signal 7 of the stator of the single-phase induction motor.
  • the comb is systematically self-starting. For frequencies of the power signal 7 between 64.9Hz and 65.9Hz, it is not possible to oscillate the comb. For frequencies higher than 65.9 Hz, it is necessary to force the comb to start, for example by manually communicating a torque to the shaft of the comb.
  • the comb has the advantage of being self-starting, and of consuming a current of lower intensity.
  • the concept of proximity to the natural frequency will be defined by the frequency range of the supply signal 7 of the stator of the single-phase induction motor in which the effective intensity of the current consumed by the motor is less than the effective intensity of the current consumed in the frequency range hitherto recommended.
  • the vicinity of the natural frequency of the comb (64.7 Hz) will be constituted by the range of frequencies between 63.9 Hz and 64, 8Hz, that is to say in the frequency range [fO, 8Hz; f + O, 1Hz], where f represents the natural frequency of oscillation of the comb.
  • This frequency range is not, however, limiting of the invention. It is in fact for the skilled person to determine for a given comb the exact range of frequencies around the natural frequency of oscillation of the comb in which the intensity of the current consumed by the induction motor. single phase fall.
  • the frequency of the supply signal will be more particularly adjusted to the natural frequency of the comb with a tolerance of +/- 0.1 Hz.
  • the amplitude of the oscillations is greater than that of the oscillations of the comb in its usual asynchronous operating range (frequencies above 70Hz) and the current consumed is lower. It is therefore possible to obtain oscillations of greater amplitude with a single-phase induction motor of lower electrical power.
  • Adjusting this amplitude advantageously makes it possible to adapt the beating comb to any type of existing fibrous web, originating from the card on which the comb is mounted.
  • the amplitude of the oscillations will be adjusted so as to obtain a sufficient engine torque, to minimize the number of jams of the comb, during operation.
  • the drop in intensity of the current consumed by the single-phase induction motor in the narrow frequency range of the invention makes it possible to envisage the production of swinging combs having higher natural frequencies of oscillation, and thereby to increase the rate of work of the cards they equip.
  • the intensity of the current consumed by the motor increases with the natural frequency of oscillation of the comb, and this whatever the frequency of supply of the stator. In the frequency range which has hitherto been recommended, it was limited, due to the excessively high current consumption, to the production of combs having a natural oscillation frequency of less than 4000 strokes / minute.
  • stator supply frequency range it becomes possible to build combs oscillating at frequencies greater than 4000 strokes / minute, without risk of overheating the motor. single-phase induction.
  • the electric power consumed by the motor is lower, it becomes possible to use single-phase induction motors of lower power, that is to say induction motors of lower dimension whose rotor has a lower inertia, which makes it possible to envisage the production of combs having a higher natural frequency of oscillation
  • the electronic control system 4 comprises an electronic circuit 8, a microprocessor 9 and a speed controller 10 which delivers the power signal 7 from the stator of the single-phase induction motor.
  • the microprocessor 9 manages in known manner a ROM 12 of EPROM type in which the program operating the microprocessor is stored, a random access memory 11, a keyboard 13 and a display 14.
  • the frequency of the AC power signal 7 delivered by the variator 10 is fixed by the microprocessor 9 via the control signal 9 a .
  • the swinging comb is further equipped with a sensor 5,6 which measures the amplitude of the oscillation of the shaft 2, and delivers to the electronic circuit 8 a variable voltage U whose instantaneous value is a function of the shaft rotation angle 2.
  • this sensor was a hall effect magnetic sensor. It could also be a strain gauge mounted directly on the surface of the shaft 2, or any other sensor known to those skilled in the art and fulfilling the same function.
  • the function of the electronic circuit 8 is to transform the variable voltage U delivered by the amplitude sensor 5,6 into a first analog signal 8 a characterizing the oscillation frequency of the shaft 2 and into a second digital signal 8 b of which the value is a function of the amplitude of the oscillations of the shaft 2.
  • the electronic circuit 8 comprises at input a voltage / current converter constituted by resistance R, and a first RC filter formed by resistance R1 and capacitor C1.
  • a first operational amplifier A1 mounted as a comparator receives as input a reference voltage Vref and the output signal of the above-mentioned first filter RC, and delivers for the microprocessor 9 the analog signal 8 a .
  • the signal 8 a When the beating comb oscillates, the signal 8 a consists of a train of pulses whose frequency is directly a function of the actual oscillation frequency of the shaft 2.
  • the output signal of the first RC filter is also amplified by means of a second operational amplifier A2 is filtered by a second RC filter constituted by the resistor R2 and the capacitor C2.
  • the voltage across C2 corresponds to the average value of the variable voltage U delivered by the sensor 5,6, and is therefore proportional to the amplitude of the oscillations of the shaft 2.
  • This voltage is converted by means of a converter analog / digital converter 15 which delivers the digital signal 8b aforementioned to the microprocessor 9.
  • the microprocessor 9 is able, from the two signals 8 a and 8 b, to acquire at a given instant the value of the frequency and the amplitude of the oscillations of the shaft 2 of the beating comb.
  • the operation of the microprocessor will now be detailed from the flow diagram of FIG. 6.
  • the microprocessor 9 performs a scan loop of its keyboard 13 while waiting for input (step 16) by an operator with a minimum frequency (Fmin) and a maximum frequency (Fmax ). These two frequencies correspond to the lower and upper limits of a frequency range which is chosen to be wide enough to contain with certainty the natural frequency of oscillation of the comb. With regard to the comb, the operating curves of which have been given in FIGS. 2 to 4, for example, Fmin at 60 Hz and Fmax at 70 Hz will be fixed.
  • the microprocessor 9 iteratively controls the variator 10 by the intermediary of the control signal 9 a such that this variator 10 delivers a supply signal 7 whose frequency will vary discontinuously, according to a predetermined frequency increment (dF) over the entire frequency range (Fmin, Fmax).
  • This frequency increment (dF) can be set once and for all, or can optionally be entered at the same time as the limits of the frequency range (Fmin, Fmax).
  • the microprocessor acquires and stores in random access memory 11 the frequency and the amplitude of the oscillations of the comb by means of signals 8 a and 8 b respectively . This operation of the microprocessor is illustrated by steps 17 to 22 of the flow diagram of FIG. 6.
  • the RAM 11 contains a table of all the pairs of values (amplitude, frequency) acquired. From this table, the microprocessor determines the frequency F 0 corresponding to the maximum amplitude acquired (step 23), controls the variator 10 so that the latter delivers a supply signal 7 whose frequency is F 0 ( step 24), and displays this frequency on the display 14 for the operator (step 25).
  • the frequency value F 0 which is calculated by the microprocessor corresponds to the natural frequency of the comb, with a tolerance which depends on the value of the frequency increment dF. More precisely, in the worst case, the value F 0 found will differ as much as possible from the real natural frequency of the comb by a value equal to 50% of dF. Consequently, to obtain a frequency F 0 which is equal to the natural frequency of the comb with a tolerance of +/- 0.1 Hz, the frequency increment dF will have to be at most 0.2 Hz.
  • this is designed to automatically determine the natural oscillation frequency of the beating comb, no longer from a measurement of the oscillation amplitude of the comb, but from a measurement of the effective intensity of the current consumed by the single-phase induction motor 3.
  • This variant embodiment will not be described in detail because it is easily deduced for those skilled in the art from the variant which has been described with reference to FIGS. 5 and 6. It suffices to replace the sensor 5,6 which measures the amplitude of the oscillations with a sensor measuring the effective intensity of the supply signal 7, and modifying step 23 of the flow diagram of FIG. 6, by calculating the frequency F 0 corresponding to the minimum intensity acquired, and no longer to the amplitude maximum oscillation.
  • step 21 of systematic storage of the pairs of values acquired by the microprocessor in step 20, it that is to say a frequency associated either with an amplitude or with an intensity according to the variant embodiment of the electronic control system.
  • this step 21 will be replaced by a step of storing the amplitude (respectively of the intensity) acquired at a given instant, provided that this amplitude (respectively intensity) is greater (respectively less) than an amplitude ( intensity respectively) previously acquired and stored.
  • the invention is also not limited to the production of swing combs for a textile machine, but can more generally be applied to any oscillating mechanical device whose oscillations are maintained by means of a single-phase induction motor.

Abstract

The oscillating mechanism, especially a textile machine doffing blade, has an oscillating unit (1) on a shaft (2). The stator of the monophase induction motor (3) is fed with an alternating signal (7), where the frequency is controlled within the range of the required mechanical oscillation frequencies.

