EP0738785B1 - Process and apparatus for adjusting the carbon monoxide concentration of a furnace atmosphere for carburizing or nitrocarburizing of metallic parts - Google Patents

Process and apparatus for adjusting the carbon monoxide concentration of a furnace atmosphere for carburizing or nitrocarburizing of metallic parts Download PDF

Info

Publication number
EP0738785B1
EP0738785B1 EP96101732A EP96101732A EP0738785B1 EP 0738785 B1 EP0738785 B1 EP 0738785B1 EP 96101732 A EP96101732 A EP 96101732A EP 96101732 A EP96101732 A EP 96101732A EP 0738785 B1 EP0738785 B1 EP 0738785B1
Authority
EP
European Patent Office
Prior art keywords
content
furnace
furnace atmosphere
atmosphere
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96101732A
Other languages
German (de)
French (fr)
Other versions
EP0738785A1 (en
Inventor
Max Roggatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Publication of EP0738785A1 publication Critical patent/EP0738785A1/en
Application granted granted Critical
Publication of EP0738785B1 publication Critical patent/EP0738785B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the invention relates to a method for controlling the CO content of a furnace atmosphere for carburizing and carbonitriding metallic workpieces in a furnace, the furnace atmosphere by directly feeding a mixture of an oxidizing agent, eg. B. air, and a hydrocarbon-containing fuel and optionally ammonia (NH 3 ) generated in the furnace, the CO content of the furnace atmosphere is determined and compared with a freely definable value for the CO content.
  • an oxidizing agent eg. B. air
  • NH 3 optionally ammonia
  • the invention further relates to an apparatus for performing this method.
  • the required carburizing atmosphere is generated either in separate inert gas generators (endogas) or by feeding nitrogen with methanol into the furnace.
  • the furnace has a relatively stable CO value, which in the first case results from the setting of the protective gas generator and the fuel used in the protective gas generator, and in the second case from the percentage of methanol fed into the furnace.
  • a third variant is direct gassing with hydrocarbons and an oxidizing gas component, such as. B. air or CO 2 .
  • liquid or gaseous fuels are mixed with the oxidizing agent and fed into the furnace.
  • the CO content required for the carburization is generated in the furnace by direct reaction of the fuel with the oxygen of the oxidizing agent.
  • natural gas-air fumigation is currently the most widespread. This is due to the high availability and low price of natural gas.
  • JP-A-57 177 969 describes a method for regulating the carbon potential the furnace atmosphere is known, in which the determination of the Carbon potential via the determination of the oxygen partial pressure and the determination of the CO partial pressure.
  • carbon potential can be obtained from a Enrichment gas can be added to the furnace atmosphere in a separate tank. The dependence of the soot formation on the CO content of the furnace atmosphere is not to be inferred from this publication.
  • the invention has for its object to provide a control for the CO content of the furnace atmosphere, the continuous operation without sooting in carburizing and carbonitriding furnaces even at low carburizing temperatures ( ⁇ 870 ° C) and also in the presence of ammonia (carbonitriding) Furnace chamber guaranteed.
  • the task of continuous and trouble-free operation with a regulated CO content is achieved in that when a freely adjustable minimum CO content is reached, methanol or CO 2 is added to the furnace atmosphere as a CO-forming substance.
  • the methanol fed into the furnace atmosphere becomes after the reaction CH 3 OH ⁇ CO + 2H 2 split (at furnace temperatures ⁇ 800 ° C), whereby the CO content in the furnace atmosphere rises again above the set minimum CO content.
  • An alternative CO-forming substance is CO 2 .
  • a CO content of around 12% has been found to be the minimum CO content in the furnace atmosphere emphasized that falling below this value is a strong one Soot formation and, moreover, the furnace atmosphere no longer is precisely controllable.
  • As a range for the minimum and the upper CO content there is a range between about 12% and 15% CO in the furnace atmosphere proven to be particularly suitable. Because below a CO content of 15%, the course of the CO decrease is very flat, an increase is sufficient of the CO content by adding the CO generator up to this limit of about 15% off the process for a long time with a CO content above to drive the minimum limit. In addition, this narrow range has As a result, only a little CO generator is used to increase the CO content must be kept, which in turn keeps the cost of the process low can be.
  • the device for performing the described method has one Furnace chamber and a CO analyzer arranged in the furnace chamber for Determine the CO content in the furnace atmosphere and one programmable CO controller to - depending on the CO content in the Furnace atmosphere - a valve and a pump for feeding to control a CO-forming substance stored in a tank.
  • the valve and the pump will stop when the set minimum is reached CO content switched to passage or operation. When the set one is reached The upper limit of the CO content is closed again and the pump turned off.
  • the diagram in FIG. 1 shows the course of the CO content during a carbonitriding process.
  • the CO content drops sharply in the course of the process.
  • the curve of the CO content curve runs very flat below 15% CO.
  • Below the 12% line shown as the minimum CO content limit the too low CO content in the furnace atmosphere causes the furnace to soot quickly.
  • the furnace atmosphere becomes a CO-forming substance, e.g. B. added methanol, which due to the high process temperature after the reaction CH 3 OH ⁇ CO + 2H 2 is split. Due to this CO formation due to the splitting of methanol, the CO content in the furnace atmosphere rises very quickly, which is illustrated by the steep rise in the CO curve in FIG. 1.
  • a freely adjustable upper limit is reached - 15% in FIG. 1 - the methanol supply is switched off again, so that the CO content in the furnace atmosphere decreases again as a result of the continuously ongoing process.
  • Fig. 2 is the structure of a device for performing the method described above.
  • a CO analyzer 1 the CO content of the furnace atmosphere in a furnace chamber 2 is determined.
  • the control unit also has a programmable CO controller 3, which freely adjustable values for the upper and lower CO content entered can be.
  • the CO controller 3 activates via the control path shown in dashed lines Valve 4 and a pump 5 as soon as a comparison of the CO analyzer 1 determined CO content with the entered in the CO controller 3 minimal CO content has shown that this reaches the minimum CO content has been.
  • the pump 5 controlled by the CO controller 3 then conveys the CO generator from a tank 6 through the passage valve 4 in the Furnace chamber 2.
  • the CO generator is as above described split, causing the CO content in the furnace atmosphere again increases. If the continuous adjustment of the determined by the CO analyzer 1 CO content in the furnace atmosphere with those stored in the CO controller 3 Values indicate that the entered upper CO content is reached has been, the valve 4 are closed via the CO controller 3 and the pump 5 turned off again.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Details (AREA)

