EP0743423A1 - Metod for determining drilling conditions using a model - Google Patents

Metod for determining drilling conditions using a model Download PDF

Info

Publication number
EP0743423A1
EP0743423A1 EP96401030A EP96401030A EP0743423A1 EP 0743423 A1 EP0743423 A1 EP 0743423A1 EP 96401030 A EP96401030 A EP 96401030A EP 96401030 A EP96401030 A EP 96401030A EP 0743423 A1 EP0743423 A1 EP 0743423A1
Authority
EP
European Patent Office
Prior art keywords
rock
debris
drilling
model
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96401030A
Other languages
German (de)
French (fr)
Other versions
EP0743423B1 (en
Inventor
Claude Putot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0743423A1 publication Critical patent/EP0743423A1/en
Application granted granted Critical
Publication of EP0743423B1 publication Critical patent/EP0743423B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions

Definitions

  • the present invention relates to a method for determining the drilling conditions of a tool comprising several cutters interacting with a rock.
  • the method involves the use of a drilling model based on the coupling of the effects of destruction of the rock by the cutters and the effects of the removal of the cuttings by a fluid.
  • the invention preferably applies to the study of the phenomenon of jamming of a tool of the PDC type. Jamming is a dysfunction frequently observed by the driller and very harmful because it can very significantly reduce the speed of advancement of the drilling and sometimes even, in certain terrains, irreversibly annihilate the effects of drilling.
  • the drilling conditions are determined as a function of the response of the model for determined values of said parameters.
  • At least one of the parameters: weight on the tool, speed of rotation of the tool and fluid flow rate, can be a control parameter.
  • the lift W of the tool can be broken down into a solid component Ws and a hydraulic component Wh which depends in particular on the fluid blade.
  • the present method can make it possible to assist in determining the structure of the drilling tools: for example, shape and location of the cutters, determination of the hydraulic flows in the vicinity of the destruction of the rock.
  • the model presented below is a non-linear evolution model with, in a first variant, three independent variables supposed to completely characterize the state of the drilling system. It is in fact a so-called "local" cutter model whose operation suffices to describe, in this variant, an average of the overall behavior of the drilling tool.
  • FIG. 1B the cutter is in interaction with the virgin rock 2 and the current penetration ⁇ constitutes a first state variable.
  • Figure 1A shows the initial conditions where the cutter of height H, fixed on a body 3, has penetrated from the depth ⁇ 0 into the rock.
  • Specific studies are also conducted on the cutting process which show the difficulty of taking into account and the diversity of modes of representation: more or less guaranteed independence of the cutting and abutment effects, not necessarily one-to-one link of penetration and of the normal force, justified by the theory of plasticity, influence of successive recoveries (work hardening).
  • Each of the N C equivalent cutting edges constituting the tool produces rock chips and this instantaneous production, assumed to be proportional to ⁇ , is partially evacuated into the annular space, partially stored in the immediate vicinity of the cutting edge in the form of a bed of debris, the l 'current thickness is the second state variable of our formulation, called l; this debris bed is assumed to line the rock front evenly.
  • the third state variable is also very naturally introduced: it may be the concentration c of the suspension but the choice will be made of the "equivalent” dynamic viscosity associated ⁇ or the equivalent kinematic viscosity ⁇ (at distinguish from the viscosity ⁇ 0 of the fluid proper).
  • the thwarted circulation of the drilling fluid (enriched in particles) and in particular the pressure drop at the front of the tool are indicators of this lift effect.
  • the present invention also describes a rock rupture model integrated into the drilling model.
  • ⁇ 0 be the self-weight of the rock chip of current size D c and ⁇ c the suction force exerted on this fragment to retain it; the evacuation condition is written: F L ⁇ o ⁇ ⁇ vs ⁇ o with a representation model of ⁇ c due to Eronini (1982), the details of which are not reproduced here, condensed thanks to the parameter ⁇ , in particular as a function of the presence of a cake whose permeability is assumed to be known.
  • V f the basic volume of the chip and N c the number of production sites, in other words, the number of cutters.
  • V ⁇ R homogeneous at a volume per unit of time, is the solid evacuation rate.
  • B ( ⁇ ) the balance, homogeneous to an accumulation (length) per unit of time.
  • the expulsion term also visibly depends on the current residual thickness of the fluid blade, i.e. h, which is rather considered as a parameter in appendix 3.
  • the problem a priori comprises five variables including three of geometric type : ⁇ , l, h respectively depth of notch in the virgin rock, thickness of bed of debris and thickness of the fluid section. ( ⁇ worn blade height is a variable of slow evolution in comparison with those which will be studied in this problem; it therefore intervenes here as a parameter); then two state variables of the concentration of the suspension type; c the concentration, ⁇ the associated "equivalent” kinematic viscosity (to be distinguished from the viscosity ⁇ 0 of the drilling fluid itself).
  • the simulations consisted in varying the entry ⁇ 0 , initial notch depth in the absence of a debris bed (representative of the weight on the tool under ideal clearance conditions).
  • the result of the calculation is ⁇ *, notch at equilibrium - once the transient has passed - and which conditions the speed of penetration stabilized.
  • the effectiveness of penetration can become zero, past a certain weight threshold, depending on the parameters of the problem (and this corresponds to the stuffing threshold).
  • the degree of drilling efficiency is judged by comparing the "solid” and "hydraulic" lift effects.
  • the release conditions gradually become more and more unfavorable vis-à-vis the rock production conditions, with the increase in weight on the tool (equivalent to the increase in ⁇ 0).
  • the resumption of this weight is done more and more in the form of hydraulic lift W H due to gradually more difficult conditions of expulsion of the drilling fluid enriched with particles (increasing pressure losses) to the detriment of the solid vertical force W S assigned to the effective work of disintegration of virgin rock.
  • the basic formula due to Eronini expresses in a semi-empirical way the effect of lift exerted on a particle of hydraulic diameter D c in the vicinity of a tool of diameter D B when the fluid speed is v n at the outlet of duse of diameter d.
  • ⁇ m is the density of mud
  • ⁇ 0 has its viscosity and L a constant of proportionality.
  • the drag effect F D is evaluated by Eronini according to a formula analogous to that describing the lift effect.
  • This characteristic time is independent of the particle size D c .
  • V ⁇ R ⁇ NOT vs ⁇ o o ⁇ vs g ⁇ D
  • D vs o ⁇ is the threshold, essentially taking into account the pressure conditions, above which the particles need not be counted in the evacuation balance.
  • y ⁇ 1 F 1 (( y 1 , y 2 , y 3 )
  • the Jacobian is written:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

A method of improving drilling performance involves (a) using a drilling model which takes into account the rock destruction effects of one or more cutters fixed on a rotary tool body and the debris flushing effect of a drilling mud by calculating a material balance from (i) debris prodn. by the cutter after penetration into the rock to a depth (delta), (ii) the debris bed covering the rock to a thickness (I), (iii) a mud layer of thickness (h) and debris concn. (c) between the debris bed and the tool body, (v) control parameters and (v) environmental parameters; and (b) determining the drilling conditions as a function of the response of the model to determined values of these parameters.

Description

La présente invention concerne une méthode permettant de déterminer les conditions de forage d'un outil comportant plusieurs taillants en interaction avec une roche. La méthode comporte l'utilisation d'un modèle de foration fondé sur le couplage des effets de destruction de la roche par les taillants et des effets de l'évacuation des déblais par un fluide. L'invention s'applique de préférence à l'étude du phénomène de bourrage d'un outil du type PDC. Le bourrage est un dysfonctionnement fréquemment observé par le foreur et très néfaste car il peut diminuer très fortement la vitesse d'avancement du forage et parfois même, dans certains terrains, annihiler irréversiblement les effets de foration.The present invention relates to a method for determining the drilling conditions of a tool comprising several cutters interacting with a rock. The method involves the use of a drilling model based on the coupling of the effects of destruction of the rock by the cutters and the effects of the removal of the cuttings by a fluid. The invention preferably applies to the study of the phenomenon of jamming of a tool of the PDC type. Jamming is a dysfunction frequently observed by the driller and very harmful because it can very significantly reduce the speed of advancement of the drilling and sometimes even, in certain terrains, irreversibly annihilate the effects of drilling.

Plusieurs travaux ont déjà été présentés, mais aucun ne prend en compte le dégagement de matière comme le fait la représentation modélisée dans la présente méthode. Les principaux travaux sont cités dans la liste des références ci-incluse.Several works have already been presented, but none takes into account the release of matter as does the representation modeled in this method. The main works are cited in the list of references included.

Ainsi, la présente invention concerne une méthode permettant d'améliorer les performances de forage dans laquelle on met en oeuvre un modèle de foration. Le modèle prend en compte les effets de destruction d'une roche par au moins un taillant fixé sur un corps d'outil entraîné en rotation et les effets d'évacuation des débris de roche par un fluide, en calculant un bilan matière à partir :

  • de la production de débris de roche par le taillant ayant pénétré dans la roche d'une profondeur δ,
  • d'un lit de débris recouvrant la roche sous une épaisseur l,
  • d'une lame de fluide d'épaisseur h comprise entre le lit de débris et le corps, la lame fluide ayant une concentration c en débris,
  • de paramètres de commandes,
  • de paramètres d'environnement.
Thus, the present invention relates to a method for improving drilling performance in which a drilling model is implemented. The model takes into account the effects of destruction of a rock by at least one cutter fixed on a tool body driven in rotation and the effects of evacuation of rock debris by a fluid, by calculating a material balance from:
  • the production of rock debris by the cutter having penetrated into the rock with a depth δ,
  • a bed of debris covering the rock under a thickness l ,
  • a fluid blade of thickness h between the debris bed and the body, the fluid blade having a debris concentration c,
  • command parameters,
  • environment settings.

Par la méthode, on détermine les conditions de forage en fonction de la réponse du modèle pour des valeurs déterminées desdits paramètres.By the method, the drilling conditions are determined as a function of the response of the model for determined values of said parameters.

L'un au moins des paramètres: poids sur l'outil, vitesse de rotation de l'outil et débit de fluide, peut être un paramètre de commande.At least one of the parameters: weight on the tool, speed of rotation of the tool and fluid flow rate, can be a control parameter.

Dans le modèle, la portance W de l'outil peut être décomposée en une composante solide Ws et une composante hydraulique Wh fonction notamment de la lame fluide.In the model, the lift W of the tool can be broken down into a solid component Ws and a hydraulic component Wh which depends in particular on the fluid blade.

On peut considérer un étalement granulométrique des débris distribués selon une loi normale fonction de la profondeur δ de l'entaille, de moyenne µ lié à la ductilité de la roche et d'une dispersion caractérisée par l'écart-type σ.We can consider a particle size spread of the debris distributed according to a normal law as a function of the depth δ of the notch, of average µ related to the ductility of the rock and of a dispersion characterized by the standard deviation σ.

Le bilan matière solide B(t) peut être tel que B(t)=B+(t)-B-(t), dans lequel B+(t) est un terme de production de débris dépendant de δ et correspondant au rythme de destruction de la roche, et B-(t) est un terme d'expulsion dépendant de l et h.The solid matter balance B (t) can be such that B (t) = B + (t) -B - (t), in which B + (t) is a debris production term depending on δ and corresponding to the rhythm of destruction of the rock, and B - (t) is an expulsion term depending on l and h.

On peut représenter le forage comme un système dynamique comportant, dans la représentation interne classique par variables d'état x, des entrées u qui seront celles d'un système de commandes "poids sur outil", vitesse de rotation des tiges, puissance hydraulique, système soumis également à des perturbations non contrôlables v associées à la variabilité des propriétés des roches. Par le moyen du présent modèle, le système est observé grâce aux variables de sortie y qui peuvent être, entre autres, le couple au niveau de l'outil, la vitesse de pénétration dans l'axe du trou, des indicateurs liés au niveau vibratoire comme l'élargissement de diamètre du trou, des indicateurs d'usure des taillants de la tête de forage, malheureusement difficiles à concevoir, l'ensemble de ces variables de sortie pouvant être perturbé par un bruit w.We can represent drilling as a dynamic system comprising, in the classic internal representation by state variables x, inputs u which will be those of a "weight on tool" control system, rod rotation speed, hydraulic power, system also subject to uncontrollable disturbances v associated with the variability of rock properties. By means of this model, the system is observed thanks to the output variables y which can be, among others, the torque at the tool, the speed of penetration in the axis of the hole, indicators linked to the vibratory level such as the enlargement of the diameter of the hole, wear indicators of the bits of the drill head, unfortunately difficult to design, all of these output variables being able to be disturbed by a noise w.

L'optimisation de la foration peut ainsi être la recherche d'une stratégie de commande qui permette au foreur:

  • d'éviter les risques relatifs à des écueils localisés, par exemple, liés à des intercalations de roche très dures ou, à l'autre extrême, susceptibles d'entraîner le bourrage de l'outil,
  • d'avoir une stratégie cohérente à l'échelle du forage: par exemple, la détermination du nombre et de la durée d'utilisation optimaux des outils de forage, ou la nécessité d'une adaptation de la conduite du forage au fur et à mesure de l'usure des taillants.
Optimizing drilling can thus be the search for a control strategy that allows the driller:
  • avoid the risks relating to localized pitfalls, for example, linked to very hard rock insertions or, at the other extreme, likely to cause the tool to jam;
  • to have a coherent strategy on a drilling scale: for example, determining the optimal number and duration of use of drilling tools, or the need to adapt the conduct of drilling as and when wear of the cutting edges.

Il est clair également que la présente méthode peut permettre d'aider à une détermination de la structure des outils de forage : par exemple, forme et implantation des taillants, détermination des écoulement hydrauliques dans le voisinage de la destruction de la roche.It is also clear that the present method can make it possible to assist in determining the structure of the drilling tools: for example, shape and location of the cutters, determination of the hydraulic flows in the vicinity of the destruction of the rock.

Les références suivantes, peuvent servir d'illustration de l'arrière-plan technologique du domaine concerné ainsi que de compléments à la description de la présente invention.The following references can be used to illustrate the technological background of the field concerned as well as to complement the description of the present invention.