Description

La présente invention a pour objet un dispositif mécanique oscillant, dont les oscillations sont entretenues au moyen d'un moteur à induction monophasé. Elle trouve particulièrement son application dans le domaine textile à la réalisation de peignes battants perfectionnés,qui sont auto-démarreurs et dont l'amplitude des oscillations peut-être aisément réglée jusqu'à des valeurs importantes, sans risque de surchauffe du moteur à induction monophasé.The present invention relates to an oscillating mechanical device, the oscillations of which are maintained by means of a single-phase induction motor. It particularly finds its application in the textile field to the production of improved beating combs, which are self-starting and whose amplitude of the oscillations can be easily adjusted up to large values, without risk of overheating of the single-phase induction motor. .

La demanderesse a déjà proposé dans son brevet français N° 1.351.572 un dispositif mécanique oscillant comportant un arbre, qui est rappelé élastiquement vers une position angulaire d'équilibre, au moyen notamment d'une barre de torsion logée à l'intérieur dudit arbre, et sur lequel est monté un organe oscillant. Cet arbre est couplé au rotor d'un moteur d'induction monophasé. En théorie, une fois le dispositif oscillant lancé, l'arbre oscille avec une amplitude d'oscillations donnée, et à une fréquence fixe qui est égale à la fréquence propre du dispositif mécanique, et qui est indépendante de la fréquence du signal alternatif alimentant le stator du moteur. Cette fréquence propre dépend de manière connue uniquement des caractéristiques de torsion des moyens de rappel élastique et du moment d'inertie des masses entraînés en rotation, c'est à dire notamment de l'inertie de l'arbre, de l'organe porté par l'arbre, et du rotor. Une fois que le dispositif oscille à sa fréquence propre, le moteur d'induction monophasé sert uniquement à fournir l'énergie suffisante pour compenser l'amortissement du aux frottements, de manière à entretenir les oscillations.The Applicant has already proposed in its French patent No. 1,351,572 an oscillating mechanical device comprising a shaft, which is resiliently biased towards an angular position of equilibrium, in particular by means of a torsion bar housed inside said shaft , and on which is mounted an oscillating member. This shaft is coupled to the rotor of a single-phase induction motor. In theory, once the oscillating device has started, the shaft oscillates with a given amplitude of oscillations, and at a fixed frequency which is equal to the natural frequency of the mechanical device, and which is independent of the frequency of the alternating signal supplying the motor stator. This natural frequency depends in a known manner only on the torsional characteristics of the elastic return means and on the moment of inertia of the masses driven in rotation, that is to say in particular of the inertia of the shaft, of the member carried by the shaft, and the rotor. Once the device oscillates at its natural frequency, the single-phase induction motor is only used to provide sufficient energy to compensate for the damping due to friction, so as to maintain the oscillations.

Un tel dispositif oscillant est plus particulièrement utilisé dans le domaine textile, pour réaliser de façon simple des peignes battants servant à détacher les voiles en sortie de carde et ayant à ce jour une cadence maximum inférieure à 4000 coups/minute, ce qui correspond à une fréquence propre d'oscillations de l'ordre de 66,7Hz. En pratique, s'agissant par exemple de peignes battant à 2817 coups/minutes, c'est à dire des peignes dont la fréquence propre d'oscillation est de 46,95 Hz, la fréquence du signal alternatif alimentant le stator du moteur à induction monophasé est réglée entre 53 Hz et 63 Hz. En effet, il est connu que dans cette plage de fréquences, l'amplitude des oscillations du peigne est stable et atteint un maximum pour une fréquence de 54 Hz. En outre, conformément à la théorie de fonctionnement du peigne battant qui a été précédemment rappelée, dans cette plage de fréquences, quelle que soit la fréquence du signal d'alimentation du stator, la fréquence d'oscillation du peigne est fixe et est égale à la fréquence propre du peigne. Les oscillations du peigne sont donc totalement asynchrones par rapport à la fréquence d'alimentation du stator du moteur à induction monophasé.Such an oscillating device is more particularly used in the textile field, to produce in a simple manner swing combs used to detach the sails at the exit of the card and having to date a maximum rate less than 4000 strokes / minute, which corresponds to a natural frequency of oscillations of on the order of 66.7 Hz. In practice, being for example combs beating at 2817 strokes / minute, that is to say combs whose natural oscillation frequency is 46.95 Hz, the frequency of the alternating signal supplying the stator of the induction motor single-phase is adjusted between 53 Hz and 63 Hz. Indeed, it is known that in this frequency range, the amplitude of the oscillations of the comb is stable and reaches a maximum for a frequency of 54 Hz. In addition, according to theory operating mode of the beating comb which has been previously recalled, in this frequency range, whatever the frequency of the stator supply signal, the oscillation frequency of the comb is fixed and is equal to the natural frequency of the comb. The oscillations of the comb are therefore completely asynchronous with respect to the supply frequency of the stator of the single-phase induction motor.

Un moteur à induction monophasé est un moteur qui est de conception simple et qui est fiable. Son utilisation pour la réalisation de peignes battants permet donc avantageusement de réduire les coûts de maintenance, comparativement à l'utilisation de moteurs plus sophistiqués, tels que par exemple les moteurs brushless.A single phase induction motor is a motor which is simple in design and which is reliable. Its use for making swing combs therefore advantageously makes it possible to reduce maintenance costs, compared to the use of more sophisticated motors, such as for example brushless motors.

En revanche, jusqu'à ce jour l'utilisation d'un moteur à induction monophasé pour entretenir les oscillations d'un dispositif oscillant, du type peigne battant, présente principalement deux types d'inconvénients.However, to date the use of a single-phase induction motor to maintain the oscillations of an oscillating device, of the beating comb type, has mainly two types of drawbacks.

Le premier inconvénient est lié au fait que le moteur à induction monophasé consomme un courant important, car son rotor subit des inversions fréquentes de son sens de rotation, sous l'effet du rappel élastique de l'arbre auquel est couplé ce rotor. Cet inconvénient conduit à utiliser un moteur d'induction qui est sur-dimensionné en puissance, comparativement à l'énergie mécanique qu'il est nécessaire de fournir au peigne pour entretenir les oscillations.The first drawback is linked to the fact that the single-phase induction motor consumes a large current, because its rotor undergoes frequent reversals of its direction of rotation, under the effect of the elastic return of the shaft to which this rotor is coupled. This drawback leads to the use of an induction motor which is oversized in power, compared to the mechanical energy which it is necessary to supply to the comb in order to maintain the oscillations.

Le second inconvénient est lié au démarrage du peigne battant utilisant un moteur d'induction monophasé. Au démarrage, lorsque le rotor du moteur à induction monophasé est statique, et que son stator est mis sous tension, le moteur développe un couple moteur qui est nul, et il est nécessaire de communiquer au rotor un sens préférentiel de rotation pour le faire démarrer. A l'arrêt, le moteur d'induction monophasé se comporte comme un transformateur monophasé, dont le primaire et le secondaire sont traversés par des courants très intenses. Le rotor et par la-même la barre de torsion se mettent alors à vibrer sous l'effet des courants de Foucault intenses qui sont induits dans les masses magnétiques du moteur. En théorie ces vibrations permettent de faire démarrer automatiquement les oscillations de l'arbre à la fréquence propre d'oscillation du dispositif mécanique, tandis que l'amplitude angulaire des oscillations tend à croître rapidement jusqu'à une valeur maximum stable. En pratique, le démarrage des oscillations n'est pas systématique. Pour amorcer les oscillations, il est donc nécessaire soit de démarrer manuellement le peigne en communiquant un couple à la barre de torsion, soit d'équiper le moteur d'induction monophasé avec un dispositif de démarrage extérieur.The second drawback is linked to the start of the beating comb using a single-phase induction motor. At start-up, when the rotor of the single-phase induction motor is static, and its stator is energized, the motor develops a motor torque which is zero, and it is necessary to communicate to the rotor a preferential direction of rotation to start it. When stopped, the single-phase induction motor behaves like a single-phase transformer, the primary and secondary of which are crossed by very strong currents. The rotor and thereby the torsion bar then begin to vibrate under the effect of the intense eddy currents which are induced in the magnetic masses of the motor. In theory, these vibrations make it possible to automatically start the oscillations of the shaft at the natural frequency of oscillation of the mechanical device, while the angular amplitude of the oscillations tends to increase rapidly until a stable maximum value. In practice, the start of the oscillations is not systematic. To start the oscillations, it is therefore necessary either to manually start the comb by communicating a torque to the torsion bar, or to equip the single-phase induction motor with an external starting device.