Abstract

The CO content of the atmosphere of an oven (2) supplied with a mixture of air, hydrocarbon and, if required, NH3 and used for carburisation or carbonitriding of metal workpieces is regulated by a process in which the CO level is determined and a CO forming material is introduced when a min. CO content, which is freely adjustable, has been reached. Also claimed is an appts. for carrying out this process.

Description

Die Erfindung betrifft ein Verfahren zur Regelung des CO-Gehaltes einer Ofenatmosphäre zum Aufkohlen und Carbonitrieren metallischer Werkstücke in einem Ofen, wobei die Ofenatmosphäre durch direkte Einspeisung eines Gemisches aus einem Oxidationsmittel, z. B. Luft, und einem kohlenwasserstoffhaltigen Brennstoff sowie gegebenenfalls Ammoniak (NH3) in dem Ofen erzeugt wird der CO-Gehalt der Ofenatmosphäre bestimmt und mit einem frei vorgebbaren Wert für den CO-Gehalt verglichen wird.The invention relates to a method for controlling the CO content of a furnace atmosphere for carburizing and carbonitriding metallic workpieces in a furnace, the furnace atmosphere by directly feeding a mixture of an oxidizing agent, eg. B. air, and a hydrocarbon-containing fuel and optionally ammonia (NH 3 ) generated in the furnace, the CO content of the furnace atmosphere is determined and compared with a freely definable value for the CO content.

Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung dieses Verfahrens.The invention further relates to an apparatus for performing this method.