Andersen E.E. and Azar J.J., 1990, "PDC performance under simulated borehole conditions" SPE 20412 , New Orleans sept. 1990.Andersen E.E. and Azar J.J., 1990, "PDC performance under simulated borehole conditions" SPE 20412, New Orleans Sept. 1990.

Cheatham C.A. and Nahm J.J., 1990, "Bit balling in water-reactive shale during full-scale drilling rate tests" IADC/SPE n° 19926, Houston.Cheatham C.A. and Nahm J.J., 1990, "Bit balling in water-reactive shale during full-scale drilling rate tests" IADC / SPE No. 19926, Houston.

Déliac E.P., 1986, "Optimisation des machines d'abattage à pics" Doctoral Dissertation, U. Paris 6 ed by ENSMP/CGES France.Déliac E.P., 1986, "Optimization of slaughtering machines with peaks" Doctoral Dissertation, U. Paris 6 ed by ENSMP / CGES France.

Detournay E. and Atkinson C. , 1991, "Influence of pore pressure on the drilling response of PDC bits", Rock Mechanics as a Multidisciplinary Science, Roegiers (ed.) , Rotterdam.Detournay E. and Atkinson C., 1991, "Influence of pore pressure on the drilling response of PDC bits", Rock Mechanics as a Multidisciplinary Science, Roegiers (ed.), Rotterdam.

Detournay E. and Defourny P., 1992, "A Phenomenological Model for the Drilling Action of Drag Bits", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 29, No. 1, p13-23.Detournay E. and Defourny P., 1992, "A Phenomenological Model for the Drilling Action of Drag Bits", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Flight. 29, No. 1, p13-23.

Falconer I.G., Burgess T.M. and Sheppard M.C., 1988, "Separating Bit and Lithology Effects from Drilling, Mechanics Data", IADC/SPE Drilling Conference, Dallas, feb 28-march 2, 1988.Falconer I.G., Burgess T.M. and Sheppard M.C., 1988, "Separating Bit and Lithology Effects from Drilling, Mechanics Data", IADC / SPE Drilling Conference, Dallas, feb 28-march 2, 1988.

Garnier A.J. and van Lingen N.H. , 1958, "Phenomena affecting drilling rates at depth "SPE fall meeting, Houston.Garnier AJ and van Lingen NH, 1958, "Phenomena affecting drilling rates at depth" SPE fall meeting, Houston.

Glowka D.A., 1985, "Implications of Thermal Wear Phenomena for PDC Bit Design and Operation", 60th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers in Las Vegas, sept 22-25, 1985, SPE 14222.Glowka D.A., 1985, "Implications of Thermal Wear Phenomena for PDC Bit Design and Operation", 60th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers in Las Vegas, Sept 22-25, 1985, SPE 14222.

Karasawa H. and Misawa S., 1992, "Development of New PDC Bits for Drilling of Geothermal Wells - Part 1 : Laboratory Testing", Journal of Energy Resources Technology, dec 1992, vol.114 p 323.Karasawa H. and Misawa S., 1992, "Development of New PDC Bits for Drilling of Geothermal Wells - Part 1: Laboratory Testing", Journal of Energy Resources Technology, Dec 1992, vol.114 p 323.

Pessier R.C. and Fear M.J., 1992, "Quantifying common drilling problems with mechanical specific energy and a bit specific coefficient of sliding friction" SPE 24584.Pessier R.C. and Fear M.J., 1992, "Quantifying common drilling problems with mechanical specific energy and a bit specific coefficient of sliding friction" SPE 24584.

Pessier R.C., Fear M.J., and Wells M.R., 1994, "Different shales dictate fundamentally different strategies in hydraulics, bit selection, and operating practices".Pessier R.C., Fear M.J., and Wells M.R., 1994, "Different shales dictate fundamentally different strategies in hydraulics, bit selection, and operating practices".

Pierry J. and Charlier R., 1994, "Finite element modelling of shear band localization and application to rock cutting by a PDC tool" SPE/ISRM Eurock Conference, Delft.Pierry J. and Charlier R., 1994, "Finite element modeling of shear band localization and application to rock cutting by a PDC tool" SPE / ISRM Eurock Conference, Delft.

Putot C., 1995 ,"Un modèle de foration prenant en compte les effets de destruction de la roche et d'évacuation des déblais", 2e Colloque national en calcul des structures, Giens.Putot C., 1995, "A drilling model taking into account the effects of rock destruction and removal of spoil", 2nd National Colloquium in Structural Design, Giens.

Sellami H., 1987, "Etude des pics usés, application aux machines d'abattage" Doctoral Dissertation ENSMP/CGES France.Sellami H., 1987, "Study of worn peaks, application to slaughter machines" Doctoral Dissertation ENSMP / CGES France.

Sellami H., Fairhurst C., Déliac E. and Delbast B., 1989 , "The Role of in-situ Stresses and Mud Pressure on the Penetration of PDC bits" Rock at Great Depth, Maury & Fourmaintraux eds, Rotterdam 1989.Sellami H., Fairhurst C., Déliac E. and Delbast B., 1989, "The Role of in-situ Stresses and Mud Pressure on the Penetration of PDC bits" Rock at Great Depth, Maury & Fourmaintraux eds, Rotterdam 1989.

Sinor A. and Warren T.M., 1989, "Drag Bit Wear Model", SPE Drilling Engineering, June 1989, p 128.Sinor A. and Warren T.M., 1989, "Drag Bit Wear Model", SPE Drilling Engineering, June 1989, p 128.

Sinor A., Warren T.M., Behr S.M., Wells M.R. and Powers J.R., 1992, "Development of an anti-whirl core bit", SPE 24587.Sinor A., Warren T.M., Behr S.M., Wells M.R. and Powers J.R., 1992, "Development of an anti-whirl core bit", SPE 24587.

Wardlaw H.W.R., 1971, "Optimization of Rotary Drilling Parameters" PHD Dissertation, U. of Texas.Wardlaw HWR, 1971, "Optimization of Rotary Drilling Parameters" PHD Dissertation, U. of Texas.

Warren T.M. and Winters W.J., 1986, "Laboratory Study of Diamond-Bit Hydraulic Lift", SPE Drilling Engineering, aug 1986.Warren T.M. and Winters W.J., 1986, "Laboratory Study of Diamond-Bit Hydraulic Lift", SPE Drilling Engineering, aug 1986.

Warren T.M., 1987 "Penetration-Rate Performance of Roller-Cone Bits", SPE Drilling Engineering, march 1987.Warren T.M., 1987 "Penetration-Rate Performance of Roller-Cone Bits", SPE Drilling Engineering, march 1987.

Warren T.M. and Armagost W.K. "Laboratory drilling performance of PDC bits" SPE Drilling Engineering, june 1989.Warren T.M. and Armagost W.K. "Laboratory drilling performance of PDC bits" SPE Drilling Engineering, june 1989.

Warren T.M. and Sinor A., "Drag-bit performance modeling", SPE Drilling Engineering, june 1989.Warren T.M. and Sinor A., "Drag-bit performance modeling", SPE Drilling Engineering, june 1989.

Wells R., "Dynamics of rock-chip removal by turbulent jetting" SPE Drilling Engineering, june 1989.Wells R., "Dynamics of rock-chip removal by turbulent jetting" SPE Drilling Engineering, june 1989.

Zijsling D.H. "Single cutter testing : a key for PDC bit development" SPE 16529 Offshore Europe Aberdeen, 1987.Zijsling D.H. "Single cutter testing: a key for PDC bit development" SPE 16529 Offshore Europe Aberdeen, 1987.

La présente invention sera mieux comprise à la description suivante, illustrée par les figures ci-annexées, parmi lesquelles :

  • Les figures 1A et 1B représentent le modèle physique dans les conditions initiales et en cours d'évolution à l'instant t.
  • La figure 2 représente la courbe d'équilibre obtenue dans le cas d'une application particulière du modèle selon l'invention.
The present invention will be better understood from the following description, illustrated by the appended figures, among which:
  • FIGS. 1A and 1B represent the physical model under the initial conditions and in the course of evolution at time t.
  • FIG. 2 represents the equilibrium curve obtained in the case of a particular application of the model according to the invention.

Le modèle présenté ci-après est un modèle d'évolution non linéaire avec, dans une première variante, trois variables indépendantes supposées caractériser complètement l'état du système de forage. Il s'agit en fait d'un modèle de taillant dit "local" dont le fonctionnement suffit à décrire, dans cette variante, une moyenne du comportement global de l'outil de forage.The model presented below is a non-linear evolution model with, in a first variant, three independent variables supposed to completely characterize the state of the drilling system. It is in fact a so-called "local" cutter model whose operation suffices to describe, in this variant, an average of the overall behavior of the drilling tool.

Sur la figure 1B, le taillant est en interaction avec la roche vierge 2 et la pénétration actuelle δ constitue une première variable d'état. La figure 1A montre les conditions initiales où le taillant de hauteur H, fixé sur un corps 3, a pénétré de la profondeur δ0 dans la roche. Des études spécifiques sont conduites par ailleurs sur le processus de coupe qui montrent la difficulté de la prise en compte et la diversité des modes de représentation : indépendance plus ou moins garantie des effets de coupe et de butée, lien non nécessairement biunivoque de la pénétration et de l'effort normal, justifié par la théorie de la plasticité, influence de reprises successives (écrouissage).In FIG. 1B, the cutter is in interaction with the virgin rock 2 and the current penetration δ constitutes a first state variable. Figure 1A shows the initial conditions where the cutter of height H, fixed on a body 3, has penetrated from the depth δ 0 into the rock. Specific studies are also conducted on the cutting process which show the difficulty of taking into account and the diversity of modes of representation: more or less guaranteed independence of the cutting and abutment effects, not necessarily one-to-one link of penetration and of the normal force, justified by the theory of plasticity, influence of successive recoveries (work hardening).

L'hypothèse retenue dans ce travail consiste à se contenter d'un lien biunivoque entre effort normal s'exerçant sur le taillant et enfoncement. Soit W S l'effort vertical dit "solide" associé à cette pénétration. Le lien de W S avec δ sera explicité ci-après.The hypothesis retained in this work consists in being satisfied with a one-to-one link between normal effort exerted on the cutting edge and sinking. Let W S be the so-called "solid" vertical force associated with this penetration. The link of W S with δ will be explained below.

Chacun des NC taillants équivalents constituant l'outil produit des copeaux de roche et cette production instantanée, supposée proportionnelle à δ est partiellement évacuée dans l'espace annulaire, partiellement stockée au voisinage immédiat du taillant sous forme d'un lit de débris dont l'épaisseur actuelle est la seconde variable d'état de notre formulation, baptisée l ; ce lit de débris est supposé tapisser uniformément le front rocheux.Each of the N C equivalent cutting edges constituting the tool produces rock chips and this instantaneous production, assumed to be proportional to δ, is partially evacuated into the annular space, partially stored in the immediate vicinity of the cutting edge in the form of a bed of debris, the l 'current thickness is the second state variable of our formulation, called l; this debris bed is assumed to line the rock front evenly.

L'espace résiduel entre le corps de l'outil et le lit de débris permet l'évacuation des copeaux de roche. Cette évacuation est rendue difficile lorsque l'espace résiduel est restreint ; on notera h l'épaisseur de lame fluide, évidemment liée à la hauteur totale H du taillant à l'état neuf par la relation : H = h + δ + l + γ

Figure imgb0001

   où γ est la hauteur de lame usée, grandeur lentement évolutive que nous considérerons en fait comme paramètre. L'évacuation est également entravée lorsque la viscosité équivalente de la suspension est augmentée, en raison de l'accroissement de concentration en particules solides. Ces deux effets sont traduits par la relation suivante : W H = N δη D B 4 h 3
Figure imgb0002
The residual space between the tool body and the debris bed allows the evacuation of rock chips. This evacuation is made difficult when the residual space is limited; we will note h the thickness of the fluid blade, obviously linked to the total height H of the cutting edge in new condition by the relation: H = h + δ + l + γ
Figure imgb0001

where γ is the height of the worn blade, a slowly evolving quantity that we will in fact consider as a parameter. Evacuation is also hampered when the equivalent viscosity of the suspension is increased, due to the increased concentration of solid particles. These two effects are translated by the following relation: W H = NOT δη D B 4 h 3
Figure imgb0002

On pourra se référer à l'article de Jordaan I.J., Maes M.A.and J.P. Nadreau, 1988, "The crushing and clearing of ice in fast spherical indentation tests", Offshore Mechanics and Arctic Engineering, Houston.We can refer to the article by Jordaan I.J., Maes M.A. and J.P. Nadreau, 1988, "The crushing and clearing of ice in fast spherical indentation tests", Offshore Mechanics and Arctic Engineering, Houston.

La troisième variable d'état s'introduit aussi tout naturellement : il peut s'agir de la concentration c de la suspension mais l'on fera plutôt choix de la viscosité dynamique "équivalente" associée η ou de la viscosité cinématique équivalente ν (à distinguer de la viscosité ν0 du fluide proprement dit).The third state variable is also very naturally introduced: it may be the concentration c of the suspension but the choice will be made of the "equivalent" dynamic viscosity associated η or the equivalent kinematic viscosity ν (at distinguish from the viscosity ν 0 of the fluid proper).

Comme il a été annoncé, on définit comme commandes les grandeurs sur lesquelles une intervention est possible ou souhaitable ; ce sont essentiellement :

  • le poids sur outil W
  • la vitesse de rotation N
  • le débit fluide ou la puissance hydraulique ; en fait, dans le présent modèle,
la vitesse de l'écoulement en sortie de duse v n.As has been announced, quantities are defined as commands on which intervention is possible or desirable; these are essentially:
  • the weight on tool W
  • the rotation speed N
  • fluid flow or hydraulic power; in fact, in this model,
the flow velocity at the outlet of nozzle v n .

Dans le présent exemple, ces grandeurs sont supposées constantes et donc assimilables aux nombreux paramètres du problème. On pourra néanmoins envisager la réponse du système à une perturbation de cette commande, et considérer divers types de régulation associées à la variabilité des propriétés des roches.In the present example, these quantities are supposed to be constant and therefore comparable to the many parameters of the problem. We can nevertheless consider the response of the system to a perturbation of this command, and consider various types of regulation associated with the variability of rock properties.