Dans le but de pallier les problèmes précités, on a cherché à remplacer le moteur d'induction monophasé par des moteurs plus sophistiqués, du type moteurs à courant continu ou moteurs brushless. C'est la solution préconisée dans le brevet européen EP.519.878 , qui d'une manière générale enseigne d'une part de remplacer le moteur à induction monophasé par un moteur qui délivre un couple constant quelle que soit la vitesse de rotation du rotor, et dont on peut commander électriquement l'inversion du sens de rotation, et d'autre part d'asservir la commande de l'inversion du sens de rotation en fonction de l'amplitude d'oscillation du peigne, en sorte de réaliser un système oscillant. C'est également la solution qui est adoptée dans la demande de brevet russe SU.1.227.726.In order to overcome the aforementioned problems, attempts have been made to replace the single-phase induction motor with more sophisticated motors, of the direct current or brushless motor type. This is the solution recommended in European patent EP.519.878, which generally teaches on the one hand to replace the single-phase induction motor with a motor which delivers a constant torque whatever the speed of rotation of the rotor, and whose reversal of rotation can be electrically controlled, and on the other hand to control the reversal of direction of rotation as a function of the amplitude of oscillation of the comb, so as to produce a system oscillating. This is also the solution which is adopted in the Russian patent application SU.1.227.726.

Le but de la présente invention est de proposer un dispositif mécanique oscillant dont les oscillations sont entretenues au moyen d'un moteur à induction monophasé, mais qui pallie les deux inconvénients susvisés, qui étaient jusqu'à ce jour liés à l'utilisation de ce type particulier de moteur asynchrone.The object of the present invention is to propose an oscillating mechanical device whose oscillations are maintained by means of a single-phase induction motor, but which overcomes the two abovementioned drawbacks, which have hitherto been linked to the use of this particular type of asynchronous motor.

Selon l'invention, le stator du moteur à induction monophasé est alimenté par un signal alternatif dont la fréquence est réglée au voisinage de la fréquence propre d'oscillation du dispositif mécanique. De préférence, la fréquence du signal d'alimentation du stator sera réglée sur la fréquence propre d'oscillation du dispositif mécanique, avec une tolérance de plus ou moins un dixième de hertz.According to the invention, the stator of the single-phase induction motor is supplied by an alternating signal whose frequency is adjusted in the vicinity of the frequency clean oscillation of the mechanical device. Preferably, the frequency of the stator supply signal will be adjusted to the natural oscillation frequency of the mechanical device, with a tolerance of plus or minus one tenth of a hertz.

C'est le mérite de la demanderesse d'avoir mis en évidence qu'en alimentant le stator du moteur d'induction monophasé dans une plage de fréquences étroites au voisinage de la fréquence propre d'oscillation du dispositif mécanique, c'est-à-dire dans une plage de fréquences qui n'est pas celle jusqu'à présent considérée comme optimale, d'une part on obtenait une chute de l'intensité consommée par le moteur d'induction monophasé, et d'autre part le dispositif mécanique oscillant était systématiquement auto-démarreur.It is the merit of the applicant to have demonstrated that by supplying the stator of the single-phase induction motor in a narrow frequency range in the vicinity of the natural oscillation frequency of the mechanical device, that is to say -to say in a frequency range which is not that hitherto considered optimal, on the one hand there was a drop in the intensity consumed by the single-phase induction motor, and on the other hand the mechanical device oscillating was systematically self-starting.

Des essais complémentaires du comportement en fréquences d'un tel dispositif oscillant ont en outre permis de mettre en évidence qu'au voisinage de la fréquence propre les oscillations de l'arbre n'étaient pas asynchrones comme dans la plage de fréquences habituellement utilisées, mais étaient au contraire synchrones avec la fréquence du signal d'alimentation du stator du moteur à induction monophasé. Plus précisément, dans la plage de fréquences selon l'invention, la fréquence des oscillations de l'arbre et par la-même du rotor du moteur à induction monophasé est égale à la fréquence d'alimentation du stator du moteur d'induction monophasé. La demanderesse n'est pas en mesure à ce jour d'expliquer pourquoi dans la plage de fréquences selon l'invention l'oscillation de l'arbre et par là-même du rotor est synchrone avec la fréquence d'alimentation du stator du moteur d'induction monophasé, alors que dans la plage de fréquences habituelle cette oscillation est totalement asynchrone, ni pourquoi dans la plage de fréquences selon l'invention, le dispositif est systématiquement auto-démarreur.Additional tests of the frequency behavior of such an oscillating device have also made it possible to demonstrate that in the vicinity of the natural frequency the shaft oscillations were not asynchronous as in the frequency range usually used, but on the contrary were synchronous with the frequency of the stator supply signal of the single-phase induction motor. More specifically, in the frequency range according to the invention, the frequency of the oscillations of the shaft and by the same of the rotor of the single-phase induction motor is equal to the supply frequency of the stator of the single-phase induction motor. The Applicant is not able at this time to explain why in the frequency range according to the invention the oscillation of the shaft and therefore of the rotor is synchronous with the frequency of supply of the stator of the motor single-phase induction, while in the usual frequency range this oscillation is completely asynchronous, nor why in the frequency range according to the invention, the device is systematically self-starting.

La fréquence propre d'oscillation du dispositif mécanique oscillant dépend de l'inertie des masses entraînées en rotation et des caractéristiques de torsion des moyens de rappel élastique. Cette fréquence propre d'oscillation varie d'un dispositif à l'autre. Pour mettre en oeuvre l'invention, il est donc nécessaire de qualifier chaque dispositif en déterminant avec précision sa fréquence propre d'oscillation. Dans le but d'effectuer cette qualification automatiquement, le dispositif de l'invention sera de préférence équipé d'un système électronique de commande du moteur à induction monophasé, qui délivre en sortie pour le stator du moteur d'induction monophasé un signal d'alimentation alternatif dont la fréquence est réglable à une valeur déterminée ; dans une première variante de réalisation, le système électrique de commande gère en entrée un capteur mesurant l'intensité efficace du courant d'alimentation du stator du moteur à induction monophasé et est conçu pour, préalablement au démarrage du dispositif, effectuer un balayage en fréquences sur une plage de fréquences prédéterminée qui est choisie suffisamment large pour contenir la fréquence propre du dispositif mécanique oscillant, acquérir et mémoriser la valeur de l'intensité efficace du courant consommé par le stator du moteur à induction monophasé en fonction de la fréquence d'alimentation de ce stator, et à l'issue du balayage en fréquences, régler la fréquence du signal d'alimentation du stator sur la fréquence correspondant à l'intensité efficace minimale mesurée au cours du balayage en fréquences.The natural frequency of oscillation of the oscillating mechanical device depends on the inertia of the masses driven in rotation and on the torsional characteristics of the elastic return means. This natural oscillation frequency varies from device to device. To implement the invention, it is therefore necessary to qualify each device by precisely determining its natural frequency oscillation. In order to carry out this qualification automatically, the device of the invention will preferably be equipped with an electronic control system for the single-phase induction motor, which delivers a signal for the stator of the single-phase induction motor. alternating power supply whose frequency is adjustable to a determined value; in a first embodiment, the electrical control system manages at the input a sensor measuring the effective intensity of the supply current of the stator of the single-phase induction motor and is designed to, before starting the device, carry out a frequency sweep over a predetermined frequency range which is chosen to be wide enough to contain the natural frequency of the oscillating mechanical device, acquire and store the value of the effective intensity of the current consumed by the stator of the single-phase induction motor as a function of the supply frequency of this stator, and at the end of the frequency sweep, set the frequency of the stator supply signal to the frequency corresponding to the minimum effective intensity measured during the frequency sweep.

La demanderesse a en outre mis en évidence que pour une tension donnée du signal d'alimentation du stator du moteur d'induction monophasé, dans la plage de fréquences selon l'invention, l'amplitude des oscillations passait par un maximum. Par conséquent, sur la base de ce constat, dans une deuxième variante de réalisation, le système électronique gère en entrée un capteur mesurant l'amplitude des oscillations de l'arbre du dispositif, et à l'issue du balayage en fréquence, règle la fréquence du signal d'alimentation du stator sur la fréquence correspondant à l'amplitude d'oscillation maximale mesurée au cours du balayage en fréquence.The Applicant has also demonstrated that for a given voltage of the power supply signal to the stator of the single-phase induction motor, in the frequency range according to the invention, the amplitude of the oscillations passes through a maximum. Consequently, on the basis of this observation, in a second variant embodiment, the electronic system manages at the input a sensor measuring the amplitude of the oscillations of the shaft of the device, and at the end of the frequency sweep, adjusts the frequency of the stator supply signal on the frequency corresponding to the maximum oscillation amplitude measured during the frequency sweep.