Bei den Aufkohlungs- oder Carbonitrierverfahren wird die benötigte aufkohlende Atmosphäre entweder in separaten Schutzgasgeneratoren (Endogas) oder durch die Einspeisung von Stickstoff mit Methanol in den Ofen erzeugt. Bei beiden Verfahren der Schutzgaserzeugung ergibt sich im Ofen ein relativ stabiler CO-Wert, der sich im ersten Fall durch die Einstellung des Schutzgasgenerators und dem verwendeten Brennstoff des Schutzgasgenerators und im zweiten Fall durch den prozentualen Anteil an in den Ofen eingespeistem Methanol ergibt. Eine dritte Variante ist die Direktbegasung mit Kohlenwasserstoffen und einem oxydierenden Gasbestandteil, wie z. B. Luft oder CO2. Bei dieser Technik werden flüssige oder gasförmige Brennstoffe mit dem Oxidationsmittel gemischt und in den Ofen geleitet. Hierbei wird der für die Aufkohlung benötigte CO-Anteil im Ofen durch direkte Reaktion des Brennstoffes mit dem Sauerstoff des Oxidationsmittels erzeugt. Von diesen Direktbegasungsverfahren besitzt die Erdgas-Luft-Begasung zur Zeit die größte Verbreitung. Dies hängt mit der hohen Verfügbarkeit und dem günstigen Preis von Erdgas zusammen.In the carburizing or carbonitriding processes, the required carburizing atmosphere is generated either in separate inert gas generators (endogas) or by feeding nitrogen with methanol into the furnace. In both methods of protective gas production, the furnace has a relatively stable CO value, which in the first case results from the setting of the protective gas generator and the fuel used in the protective gas generator, and in the second case from the percentage of methanol fed into the furnace. A third variant is direct gassing with hydrocarbons and an oxidizing gas component, such as. B. air or CO 2 . With this technique, liquid or gaseous fuels are mixed with the oxidizing agent and fed into the furnace. The CO content required for the carburization is generated in the furnace by direct reaction of the fuel with the oxygen of the oxidizing agent. Of these direct fumigation methods, natural gas-air fumigation is currently the most widespread. This is due to the high availability and low price of natural gas.

Die Umsetzung des Erdgases im Ofen mit dem Luftsauerstoff findet hierbei gemäß der Gleichung CH4+0,5 O2+1,88 N2 → CO+2H2+1,88 N2 statt.The conversion of the natural gas in the furnace with the atmospheric oxygen takes place according to the equation CH 4 +0.5 O 2 +1.88 N 2 → CO + 2H 2 +1.88 N 2 instead of.

Beim vollständigen Umsatz des Methans im Ofen mit dem Luftsauerstoff ergibt sich somit ein maximaler CO-Gehalt in der Ofenatmosphäre von 20,5 Vol.-%. Dieser hohe CO-Anteil wird nur unter idealen Bedingungen (sehr hohe Ofentemperatur) erreicht.When the methane is completely converted in the furnace with the atmospheric oxygen there is thus a maximum CO content in the furnace atmosphere of 20.5% by volume. This high CO content is only achieved under ideal conditions (very high furnace temperature) reached.

Bei niedrigen Ofentemperaturen, insbesondere unterhalb von ca. 870°C ist die oben angegebene Reaktion sehr langsam und der Umsatz des Methans in CO entsprechend gering.At low furnace temperatures, especially below approx. 870 ° C, the Reaction given above very slowly and the conversion of methane into CO accordingly low.

Außerdem wird die oben angeführte CO-Bildungsreaktion noch durch die Anwesenheit von Ammoniak (nötig für das Carbonitrieren) behindert.In addition, the above-mentioned CO formation reaction is still caused by the presence hindered by ammonia (necessary for carbonitriding).

Geringe CO-Gehalte bewirken, daß die Kohlenstoffübertragung abnimmt und die Ofenatmosphäre für die Aufkohlung bzw. das Carbonitrieren kaum noch zu regeln ist und der Ofen außerdem sehr schnell verrußt. Das Verrußen des Ofens hat wiederum Produktionsstillstände zur Folge, da zur Beseitigung der Verrußungen der Ofen stillgelegt und ausgebrannt werden muß.Low CO levels cause the carbon transfer to decrease and the furnace atmosphere for carburizing or carbonitriding hardly increases is regulated and the stove also soot very quickly. The sooting of the The furnace in turn results in production downtimes because the removal of the Soot must be shut down and burned out.