Dans le présent modèle, l'analyse de la décomposition du poids sur l'outil repose sur le principe de séparation entre une composante classique dite solide W S justiciable des formules de représentation habituelles, et une portance hydraulique W H qui s'accroît considérablement lorsque l'épaisseur h de la tranche fluide diminue et la viscosité équivalente η s'accroît ; on écrit : W = W S + W H

Figure imgb0003
In the present model, the analysis of the decomposition of the weight on the tool is based on the principle of separation between a classical component called solid W S subject to the usual representation formulas, and a hydraulic lift W H which increases considerably when the thickness h of the fluid wafer decreases and the equivalent viscosity η increases; we write : W = W S + W H
Figure imgb0003

La composante solide W S est explicitée selon l'article de Kuru E. and Wojtanowsicz A.K., 1988, "A Method for Detecting In-Situ PDC Dull and Lithology Change", IADC/SPE Drilling Conference, Dallas , feb 28, march 2, 1988.

  • A γ l'aire de butée de chaque taillant au stade d'usure γ
  • A c (δ) l'aire de coupe lorsque l'usure est γ, la pénétration solide δ
  • S p et S c les résistances de la roche, respectivement en compression et au cisaillement
  • N c nombre de taillants
  • D B le diamètre de l'outil
  • α et µ+ caractéristiques liées à l'interface outil/roche
The solid component W S is explained according to the article by Kuru E. and Wojtanowsicz AK, 1988, "A Method for Detecting In-Situ PDC Dull and Lithology Change", IADC / SPE Drilling Conference, Dallas, feb 28, march 2, 1988.
  • At γ the abutment area of each cutter at the wear stage γ
  • A c (δ) the cutting area when the wear is γ, the solid penetration δ
  • S p and S c the resistances of the rock, respectively in compression and shear
  • N c number of cutters
  • D B the diameter of the tool
  • α and µ + characteristics linked to the tool / rock interface

On écrit: W S N c A γ = S p + A c δ A γ S c (sinα + µ + cosα)

Figure imgb0004
We write: W S NOT vs AT γ = S p + AT vs δ AT γ S vs (sinα + µ + cosα)
Figure imgb0004

La composante hydraulique est explicitée selon l'article de Jordaan I.J., Maes M.A.and J.P. Nadreau, 1988, "The crushing and clearing of ice in fast spherical indentation tests", Offshore Mechanics and Arctic Engineering, Houston. W H = N δη D B 4 h 3

Figure imgb0005
   η viscosité (dynamique) équivalente de la suspension boue plus particules solides.The hydraulic component is explained according to the article by Jordaan IJ, Maes MAand JP Nadreau, 1988, "The crushing and clearing of ice in fast spherical indentation tests", Offshore Mechanics and Arctic Engineering, Houston. W H = NOT δη D B 4 h 3
Figure imgb0005
η equivalent (dynamic) viscosity of the slurry suspension plus solid particles.

La circulation contrariée du fluide de forage (enrichi en particules) et en particulier la perte de charge au front de l'outil sont des indicateurs de cet effet de portance.The thwarted circulation of the drilling fluid (enriched in particles) and in particular the pressure drop at the front of the tool are indicators of this lift effect.

La présente invention décrit également un modèle de rupture de roche intégré au modèle de foration.The present invention also describes a rock rupture model integrated into the drilling model.

Il s'agit d'un modèle de représentation avec un schéma idéalisé de copeau parallélépipédique d'épaisseur à et d'aire carrée, de côté mD c , où D c est le diamètre hydraulique considéré pour l'évacuation. Malgré la simplicité de cette géométrie, on considère qu'il est important de prendre en compte un étalement granulométrique.It is a representation model with an idealized diagram of parallelepipedal chip with thickness and square area, on the side mD c , where D c is the diameter hydraulic considered for evacuation. Despite the simplicity of this geometry, it is considered important to take into account a particle size spread.

On considère ainsi une distribution gaussienne de tailles D c qui tient compte :

  • de la profondeur actuelle de l'entaille δ
  • de la ductilité de la roche exprimée au travers du paramètre µ = E(D c )/δ
  • d'une dispersion caractérisée par l'écart-type σ.
We thus consider a Gaussian distribution of sizes D c which takes into account:
  • of the current depth of the notch δ
  • of the ductility of the rock expressed through the parameter µ = E (D c ) / δ
  • of a dispersion characterized by the standard deviation σ.

E(D c ) exprime la moyenne de la distribution en tailles et µ reflète le degré de ductilité de la roche rompue dans les conditions du forage, caractéristique supposée indépendante de δ ; m≥1 est un paramètre liant diamètre hydraulique et géométrie ; on supposera souvent m = 1. E (D c ) expresses the mean of the size distribution and µ reflects the degree of ductility of the broken rock under drilling conditions, a characteristic assumed to be independent of δ; m≥1 is a parameter linking hydraulic diameter and geometry; we often assume m = 1.

Plutôt que la variable D c , on pourra préférer introduire le nombre n de copeaux libérés par chacun des N c taillants d'un outil de diamètre D B au cours d'une révolution, de sorte que:

Figure imgb0006
Rather than the variable D c , we may prefer to introduce the number n of chips released by each of the N c bits of a tool of diameter D B during a revolution, so that:
Figure imgb0006

Dans l'article "A Dynamic Model for Rotary Rock Drilling", Journal of Energy Resources Technology, june 1982, vol 104 p 108, des auteurs Eronini I. E., Somerton W.H. and Auslander D.M., 1982, on considère, pour un outil tricône, un modèle d'évacuation de copeau qui est reproduit ici avec, cependant, l'introduction d'une granulométrie "étalée".In the article "A Dynamic Model for Rotary Rock Drilling", Journal of Energy Resources Technology, june 1982, vol 104 p 108, from the authors Eronini IE, Somerton WH and Auslander DM, 1982, we consider, for a tricone bit, a chip evacuation model which is reproduced here with, however, the introduction of a "spread" particle size.

L'expression des efforts hydrodynamiques s'exerçant sur le copeau de roche délimité par la rupture, utilisée dans le présent modèle, est également décrit dans l'article ci-dessus.The expression of the hydrodynamic forces exerted on the rock chip delimited by the rupture, used in the present model, is also described in the article above.

Les fondements du modèle sont les suivants :The foundations of the model are as follows:

Pour libérer le copeau, il faut en premier lieu vaincre l'effet de rétention dû à la différence de pression existant entre pression de boue et pression de pore dont l'effet est considérable devant celui de la gravité ; l'effort associé est supposé vaincu par l'effet de portance seul F L (L=lift) dont l'expression est présentée en annexe 1. La constante de temps τ L du processus est extrêmement courte et donc négligée vis-à-vis de celle associée à l'effet d'entraînement proprement dit (F D et τ D ; D = drag). Le copeau est ensuite accéléré depuis la position où il est conceptuellement sorti de son logement sous l'effet de l'effort de traînée F D jusqu'à l'espace annulaire;To release the chip, it is first necessary to overcome the retention effect due to the difference in pressure existing between mud pressure and pore pressure whose effect is considerable compared to that of gravity; the associated effort is assumed to be overcome by the only lift effect F L (L = lift), the expression of which is presented in appendix 1. The time constant τ L of the process is extremely short and therefore neglected vis-à-vis that associated with the actual training effect ( F D and τ D ; D = drag). The chip is then accelerated from the position where it is conceptually taken out of its housing under the effect of the drag force F D to the annular space;

Soit ω0 le poids propre du copeau de roche de taille courante D c et ω c l'effort de succion s'exerçant sur ce fragment pour le retenir ; la condition d'évacuation s'écrit : F L ω o ω c ω o

Figure imgb0007
   avec un modèle de représentation de ω c dû à Eronini (1982), dont le détail n'est pas reproduit ici, condensé grâce au paramètre λ, en fonction notamment de la présence d'un cake dont la perméabilité est supposée connue. F L ω o ≥1+ λ P δρ c g
Figure imgb0008
   ρ c masse volumique des particules solides.Let ω 0 be the self-weight of the rock chip of current size D c and ω c the suction force exerted on this fragment to retain it; the evacuation condition is written: F L ω o ω vs ω o
Figure imgb0007
with a representation model of ω c due to Eronini (1982), the details of which are not reproduced here, condensed thanks to the parameter λ, in particular as a function of the presence of a cake whose permeability is assumed to be known. F L ω o ≥1 + λ P δρ vs g
Figure imgb0008
ρ c density of solid particles.

En pratique, le terme 1 est tout à fait négligeable devant le second.In practice, the term 1 is completely negligible compared to the second.

Seules les particules caractérisées par D c ≤ D o c

Figure imgb0009
sont expulsées, où D o c
Figure imgb0010
est la dimension de copeau réalisant exactement l'équilibre entre effort de succion et effet de portance : F L ω o = ω c ω o
Figure imgb0011
Only the particles characterized by D c ≤ D o vs
Figure imgb0009
are expelled, where D o vs
Figure imgb0010
is the chip dimension achieving the exact balance between suction force and lift effect: F L ω o = ω vs ω o
Figure imgb0011

La position de D o c

Figure imgb0012
par rapport à la courbe granulométrique conditionne la proportion de particules "évacuées" par rapport à celles "produites". D's position o vs
Figure imgb0012
compared to the grain size curve conditions the proportion of particles "evacuated" compared to those "produced".

On supposera que les distributions sont normales ; la répartition de tailles D c e n fonction de δ dépend, certes, de la ductilité de la roche mais on a supposé qu'il n'y a pas d'effet d'échelle et que seule la distribution D c / δ est à caractériser.We will assume that the distributions are normal; the distribution of sizes D c as a function of δ depends, of course, on the ductility of the rock but it has been assumed that there is no scale effect and that only the distribution D c / δ is to be characterized .

On montre que :

  • Le seuil de décollement est d'autant plus élevé que l'épaisseur à est plus petite.
  • Le fractionnement en un nombre de copeaux élevé (roche ductile avec µ faible) favorise le décollement et donc les possibilités d'évacuation.
  • L'augmentation du débit (à travers la vitesse en sortie de duse v n ) et de la viscosité stimulent évidemment l'évacuation.
We show that:
  • The separation threshold is higher the smaller the thickness.
  • The fractionation into a high number of chips (ductile rock with low µ) promotes detachment and therefore the possibilities of evacuation.
  • The increase in the flow rate (through the velocity at the outlet of nozzle v n ) and in the viscosity obviously stimulate evacuation.

L'écriture du bilan de masse est effectuée comme suit :The mass balance is written as follows:

Supposant un instant que la granulométrie ne soit pas étalée. On écrit alors :

Figure imgb0013
   où τ = τ D puisque l'accélération du copeau s'effectue principalement sous l'effet des efforts de traînée. V f est le volume élémentaire du copeau et N c le nombre de sites de production, autrement dit, le nombre de taillants. R , homogène à un volume par unité de temps, est le débit d'évacuation solide.Supposing for a moment that the particle size is not spread out. We then write:
Figure imgb0013
where τ = τ D since the acceleration of the chip takes place mainly under the effect of the drag forces. V f is the basic volume of the chip and N c the number of production sites, in other words, the number of cutters. R , homogeneous at a volume per unit of time, is the solid evacuation rate.

Le rythme de production solide (volume par unité de temps) doit être supposé égal à : π 4 D B 2 N δ

Figure imgb0014
   ce qui donne un bilan de progression, exprimé cette fois en unité de longueur par unité de temps : s ̇ = N δ - V ̇ R π 4 D B 2
Figure imgb0015
   si ce bilan est positif, il y a accumulation de débris et enrichissement de la suspension ; si le bilan est négatif, les conclusions sont inversées en présence d'un fond enrichi de matières solides ; sinon, l'évacuation est parfaite et il n'y a pas lieu de se poser le présent problème.The rate of solid production (volume per unit of time) should be assumed to be equal to: π 4 D B 2 NOT δ
Figure imgb0014
which gives a progress report, this time expressed in units of length per unit of time: s ̇ = NOT δ - V ̇ R π 4 D B 2
Figure imgb0015
if this balance is positive, there is accumulation of debris and enrichment of the suspension; if the balance is negative, the conclusions are reversed in the presence of a background enriched with solid matter; otherwise, the evacuation is perfect and there is no reason to ask the present problem.

Nous utilisons dans le présent modèle une granulométrie distribuée selon la loi normale ; plus précisément D c /δ est supposée distribuée selon une loi normale de moyenne µ et d'écart-type σ. Il en résulte un facteur de minoration χ (calculé en annexe 2) multiplicateur de N c V f D fonction, comme il a été dit plus haut, du décalage entre D o c

Figure imgb0016
, taille de copeau réalisant exactement l'équilibrage, et la distribution. On écrit donc : V ̇ R N c ω o o ρ c g τ D
Figure imgb0017
   ω o o
Figure imgb0018
est le poids de copeau dont la taille est D o c
Figure imgb0019
(pour l'épaisseur δ)In this model we use a particle size distribution according to the normal law; more precisely D c / δ is assumed to be distributed according to a normal law of mean µ and standard deviation σ. This results in a reduction factor χ (calculated in appendix 2) multiplier of N c V f / τ D function, as said above, of the shift between D o vs
Figure imgb0016
, chip size performing exactly balancing, and distribution. So we write: V ̇ R = χ NOT vs ω o o ρ vs g τ D
Figure imgb0017
ω o o
Figure imgb0018
is the chip weight whose size is D o vs
Figure imgb0019
(for thickness δ)

Le cheminement du calcul est présenté en annexe 1.The calculation path is presented in appendix 1.

Il permet d'évaluer successivement, pour le copeau de taille courante D c :

  • l'effort de portance F L
  • l'effort de traînée F D et le temps caractéristique associé τ D
It makes it possible to evaluate successively, for the chip of current size D c :
  • lift effort F L
  • the drag force F D and the associated characteristic time τ D

Le bilan se présente alors sous la forme : s ̇ + = N δ

Figure imgb0020
s ̇ - = m 0 χ(δ)
Figure imgb0021
m 0 est défini plus loin.The balance sheet then takes the form: s ̇ + = NOT δ
Figure imgb0020
s ̇ - = m 0 χ (δ)
Figure imgb0021
where m 0 is defined below.