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante d'un mode particulier de réalisation d'un peigne battant selon l'invention, donnée à titre d'exemple non limitatif, en référence aux dessins annexés sur lesquels :

  • la figure 1 représente schématiquement un peigne battant selon l'invention et son moteur à induction monophasé,
  • les figures 2 à 4 sont des courbes expérimentales illustrant les caractéristiques techniques du moteur à induction monophasé de la figure 1, pour différentes fréquences d'alimentation du stator.
  • la figure 5 est un synoptique général du système électronique de commande du moteur à induction monophasé de la figure 1,
  • et la figure 6 est un organigramme de fonctionnement du microprocesseur du système électronique de commande de la figure 5.
Other characteristics and advantages of the invention will emerge from the following description of a particular embodiment of a beating comb according to the invention, given by way of nonlimiting example, with reference to the appended drawings in which:
  • FIG. 1 schematically represents a beating comb according to the invention and its single-phase induction motor,
  • Figures 2 to 4 are experimental curves illustrating the technical characteristics of the single-phase induction motor of Figure 1, for different stator supply frequencies.
  • FIG. 5 is a general block diagram of the electronic control system of the single-phase induction motor of FIG. 1,
  • and FIG. 6 is a flow diagram of the operation of the microprocessor of the electronic control system of FIG. 5.

Le peigne battant représenté à la figure 1 comporte un peigne 1 proprement dit, qui est monté sur un arbre 2 tubulaire et solidaire par l'une de ses extrémités du rotor d'un moteur à induction monophasé 3. L'arbre 2 renferme une barre de torsion coaxiale permettant le rappel élastique dudit arbre et du peigne 1 dans une position angulaire médiane d'équilibre. Le stator du moteur à induction monophasé 3 est alimenté par un signal alternatif 7, délivré par un système électronique de commande 4.The swinging comb represented in FIG. 1 comprises a comb 1 proper, which is mounted on a tubular shaft 2 and secured by one of its ends to the rotor of a single-phase induction motor 3. The shaft 2 contains a bar coaxial torsion allowing the elastic return of said shaft and the comb 1 in a median angular position of equilibrium. The stator of the single-phase induction motor 3 is supplied by an alternating signal 7, delivered by an electronic control system 4.

Selon l'invention le système électronique de commande 4 délivre un signal alternatif 7 dont la fréquence est réglable, et est réglée au voisinage de la fréquence propre d'oscillation du peigne. La motivation de ce choix particulier de fréquence sera mieux compris à la lecture des courbes expérimentales des figures 2 à 4 qui vont à présent être détaillées et qui ont été obtenues avec un peigne 1 conçu pour osciller à environ 3890 coups/minute.According to the invention, the electronic control system 4 delivers an alternating signal 7, the frequency of which is adjustable, and is adjusted in the vicinity of the natural frequency of oscillation of the comb. The motivation for this particular choice of frequency will be better understood on reading the experimental curves of FIGS. 2 to 4 which will now be detailed and which have been obtained with a comb 1 designed to oscillate at around 3890 strokes / minute.

La courbe de la figure 2 représente l'amplitude des oscillations de ce peigne, en fonction de la fréquence du signal d'alimentation 7 du moteur 3, et ce pour une valeur donnée de la tension efficace de ce signal.Cette courbe permet de mettre en évidence que pour les fréquences supérieures à 70Hz, l'amplitude des oscillations du peigne 1 est quasiment constante, et est de l'ordre de 30mm.The curve in Figure 2 represents the amplitude of the oscillations of this comb, as a function of the frequency of the power supply signal 7 of the motor 3, and this for a given value of the effective voltage of this signal. in evidence that for the frequencies higher than 70Hz, the amplitude of the oscillations of the comb 1 is almost constant, and is of the order of 30mm.

Jusqu'à ce jour, le stator du moteur à induction monophasé d'un tel peigne battant a toujours été alimenté dans la plage de fréquences précitée, car il est connu que dans cette plage particulière d'une part l'amplitude des oscillations est stable et varie très peu en fonction de la fréquence d'alimentation du stator, et d'autre part que le peigne oscille à une fréquence fixe, qui est indépendante de la fréquence d'alimentation du stator et qui est égale à ce que l'on appelle la fréquence propre du peigne.To date, the stator of the single-phase induction motor of such a swinging comb has always been supplied in the aforementioned frequency range, since it is known that in this particular range on the one hand the amplitude of the oscillations is stable and varies very little as a function of the supply frequency of the stator, and on the other hand that the comb oscillates at a fixed frequency, which is independent of the stator supply frequency and which is equal to what is called the natural frequency of the comb.

Il était par ailleurs déjà connu que pour des fréquences inférieures à 70 Hz, on obtenait des amplitudes d'oscillations très instables en fonction de la fréquence d'alimentation du stator. Pour cette raison, on a jusqu'à ce jour toujours cherché à éviter les fréquences inférieures à 70Hz, dans le cas d'un peigne conçu pour osciller à environ 3890 coups /minute, et à la connaissance de la demanderesse, on n'a jamais cherché à étudier le comportement du peigne battant dans cette plage de fréquences. Or la courbe de la figure 2 permet de mettre en évidence, pour les fréquences inférieures 70 Hz, une plage de fréquences très étroite entre 64,6 Hz et 64,8Hz, pour laquelle l'amplitude des oscillations est supérieure à 30mm et passe par un maximum d'environ 42 mm pour une fréquence particulière de 64,7Hz.It was also already known that for frequencies below 70 Hz, very unstable oscillations amplitudes were obtained as a function of the stator supply frequency. For this reason, we have so far always sought to avoid frequencies below 70 Hz, in the case of a comb designed to oscillate at around 3890 strokes / minute, and to the knowledge of the applicant, we have not never sought to study the behavior of the beating comb in this frequency range. However, the curve in FIG. 2 makes it possible to highlight, for frequencies below 70 Hz, a very narrow frequency range between 64.6 Hz and 64.8 Hz, for which the amplitude of the oscillations is greater than 30 mm and passes through a maximum of about 42 mm for a particular frequency of 64.7 Hz.

La figure 3 représente l'intensité efficace du courant consommé par le moteur 3 en fonction de la fréquence du signal d'alimentation 7. Cette courbe permet de constater qu'au voisinage de la fréquence particulière de 64,7Hz, cette intensité chute brusquement pour atteindre environ 4,4 A, alors qu'elle était proche de 8A dans la plage de fréquences habituellement préconisée, c'est-à-dire pour des fréquence supérieures à 70Hz.FIG. 3 represents the effective intensity of the current consumed by the motor 3 as a function of the frequency of the supply signal 7. This curve makes it possible to note that in the vicinity of the particular frequency of 64.7 Hz, this intensity drops suddenly for reach around 4.4 A, while it was close to 8A in the frequency range usually recommended, that is to say for frequencies above 70Hz.

La figure 4 représente la fréquence d'oscillation de l'arbre 2 du peigne en fonction de la fréquence du signal d'alimentation 7. Cette courbe montre que pour des fréquences supérieures à 65,9Hz, le peigne oscille avec une fréquence propre de 64,7Hz, ce qui correspond à un peigne oscillant très exactement à 3882 coups/minute. La fréquence particulière du signal d'alimentation 7 pour laquelle l'intensité efficace du courant consommé par le moteur à induction monophasé est minimale (figure 3) et l'amplitude d'oscillations est maximale (figure 2) correspond donc à la fréquence propre d'oscillation du peigne battant.FIG. 4 represents the frequency of oscillation of the shaft 2 of the comb as a function of the frequency of the supply signal 7. This curve shows that for frequencies greater than 65.9 Hz, the comb oscillates with a natural frequency of 64 , 7Hz, which corresponds to a comb oscillating very exactly at 3882 strokes / minute. The particular frequency of the power signal 7 for which the effective intensity of the current consumed by the single-phase induction motor is minimum (Figure 3) and the amplitude of oscillations is maximum (Figure 2) therefore corresponds to the natural frequency of oscillation of the beating comb.

La figure 4 permet en outre de mettre en évidence que de manière inattendue, pour des fréquences comprises entre 62,6Hz et 64,9Hz, l'oscillation du peigne n'est pas asynchrone comme on aurait pu le croire, mais est au contraire synchrone avec la fréquence du signal d'alimentation 7 du stator du moteur à induction monophasé. En outre, dans cette plage de fréquences le peigne est systématiquement auto-démarreur. Pour des fréquences du signal d'alimentation 7 comprises entre 64,9Hz et 65,9Hz, il n'est pas possible de faire osciller le peigne. Pour des fréquence supérieures à 65,9Hz, il est nécessaire de forcer le peigne à démarrer, par exemple en communiquant manuellement un couple à l'arbre du peigne.FIG. 4 also makes it possible to highlight that unexpectedly, for frequencies between 62.6 Hz and 64.9 Hz, the oscillation of the comb is not asynchronous as one might have believed, but is on the contrary synchronous with the frequency of the power signal 7 of the stator of the single-phase induction motor. In addition, in this frequency range the comb is systematically self-starting. For frequencies of the power signal 7 between 64.9Hz and 65.9Hz, it is not possible to oscillate the comb. For frequencies higher than 65.9 Hz, it is necessary to force the comb to start, for example by manually communicating a torque to the shaft of the comb.