Aus der JP-A-57 177 969 ist ein Verfahren zur Regelung des Kohlenstoff-Potentials der Ofenatmosphäre bekannt, bei dem die Bestimmung des Kohlenstoff-Potentials über die Bestimmung des Sauerstoff-Partialdruckes sowie die Bestimmung des CO-Partialdruckes erfolgt. Zur Regelung des Kohlenstoff-Potentials kann bei diesem bekannten Verfahren aus einem separaten Tank ein Anreicherungsgas der Ofenatmosphäre zugegeben werden. Die Abhängigkeit der Rußbildung vom CO-Gehalt der Ofenatmosphäre ist dieser Druckschrift nicht zu entnehmen.JP-A-57 177 969 describes a method for regulating the carbon potential the furnace atmosphere is known, in which the determination of the Carbon potential via the determination of the oxygen partial pressure and the determination of the CO partial pressure. To regulate the In this known method, carbon potential can be obtained from a Enrichment gas can be added to the furnace atmosphere in a separate tank. The dependence of the soot formation on the CO content of the furnace atmosphere is not to be inferred from this publication.

Der Erfindung liegt die Aufgabe zugrunde, eine Regelung für den CO-Gehalt der Ofenatmosphäre zu schaffen, die bei Aufkohlungs- und Carbonitrieröfen auch bei niedrigen Aufkohlungstemperaturen (≤ 870°C) und auch bei Vorhandensein von Ammoniak (Carbonitrieren) einen kontinuierlichen Betrieb ohne Verrußung der Ofenkammer gewährleistet.The invention has for its object to provide a control for the CO content of the furnace atmosphere, the continuous operation without sooting in carburizing and carbonitriding furnaces even at low carburizing temperatures (≤ 870 ° C) and also in the presence of ammonia (carbonitriding) Furnace chamber guaranteed.

Die Aufgabe des kontinuierlichen und störungsfreien Betriebes bei einem geregelten CO-Gehalt wird dadurch gelöst, daß bei Erreichen eines frei einstellbaren minimalen CO-Gehaltes der Ofenatmosphäre als CO-bildender Stoff Methanol oder CO2 zugeführt wird.The task of continuous and trouble-free operation with a regulated CO content is achieved in that when a freely adjustable minimum CO content is reached, methanol or CO 2 is added to the furnace atmosphere as a CO-forming substance.

Das in die Ofenatmosphäre eingespeiste Methanol wird nach der Reaktion CH3OH → CO + 2H2 gespalten (bei Ofentemperaturen ≥800°C), wodurch der CO-Gehalt in der Ofenatmosphäre wieder über den eingestellten minimalen CO-Gehalt ansteigt.The methanol fed into the furnace atmosphere becomes after the reaction CH 3 OH → CO + 2H 2 split (at furnace temperatures ≥800 ° C), whereby the CO content in the furnace atmosphere rises again above the set minimum CO content.

Ein alternativer CO bildender Stoff ist CO2.An alternative CO-forming substance is CO 2 .

Um die jeweils zuzugebende Menge des CO bildenden Stoffs gering und das Verfahren kostengünstig zu halten, kann zusätzlich ein oberer Wert für den CO-Gehalt eingestellt werden, bei dessen Erreichen die Zugabe des CO-Bildners wieder abgestellt wird, bis der CO-Gehalt im Laufe des Verfahrens wieder auf den minimalen CO-Gehalt abgesunken ist.In order to reduce the amount of CO-forming substance to be added and that Keeping the process inexpensive can also be a top value for the CO content can be set, when reached the addition of the CO generator is turned off again until the CO content returns during the process has dropped to the minimum CO content.

Ein CO-Gehalt von etwa 12 % hat sich als minimaler CO-Gehalt in der Ofenatmosphäre herausgestellt, da ein Unterschreiten dieses Wertes eine starke Rußbildung zur Folge hat und darüber hinaus die Ofenatmosphäre nicht mehr exakt regelbar ist. Als Bandbreite für den minimalen und den oberen CO-Gehalt hat sich eine Bandbreite zwischen etwa 12 % und 15 % CO in der Ofenatmosphäre als besonders geeignet erwiesen. Da unterhalb eines CO-Gehaltes von 15 % der Verlauf der CO-Abnahme sehr flach verläuft, reicht ein Anheben des CO-Gehaltes durch die Zugabe des CO-Bildners bis zu dieser Grenze von etwa 15 % aus, um den Prozeß für längere Zeit mit einem CO-Gehalt oberhalb der Minimalgrenze zu fahren. Darüber hinaus hat diese enge Bandbreite zur Folge, daß nur wenig CO-Bildner zum Anheben des CO-Gehaltes verwendet werden muß, wodurch wiederum die Kosten des Verfahrens niedrig gehalten werden können.A CO content of around 12% has been found to be the minimum CO content in the furnace atmosphere emphasized that falling below this value is a strong one Soot formation and, moreover, the furnace atmosphere no longer is precisely controllable. As a range for the minimum and the upper CO content there is a range between about 12% and 15% CO in the furnace atmosphere proven to be particularly suitable. Because below a CO content of 15%, the course of the CO decrease is very flat, an increase is sufficient of the CO content by adding the CO generator up to this limit of about 15% off the process for a long time with a CO content above to drive the minimum limit. In addition, this narrow range has As a result, only a little CO generator is used to increase the CO content must be kept, which in turn keeps the cost of the process low can be.