Le terme d'évacuation ne dépend de δ que par l'intermédiaire de χ et est conditionné, à technologie fixée, par :

  • la vitesse ν n
  • la viscosité de la boue
  • la pression de rétention λP
  • la densité de boue essentiellement, la densité de copeaux accessoirement.
The evacuation term depends on δ only through χ and is conditioned, with fixed technology, by:
  • the speed ν n
  • the viscosity of the mud
  • the retention pressure λP
  • essentially the density of mud, the density of chips incidentally.

Pour éviter la notation dérivée du type ds dt

Figure imgb0022
= ṡ, nous notons B(δ) le bilan, homogène à une accumulation (longueur) par unité de temps.To avoid notation derived from type ds dt
Figure imgb0022
= ṡ, we denote B (δ) the balance, homogeneous to an accumulation (length) per unit of time.

En fait, on opère dans ce qui suit deux modifications :

  • (i) la première est une modification de pure forme consistant, par souci d'homogénéité, à rendre adimensionnelle à en la remplaçant par y 1 = δ/δ0.
    On note encore B le bilan adimensionnel, homogène à l'inverse d'un temps, de sorte que : B(y 1 ) = Ny 1 - m 1 .χ(y 1 )
    Figure imgb0023
  • (ii) la seconde est réalisée pour rendre compte assez correctement du phénomène de bourrage notamment. Elle consiste à reconnaître la dépendance du terme d'expulsion vis-à-vis des variables d'état l et h. Il nous est apparu assez commode, dans un premier temps, de rendre compte du phénomène en faisant dépendre le terme d'expulsion de la seule variable adimensionnelle y 3 = l0 de sorte que : B(y 1 ,y 3 ) - Ny 1 - m 1 (y 3 )χ(y 1 )
    Figure imgb0024
    où la dépendance m 1 (y 3 ) est explicitée en annexe 3.
In fact, we operate in the following two modifications:
  • (i) the first is a purely formal modification consisting, for the sake of homogeneity, of making it dimensionless to by replacing it with y 1 = δ / δ 0 .
    We also denote B the dimensionless balance, homogeneous to the inverse of a time, so that: B (y 1 ) = Ny 1 - m 1 .χ (y 1 )
    Figure imgb0023
  • (ii) the second is carried out to give a fairly good account of the jamming phenomenon in particular. It consists in recognizing the dependence of the expulsion term on state variables l and h. It seemed to us quite convenient, at first, to account for the phenomenon by making the expulsion term depend on the only dimensionless variable y 3 = l / δ 0 so that: B (y 1 , y 3 ) - Ny 1 - m 1 (y 3 ) χ (y 1 )
    Figure imgb0024
    where the dependency m 1 ( y 3 ) is explained in appendix 3.

En toute rigueur, le terme d'expulsion dépend également visiblement de l'épaisseur résiduelle actuelle de la lame fluide, soit h, qui est plutôt considérée comme paramètre dans l'annexe 3.Strictly speaking, the expulsion term also visibly depends on the current residual thickness of the fluid blade, i.e. h, which is rather considered as a parameter in appendix 3.

En définitive, le bilan matière solide comporte un terme de production B + correspondant au rythme de destruction de la roche et un terme d'expulsion B - . Pour ce qui est de la dépendance vis-à-vis des variables d'état y 1 , y2, y 3 , on a fait le choix suivant : B + (t) = B + ( y 1 ) roche détruite

Figure imgb0025
B - (t) = B - ( y 1 , y 3 ) roche expulsée
Figure imgb0026
B(t) = B + (t) - B - (t)
Figure imgb0027
y 1 (t) = δ(t)/δ 0 entaille réduite dans la roche vierge
Figure imgb0028
y 2 (t) = Log h(t)/h o viscosité équivalente de la suspension
Figure imgb0029
y 3 (t) = I(t) 0 épaisseur réduite du lit de débris
Figure imgb0030
B - ( y 1 , y 3 ) = m 0 f v ( y 3 µ/σ ( y 1 ) = m 0 f ν * ( Z µ/σ * (X)
Figure imgb0031

  • mo "jauge" de l'évacuation, norme du terme d'expulsion
  • χ * µ/σ
    Figure imgb0032
    (χ) dépendance, dite principale, vis-à-vis de la pénétration (y 1) ; issue de la fonction de répartition de la loi normale
  • f * ν
    Figure imgb0033
    (Z) modulation de l'expulsion selon l'épaisseur du lit de débris (y 3 )
    Figure imgb0034
  • ad, ac, al coefficients utilisés dans la formulation hydrodynamique et dont les valeurs peuvent être trouvées dans l'article d'Eronini
  • d diamètre de duse ; vn vitesse de fluide en sortie de duse
  • D B diamètre de l'outil
  • ρm, ρc masses volumiques de la boue et de la roche respectivement
  • λP effet de rétention par pression différentielle au travers du copeau
  • x et z sont des variables associées respectivement à y 1 et y 3 permettant une écriture explicite (Annexes 2 et 3).
Ultimately, the solid material balance includes a production term B + corresponding to the rate of destruction of the rock and an expulsion term B - . With regard to the dependence on state variables y 1 , y 2 , y 3 , we made the following choice: B + (t) = B + (( y 1 ) destroyed rock
Figure imgb0025
B - (t) = B - (( y 1 , y 3 ) expelled rock
Figure imgb0026
B (t) = B + (t) - B - (t)
Figure imgb0027
y 1 (t) = δ (t) / δ 0 reduced cut in virgin rock
Figure imgb0028
y 2 (t) = Log h (t) / h o equivalent viscosity of the suspension
Figure imgb0029
y 3 (t) = I (t) / δ 0 reduced thickness of debris bed
Figure imgb0030
B - (( y 1 , y 3 ) = m 0 f v (( y 3 ) χ µ / σ (( y 1 ) = m 0 f ν * (( Z ) χ µ / σ * (X)
Figure imgb0031
  • m o "gauge" of evacuation, norm of the term of eviction
  • χ * µ / σ
    Figure imgb0032
    ( χ ) dependence, said to be principal, on penetration ( y 1 ); from the normal distribution function
  • f * ν
    Figure imgb0033
    ( Z ) modulation of the expulsion according to the thickness of the debris bed (y 3 )
    Figure imgb0034
  • a d , a c , a l coefficients used in the hydrodynamic formulation and whose values can be found in the article by Eronini
  • d nozzle diameter; v n fluid speed at the outlet of the nozzle
  • D B tool diameter
  • ρ m , ρ c densities of mud and rock respectively
  • λP retention effect by differential pressure through the chip
  • x and z are variables associated respectively with y 1 and y 3 allowing explicit writing (Appendices 2 and 3).

Avant réduction à trois variables d'état, le problème comporte a priori cinq variables dont trois de type géométrique : δ, l, h respectivement profondeur d'entaille dans la roche vierge, épaisseur de lit de débris et épaisseur de la tranche fluide. (γ hauteur usée de lame est une variable d'évolution lente en comparaison de celles qui seront étudiées dans ce problème ; elle intervient donc ici comme paramètre) ; puis deux variables d'état de type concentration de la suspension ; c la concentration, ν la viscosité cinématique "équivalente" associée (à distinguer de la viscosité ν0 du fluide de forage proprement dit).Before reduction to three state variables, the problem a priori comprises five variables including three of geometric type : δ, l, h respectively depth of notch in the virgin rock, thickness of bed of debris and thickness of the fluid section. (γ worn blade height is a variable of slow evolution in comparison with those which will be studied in this problem; it therefore intervenes here as a parameter); then two state variables of the concentration of the suspension type; c the concentration, ν the associated "equivalent" kinematic viscosity (to be distinguished from the viscosity ν 0 of the drilling fluid itself).

Les équations d'évolution résultent de l'écriture :

  • d'une équation de conservation de la somme des épaisseurs des différentes tranches qui, exprimée sous forme différentielle sur les variables dimensionnelles δ,l,h s'énonce : dδ + dl + dh = 0
    Figure imgb0035
  • d'une écriture de répartition du bilan de matière B(y 1 , y 3 ) ou taux d'accumulation ds/dt entre contributions partielles dues à :
    • (i) épaississement du lit de débris (dl)
    • (ii) augmentation de concentration de la suspension (h dc)
    • (iii) diminution d'épaisseur de la lame fluide (c dh)
    de sorte que : dl + cdh + hdc = ds
    Figure imgb0036
  • de la loi de commande W = cte = W S + W H
The evolution equations result from the writing:
  • of a conservation equation of the sum of the thicknesses of the different slices which, expressed in differential form on the dimensional variables δ, l , h is stated: dδ + dl + dh = 0
    Figure imgb0035
  • an entry for the distribution of material balance B ( y 1 , y 3 ) or accumulation rate ds / dt between partial contributions due to:
    • (i) thickening of the debris bed (dl)
    • (ii) increase in suspension concentration (h dc)
    • (iii) decrease in thickness of the fluid blade (c dh)
    so that : dl + cdh + hdc = ds
    Figure imgb0036
  • of the control law W = cte = W S + W H

L'expression de W S et W H mentionnée plus haut permet d'expliciter, toujours sous forme différentielle, cette commande très particulière. On utilise la notation condensée : W S,δ = dW S = S c N c (sin α + µ + cos α) dA c

Figure imgb0037

   et on suppose que cette grandeur est invariante avec δ. La relation différentielle s'écrit donc : dW = 0 soit: δ + η -3 dh h + W S,δ W H dδ=0
Figure imgb0038

  • de relations de comportement simplifiées:
The expression of W S and W H mentioned above makes it possible to explain, still in differential form, this very particular command. We use the condensed notation: W S, δ = dW S from = S vs NOT vs (sin α + µ + cos α) dA vs from
Figure imgb0037

and we suppose that this quantity is invariant with δ. The differential relation is therefore written: dW = 0 either: from δ + η -3 dh h + W S, δ W H dδ = 0
Figure imgb0038
  • simplified behavior relations :

On énonce dans ce qui suit deux relations différentielles, dépendant des seuls paramètres a et b, liant concentration de la suspension c, viscosité équivalente η et épaisseur de tranche fluide h. Ce sont : η dh + ah dη = 0

Figure imgb0039
η dc - b(1-c) dη = 0
Figure imgb0040
We state in what follows two differential relationships, depending on the only parameters a and b, linking the concentration of the suspension c, equivalent viscosity η and fluid slice thickness h. Those are : η dh + ah dη = 0
Figure imgb0039
η dc - b (1-c) dη = 0
Figure imgb0040

Ecriture des équations d'évolution :Writing the evolution equations:

On pose : K = 1 δ + W S,δ W H 1+3a

Figure imgb0041
We ask: K = 1 δ + W S, δ W H 1 + 3a
Figure imgb0041

Ce facteur sera noté K(y1,y2) dans la présentation finale. La manipulation des cinq relations conduit à la réduction suivante : -ds = dδ {1+( a + b)( 1- c)hK}

Figure imgb0042
This factor will be noted K (y 1 , y 2 ) in the final presentation. Manipulating the five relationships leads to the following reduction: -ds = dδ {1+ ( at + b) ( 1- c) hK}
Figure imgb0042

Les cinq variables d'état évoluent ainsi selon le schéma, où X désigne pour simplifier le vecteur état et u la commande, très élémentaire ici : δ ̇ = f(X,u)

Figure imgb0043
I ̇ = -(1+ ahK)f(X,u)
Figure imgb0044
η ̇ η = -Kf(X,u)
Figure imgb0045
h ̇ h =aK f(X,u)
Figure imgb0046
c ̇ 1- c = -bKf(X,u)
Figure imgb0047
avec : f(X,u) = - s ̇ X,u 1+ h 1 -c a+b K
Figure imgb0048
The five state variables thus evolve according to the diagram, where X denotes to simplify the state vector and u the command, very elementary here: δ ̇ = f (X, u)
Figure imgb0043
I ̇ = - (1+ ahK) f (X, u)
Figure imgb0044
η ̇ η = -Kf (X, u)
Figure imgb0045
h ̇ h = aK f (X, u)
Figure imgb0046
vs ̇ 1- vs = -bKf (X, u)
Figure imgb0047
with: f (X, u) = - s ̇ X, u 1+ h 1 -vs a + b K
Figure imgb0048

Nous explicitons d'une part la similitude des trois dernières relations et utilisons les formes adimensionnelles : Δ = δ δ 0    Δ = y 1

Figure imgb0049
E = Log η η 0     E = y 2
Figure imgb0050
L = l δ 0     L = y 3
Figure imgb0051
H=-Log h h 0
Figure imgb0052
F = Log(1-c)
Figure imgb0053
We explain on the one hand the similarity of the last three relations and use the adimensional forms: Δ = δ δ 0 Δ = y 1
Figure imgb0049
E = Log η η 0 E = y 2
Figure imgb0050
L = l δ 0 L = y 3
Figure imgb0051
H = -Log h h 0
Figure imgb0052
F = Log (1-c)
Figure imgb0053

Les équations différentielles prennent alors la forme réduite à trois variables indépendantes seulement puisque l'on a manifestement : H(t) = aE(t)

Figure imgb0054
F(t) = bE(t)
Figure imgb0055
The differential equations then take the form reduced to three independent variables only since we obviously have: H (t) = aE (t)
Figure imgb0054
F (t) = bE (t)
Figure imgb0055

Les équations d'évolution se présentent alors sous la forme très particulière : y ̇ 1 = F 1 ( y 1 , y 2 , y 3 )

Figure imgb0056
y ̇ 2 = -K ( y 1 , y 2 ) F 1 ( y 1 , y 2 , y 3 )
Figure imgb0057
y ̇ 3 = -(1+ afe -ay 2 K ( y 1 , y 2 )) F 1 ( y 1 , y 2 , y 3 )
Figure imgb0058
où : F 1 ( y 1 , y 2 , y 3 ) = - B y 1 ,y 3 1+ a+b h 0 δ 0 e - a+b y 2 K y 1 , y 2
Figure imgb0059
avec: K ( y 1 , y 2 ) = 1+ W S, δ e - 1+3 a y 2 W H 0 0 1+3 a y 2
Figure imgb0060
   K(y 1, y 2) caractérise l'aptitude, compte tenu du bilan B, à canaliser les dépôts sur le lit de débris ; K est une forme explicite des paramètres.The evolution equations are then presented in the very particular form: y ̇ 1 = F 1 (( y 1 , y 2 , y 3 )
Figure imgb0056
y ̇ 2 = -K (( y 1 , y 2 ) F 1 (( y 1 , y 2 , y 3 )
Figure imgb0057
y ̇ 3 = - (1+ afe -ay 2 K (( y 1 , y 2 ))) F 1 (( y 1 , y 2 , y 3 )
Figure imgb0058
or : F 1 (( y 1 , y 2 , y 3 ) = - B y 1 , y 3 1+ a + b h 0 δ 0 e - a + b y 2 K y 1 , y 2
Figure imgb0059
with: K (( y 1 , y 2 ) = 1+ W S, δ e - 1 + 3 at y 2 W H 0 / δ 0 1 + 3 at y 2
Figure imgb0060
K ( y 1 , y 2 ) characterizes the ability, taking into account balance B, to channel deposits on the debris bed; K is an explicit form of the parameters.