De l'analyse ci-dessus des courbes de figures 3 et 4, il ressort clairement que pour une fréquence du signal d'alimentation 7 réglée au voisinage de la fréquence propre du peigne, c'est à dire dans une plage de fréquences étroite située en dehors de la plage de fréquences jusqu'à présent préconisée, le peigne présente l'avantage d'être auto-démarreur, et de consommer un courant d'intensité plus faible. Conformément à l'invention, pour un peigne battant donné, la notion de voisinage de la fréquence propre sera définie par la plage de fréquences du signal d'alimentation 7 du stator du moteur à induction monophasé dans laquelle l'intensité efficace du courant consommé par le moteur est inférieure à l'intensité efficace du courant consommé dans la plage de fréquences jusqu'à présent préconisée. Dans l'exemple particulier qui a été donné, si l'on se réfère à la figure 3, le voisinage de la fréquence propre du peigne (64,7Hz) sera constitué par la plage de fréquences comprises entre 63,9 Hz et 64,8Hz, c'est-à-dire dans la plage de fréquences [f-O,8Hz ; f + O,1Hz], où f représente la fréquence propre d'oscillation du peigne. Cette plage de fréquences n'est cependant pas limitative de l'invention . Il revient en effet à l'homme du métier de déterminer pour un peigne donné la plage exacte de fréquences autour de la fréquence propre d'oscillation du peigne dans laquelle l'intensité du courant consommé par le moteur à induction monophasé chute.From the above analysis of the curves of FIGS. 3 and 4, it is clear that for a frequency of the supply signal 7 adjusted in the vicinity of the natural frequency of the comb, that is to say in a narrow frequency range situated outside the frequency range hitherto recommended, the comb has the advantage of being self-starting, and of consuming a current of lower intensity. In accordance with the invention, for a given beating comb, the concept of proximity to the natural frequency will be defined by the frequency range of the supply signal 7 of the stator of the single-phase induction motor in which the effective intensity of the current consumed by the motor is less than the effective intensity of the current consumed in the frequency range hitherto recommended. In the particular example which has been given, if one refers to FIG. 3, the vicinity of the natural frequency of the comb (64.7 Hz) will be constituted by the range of frequencies between 63.9 Hz and 64, 8Hz, that is to say in the frequency range [fO, 8Hz; f + O, 1Hz], where f represents the natural frequency of oscillation of the comb. This frequency range is not, however, limiting of the invention. It is in fact for the skilled person to determine for a given comb the exact range of frequencies around the natural frequency of oscillation of the comb in which the intensity of the current consumed by the induction motor. single phase fall.

De préférence, la fréquence du signal d'alimentation sera plus particulièrement réglée sur la fréquence propre du peigne avec une tolérance de +/- 0,1Hz. En effet si l'on se réfère à la figure 2, dans cette plage de fréquences, pour une tension donnée du signal d'alimentation 7, l'amplitude des oscillations est supérieure à celle des oscillations du peigne dans sa plage de fonctionnement asynchrone habituelle (fréquences supérieures à 70Hz) et le courant consommé est plus faible. Il est donc possible d'obtenir des oscillations d'amplitude plus importante avec un moteur d'induction monophasé de puissance électrique moindre. De plus, pour une puissance de moteur donné, il est également possible de régler l'amplitude des oscillations du peigne sur une plage plus importante, en contrôlant la tension d'alimentation du stator. Le réglage de cette amplitude permet avantageusement d'adapter le peigne battant à tout type de voile fibreux existant, issu de la carde sur laquelle est monté le peigne. S'agissant d'un voile fibreux présentant un couple résistant important, on réglera l'amplitude des oscillations de manière à obtenir un couple moteur suffisant, pour minimiser le nombre de bourrage du peigne, en cours de fonctionnement.Preferably, the frequency of the supply signal will be more particularly adjusted to the natural frequency of the comb with a tolerance of +/- 0.1 Hz. Indeed, if one refers to FIG. 2, in this frequency range, for a given voltage of the supply signal 7, the amplitude of the oscillations is greater than that of the oscillations of the comb in its usual asynchronous operating range (frequencies above 70Hz) and the current consumed is lower. It is therefore possible to obtain oscillations of greater amplitude with a single-phase induction motor of lower electrical power. In addition, for a given motor power, it is also possible to adjust the amplitude of the oscillations of the comb over a larger range, by controlling the supply voltage of the stator. Adjusting this amplitude advantageously makes it possible to adapt the beating comb to any type of existing fibrous web, originating from the card on which the comb is mounted. In the case of a fibrous web having a high resistant torque, the amplitude of the oscillations will be adjusted so as to obtain a sufficient engine torque, to minimize the number of jams of the comb, during operation.

Enfin, la chute d'intensité du courant consommé par le moteur à induction monophasé dans la plage étroite de fréquences de l'invention permet d'envisager la réalisation de peignes battants ayant des fréquences propres d'oscillation plus élevées, et par là-même d'augmenter la cadence de travail des cardes qu'ils équipent. En effet, l'intensité du courant consommé par le moteur augmente avec la fréquence propre d'oscillation du peigne, et ce quelle que soit la fréquence d'alimentation du stator. Dans la plage de fréquences qui était jusqu'à ce jour préconisée, on était limité, du fait de la consommation trop élevée de courant, à la réalisation de peignes ayant une fréquence d'oscillation propre inférieure à 4000 coups /minute. A présent dans la plage de fréquences d'alimentation du stator selon l'invention, il devient possible de construire des peignes oscillant à des fréquences supérieures à 4000 coups /minute, sans risque d'échauffement du moteur d'induction monophasé. De plus, étant donné que grâce à l'invention la puissance électrique consommée par le moteur est plus faible, il devient possible d'utiliser des moteurs à induction monophasé de plus faible puissance, c'est à dire des moteurs à induction de plus faible dimension dont le rotor présente une inertie plus faible, ce qui permet d'envisager la réalisation de peignes ayant une fréquence propre d'oscillation plus importanteFinally, the drop in intensity of the current consumed by the single-phase induction motor in the narrow frequency range of the invention makes it possible to envisage the production of swinging combs having higher natural frequencies of oscillation, and thereby to increase the rate of work of the cards they equip. Indeed, the intensity of the current consumed by the motor increases with the natural frequency of oscillation of the comb, and this whatever the frequency of supply of the stator. In the frequency range which has hitherto been recommended, it was limited, due to the excessively high current consumption, to the production of combs having a natural oscillation frequency of less than 4000 strokes / minute. Now in the stator supply frequency range according to the invention, it becomes possible to build combs oscillating at frequencies greater than 4000 strokes / minute, without risk of overheating the motor. single-phase induction. In addition, since thanks to the invention the electric power consumed by the motor is lower, it becomes possible to use single-phase induction motors of lower power, that is to say induction motors of lower dimension whose rotor has a lower inertia, which makes it possible to envisage the production of combs having a higher natural frequency of oscillation

Une variante préférée de réalisation du système électronique de commande 4 selon l'invention est représentée à la figure 5 et va à présent être décrite. Dans cette variante, le système électronique de commande 4 comprend un circuit électronique 8, un microprocesseur 9 et un variateur de vitesse 10 qui délivre le signal d'alimentation 7 du stator du moteur à induction monophasé. Le microprocesseur 9 gère de manière connue une mémoire morte 12 de type EPROM dans laquelle est stockée le programme faisant fonctionner le microprocesseur, une mémoire vive 11, un clavier 13 et un afficheur 14. La fréquence du signal d'alimentation alternatif 7 délivré par le variateur 10 est fixée par le microprocesseur 9 par l'intermédiaire du signal de commande 9a. Le peigne battant est en outre équipé d'un capteur 5,6 qui mesure l'amplitude de l'oscillation de l'arbre 2, et délivre à destination du circuit électronique 8 une tension variable U dont la valeur instantanée est fonction de l'angle de rotation de l'arbre 2. Dans un exemple précis de réalisation, ce capteur était un capteur magnétique à effet de hall. Il pourrait également s'agir d'une jauge de contrainte montée directement sur la surface de l'arbre 2, ou de tout autre capteur connu de l'homme du métier et remplissant la même fonction.A preferred variant embodiment of the electronic control system 4 according to the invention is shown in FIG. 5 and will now be described. In this variant, the electronic control system 4 comprises an electronic circuit 8, a microprocessor 9 and a speed controller 10 which delivers the power signal 7 from the stator of the single-phase induction motor. The microprocessor 9 manages in known manner a ROM 12 of EPROM type in which the program operating the microprocessor is stored, a random access memory 11, a keyboard 13 and a display 14. The frequency of the AC power signal 7 delivered by the variator 10 is fixed by the microprocessor 9 via the control signal 9 a . The swinging comb is further equipped with a sensor 5,6 which measures the amplitude of the oscillation of the shaft 2, and delivers to the electronic circuit 8 a variable voltage U whose instantaneous value is a function of the shaft rotation angle 2. In a specific embodiment, this sensor was a hall effect magnetic sensor. It could also be a strain gauge mounted directly on the surface of the shaft 2, or any other sensor known to those skilled in the art and fulfilling the same function.