Die Vorrichtung zur Durchführung des beschriebenen Verfahrens weist eine Ofenkammer und einen in der Ofenkammer angeordneten CO-Analysator zum Bestimmen des CO-Gehaltes in der Ofenatmosphäre sowie einen programmierbaren CO-Regler auf, um - in Abhängigkeit des CO-Gehaltes in der Ofenatmosphäre - ein Ventil sowie eine Pumpe zum Zuführen eines in einem Tank bevorrateten CO-bildenden Stoffes anzusteuern. Das Ventil und die Pumpe werden bei Erreichen des eingestellten minimalen CO-Gehaltes auf Durchlaß bzw. Betrieb geschaltet. Bei Erreichen der eingestellten oberen Grenze des CO-Gehaltes wird das Ventil wieder geschlossen und die Pumpe abgeschaltet.The device for performing the described method has one Furnace chamber and a CO analyzer arranged in the furnace chamber for Determine the CO content in the furnace atmosphere and one programmable CO controller to - depending on the CO content in the Furnace atmosphere - a valve and a pump for feeding to control a CO-forming substance stored in a tank. The valve and the pump will stop when the set minimum is reached CO content switched to passage or operation. When the set one is reached The upper limit of the CO content is closed again and the pump turned off.

Weitere Einzelheiten und Vorteile ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnungen, in denen das erfindungsgemäße Verfahren sowie eine Vorrichtung zur Durchführung dieses Verfahrens schematisch dargestellt ist. In den Zeichnungen zeigen:

Fig. 1
ein Diagramm über den Verlauf des CO-Gehaltes in der Ofenatmosphäre bei dem erfindungsgemäßen Verfahren und
Fig. 2
eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens.
Further details and advantages emerge from the following description of the associated drawings, in which the method according to the invention and an apparatus for carrying out this method are shown schematically. The drawings show:
Fig. 1
a diagram of the course of the CO content in the furnace atmosphere in the inventive method and
Fig. 2
is a schematic representation of an apparatus for performing the method according to the invention.

In dem in Fig. 1 dargestellten Diagramm ist der Verlauf des CO-Gehaltes während eines Carbonitrierverfahrens dargestellt. Durch die Zugabe von Ammoniak zur Ofenatmosphäre sinkt der CO-Gehalt im Verlauf des Prozesses stark ab. Wie aus Fig. 1 ersichtlich, verläuft die Kurve des CO-Gehalt-Verlaufes unterhalb von 15 % CO sehr flach. Unterhalb der als minimale CO-Gehalt-Grenze dargestellten 12 %-Linie verursacht der zu geringe CO-Gehalt in der Ofenatmosphäre ein schnelles Verrußen des Ofens. Beim Erreichen dieser unteren Grenze wird der Ofenatmosphäre ein CO bildender Stoff, z. B. Methanol zugegeben, welches infolge der hohen Prozeßtemperatur nach der Reaktion CH3OH → CO + 2H2 gespalten wird. Durch diese CO-Bildung infolge der Methanolspaltung steigt der CO-Gehalt in der Ofenatmosphäre sehr schnell an, welches der steile Anstieg der CO-Kurve in Fig. 1 verdeutlicht. Bei Erreichen einer frei einstellbaren oberen Grenze - in Fig. 1 15 % - wird die Methanolzufuhr wieder abgestellt, so daß der CO-Gehalt in der Ofenatmosphäre infolge des kontinuierlich weiterlaufenden Prozesses wieder abnimmt.The diagram in FIG. 1 shows the course of the CO content during a carbonitriding process. By adding ammonia to the furnace atmosphere, the CO content drops sharply in the course of the process. As can be seen from FIG. 1, the curve of the CO content curve runs very flat below 15% CO. Below the 12% line shown as the minimum CO content limit, the too low CO content in the furnace atmosphere causes the furnace to soot quickly. When this lower limit is reached, the furnace atmosphere becomes a CO-forming substance, e.g. B. added methanol, which due to the high process temperature after the reaction CH 3 OH → CO + 2H 2 is split. Due to this CO formation due to the splitting of methanol, the CO content in the furnace atmosphere rises very quickly, which is illustrated by the steep rise in the CO curve in FIG. 1. When a freely adjustable upper limit is reached - 15% in FIG. 1 - the methanol supply is switched off again, so that the CO content in the furnace atmosphere decreases again as a result of the continuously ongoing process.