A titre d'illustration, voici un exemple cohérent de valeurs ayant permis la résolution du cas représenté figure 2.By way of illustration, here is a coherent example of values that have enabled the resolution of the case shown in Figure 2.

Les simulations ont consisté à varier l'entrée δ0, profondeur d'entaille initiale en l'absence de lit de débris (représentative du poids sur outil en conditions de dégagement idéales). Le résultat du calcul est δ*, entaille à l'équilibre - une fois le transitoire écoulé - et qui conditionne la vitesse de pénétration stabilisée. L'efficacité de la pénétration peut devenir nulle, passé un certain seuil en poids, fonction des paramètres du problème (et ceci correspond au seuil de bourrage). On juge du degré d'efficacité de la foration en comparant les effets de portance "solide" et "hydraulique".The simulations consisted in varying the entry δ 0 , initial notch depth in the absence of a debris bed (representative of the weight on the tool under ideal clearance conditions). The result of the calculation is δ *, notch at equilibrium - once the transient has passed - and which conditions the speed of penetration stabilized. The effectiveness of penetration can become zero, past a certain weight threshold, depending on the parameters of the problem (and this corresponds to the stuffing threshold). The degree of drilling efficiency is judged by comparing the "solid" and "hydraulic" lift effects.

La forme, ici très particulière, des équations d'évolution conduit à une convergence monotone de δ vers sa valeur d'équilibre δ* alors que, intuitivement, on s'attend à des fluctuations (voir commentaires en annexe 4).The form, here very particular, of the evolution equations leads to a monotonic convergence of δ towards its equilibrium value δ * whereas, intuitively, one expects fluctuations (see comments in appendix 4).

La liste qui suit concerne donc les entrées du modèle nécessaires à l'identification du cas. Pour en faciliter la lecture, un classement de ces entrées a été réalisé.

  • Paramètres de commande :
    • δ0 pénétration initiale dans la roche vierge (lien avec le poids sur outil WOB) (varié dans la plage 0 à 1,26 mm)
    • N vitesse de rotation, supposée invariable (N = 0,7 tour/s)
    • ν n vitesse du jet fluide, en sortie de duse (lien avec le débit de boue Q n = 50ms -1 ))
  • Paramètres liés à l'outil
    • D B diamètre de l'outil. (D B = 0,2 m)
    • d diamètre de duse. (d = 0,01 m)
    • Nc nombre de taillants ; autant de "sites" producteurs de copeaux, autant de supports pour la reprise de l'effort vertical. (Nc = 81)
  • Paramètre lié au taillant :
    • H hauteur efficace de taillant. (H = 2,65 mm)
    • Le paramètre conditionne la répartition initiale H = δ0 + h0.
  • Paramètres liés à l'interface taillant/roche
    • Aγ aire caractéristique pour la représentation de l'effort vertical, (fonction de l'usure γ). (Aγ= 1 mm2)
    • A c,δ terme proportionnel à la pénétration δ représentatif de l'effort de coupe. (A c,δ = 5 mm, soit 5 mm2 de variation d'aire par mm de pénétration) α et µ+ angle caractéristique de coupe ; coefficient de frottement,
    • le choix : sin α + µ+cosα = 1 a été fait
    • Sc résistance de "coupe" (cisaillement). (Sc = 500 MPa)
    • Sp résistance en "butée" (compression). (Sp = 500MPa)
  • Paramètres liés au copeau de roche
       ρc masse volumique du copeau. (ρc = 2500 kg.m-3)
  • Paramètres liés à la découpe :
    • µ élancement moyen de copeau illustrant le degré de fragilité de la coupe
    • µ élevé, rupture fragile ; µ bas, rupture ductile (µ = 2)
    • σ resserrement granulométrique de la distribution (écart-type) (σ = 0,5)
  • Paramètres liés à l'expulsion :
    • µ coefficient intervenant dans la définition du diamètre hydraulique
    • ν 0<ν<1 index de sensibilité au bourrage
    • (ν = 1 aucune sensibilité)
  • Paramètre lié à l'interface boue/roche saine
       λP effet de maintien du copeau (λP = 1MPa)
  • Paramètres liés à la boue
    • ρm masse volumique de la boue (ρm = 1250 kg.m-3)
    • ν 0, viscosité cinématique de la boue ; à distinguer de la "viscosité équivalente" caractérisant la suspension notamment pour l'effet de portance hydraulique
    • ν 0, = 10-3m2s-1 (viscosité dynamique η=1,25 Pa.s)
  • Paramètres constitutifs liant entre eux certains paramètres d'évolution au niveau des lois d'interface
    • a pour le lien entre viscosité équivalente et épaisseur de lame fluide (a = 1)
    • b pour le lien entre viscosité équivalente et concentration de la suspension (b = 1)
The following list therefore concerns the model entries required to identify the case. To facilitate reading, a classification of these entries has been made.
  • Command parameters:
    • δ 0 initial penetration in virgin rock (link with weight on WOB tool) (varied in the range 0 to 1.26 mm)
    • N speed of rotation, assumed to be invariable (N = 0.7 rpm)
    • ν n speed of the fluid jet, at the outlet of the nozzle (link with the mud flow rate Q n = 50ms -1 ))
  • Tool related settings
    • D B tool diameter. ( D B = 0.2 m)
    • d nozzle diameter. (d = 0.01 m)
    • N c number of cutters; as many "sites" producing chips, as many supports for the resumption of the vertical effort. (N c = 81)
  • Parameter linked to the cutting edge:
    • H effective cutting height. (H = 2.65 mm)
    • The parameter conditions the initial distribution H = δ 0 + h 0.
  • Parameters related to the cutting / rock interface
    • Aγ characteristic area for the representation of the vertical force, (function of wear γ). (Aγ = 1 mm 2 )
    • A c, δ term proportional to penetration δ representative of the cutting force. ( A c, δ = 5 mm, i.e. 5 mm 2 of area variation per mm of penetration) α and µ + characteristic cutting angle; coefficient of friction,
    • the choice: sin α + µ + cosα = 1 has been made
    • S c "cut" resistance (shear). (S c = 500 MPa)
    • S p resistance at "stop" (compression). (S p = 500MPa)
  • Rock Chip Parameters
    ρ c density of the chip. (ρ c = 2500 kg.m -3 )
  • Parameters related to cutting:
    • µ average slenderness of the chip illustrating the degree of fragility of the cut
    • µ high, brittle rupture; µ low, ductile rupture (µ = 2)
    • σ particle size tightening of the distribution (standard deviation) (σ = 0.5)
  • Parameters related to eviction:
    • µ coefficient involved in the definition of the hydraulic diameter
    • ν 0 <ν <1 jam sensitivity index
    • (ν = 1 no sensitivity)
  • Parameter linked to the mud / healthy rock interface
    λP chip holding effect (λP = 1MPa)
  • Parameters related to mud
    • ρ m density of the mud (ρ m = 1250 kg.m -3)
    • ν 0, kinematic viscosity of the mud; to be distinguished from the "equivalent viscosity" characterizing the suspension, in particular for the effect of hydraulic lift
    • ν 0, = 10 -3 m 2 s -1 (dynamic viscosity η = 1.25 Pa.s)
  • Constitutive parameters linking together certain evolution parameters at the level of interface laws
    • a for the link between equivalent viscosity and fluid blade thickness (a = 1)
    • b for the link between equivalent viscosity and concentration of the suspension (b = 1)

La courbe représentée figure 2 est donc la traduction du comportement de l'outil de forage en termes d'efficacité pour ce choix particulier des 23 paramètres. La courbe représentée figure 2 est la réponse de l'outil de forage, à l'équilibre, à la commande : poids sur outil. Plus précisément, en termes de modèle d'évolution, sont portés :

  • en abscisse : la pénétration initiale,
  • en ordonnée : la pénétration à l'équilibre.
The curve represented in FIG. 2 is therefore the translation of the behavior of the drilling tool in terms of efficiency for this particular choice of the 23 parameters. The curve shown in Figure 2 is the response of the drilling tool, to equilibrium, to the command: weight on tool. More precisely, in terms of evolution model, are brought:
  • on the abscissa: the initial penetration,
  • on the ordinate: penetration at equilibrium.

On remarquera une séparation en quatre régimes caractéristiques.Note a separation into four characteristic regimes.

Régime 1 (R1): en deçà d'un certain seuil de poids, correspondant à un seuil de pénétration initiale, l'état évolue lentement vers le colmatage complet par production de débris fins ; la capacité d'expulsion est saturée par un régime de production de roche brisée excédentaire. Regime 1 (R1): below a certain weight threshold, corresponding to an initial penetration threshold, the state slowly evolves towards complete clogging by the production of fine debris; the expulsion capacity is saturated by a surplus broken rock production regime.

Régime 2 (R2) : ici, au contraire, ce sont les possibilités d'évacuation des déblais par l'hydraulique qui sont dominantes, de sorte que, dans ces conditions, seules interviennent pour limiter les performances en termes de vitesses de pénétration les caractéristiques techniques usuelles liant poids sur outil (WOB) et vitesse de pénétration (ROP). Les cas représentatifs du régime 2 sont caractérisés évidemment par δ0 = δ*, puisque le lit de débris ne peut se reconstituer de manière durable. Regime 2 (R2): here, on the contrary, it is the possibilities of evacuation of cuttings by hydraulics which are dominant, so that, under these conditions, only intervene to limit the performances in terms of penetration speeds the characteristics usual techniques linking weight on tool (WOB) and speed of penetration (ROP). The representative cases of regime 2 are obviously characterized by δ 0 = δ *, since the debris bed cannot be reconstituted in a sustainable manner.

Régime 3 (R3) : il s'agit, de nouveau (comme dans les régimes de fonctionnement 1 et 4) d'un cas de fonctionnement pour lequel la capacité d'évacuation est, à tout moment de l'évolution, inférieure à la production de roche brisée. Mais, par déplacement de l'état initial, le système atteint une configuration où le bilan massique est équilibré. Regime 3 (R3): this is again (as in operating regimes 1 and 4) an operating case for which the evacuation capacity is, at all times evolution, lower than the production of broken rock. However, by moving from the initial state, the system reaches a configuration where the mass balance is balanced.

Les conditions de dégagement deviennent progressivement de plus en plus défavorables vis-à-vis des conditions de production de roche, avec l'augmentation du poids sur l'outil (équivalente à l'augmentation de δ0). La reprise de ce poids se fait de plus en plus sous forme de portance hydraulique WH due à des conditions graduellement plus difficiles d'expulsion du fluide de forage enrichi de particules (pertes de charge croissantes) au détriment de l'effort vertical solide WS affecté au travail efficace de désagrégation de la roche vierge.The release conditions gradually become more and more unfavorable vis-à-vis the rock production conditions, with the increase in weight on the tool (equivalent to the increase in δ0). The resumption of this weight is done more and more in the form of hydraulic lift W H due to gradually more difficult conditions of expulsion of the drilling fluid enriched with particles (increasing pressure losses) to the detriment of the solid vertical force W S assigned to the effective work of disintegration of virgin rock.

Régime 4 (R4) : au decà d'un certain seuil en poids, le fonctionnement du système comporte une évolution rapide vers le colmatage par production de débris initialement grossiers, puis graduellement de plus en plus fins. Regime 4 (R4): below a certain weight threshold, the functioning of the system involves a rapid evolution towards clogging by producing initially coarse debris, then gradually becoming finer.

A titre d'exemple, et pour compléter l'illustration du cas représenté figure 2, l'effort vertical correspondant à une pénétration de δ0 = 0,63 mm de chacun des taillants (point B), compte tenu des caractéristiques de la roche est 165 kN ; pour une pénétration δ0 = 0,69 mm (point D), le poids sur outil associé est 190 kN, la contribution hydraulique WH à l'équilibre commence à devenir significative, de l'ordre de 5 kN.As an example, and to complete the illustration of the case shown in Figure 2, the vertical force corresponding to a penetration of δ 0 = 0.63 mm from each of the cutters (point B), taking into account the characteristics of the rock is 165 kN; for a penetration δ 0 = 0.69 mm (point D), the weight on associated tool is 190 kN, the hydraulic contribution WH at equilibrium begins to become significant, of the order of 5 kN.

Le seuil de bourrage δ0 SEUIL = 1,02 mm (dans le cas traité) (point C) correspond à la condition d'application du poids sur outil WOB = 245 kN, lequel conduit irrémédiablement en quelques secondes vers un colmatage complet de l'espace compris entre le corps d'outil et la formation : le bilan massique production/expulsion de roche est devenu si défavorable qu'aucune possibilité "d'équilibre dynamique" (avec δ*, pénétration non nulle) n'existe.The tamping threshold δ 0 THRESHOLD = 1.02 mm (in the case treated) (point C) corresponds to the condition of application of the weight on tool WOB = 245 kN, which leads irreparably in a few seconds to a complete clogging of the space between the tool body and the formation: the mass production / expulsion rock balance has become so unfavorable that no possibility of "dynamic equilibrium" (with δ *, non-zero penetration) exists.

Il est clair que la détermination de la valeur de δ0 au point (D) de la figure 2 donne le point de fonctionnement optimal pour les conditions paramétriques données. En effet, le sommet de la courbe en cloche représente la vitesse d'avancement la plus grande, donc le meilleur rendement de l'outil de forage.