La fonction du circuit électronique 8 est de transformer la tension U variable délivrée par le capteur d'amplitude 5,6 en un premier signal analogique 8a caractérisant la fréquence d'oscillation de l'arbre 2 et en un second signal 8b numérique dont la valeur est fonction de l'amplitude des oscillations de l'arbre 2. A cet effet, dans l'exemple particulier de réalisation illustré à la figure 5, le circuit électronique 8 comporte en entrée un convertisseur tension / courant constitué par la résistance R, et un premier filtre RC formé par la résistance R1 et la capacité C1. Un premier amplificateur opérationnel A1 monté en comparateur reçoit en entrée une tension de référence Vref et le signal de sortie du premier filtre RC précité, et délivre pour le microprocesseur 9 le signal analogique 8a. Lorsque le peigne battant oscille, le signal 8a consiste en un train d'impulsions dont la fréquence est directement fonction de la fréquence d'oscillation réelle de l'arbre 2. Le signal de sortie du premier filtre RC est également amplifié au moyen d'un second amplificateur opérationnel A2 , est filtré par un second filtre RC constitué par la résistance R2 et la capacité C2. la tension aux bornes de C2 correspond à la valeur moyenne de la tension variable U délivrée par le capteur 5,6, et est donc proportionnelle à l'amplitude des oscillations de l'arbre 2. Cette tension est convertie au moyen d'un convertisseur Analogique/Numérique 15, qui délivre le signal numérique 8b susvisé à destination du microprocesseur 9.The function of the electronic circuit 8 is to transform the variable voltage U delivered by the amplitude sensor 5,6 into a first analog signal 8 a characterizing the oscillation frequency of the shaft 2 and into a second digital signal 8 b of which the value is a function of the amplitude of the oscillations of the shaft 2. For this purpose, in the particular embodiment illustrated in FIG. 5, the electronic circuit 8 comprises at input a voltage / current converter constituted by resistance R, and a first RC filter formed by resistance R1 and capacitor C1. A first operational amplifier A1 mounted as a comparator receives as input a reference voltage Vref and the output signal of the above-mentioned first filter RC, and delivers for the microprocessor 9 the analog signal 8 a . When the beating comb oscillates, the signal 8 a consists of a train of pulses whose frequency is directly a function of the actual oscillation frequency of the shaft 2. The output signal of the first RC filter is also amplified by means of a second operational amplifier A2 is filtered by a second RC filter constituted by the resistor R2 and the capacitor C2. the voltage across C2 corresponds to the average value of the variable voltage U delivered by the sensor 5,6, and is therefore proportional to the amplitude of the oscillations of the shaft 2. This voltage is converted by means of a converter analog / digital converter 15 which delivers the digital signal 8b aforementioned to the microprocessor 9.

Le microprocesseur 9 est en mesure à partir des deux signaux 8a et 8b d'acquérir a un instant donné la valeur de la fréquence et de l'amplitude des oscillations de l'arbre 2 du peigne battant. Le fonctionnement du microprocesseur va à présent être détaillé à partir de l'organigramme de la figure 6.The microprocessor 9 is able, from the two signals 8 a and 8 b, to acquire at a given instant the value of the frequency and the amplitude of the oscillations of the shaft 2 of the beating comb. The operation of the microprocessor will now be detailed from the flow diagram of FIG. 6.

Une fois que le microprocesseur 9 a été initialisé, il effectue un boucle de scrutation de son clavier 13 dans l'attente de la saisie (étape 16) par un opérateur d'une fréquence minimale (Fmin) et d'une fréquence maximale (Fmax). Ces deux fréquences correspondent aux bornes inférieure et supérieure d'une plage de fréquences qui est choisie suffisamment large pour contenir de manière certaine la fréquence propre d'oscillation du peigne. S'agissant du peigne dont les courbes de fonctionnement ont été données aux figures 2 à 4, on fixera par exemple Fmin à 60 Hz et Fmax à 70 Hz. Une fois cette saisie effectuée, le microprocesseur 9 commande de manière itérative le variateur 10 par l'intermédiaire du signal de commande 9a de telle sorte que ce variateur 10 délivre un signal d'alimentation 7 dont la fréquence va varier de manière discontinue, selon un incrément de fréquence prédéterminé (dF) sur toute la plage de fréquences (Fmin, Fmax). Cet incrément de fréquence (dF) pourra être fixé une fois pour toute, ou pourra éventuellement être saisi en même temps que les bornes de la plage de fréquences (Fmin,Fmax). Pour chaque valeur de fréquence du signal d'alimentation, le microprocesseur acquiert et stocke en mémoire vive 11 la fréquence et l'amplitude des oscillations du peigne par l'intermédiaire respectivement des signaux 8a et 8b. Ce fonctionnement du microprocesseur est illustré par les étapes 17 à 22 de l'organigramme de la figure 6. Une fois ce premier cycle d'acquisition achevé, c'est-à-dire une fois que le microprocesseur à balayé toute la plage de fréquences (Fmin, Fmax), la mémoire vive 11 contient une table de tous les couples de valeurs (amplitude, fréquence) acquis. A partir de cette table, le microprocesseur détermine la fréquence F0 correspondant à l'amplitude maximale acquise (étape 23), commande le variateur 10 de telle sorte que celui-ci délivre un signal d'alimentation 7 dont la fréquence est F0 (étape 24), et affiche cette fréquence sur l'afficheur 14 pour l'opérateur (étape 25).Once the microprocessor 9 has been initialized, it performs a scan loop of its keyboard 13 while waiting for input (step 16) by an operator with a minimum frequency (Fmin) and a maximum frequency (Fmax ). These two frequencies correspond to the lower and upper limits of a frequency range which is chosen to be wide enough to contain with certainty the natural frequency of oscillation of the comb. With regard to the comb, the operating curves of which have been given in FIGS. 2 to 4, for example, Fmin at 60 Hz and Fmax at 70 Hz will be fixed. Once this entry has been made, the microprocessor 9 iteratively controls the variator 10 by the intermediary of the control signal 9 a such that this variator 10 delivers a supply signal 7 whose frequency will vary discontinuously, according to a predetermined frequency increment (dF) over the entire frequency range (Fmin, Fmax). This frequency increment (dF) can be set once and for all, or can optionally be entered at the same time as the limits of the frequency range (Fmin, Fmax). For each frequency value of the supply signal, the microprocessor acquires and stores in random access memory 11 the frequency and the amplitude of the oscillations of the comb by means of signals 8 a and 8 b respectively . This operation of the microprocessor is illustrated by steps 17 to 22 of the flow diagram of FIG. 6. Once this first acquisition cycle has been completed, that is to say once the microprocessor has scanned the entire frequency range (Fmin, Fmax), the RAM 11 contains a table of all the pairs of values (amplitude, frequency) acquired. From this table, the microprocessor determines the frequency F 0 corresponding to the maximum amplitude acquired (step 23), controls the variator 10 so that the latter delivers a supply signal 7 whose frequency is F 0 ( step 24), and displays this frequency on the display 14 for the operator (step 25).

La valeur de fréquence F0 qui est calculée par le microprocesseur correspond à la fréquence propre du peigne, avec une tolérance qui dépend de la valeur de l'incrément de fréquence dF. Plus précisément, dans le pire des cas, la valeur F0 trouvée différera au maximum de la fréquence propre réelle du peigne d'une valeur valant 50% de dF. Par conséquent, pour obtenir une fréquence F0 qui est égale à la fréquence propre du peigne avec une tolérance de +/- 0,1 Hz, l'incrément de fréquence dF devra au maximum valoir 0,2Hz.The frequency value F 0 which is calculated by the microprocessor corresponds to the natural frequency of the comb, with a tolerance which depends on the value of the frequency increment dF. More precisely, in the worst case, the value F 0 found will differ as much as possible from the real natural frequency of the comb by a value equal to 50% of dF. Consequently, to obtain a frequency F 0 which is equal to the natural frequency of the comb with a tolerance of +/- 0.1 Hz, the frequency increment dF will have to be at most 0.2 Hz.