Aus Fig. 1 ist ersichtlich, daß schon das geringfügige Anheben des CO-Gehaltes von 12 % auf 15 % für einen längeren Zeitraum einen störungsfreien Ablauf des Prozesses oberhalb der Rußgrenze ermöglicht, da der Verlauf der CO-Kurve unterhalb von 15 % sehr flach ist.From Fig. 1 it can be seen that even the slight increase in the CO content a trouble-free process from 12% to 15% for a longer period of the process above the soot limit, because the course of the CO curve below 15% is very flat.

In Fig. 2 ist schematisch der Aufbau einer Vorrichtung zur Durchführung des voranstehend beschriebenen Verfahrens dargestellt. Mittels eines CO-Analysators 1 wird der CO-Gehalt der Ofenatmosphäre in einer Ofenkammer 2 ermittelt. Die Regeleinheit weist ferner einen programmierbaren CO-Regler 3 auf, welchem frei einstellbare Werte für den oberen und unteren CO-Gehalt eingegeben werden können.In Fig. 2 is the structure of a device for performing the method described above. Using a CO analyzer 1, the CO content of the furnace atmosphere in a furnace chamber 2 is determined. The control unit also has a programmable CO controller 3, which freely adjustable values for the upper and lower CO content entered can be.

Über die gestrichelt dargestellte Regelstrecke steuert der CO-Regler 3 ein Ventil 4 und eine Pumpe 5 an, sobald ein Abgleich des vom CO-Analysator 1 ermittelten CO-Gehaltes mit dem im CO-Regler 3 eingegebenen minimalen CO-Gehalt ergeben hat, daß dieser minimale CO-Gehalt erreicht worden ist.The CO controller 3 activates via the control path shown in dashed lines Valve 4 and a pump 5 as soon as a comparison of the CO analyzer 1 determined CO content with the entered in the CO controller 3 minimal CO content has shown that this reaches the minimum CO content has been.

Die von dem CO-Regler 3 angesteuerte Pumpe 5 fördert daraufhin den CO-Bildner aus einem Tank 6 durch das auf Durchlaß geschaltete Ventil 4 in die Ofenkammer 2. In der Ofenkammer 2 wird der CO-Bildner wie voranstehend beschrieben gespalten, wodurch der CO-Gehalt in der Ofenatmosphäre wieder ansteigt. Wenn der fortlaufende Abgleich des von dem CO-Analysator 1 ermittelten CO-Gehaltes in der Ofenatmosphäre mit den in dem CO-Regler 3 gespeicherten Werten ergibt, daß der eingegebene obere CO-Gehalt erreicht worden ist, werden über den CO-Regler 3 das Ventil 4 geschlossen und die Pumpe 5 wieder abgestellt.The pump 5 controlled by the CO controller 3 then conveys the CO generator from a tank 6 through the passage valve 4 in the Furnace chamber 2. In the furnace chamber 2, the CO generator is as above described split, causing the CO content in the furnace atmosphere again increases. If the continuous adjustment of the determined by the CO analyzer 1 CO content in the furnace atmosphere with those stored in the CO controller 3 Values indicate that the entered upper CO content is reached has been, the valve 4 are closed via the CO controller 3 and the pump 5 turned off again.