ANNEXE 1

EXPRESSION DES EFFORTS HYDRODYNAMIQUES S'EXERÇANT SUR LE COPEAU ET CONSTANTES DE TEMPS ASSOCIÉES AUX MÉCANISMES CORRESPONDANTS

Effort de portance : évaluation de la taille caractéristique seuil D o c

Figure imgb0061
It is clear that the determination of the value of δ 0 at point (D) of Figure 2 gives the optimal operating point for the given parametric conditions. Indeed, the top of the bell curve represents the greatest forward speed, therefore the best performance of the drilling tool.

ANNEX 1

EXPRESSION OF HYDRODYNAMIC EFFORTS EXERCISING ON THE CHIP AND TIME CONSTANTS ASSOCIATED WITH THE CORRESPONDING MECHANISMS

Lifting effort: evaluation of the characteristic threshold size D o vs
Figure imgb0061

La formule de base due à Eronini exprime de manière semi-empirique l'effet de portance s'exerçant sur une particule de diamètre hydraulique D c au voisinage d'un outil de diamètre D B lorsque la vitesse de fluide est v n en sortie de duse de diamètre d.

Figure imgb0062
   ρm est la masse volumique de boue, ν0 sa viscosité et a L une constante de proportionnalité.The basic formula due to Eronini expresses in a semi-empirical way the effect of lift exerted on a particle of hydraulic diameter D c in the vicinity of a tool of diameter D B when the fluid speed is v n at the outlet of duse of diameter d.
Figure imgb0062
ρ m is the density of mud, ν 0 has its viscosity and L a constant of proportionality.

Le copeau de taille D c a un poids propre : ω 0 = m 2 D c 2 ρ c g

Figure imgb0063
   de sorte que :
Figure imgb0064
The chip of size D c has a dead weight: ω 0 = m 2 D vs 2 ρ vs g
Figure imgb0063
so that :
Figure imgb0064

Plutôt que la variable D c on pourra préférer introduire le nombre n de copeaux libérés par chacune des N c lames au cours d'une révolution :

Figure imgb0065
Rather than the variable D c, we may prefer to introduce the number n of chips released by each of the N c blades during a revolution:
Figure imgb0065

L'expression précédente est alors modifiée en :

Figure imgb0066
The previous expression is then changed to:
Figure imgb0066

On s'intéresse maintenant aux grandeurs seuils, taille caractéristique D o c

Figure imgb0067
de copeaux en nombre n o , au seuil de décollement, c'est à dire réalisant : F L ω o =1+ λ P δρ c g λ P δρ c g
Figure imgb0068
We are now interested in threshold quantities, characteristic size D o vs
Figure imgb0067
chip number No, the release threshold, i.e. realizing: F L ω o = 1 + λ P δρ vs g λ P δρ vs g
Figure imgb0068

On a :

Figure imgb0069
We have :
Figure imgb0069

On montre, après quelques calculs, que :

Figure imgb0070
We show, after some calculations, that:
Figure imgb0070

Plus la taille seuil D o c

Figure imgb0071
au dessous de laquelle il y a libération du copeau est importante et plus le débit solide potentiel est élevé.Plus size threshold D o vs
Figure imgb0071
below which there is release of the chip is important and the higher the potential solid flow rate.

Effort de trainée : estimation du temps caractéristique d'expulsion et du terme d'évacuationDrag effort: estimation of the characteristic expulsion time and evacuation term

L'effet de traînée F D est évalué par Eronini selon une formule analogue à celle décrivant l'effet de portance.The drag effect F D is evaluated by Eronini according to a formula analogous to that describing the lift effect.

Le temps caractéristique associé est tel que : 1 τ D = F D ω o v c g     où v c = a c d D B v n

Figure imgb0072
est une estimation de la vitesse moyenne de circulation du fluide au front donnée par Eronini.The associated characteristic time is such that: 1 τ D = F D ω o v vs g where v vs = at vs d D B v not
Figure imgb0072
is an estimate of the average speed of circulation of the fluid at the front given by Eronini.

Ainsi :

Figure imgb0073
So :
Figure imgb0073

Ce temps caractéristique est indépendant de la taille de particule Dc.This characteristic time is independent of the particle size D c .

Le bilan solide s'écrit finalement, en explicitant la définition du terme d'expulsion : V ̇ R = χ N c ω o o ρ c g τ D

Figure imgb0074
Figure imgb0075
The solid balance sheet is finally written, explaining the definition of the term expulsion: V ̇ R = χ NOT vs ω o o ρ vs g τ D
Figure imgb0074
Figure imgb0075

ANNEXE 2APPENDIX 2 CALCUL DU FACTEUR DE MINORATION χ CALCULATION OF THE MINORATION FACTOR χ Remarque préliminairePreliminary remark

Soit Fµ,σ la fonction de la loi normale de moyenne µ et d'écart-type σ ; il est incorrect d'écrire : χ= F µ,σ D c o δ

Figure imgb0076
Let F µ, σ be the function of the normal law of mean µ and standard deviation σ; it is incorrect to write: χ = F µ, σ D vs o δ
Figure imgb0076

L'écriture supposerait une répartition en nombre relatif de copeaux alors que nous recherchons une pondération en volume :
µ :  granulométrie moyenne imposée par le type de découpe µ = E(D c ) δ

Figure imgb0077

δ :  épaisseur de coupe actuelle
D o c
Figure imgb0078
:  taille seuil pour l'hydraulique (indépendante de δ). :The writing would suppose a distribution in relative number of chips while we are looking for a weighting in volume :
µ: average particle size imposed by the type of cut µ = E (D vs ) δ
Figure imgb0077

δ: current cutting thickness
D o vs
Figure imgb0078
: threshold size for hydraulics (independent of δ). :

Calcul de χCalculation of χ

Il faut rapporter le volume correspondant à des copeaux de taille distribuée D c au volume de matière dégagé si la granulométrie était assimilable à une distribution de Dirac sur D o c

Figure imgb0079
, copeaux dont le volume élémentaire est alors ω o o ρ c g
Figure imgb0080
It is necessary to relate the volume corresponding to chips of size distributed D c to the volume of released material if the particle size was comparable to a distribution of Dirac on D o vs
Figure imgb0079
, shavings whose elementary volume is then ω o o ρ vs g
Figure imgb0080

Le volume élémentaire du copeau de taille hydrodynamique D c est:

Figure imgb0081
   de sorte que, pour une granulométrie étalée de moyenne µ et d'écart type σ :
Figure imgb0082
   avec: t= D c D c o D c o δ = D c δ
Figure imgb0083
The elementary volume of the hydrodynamic size chip D c is:
Figure imgb0081
so that, for a spread size of mean µ and standard deviation σ:
Figure imgb0082
with: t = D vs D vs o D vs o δ = D vs δ
Figure imgb0083

(Il aurait été plus séduisant d'adopter une loi log normale de manière à ne pas avoir à envisager les t négatifs).(It would have been more attractive to adopt a normal log law so as not to have to consider the negative t).

D'où :

Figure imgb0084
From where :
Figure imgb0084

Une intégration par parties donne, après quelques calculs :

Figure imgb0085
   avec:
Figure imgb0086
Φ(x) fonction de répartition de la loi normale centrée réduite.Integration by parts gives, after some calculations:
Figure imgb0085
with:
Figure imgb0086
Φ (x) distribution function of the reduced centered normal law.

Figure imgb0087
dépend uniquement du rapport de la moyenne sur l'écart-type de la distribution des tailles

  • µ est lié à la ductilité de la roche
  • σ à est lié au resserrement granulométrique.
Figure imgb0087
depends only on the ratio of the mean to the standard deviation of the size distribution
  • µ is related to the ductility of the rock
  • σ to is linked to the particle size tightening.

(µ est une variable sans dimension reflétant en quelque sorte la fragilité moyenne de la roche sous forme d'un "élancement" du fragment ; on peut également établir un lien entre cette caractéristique et l'angle de frottement d'un matériau). µ = E D c δ

Figure imgb0088
(µ is a dimensionless variable reflecting in a way the average brittleness of the rock in the form of a "slenderness" of the fragment; one can also establish a link between this characteristic and the angle of friction of a material). µ = E D vs δ
Figure imgb0088

D c o δ

Figure imgb0089
est le seuil, tenant compte essentiellement des conditions de pression, au-dessus duquel les particules n'ont pas à être comptabilisées dans le bilan d'évacuation. D vs o δ
Figure imgb0089
is the threshold, essentially taking into account the pressure conditions, above which the particles need not be counted in the evacuation balance.

RemarquesRemarks

  • Si les conditions (viscosité ν0 et densité ρm de boue, pression différentielle P) n'évoluent pas, le seuil D o c
    Figure imgb0090
    est invariant.
    If the conditions (viscosity ν 0 and density ρ m of sludge, differential pressure P) do not change, the threshold D o vs
    Figure imgb0090
    is invariant.
  • Si, en outre, la roche ne change pas de caractéristiques µ et σ la courbe χ(δ) est invariante.If, moreover, the rock does not change its characteristics µ and σ the curve χ (δ) is invariant.
ANNEXE 3APPENDIX 3 FONCTION MODULATRICE SELON L'ÉPAISSEUR DU LIT DE DÉBRISMODULATING FUNCTION ACCORDING TO THICKNESS OF DEBRIS BED

Il est apparu nécessaire de moduler le terme d'expulsion selon la variable épaisseur du lit de débris pour tenir compte des mécanismes suivants dits A et B ; le mécanisme A étant dominant lorsque la lame fluide h est importante, le mécanisme B prévalant lorsque cette lame devient étroite.

  • le mécanisme A est caractérisé par une diminution de l'effet de rétention du copeau en présence d'un lit de débris qui consacre notamment l'augmentation des performances à l'équilibre en termes de vitesse de pénétration ROP lorsqu'on augmente le poids sur l'outil WOB (δ < h).
  • le mécanisme B correspond à une expulsion du copeau rendue difficile en raison de l'étroitesse de la lame fluide (h) vis-à-vis de la taille du copeau (δ) (δ > h).
  • la transition (δ ≈ h) correspond à une compétition des mécanismes A et B.
It appeared necessary to modulate the term of expulsion according to the variable thickness of the debris bed to take into account the following mechanisms called A and B; mechanism A being dominant when the fluid blade h is large, mechanism B prevailing when this blade becomes narrow.
  • Mechanism A is characterized by a reduction in the chip retention effect in the presence of a bed of debris which devotes in particular the increase in performance at equilibrium in terms of penetration speed ROP when the weight is increased over the WOB tool (δ <h).
  • mechanism B corresponds to an expulsion of the chip made difficult due to the narrowness of the fluid blade (h) with respect to the size of the chip (δ) (δ> h).
  • the transition (δ ≈ h) corresponds to a competition of mechanisms A and B.

Formellement, le bilan d'évacuation est écrit : B - ( y 1 , y 3 = m 0 f ν ( y 3 µ/σ ( y 1 )

Figure imgb0091

   où v est un index dit de sensibilité au bourrage intervenant comme paramètre dans la fonction f ν retenue :
Figure imgb0092
f v * z = f v y 3 avec 1- v h o δ o -1 y 3 = z
Figure imgb0093
   où h0 et δ0 sont les paramètres associés aux valeurs initiales des variables h et δ.Formally, the evacuation report is written: B - (( y 1 , y 3 = m 0 f ν (( y 3 ) χ µ / σ (( y 1 )
Figure imgb0091

where v is an index called sensitivity to stuffing intervening as a parameter in the function f ν retained:
Figure imgb0092
f v * z = f v y 3 with 1- v h o δ o -1 y 3 = z
Figure imgb0093
where h 0 and δ 0 are the parameters associated with the initial values of the variables h and δ.

ANNEXE 4APPENDIX 4 LINEARISATION AU VOISINAGE DE L'ÉQUILIBRELINEARIZATION IN THE VICINITY OF BALANCE RAPPEL ET NOTATIONSREMINDER AND RATINGS

Un système dont les variables d'état sont définies par le vecteur x et les paramètres principaux regroupés dans le vecteur λ est décrit par des équations d'évolution de la forme : X ̇ = F(X,λ)

Figure imgb0094
A system whose state variables are defined by the vector x and the main parameters grouped in the vector λ is described by evolution equations of the form: X ̇ = F (X, λ)
Figure imgb0094

Il est souvent examiné au voisinage d'une position d'équilibre X0, satisfaisant donc : F(X 0, λ) = 0

Figure imgb0095
It is often examined in the vicinity of an equilibrium position X 0 , therefore satisfying: F (X 0, λ) = 0
Figure imgb0095

On introduit les coordonnées locales ξ autour de X 0 de sorte que : X = X 0 + ξ

Figure imgb0096
   et le système différentiel initial se présente alors sous la forme dite linéarisée [si l'on fait abstraction du terme résiduel f (ξ,λ)]. ζ ̇ = A(λ)ζ+ f (ζ,λ)
Figure imgb0097
   où
Figure imgb0098
   et f(ξ,λ)=0(|ξ| 2 ) contient des termes de degré supérieur ou égal à 2.We introduce the local coordinates ξ around X 0 so that: X = X 0 + ξ
Figure imgb0096
and the initial differential system is then presented in the so-called linearized form [if we ignore the residual term f (ξ, λ)]. ζ ̇ = A (λ) ζ + f (ζ, λ)
Figure imgb0097
or
Figure imgb0098
and f (ξ, λ) = 0 (| ξ | 2 ) contains terms of degree greater than or equal to 2.

Il découle des théorèmes de stabilité de Liapunov que :

  • (i) X0 est stable si les valeurs propres de A(λ) ont des parties réelles négatives.
  • (ii) X0 est instable si au moins une valeur propre a une partie réelle positive.
  • (iii) le cas critique est celui où la partie réelle de l'une ou plusieurs valeurs propres s'annule alors que les autres valeurs propres gardent leur partie réelle négative.
It follows from Liapunov's stability theorems that:
  • (i) X 0 is stable if the eigenvalues of A (λ) have negative real parts.
  • (ii) X 0 is unstable if at least one eigenvalue has a positive real part.
  • (iii) the critical case is that where the real part of one or more eigenvalues is canceled while the other eigenvalues keep their real part negative.