Selon une autre variante de réalisation du système électronique de commande 4, celui-ci est conçu pour déterminer automatiquement la fréquence d'oscillation propre du peigne battant, non plus à partir d'une mesure de l'amplitude d'oscillation du peigne, mais à partir d'une mesure de l'intensité efficace du courant consommé par le moteur à induction monophasé 3. Cette variante de réalisation ne sera pas décrite en détail car elle se déduit aisément pour l'homme du métier de la variante qui a été décrite en référence aux figures 5 et 6. Il suffit en effet de remplacer le capteur 5,6 qui mesure l'amplitude des oscillations par un capteur mesurant l'intensité efficace du signal d'alimentation 7, et de modifier l'étape 23 de l'organigramme de la figure 6, en calculant la fréquence F0 correspondant à l'intensité minimale acquise, et non plus à l'amplitude d'oscillation maximale.According to another alternative embodiment of the electronic control system 4, this is designed to automatically determine the natural oscillation frequency of the beating comb, no longer from a measurement of the oscillation amplitude of the comb, but from a measurement of the effective intensity of the current consumed by the single-phase induction motor 3. This variant embodiment will not be described in detail because it is easily deduced for those skilled in the art from the variant which has been described with reference to FIGS. 5 and 6. It suffices to replace the sensor 5,6 which measures the amplitude of the oscillations with a sensor measuring the effective intensity of the supply signal 7, and modifying step 23 of the flow diagram of FIG. 6, by calculating the frequency F 0 corresponding to the minimum intensity acquired, and no longer to the amplitude maximum oscillation.

L'invention n'est pas limitée à l'organigramme particulier de fonctionnement de la figure 6. Il est par exemple possible de supprimer l'étape 21 de stockage systématique des couples de valeurs acquis par le microprocesseur à l'étape 2O, c'est-à-dire une fréquence associée soit à une amplitude soit à une intensité selon la variante de réalisation du système électronique de commande. Dans ce cas , cette étape 21 sera remplacée par une étape de stockage de l'amplitude (respectivement de l'intensité ) acquise à un instant donné, à condition que cette amplitude (respectivement intensité) soit supérieure (respectivement inférieure) à une amplitude (respectivement intensité) précédemment acquise et mémorisée.The invention is not limited to the particular flowchart of operation in FIG. 6. It is for example possible to omit step 21 of systematic storage of the pairs of values acquired by the microprocessor in step 20, it that is to say a frequency associated either with an amplitude or with an intensity according to the variant embodiment of the electronic control system. In this case, this step 21 will be replaced by a step of storing the amplitude (respectively of the intensity) acquired at a given instant, provided that this amplitude (respectively intensity) is greater (respectively less) than an amplitude ( intensity respectively) previously acquired and stored.

L'invention n'est en outre pas limitée à la réalisation de peignes battants pour machine textile , mais peut être plus généralement appliquée à tout dispositif mécanique oscillant dont les oscillations sont entretenues au moyen d'un moteur d'induction monophasé.The invention is also not limited to the production of swing combs for a textile machine, but can more generally be applied to any oscillating mechanical device whose oscillations are maintained by means of a single-phase induction motor.

Claims (7)

Dispositif mécanique oscillant, notamment peigne battant de machine textile, du type comportant un arbre (2), sur lequel est monté un organe oscillant (1), et qui est rappelé élastiquement vers une position angulaire médiane d'équilibre, et un moteur à induction monophasé (3) dont le rotor est couplé à l'arbre (2), de manière à permettre l'entretien des oscillations de l'arbre (2), caractérisé en ce que le stator du moteur à induction monophasé (3) est alimenté par un signal alternatif (7) dont la fréquence est réglée au voisinage de la fréquence propre d'oscillation du dispositif mécanique.Mechanical oscillating device, in particular a textile machine beating comb, of the type comprising a shaft (2), on which is mounted an oscillating member (1), and which is elastically biased towards a median angular position of equilibrium, and an induction motor single-phase (3) whose rotor is coupled to the shaft (2), so as to allow maintenance of the oscillations of the shaft (2), characterized in that the stator of the single-phase induction motor (3) is supplied by an alternating signal (7) whose frequency is adjusted in the vicinity of the natural oscillation frequency of the mechanical device. Dispositif selon la revendication 1 caractérisé en ce que la fréquence du signal d'alimentation (7) du stator est réglée dans la plage de fréquences [f - O,8Hz ; f+O,1Hz], f représentant la fréquence propre d'oscillation du dispositif mécanique.Device according to Claim 1, characterized in that the frequency of the stator supply signal (7) is adjusted in the frequency range [f - O, 8Hz; f + O, 1Hz], f representing the natural frequency of oscillation of the mechanical device. Dispositif selon la revendication 2 caractérisé en ce que la fréquence du signal d'alimentation (7) du stator est réglée sur la fréquence propre d'oscillation du dispositif mécanique, avec une tolérance de plus ou moins un dixième de hertz.Device according to Claim 2, characterized in that the frequency of the stator supply signal (7) is adjusted to the natural oscillation frequency of the mechanical device, with a tolerance of plus or minus one tenth of a hertz. Dispositif selon la revendication 1 caractérisé en ce qu'il est équipé d'un système électronique de commande (4) du moteur à induction monophasé (3), qui gère en entrée un capteur mesurant l'intensité efficace du courant d'alimentation du stator du moteur à induction monophasé, et qui délivre en sortie pour le stator du moteur à induction monophasé un signal d'alimentation alternatif (7) dont la fréquence est réglable à une valeur déterminée, et en ce que le système électronique est conçu pour, préalablement au démarrage du dispositif, effectuer un balayage en fréquences sur une plage de fréquences (Fmin,Fmax) prédéterminée qui est choisie suffisamment large pour contenir la fréquence propre du dispositif mécanique oscillant, acquérir la valeur de l'intensité efficace du courant consommé par le stator du moteur à induction monophasé en fonction de la fréquence d'alimentation (7) de ce stator, et à l'issue du balayage en fréquences, régler la fréquence du signal d'alimentation du stator sur la fréquence correspondant à l'intensité efficace minimale acquise au cours du balayage.Device according to claim 1 characterized in that it is equipped with an electronic control system (4) of the single-phase induction motor (3), which manages at the input a sensor measuring the effective intensity of the stator supply current of the single-phase induction motor, and which delivers at the output for the stator of the single-phase induction motor an alternating supply signal (7) whose frequency is adjustable to a determined value, and in that the electronic system is designed for, beforehand when the device starts, carry out a frequency sweep over a predetermined frequency range (Fmin, Fmax) which is chosen to be wide enough to contain the natural frequency of the oscillating mechanical device, acquire the value of the effective intensity of the current consumed by the stator of the single-phase induction motor as a function of the supply frequency (7) of this stator, and after scanning the frequencies, set the fr equation of the stator supply signal on the frequency corresponding to the minimum effective intensity acquired during scanning. Dispositif selon les revendications 3 et 4 caractérisé en ce que le système électronique de commande (4) est conçu pour effectuer un balayage en fréquences discontinu avec un incrément de fréquences (dF) valant au maximum 0,2 Hz.Device according to claims 3 and 4 characterized in that the electronic control system (4) is designed to carry out a discontinuous frequency sweep with a frequency increment (dF) worth at most 0.2 Hz. Dispositif selon la revendication 1 caractérisé en ce qu'il est équipé d'un système électronique de commande (4) du moteur à induction monophasé (3) , qui gère en entrée un capteur (5,6) mesurant l'amplitude des oscillations de l'arbre du dispositif, et qui délivre en sortie pour le stator du moteur à induction monophasé (3) un signal d'alimentation alternatif (7) dont la fréquence est réglable à une valeur déterminée, et en ce que le système électronique (4) est conçu pour, préalablement au démarrage du dispositif, effectuer un balayage en fréquences sur une plage de fréquences prédéterminée (Fmin,Fmax) qui est choisie suffisamment large pour contenir la fréquence propre du dispositif mécanique oscillant, acquérir la valeur de l'amplitude des oscillations en fonction de la fréquence d'alimentation du stator du moteur à induction monophasé, et à l'issue du balayage en fréquences, régler la fréquence du signal d'alimentation (7) du stator sur la fréquence correspondant à l'amplitude d'oscillation maximale acquise au cours du balayage.Device according to claim 1 characterized in that it is equipped with an electronic control system (4) of the single-phase induction motor (3), which manages at the input a sensor (5,6) measuring the amplitude of the oscillations of the shaft of the device, and which delivers at the output for the stator of the single-phase induction motor (3) an alternating supply signal (7) whose frequency is adjustable to a determined value, and in that the electronic system (4 ) is designed to, before starting up the device, carry out a frequency sweep over a predetermined frequency range (Fmin, Fmax) which is chosen wide enough to contain the natural frequency of the oscillating mechanical device, acquire the value of the amplitude of the oscillations as a function of the supply frequency of the stator of the single-phase induction motor, and at the end of the frequency sweep, set the frequency of the supply signal (7) of the stator to fr accordingly corresponding to the maximum oscillation amplitude acquired during the scan. Dispositif selon les revendications 3 et 6 caractérisé en ce que le système électronique de commande est conçu pour effectuer un balayage en fréquences discontinu avec un incrément de fréquence (dF) valant au maximum 0,2 Hz.Device according to claims 3 and 6 characterized in that the electronic control system is designed to carry out a discontinuous frequency sweep with a frequency increment (dF) of at most 0.2 Hz.
EP96490036A 1995-09-28 1996-09-25 Mecanical oscillating device, especially textile machine web comb which oscillation are obtained by means of a monophase induction motor Expired - Lifetime EP0765955B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9511629 1995-09-28
FR9511629A FR2739398B1 (en) 1995-09-28 1995-09-28 IMPROVED OSCILLATING MECHANICAL DEVICE, ESPECIALLY A FLAP COMB OF A TEXTILE MACHINE, WHOSE OSCILLATIONS ARE MAINTAINED BY A SINGLE-PHASE INDUCTION MOTOR