Der voranstehend beschriebene Prozeß beginnt von neuem, sobald CO-Analysator 1 und CO-Regler 3 ein erneutes Erreichen des eingestellten minimalen CO-Gehaltes ermitteln.The process described above begins again as soon as the CO analyzer 1 and CO controller 3 the set minimum is reached again Determine the CO content.

Mit einem solchermaßen geregelten Verfahren wird einerseits gewährleistet, daß der CO-Gehalt der Ofenatmosphäre niemals unter den eingestellten, eine starke Verrußung des Ofens bewirkenden minimalen CO-Gehalt absinkt und andererseits nur soviel CO-Bildner der Ofenatmosphäre zugeführt wird, wie dies für einen kostengünstigen und störungsfreien Betrieb des Verfahrens notwendig ist. With such a regulated process, on the one hand, it is guaranteed that the CO content of the furnace atmosphere is never below the set one strong sooting of the furnace causes minimal CO content and decreases on the other hand, only as much CO former is added to the furnace atmosphere as this for an inexpensive and trouble-free operation of the method necessary is.

BezugszeichenlisteReference list

11
CO-AnalysatorCO analyzer
22nd
OfenkammerFurnace chamber
33rd
CO-ReglerCO regulator
44th
VentilValve
55
Pumpepump
66
Tanktank

Claims (5)

  1. Method for regulating the CO content of a furnace atmosphere for carburising and carbonitriding metal workpieces in a furnace, wherein the furnace atmosphere is produced by direct supply to the furnace of a mixture of an oxidant, e.g. air, and a hydrocarbon-containing fuel as well as if necessary ammonia (NH3), and the CO content of the furnace atmosphere is determined and compared with a freely presettable value for the CO content, characterised in that, on reaching a freely adjustable minimum CO content of the furnace atmosphere, methanol or CO2 is supplied as the CO-forming substance.
  2. Method according to claim 1, characterised in that the furnace atmosphere is supplied with the CO-forming substance until a freely adjustable upper CO content is achieved.
  3. Method according to claim 1 or 2, characterised in that the minimum CO content is about 12% CO.
  4. Method according to claim 2, characterised in that the regulated bandwidth of CO content is between about 12% and about 15% CO.
  5. Apparatus for carrying out the method according to any of claims 1 to 4 with a furnace chamber (2) and a CO analyser (1) arranged in the furnace chamber (2) for determining the CO content in the furnace atmosphere, characterised by a programmable CO regulator (3) for driving a valve (4) as well as a pump (5) for supplying a CO-forming substance starting from a tank (6) as a function of the CO content in the furnace atmosphere
EP96101732A 1995-04-22 1996-02-07 Process and apparatus for adjusting the carbon monoxide concentration of a furnace atmosphere for carburizing or nitrocarburizing of metallic parts Expired - Lifetime EP0738785B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19514932A DE19514932A1 (en) 1995-04-22 1995-04-22 Method and device for regulating the CO content of an oven atmosphere for carburizing and carbonitriding metallic workpieces
DE19514932 1995-04-22

Publications (2)

Publication Number Publication Date
EP0738785A1 EP0738785A1 (en) 1996-10-23
EP0738785B1 true EP0738785B1 (en) 1999-03-31

Family

ID=7760177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96101732A Expired - Lifetime EP0738785B1 (en) 1995-04-22 1996-02-07 Process and apparatus for adjusting the carbon monoxide concentration of a furnace atmosphere for carburizing or nitrocarburizing of metallic parts

Country Status (8)

Country Link
US (1) US5741371A (en)
EP (1) EP0738785B1 (en)
JP (1) JPH08296028A (en)
CN (1) CN1136330C (en)
AT (1) ATE178366T1 (en)
CA (1) CA2174409C (en)
DE (2) DE19514932A1 (en)
ES (1) ES2129897T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409236B2 (en) * 1997-02-18 2003-05-26 同和鉱業株式会社 Atmosphere control method of heat treatment furnace
DE19940370C2 (en) * 1999-08-25 2001-07-12 Messer Griesheim Gmbh Process for nitrocarburizing metallic workpieces
US6635121B2 (en) * 2000-02-04 2003-10-21 American Air Liquide, Inc. Method and apparatus for controlling the decarburization of steel components in a furnace
JP3884326B2 (en) * 2002-05-22 2007-02-21 大陽日酸株式会社 Carburizing atmosphere gas generator and method
EP2360287B1 (en) * 2005-12-08 2013-08-07 NTN Corporation Method of gas carbonitriding, process for producing machine part and machine part
CN103589987B (en) * 2013-12-06 2016-01-20 龙工(上海)精工液压有限公司 A kind of thermal treatment process of ram pump transmission shaft