Application : écriture du jacobien

Figure imgb0099
Application: Jacobian writing
Figure imgb0099

Le système différentiel se présente sous la forme assez particulière : y ̇ 1 = F 1 ( y 1 , y 2 , y 3 )

Figure imgb0100
y ̇ 2 = K ( y 1 , y 2 ) F 1 ( y 1 , y 2 , y 3 )
Figure imgb0101
Figure imgb0102
avec: F 1 ( y 1 , y 2 , y 3 ) = -B y 1 , y 3 1+ a+b h o δ o K y 1 , y 2 e - a+b y 2
Figure imgb0103
A l'équilibre : B( y 1 , y 3 =⇔ F 1 ( y 1 , y 2 , y 3 ) = 0
Figure imgb0104
Le jacobien s'écrit :
Figure imgb0105
The differential system comes in quite a special form: y ̇ 1 = F 1 (( y 1 , y 2 , y 3 )
Figure imgb0100
y ̇ 2 = K (( y 1 , y 2 ) F 1 (( y 1 , y 2 , y 3 )
Figure imgb0101
Figure imgb0102
with: F 1 (( y 1 , y 2 , y 3 ) = -B y 1 , y 3 1+ a + b h o δ o K y 1 , y 2 e - a + b y 2
Figure imgb0103
Equilibrium : B ( y 1 , y 3 = ⇔ F 1 (( y 1 , y 2 , y 3 ) = 0
Figure imgb0104
The Jacobian is written:
Figure imgb0105

Tenant compte des relations traduisant l'équilibre, la matrice jacobienne se présente sous la forme simplifiée suivante :

Figure imgb0106
Figure imgb0107
a 21 = - Ka 11
Figure imgb0108
a 22 = o
Figure imgb0109
a 23 = - Ka 13
Figure imgb0110
Figure imgb0111
Taking into account the equilibrium relationships, the Jacobian matrix is presented in the following simplified form:
Figure imgb0106
Figure imgb0107
at 21 = - Ka 11
Figure imgb0108
at 22 = o
Figure imgb0109
at 23 = - Ka 13
Figure imgb0110
Figure imgb0111

Ceci se traduit au voisinage de l'équilibre par les écritures :

Figure imgb0112
Figure imgb0113
Figure imgb0114
soit L* = 1+ a h o δ o K * e -ay 2
Figure imgb0115
   où les symboles * rappellent que le calcul doit être effectué pour un triplet (y 1 , y 2 , y 3 ) satisfaisant la condition de l'équilibre.This results in the vicinity of equilibrium by the entries:
Figure imgb0112
Figure imgb0113
Figure imgb0114
either L * = 1+ at h o δ o K * e -ay 2
Figure imgb0115
where the symbols * remind that the calculation must be carried out for a triplet ( y 1 , y 2 , y 3 ) satisfying the condition of equilibrium.

Alors :

Figure imgb0116
   décrit le comportement linéarisé au voisinage de l'équilibre, l'allure est de type exponentiel (convergent) si :
Figure imgb0117
So :
Figure imgb0116
describes the linearized behavior near equilibrium, the pace is of the exponential (convergent) type if:
Figure imgb0117

La condition : B y 1 - L * B y 3 = O

Figure imgb0118
   définit, conjointement à B(y 1,y 3) = 0, la condition de bifurcation caractérisant le bourrage.The condition : B y 1 - L * B y 3 = O
Figure imgb0118
defines, jointly with B ( y 1 , y 3 ) = 0 , the bifurcation condition characterizing the stuffing.

La résolution complète et explicite des relations de bifurcation peut s'effectuer si l'on tire parti du fait que, lorsque la transition vers le bourrage se produit, K(y1,y2) est proche de 1.The complete and explicit resolution of the bifurcation relationships can be achieved if one takes advantage of the fact that, when the transition to stuffing occurs, K (y 1 , y 2 ) is close to 1.

On montre alors que, en variables x et z (voir annexes 2 et 3), la condition de bifurcation se présente sous la forme explicite z fonction de x :We then show that, in variables x and z (see appendices 2 and 3), the bifurcation condition is presented in the explicit form z function of x:

Condition d'équilibre : (B = 0)

Figure imgb0119
Equilibrium condition : (B = 0)
Figure imgb0119

Condition de bifurcation (dB = 0)

Figure imgb0120
avec k = 1 µ D c o δ o
Figure imgb0121
Bifurcation condition (dB = 0)
Figure imgb0120
with k = 1 µ D vs o δ o
Figure imgb0121

On remarquera que la condition de bifurcation est indépendante de N.Note that the bifurcation condition is independent of N.

REMARQUENOTE

Dans un cas moins particulier que celui-ci, où, notamment, la proportionnalité supposée des grandeurs E=Log η η o

Figure imgb0122
= y 2, H=-Log h h o
Figure imgb0123
, F = -Log(1 - x) implique un comportement linéarisé à une dimension, on aurait : ζ ̇ = Aζ   ζ = (ζ 1 2 3 )
Figure imgb0124
χ(s) = déterminant(sI - A)
Figure imgb0125

   avec 3 valeurs propres complexes ou réelles et une convergence vers l'équilibre d'un type différent de celui supposé ici.In a less particular case than this one, where, in particular, the supposed proportionality of the magnitudes E = Log η η o
Figure imgb0122
= y 2 , H = -Log h h o
Figure imgb0123
, F = -Log (1 - x) implies a one-dimensional linearized behavior, we would have: ζ ̇ = Aζ ζ = (ζ 1 , ζ 2 , ζ 3 )
Figure imgb0124
χ (s) = determinant (sI - A)
Figure imgb0125

with 3 complex or real eigenvalues and a convergence towards equilibrium of a different type from that assumed here.

Claims (5)

Méthode permettant d'améliorer les performances de forage dans laquelle on met en oeuvre un modèle de foration, caractérisée en ce que ledit modèle prend en compte les effets de destruction (2) d'une roche par au moins un taillant (1) fixé sur un corps d'outil (3) entraîné en rotation et les effets d'évacuation des débris de roche par un fluide, en calculant un bilan matière à partir : - de la production de débris de roche par le taillant ayant pénétré dans la roche d'une profondeur δ, - d'un lit de débris recouvrant ladite roche sous une épaisseur l, - d'une lame de fluide d'épaisseur h comprise entre ledit lit de débris et ledit corps, ladite lame fluide ayant une concentration c en débris, - de paramètres de commandes, - de paramètres d'environnement,    et en ce que l'on détermine les conditions de forage en fonction de la réponse dudit modèle pour des valeurs déterminées desdits paramètres.Method for improving drilling performance in which a drilling model is implemented, characterized in that said model takes into account the effects of destruction (2) of a rock by at least one cutter (1) fixed on a tool body (3) driven in rotation and the effects of evacuation of rock debris by a fluid, by calculating a material balance from: - the production of rock debris by the cutter having penetrated into the rock with a depth δ, - a bed of debris covering said rock at a thickness l, a fluid blade of thickness h between said debris bed and said body, said fluid blade having a debris concentration c, - command parameters, - environmental parameters, and in that the drilling conditions are determined as a function of the response of said model for determined values of said parameters. Méthode selon la revendication 1, caractérisée en ce que l'un au moins desdits paramètres: poids sur l'outil, vitesse de rotation de l'outil et débit de fluide, est un paramètre de commande.Method according to claim 1, characterized in that at least one of said parameters: weight on the tool, speed of rotation of the tool and fluid flow rate, is a control parameter. Méthode selon l'une des revendications précédentes, caractérisée en ce que, dans ledit modèle, la portance W de l'outil est décomposée en une composante solide W S et une composante hydraulique W h fonction notamment de la lame fluide.Method according to one of the preceding claims, characterized in that, in said model, the lift W of the tool is broken down into a solid component W S and a hydraulic component W h depending in particular on the fluid blade. Méthode selon l'une des revendications précédentes, caractérisée en ce que l'on considère un étalement granulométrique des débris distribués selon une loi normale fonction de la profondeur δ de l'entaille, de moyenne µ lié à la ductilité de la roche et d'une dispersion caractérisée par l'écart-type σ.Method according to one of the preceding claims, characterized in that one considers a particle size spread of the debris distributed according to a normal law as a function of the depth δ of the notch, of average µ related to the ductility of the rock and of a dispersion characterized by the standard deviation σ. Méthode selon l'une des revendications précédentes, caractérisée en ce que ledit bilan matière solide B(t) est tel que B(t)=B+(t)-B-(t), dans lequel B+(t) est un terme de production de débris dépendant de δ et correspondant au rythme de destruction de la roche, et B+(t) est un terme d'expulsion dépendant de l et h.Method according to one of the preceding claims, characterized in that said solid matter balance B (t) is such that B (t) = B + (t) -B - (t), in which B + (t) is a debris production term dependent on δ and corresponding to the rate of destruction of the rock, and B + (t) is an expulsion term dependent on l and h.
EP96401030A 1995-05-15 1996-05-13 Method for determining drilling conditions using a model Expired - Lifetime EP0743423B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9505825A FR2734315B1 (en) 1995-05-15 1995-05-15 METHOD OF DETERMINING THE DRILLING CONDITIONS INCLUDING A DRILLING MODEL
FR9505825 1995-05-15

Publications (2)

Publication Number Publication Date
EP0743423A1 true EP0743423A1 (en) 1996-11-20
EP0743423B1 EP0743423B1 (en) 1998-08-12

Family

ID=9479058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401030A Expired - Lifetime EP0743423B1 (en) 1995-05-15 1996-05-13 Method for determining drilling conditions using a model

Country Status (5)

Country Link
US (1) US5730234A (en)
EP (1) EP0743423B1 (en)
DE (1) DE69600511T2 (en)
FR (1) FR2734315B1 (en)
NO (1) NO308915B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411933A (en) * 2020-03-27 2020-07-14 中国石油集团工程技术研究院有限公司 Method for evaluating underground working condition of PDC (polycrystalline diamond compact) drill bit