Publications (2)

Publication Number Publication Date
EP0765955A1 true EP0765955A1 (en) 1997-04-02
EP0765955B1 EP0765955B1 (en) 1998-09-02

Family

ID=9483197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96490036A Expired - Lifetime EP0765955B1 (en) 1995-09-28 1996-09-25 Mecanical oscillating device, especially textile machine web comb which oscillation are obtained by means of a monophase induction motor

Country Status (7)

Country Link
US (1) US5872440A (en)
EP (1) EP0765955B1 (en)
JP (1) JPH09170118A (en)
AT (1) ATE170573T1 (en)
DE (1) DE69600589T2 (en)
DK (1) DK0765955T3 (en)
FR (1) FR2739398B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112298B (en) * 1996-12-19 2003-11-14 Kone Corp Method and apparatus for dampening motor vibrations
DE10149525A1 (en) * 2000-10-26 2002-05-02 Heidelberger Druckmasch Ag Compensating mechanical vibrations involves superimposing discrete frequency component(s) of vibration with harmonic torque of equal frequency, defined amplitude/phase
US9719888B2 (en) * 2012-10-09 2017-08-01 Quantitative Engineering Solutions, LLC Cotton acquisition and tracking system
CH719416A1 (en) * 2022-02-11 2023-08-31 Rieter Ag Maschf Card with an acceleration sensor for measuring structure-borne noise.
CH719417A1 (en) * 2022-02-11 2023-08-31 Rieter Ag Maschf Card with an acceleration sensor for measuring structure-borne noise.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1685603A1 (en) * 1967-10-28 1971-08-19 Schubert & Salzer Maschinen Hacker drive
EP0519878A1 (en) * 1991-06-18 1992-12-23 MONTENERO O.M.T.P. OFFICINA MECCANICA di Finocchi Paolo & C.SNC Card web comb driving system in machines for the textile industry
US5345160A (en) * 1993-06-02 1994-09-06 Henri Corniere Variable frequency control system for single phase induction motors
US5422557A (en) * 1992-10-22 1995-06-06 Samsung Electronics Co., Ltd. Method and apparatus for controlling the speed of a single phase induction motor using frequency variation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750235A (en) * 1971-08-04 1973-08-07 Fiber Controls Corp Textile processing equipment
CH601093A5 (en) * 1976-11-05 1978-06-30 Zellweger Uster Ag
US4181877A (en) * 1976-11-22 1980-01-01 Westinghouse Electric Corp. Inertia compensated static motor drive
JPS5396423A (en) * 1977-02-01 1978-08-23 Mitsubishi Electric Corp Control system for induction motor
FR2451658A1 (en) * 1979-03-16 1980-10-10 Asa Sa IMPROVED INSTALLATION FOR CONTROLLING VARIATIONS IN SPEED OF CAM BOXES OF TEXTILE MACHINES
US4249120A (en) * 1979-07-26 1981-02-03 Mcgraw-Edison Co. Variable speed induction motor control system
US5111374A (en) * 1990-06-22 1992-05-05 The University Of Tennessee Research Corp. High frequency quasi-resonant DC voltage notching scheme of a PWM voltage fed inverter for AC motor drives
US5168202A (en) * 1991-08-30 1992-12-01 Platt Saco Lowell Corporation Microprocessor control of electric motors
DE69409998T2 (en) * 1993-02-24 1998-09-03 Shinko Electric Co Ltd Vibration control system for rotating machines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1685603A1 (en) * 1967-10-28 1971-08-19 Schubert & Salzer Maschinen Hacker drive
EP0519878A1 (en) * 1991-06-18 1992-12-23 MONTENERO O.M.T.P. OFFICINA MECCANICA di Finocchi Paolo & C.SNC Card web comb driving system in machines for the textile industry
US5422557A (en) * 1992-10-22 1995-06-06 Samsung Electronics Co., Ltd. Method and apparatus for controlling the speed of a single phase induction motor using frequency variation
US5345160A (en) * 1993-06-02 1994-09-06 Henri Corniere Variable frequency control system for single phase induction motors

Also Published As

Publication number Publication date
FR2739398A1 (en) 1997-04-04
US5872440A (en) 1999-02-16
JPH09170118A (en) 1997-06-30
FR2739398B1 (en) 1997-12-19
DK0765955T3 (en) 1998-11-16
DE69600589T2 (en) 1999-01-28
DE69600589D1 (en) 1998-10-08
EP0765955B1 (en) 1998-09-02
ATE170573T1 (en) 1998-09-15

Similar Documents

Publication Publication Date Title
CH630586A5 (en) APPARATUS FOR WINDING A THREAD.
EP0802606B1 (en) Method to regulate the exciting current of an automotive vehicle generator using digital processing and regulator device for carrying out this method
EP0217694B1 (en) Method and device for electrically powering a transducer generating sonic and ultrasonic vibrations
EP0765955B1 (en) Mecanical oscillating device, especially textile machine web comb which oscillation are obtained by means of a monophase induction motor
EP2789976B1 (en) Electronic circuit for driving a device with MEMS resonator, and method for activating same
EP0168311B1 (en) Grinding machine with control circuit for positioning the tool carriage
FR2615213A1 (en) IMPROVEMENTS IN DYE MACHINES
EP0014164B1 (en) Viscometer and viscostat
FR2617433A1 (en) DEVICE FOR CONTROLLING A ROW OF HAMMERS AND POWER SUPPLY METHOD OF AN ENGINE
FR2653060A1 (en) INSTALLATION FOR ADJUSTING THE VOLTAGE OF THE TABLET IN A ROTARY.
EP0802403B1 (en) Device for measuring an engine torque
FR2656436A1 (en) PROCESS FOR VIBRATION PROCESSING OF PARTS AND DEVICE FOR IMPLEMENTING SAID METHOD.
CH642404A5 (en) INSTALLATION FOR REGULATING THE SECTION OF THE FIBER WICK EXIT FROM A DRAWING MACHINE.
EP0468862B1 (en) Control method of the rotational speed of the drum of a centrifuging machine as function of imbalance and machine for the use of this method
JPS6252282B2 (en)
FR2566204A1 (en) DEVICE FOR CONTROLLING THE SPEED OF AN ASYNCHRONOUS ELECTRIC MOTOR
CH657553A5 (en) Method and device for determining the deflection of an electrical-discharge cutting wire
WO2008007017A2 (en) Method and control device for the speed of rotation of a piezoelectric motor rotor
FR2580442A1 (en) DEVICE FOR CONTROLLING A CONTINUOUS CURRENT ELECTRIC MOTOR AND APPLICATIONS TO AN EFFORT MEASURER AND A PHYSICAL EXERCISE DEVICE
EP0023164B1 (en) Device for imparting vibrations to the u-form needle of a vibration-type viscosimeter
CH302598A (en) Method for continuous measurement of a variable quantity and device for its implementation.
FR2607651A1 (en) Supply circuit for ultrasonic tartar removal instrument
FR2568693A1 (en) Device for driving a mirror in a reciprocating movement
FR2607156A1 (en) SAFETY DEVICE FOR A STRETCH KNITTING MACHINE
BE403689A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK GB IT LI

17P Request for examination filed

Effective date: 19970920

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THIBEAU

17Q First examination report despatched

Effective date: 19971126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK GB IT LI

REF Corresponds to:

Ref document number: 170573

Country of ref document: AT

Date of ref document: 19980915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: MITTLER & C. S.R.L.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980903

REF Corresponds to:

Ref document number: 69600589

Country of ref document: DE

Date of ref document: 19981008

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020820

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20020821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020911

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020917

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030925

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100910

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110926

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110923

Year of fee payment: 16

BERE Be: lapsed

Owner name: *THIBEAU

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69600589

Country of ref document: DE

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120925