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9621871D0 (en) * 1996-10-21 1996-12-11 Anadrill Int Sa Alarm system for wellbore site
US6026912A (en) * 1998-04-02 2000-02-22 Noble Drilling Services, Inc. Method of and system for optimizing rate of penetration in drilling operations
US20040230413A1 (en) * 1998-08-31 2004-11-18 Shilin Chen Roller cone bit design using multi-objective optimization
US20030051917A1 (en) * 1998-08-31 2003-03-20 Halliburton Energy Services, Inc. Roller cone bits, methods, and systems with anti-tracking variation in tooth orientation
US7334652B2 (en) * 1998-08-31 2008-02-26 Halliburton Energy Services, Inc. Roller cone drill bits with enhanced cutting elements and cutting structures
US20040236553A1 (en) * 1998-08-31 2004-11-25 Shilin Chen Three-dimensional tooth orientation for roller cone bits
US20040045742A1 (en) * 2001-04-10 2004-03-11 Halliburton Energy Services, Inc. Force-balanced roller-cone bits, systems, drilling methods, and design methods
US20040140130A1 (en) * 1998-08-31 2004-07-22 Halliburton Energy Services, Inc., A Delaware Corporation Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
WO2000012860A2 (en) * 1998-08-31 2000-03-09 Halliburton Energy Services, Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US6095262A (en) * 1998-08-31 2000-08-01 Halliburton Energy Services, Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US8437995B2 (en) * 1998-08-31 2013-05-07 Halliburton Energy Services, Inc. Drill bit and design method for optimizing distribution of individual cutter forces, torque, work, or power
ID28517A (en) * 1998-08-31 2001-05-31 Halliburton Energy Serv Inc BALANCING CONE ROLLER BIT, DRILLING METHOD SYSTEM, AND DESIGN METHOD
US6412577B1 (en) * 1998-08-31 2002-07-02 Halliburton Energy Services Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US6276465B1 (en) 1999-02-24 2001-08-21 Baker Hughes Incorporated Method and apparatus for determining potential for drill bit performance
US6386297B1 (en) 1999-02-24 2002-05-14 Baker Hughes Incorporated Method and apparatus for determining potential abrasivity in a wellbore
US6353799B1 (en) 1999-02-24 2002-03-05 Baker Hughes Incorporated Method and apparatus for determining potential interfacial severity for a formation
US6460631B2 (en) 1999-08-26 2002-10-08 Baker Hughes Incorporated Drill bits with reduced exposure of cutters
US6298930B1 (en) 1999-08-26 2001-10-09 Baker Hughes Incorporated Drill bits with controlled cutter loading and depth of cut
US6349595B1 (en) 1999-10-04 2002-02-26 Smith International, Inc. Method for optimizing drill bit design parameters
JP2001117909A (en) * 1999-10-21 2001-04-27 Oki Electric Ind Co Ltd Transposing circuit for matrix form data
US6382331B1 (en) 2000-04-17 2002-05-07 Noble Drilling Services, Inc. Method of and system for optimizing rate of penetration based upon control variable correlation
US6424919B1 (en) 2000-06-26 2002-07-23 Smith International, Inc. Method for determining preferred drill bit design parameters and drilling parameters using a trained artificial neural network, and methods for training the artificial neural network
US6527068B1 (en) 2000-08-16 2003-03-04 Smith International, Inc. Roller cone drill bit having non-axisymmetric cutting elements oriented to optimize drilling performance
US7003439B2 (en) 2001-01-30 2006-02-21 Schlumberger Technology Corporation Interactive method for real-time displaying, querying and forecasting drilling event and hazard information
US6659199B2 (en) 2001-08-13 2003-12-09 Baker Hughes Incorporated Bearing elements for drill bits, drill bits so equipped, and method of drilling
US6892812B2 (en) 2002-05-21 2005-05-17 Noble Drilling Services Inc. Automated method and system for determining the state of well operations and performing process evaluation
US6820702B2 (en) 2002-08-27 2004-11-23 Noble Drilling Services Inc. Automated method and system for recognizing well control events
DE10254942B3 (en) * 2002-11-25 2004-08-12 Siemens Ag Method for automatically determining the coordinates of images of marks in a volume data set and medical device
US7195086B2 (en) * 2004-01-30 2007-03-27 Anna Victorovna Aaron Anti-tracking earth boring bit with selected varied pitch for overbreak optimization and vibration reduction
US7360612B2 (en) 2004-08-16 2008-04-22 Halliburton Energy Services, Inc. Roller cone drill bits with optimized bearing structures
US7434632B2 (en) * 2004-03-02 2008-10-14 Halliburton Energy Services, Inc. Roller cone drill bits with enhanced drilling stability and extended life of associated bearings and seals
US7360608B2 (en) * 2004-09-09 2008-04-22 Baker Hughes Incorporated Rotary drill bits including at least one substantially helically extending feature and methods of operation
US9388680B2 (en) * 2005-02-01 2016-07-12 Smith International, Inc. System for optimizing drilling in real time
US7142986B2 (en) * 2005-02-01 2006-11-28 Smith International, Inc. System for optimizing drilling in real time
CA2624106C (en) 2005-08-08 2013-07-09 Halliburton Energy Services, Inc. Methods and systems for designing and/or selecting drilling equipment with desired drill bit steerability
US20090229888A1 (en) * 2005-08-08 2009-09-17 Shilin Chen Methods and systems for designing and/or selecting drilling equipment using predictions of rotary drill bit walk
US7860693B2 (en) 2005-08-08 2010-12-28 Halliburton Energy Services, Inc. Methods and systems for designing and/or selecting drilling equipment using predictions of rotary drill bit walk
CA2629631C (en) * 2005-11-18 2012-06-19 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations
US8141665B2 (en) * 2005-12-14 2012-03-27 Baker Hughes Incorporated Drill bits with bearing elements for reducing exposure of cutters
US20070185696A1 (en) * 2006-02-06 2007-08-09 Smith International, Inc. Method of real-time drilling simulation
US8670963B2 (en) * 2006-07-20 2014-03-11 Smith International, Inc. Method of selecting drill bits
US7857047B2 (en) * 2006-11-02 2010-12-28 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations
US11725494B2 (en) 2006-12-07 2023-08-15 Nabors Drilling Technologies Usa, Inc. Method and apparatus for automatically modifying a drilling path in response to a reversal of a predicted trend
US8672055B2 (en) 2006-12-07 2014-03-18 Canrig Drilling Technology Ltd. Automated directional drilling apparatus and methods
US7823655B2 (en) 2007-09-21 2010-11-02 Canrig Drilling Technology Ltd. Directional drilling control
MX2009006095A (en) * 2006-12-07 2009-08-13 Nabors Global Holdings Ltd Automated mse-based drilling apparatus and methods.
US8285531B2 (en) 2007-04-19 2012-10-09 Smith International, Inc. Neural net for use in drilling simulation
US7814997B2 (en) * 2007-06-14 2010-10-19 Baker Hughes Incorporated Interchangeable bearing blocks for drill bits, and drill bits including same
WO2009079371A1 (en) * 2007-12-14 2009-06-25 Halliburton Energy Services, Inc. Methods and systems to predict rotary drill bit walk and to design rotary drill bits and other downhole tools
US7802634B2 (en) * 2007-12-21 2010-09-28 Canrig Drilling Technology Ltd. Integrated quill position and toolface orientation display
NO327236B1 (en) * 2008-01-11 2009-05-18 West Treat System As Procedure for controlling a drilling operation
US8528663B2 (en) * 2008-12-19 2013-09-10 Canrig Drilling Technology Ltd. Apparatus and methods for guiding toolface orientation
US8510081B2 (en) * 2009-02-20 2013-08-13 Canrig Drilling Technology Ltd. Drilling scorecard
EP2396509B1 (en) 2009-02-11 2018-05-30 M-I L.L.C. Apparatus and process for wellbore characterization
US8170800B2 (en) * 2009-03-16 2012-05-01 Verdande Technology As Method and system for monitoring a drilling operation
US20100252325A1 (en) * 2009-04-02 2010-10-07 National Oilwell Varco Methods for determining mechanical specific energy for wellbore operations
US8943663B2 (en) 2009-04-15 2015-02-03 Baker Hughes Incorporated Methods of forming and repairing cutting element pockets in earth-boring tools with depth-of-cut control features, and tools and structures formed by such methods
EP2425089A4 (en) * 2009-04-30 2014-06-04 Baker Hughes Inc Bearing blocks for drill bits, drill bit assemblies including bearing blocks and related methods
US9598947B2 (en) 2009-08-07 2017-03-21 Exxonmobil Upstream Research Company Automatic drilling advisory system based on correlation model and windowed principal component analysis
EP2462315B1 (en) 2009-08-07 2018-11-14 Exxonmobil Upstream Research Company Methods to estimate downhole drilling vibration amplitude from surface measurement
MY158575A (en) 2009-08-07 2016-10-14 Exxonmobil Upstream Res Co Methods to estimate downhole drilling vibration indices from surface measurement
US9309723B2 (en) * 2009-10-05 2016-04-12 Baker Hughes Incorporated Drill bits and tools for subterranean drilling, methods of manufacturing such drill bits and tools and methods of directional and off center drilling
US8527249B2 (en) * 2010-02-23 2013-09-03 Halliburton Energy Services, Inc. System and method for optimizing drilling speed
US9587478B2 (en) 2011-06-07 2017-03-07 Smith International, Inc. Optimization of dynamically changing downhole tool settings
US9285794B2 (en) 2011-09-07 2016-03-15 Exxonmobil Upstream Research Company Drilling advisory systems and methods with decision trees for learning and application modes
US20140122034A1 (en) * 2011-12-09 2014-05-01 Jonathan M. Hanson Drill bit body rubbing simulation
US9482084B2 (en) 2012-09-06 2016-11-01 Exxonmobil Upstream Research Company Drilling advisory systems and methods to filter data
US9290995B2 (en) 2012-12-07 2016-03-22 Canrig Drilling Technology Ltd. Drill string oscillation methods
CN106068365B (en) * 2014-04-07 2019-08-06 哈里伯顿能源服务公司 The three-dimensional modeling of interaction between downhole well tool and landwaste
US10062044B2 (en) * 2014-04-12 2018-08-28 Schlumberger Technology Corporation Method and system for prioritizing and allocating well operating tasks
US10094209B2 (en) 2014-11-26 2018-10-09 Nabors Drilling Technologies Usa, Inc. Drill pipe oscillation regime for slide drilling
US9784035B2 (en) 2015-02-17 2017-10-10 Nabors Drilling Technologies Usa, Inc. Drill pipe oscillation regime and torque controller for slide drilling
US10378282B2 (en) 2017-03-10 2019-08-13 Nabors Drilling Technologies Usa, Inc. Dynamic friction drill string oscillation systems and methods
US10968730B2 (en) 2017-07-25 2021-04-06 Exxonmobil Upstream Research Company Method of optimizing drilling ramp-up
CA3078703C (en) 2017-10-09 2023-01-17 Exxonmobil Upstream Research Company Controller with automatic tuning and method
CN109460612B (en) * 2018-11-12 2022-09-13 河南理工大学 Average particle size prediction method for drill cuttings in coal rock cutting process
US12030150B2 (en) 2019-06-10 2024-07-09 Halliburton Energy Services, Inc. Drill bit cutter evaluation methods and systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466255A2 (en) * 1990-07-13 1992-01-15 Anadrill International SA Method of determining the drilling conditions associated with the drilling of a formation with a drag bit
EP0551134A1 (en) * 1992-01-09 1993-07-14 Baker Hughes Incorporated Method for evaluating formations and bit conditions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195699A (en) * 1978-06-29 1980-04-01 United States Steel Corporation Drilling optimization searching and control method
GB8416708D0 (en) * 1984-06-30 1984-08-01 Prad Res & Dev Nv Drilling motor
US4599904A (en) * 1984-10-02 1986-07-15 Nl Industries, Inc. Method for determining borehole stress from MWD parameter and caliper measurements
JPS63594A (en) * 1986-06-19 1988-01-05 東北大学長 Method of calculating fracture toughness value of rock by core boring method
US4959164A (en) * 1988-06-27 1990-09-25 The United States Of America As Represented By The Secretary Of The Interior Rock fragmentation method
US5196401A (en) * 1988-06-27 1993-03-23 The United State Of America As Represented By The Secretary Of The Interior Method of enhancing rock fragmentation and extending drill bit life
US4972703A (en) * 1988-10-03 1990-11-27 Baroid Technology, Inc. Method of predicting the torque and drag in directional wells
US5456141A (en) * 1993-11-12 1995-10-10 Ho; Hwa-Shan Method and system of trajectory prediction and control using PDC bits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466255A2 (en) * 1990-07-13 1992-01-15 Anadrill International SA Method of determining the drilling conditions associated with the drilling of a formation with a drag bit
EP0551134A1 (en) * 1992-01-09 1993-07-14 Baker Hughes Incorporated Method for evaluating formations and bit conditions

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.J. GARNIER AND N.H. VAN LINGEN: "phenomena affecting drilling rates at depth", 33RD ANNUAL FALL MEETING OF THE SOCIETY OF PETROLEUM ENGINEERS OF A.I.M.E., no. 1097-g, 5 October 1958 (1958-10-05) - 8 October 1958 (1958-10-08), HOUSTON, TEXAS, USA, XP002012652 *
C.A. CHEATHAM AND J.J. NAHM: "bit balling in water-reactive shale during full-scale drilling rate tests", IADC/SPE DRILLING CONFERENCE, no. iadc/spe 19926, 27 February 1990 (1990-02-27) - 2 March 1990 (1990-03-02), HOUSTON, TEXAS, USA, XP002012651 *
E. KURU AND A.K.WOJTANOWSICZ: "a method for detecting in-situ pdc dull and lithology change", IADC/SPE DRILLING CONFERENCE, no. iadc/spe 17192, 28 February 1988 (1988-02-28) - 2 March 1988 (1988-03-02), DALLAS, TEXAS, USA, XP002012648 *
E.E. ANDERSON AND J.J, AZAR: "pdc bit performance under simulated borehole conditions", 65TH ANNUAL TECHNICAL CONFERENCE AND EXHIBITION OF THE SOCIETY OF PETROLEUM ENGINEERS, no. SPE 20412, 23 September 1990 (1990-09-23) - 26 September 1990 (1990-09-26), NEW ORLEANS, USA, XP002012650 *
I.E. ERONINI, W.H. SOMERTON. AND D.M. AUSLANDER: "a dynamic model for rotary rock drilling", JOURNAL OF ENERGY RESSOURCES TECHNOLOGY, vol. 104, pages 108 - 120, XP002012649 *
I.J. JORDAAN, M.A. MAES AND J.P. NADREAU: "the crushing and clearing of ice in fast spherical indentation tests", SEVENTH INTERNATIONAL CONFERENCE ON OFFSHORE MECHANICS AND ARTIC ENGINEERING, 7 February 1988 (1988-02-07) - 12 February 1988 (1988-02-12), HOUSTON, TEXAS, USA, XP002012647 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411933A (en) * 2020-03-27 2020-07-14 中国石油集团工程技术研究院有限公司 Method for evaluating underground working condition of PDC (polycrystalline diamond compact) drill bit
CN111411933B (en) * 2020-03-27 2021-01-12 中国石油集团工程技术研究院有限公司 Method for evaluating underground working condition of PDC (polycrystalline diamond compact) drill bit

Also Published As

Publication number Publication date
NO961962L (en) 1996-11-18
EP0743423B1 (en) 1998-08-12
FR2734315B1 (en) 1997-07-04
DE69600511T2 (en) 1998-12-10
US5730234A (en) 1998-03-24
DE69600511D1 (en) 1998-09-17
NO308915B1 (en) 2000-11-13
NO961962D0 (en) 1996-05-14
FR2734315A1 (en) 1996-11-22

Similar Documents

Publication Publication Date Title
EP0743423B1 (en) Method for determining drilling conditions using a model
Elkatatny et al. Optimization of rate of penetration using artificial intelligent techniques
CA2670181C (en) Discrete element modeling of rock destruction under high pressure conditions
EP2037080B1 (en) Method for determining the permeability of a network of fractures based on a connectivity analysis
US6386297B1 (en) Method and apparatus for determining potential abrasivity in a wellbore
FR2869067A1 (en) SYSTEM AND METHOD FOR FIELD SYNTHESIS FOR OPTIMIZING A DRILLING DEVICE
FR2876407A1 (en) METHOD AND APPARATUS FOR IDENTIFYING ROCK PROPERTIES AND DRILLING SYSTEM INCORPORATING THE APPARATUS.
CN101116009A (en) Method for predicting rate of penetration using bit-specific coefficients of sliding friction and mechanical efficiency as a function of confined compressive strength
NO320705B1 (en) Method for monitoring stability during drilling or production in a base formation surrounding a wellbore
Hareland et al. Calculating unconfined rock strength from drilling data
Abbas et al. Drill bit selection optimization based on rate of penetration: application of artificial neural networks and genetic algorithms
Turkeev et al. Drilling the new 5G-5 branch hole at Vostok Station for collecting a replicate core of old meteoric ice
Sharma et al. Fixed bit rotary drilling failure criteria effect on drilling vibration
WO2014023909A2 (en) Simulation of insular karstification
US20130035903A1 (en) Methods of designing earth-boring tools using a plurality of depth of cut values and related methods of forming earth-boring tools
Phelan et al. Prediction of Formation Properties Based on Drilling Data of Wells at Utah FORGE Site Using Machine Learning
Akhtarmanesh et al. ROP model for PDC bits in geothermal drilling
Brand et al. Advances in our understanding of pyroclastic current behavior from the 1980 eruption sequence of Mount St. Helens volcano (Washington), USA
EP2880465B1 (en) Method for restoring wellbore data
Contreras et al. An innovative approach for pore pressure prediction and drilling optimization in an abnormally subpressured basin
Hellvik et al. PDC cutter and bit development for challenging conglomerate drilling in the Luno field-offshore Norway
Atashnezhad et al. Rate of Penetration (ROP) Model for PDC Drill Bits based on Cutter Rock Interaction
Self et al. Use of a swarm algorithm to reduce the drilling time through measurable improvement in rate of penetration
CA2933504A1 (en) Method for detecting a drilling malfunction
WO2009153443A1 (en) Method for determining fluid pressures and for detecting overpressures in an underground medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19970520

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970903

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980814

REF Corresponds to:

Ref document number: 69600511

Country of ref document: DE

Date of ref document: 19980917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010521

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010613

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020425

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030513

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050513