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH628092A5 (en) * 1978-03-21 1982-02-15 Ipsen Ind Int Gmbh METHOD AND DEVICE FOR REGULATING THE CARBON LEVEL OF A CHEMICALLY REACTIVE GAS MIXTURE.
GB2044804A (en) * 1979-03-16 1980-10-22 Boc Ltd Heat treatment method
JPS57177969A (en) * 1981-04-23 1982-11-01 Chugai Ro Kogyo Kaisha Ltd Controlling method for carbon potential in furnace
US5133813A (en) * 1990-07-03 1992-07-28 Tokyo Heat Treating Company Ltd. Gas-carburizing process and apparatus

Also Published As

Publication number Publication date
JPH08296028A (en) 1996-11-12
CA2174409A1 (en) 1996-10-23
US5741371A (en) 1998-04-21
CN1136330C (en) 2004-01-28
ES2129897T3 (en) 1999-06-16
CA2174409C (en) 2009-06-23
DE59601530D1 (en) 1999-05-06
ATE178366T1 (en) 1999-04-15
CN1136597A (en) 1996-11-27
DE19514932A1 (en) 1996-10-24
EP0738785A1 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
EP0049530B1 (en) Method and device for carbonizing metallic pieces
DE2450879A1 (en) METHOD FOR HEAT TREATMENT OF FERROUS METALS
EP2302081B1 (en) Method and device for preparing process gases for the thermal treatment of metallic materials/workpieces in industrial ovens
DE102008029001B3 (en) Method and device for the heat treatment of metallic materials
EP0738785B1 (en) Process and apparatus for adjusting the carbon monoxide concentration of a furnace atmosphere for carburizing or nitrocarburizing of metallic parts
DE4212307C2 (en) Process for the production of a protective or reaction gas for the heat treatment of metals
DE4400391A1 (en) Process to avoid edge oxidation when carburizing steels
EP2878684A2 (en) Method for controlling the decarbonisation potential of a metal melt containing carbon during an oxygen/inert gas blowing and vacuum treatment
EP0031034B1 (en) Process for the adjustable carburizing or heating in a protective gas of steel work pieces
EP2627795A1 (en) Method and arrangement for carburizing and carbonitriding metallic materials
DE3149212A1 (en) METHOD FOR ADJUSTING OVEN ATMOSPHERES
DE3406792A1 (en) METHOD AND DEVICE FOR GLOWING METAL PARTS
DE2408984C3 (en) Process for producing defined nitriding layers on iron and iron alloys in an oxygen-containing gas atmosphere and arrangement for producing and keeping constant the starting gas mixtures required for this
DE19610722B4 (en) Process for the preparation of protective or reaction gases for the heat treatment of metals
DE19651878C2 (en) Process for the production of a protective or reaction gas for the heat treatment of metals
EP4065889B1 (en) Combustion of the co in secondary metallurgical exhaust gas, with calorific value control and volume flow control
DE10221605A1 (en) Method and device for the heat treatment of metallic workpieces
DE3534104C2 (en)
EP1673483A1 (en) Method for heat-treating iron-containing materials
DE3228892A1 (en) METHOD AND DEVICE FOR CARBONING
DE3224607A1 (en) Method for the case-hardening and neutral-carburising annealing of metal workpieces
EP1456422B1 (en) Method for avoiding adhesions and scratches during recrystallization annealing of cold rolled strips
DE3002463A1 (en) Nitriding of steel in stream of ammonia gas - where control of ammonia concn. in gas mixt. leaving nitriding container ensures min. consumption of ammonia
DE280966C (en)
DE19509614A1 (en) Controlling nitriding value of nitriding and nitrocarburisation atmos

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19960907

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IPSEN INTERNATIONAL GMBH

17Q First examination report despatched

Effective date: 19970611

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 178366

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59601530

Country of ref document: DE

Date of ref document: 19990506

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990416

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2129897

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: IPSEN INTERNATIONAL GMBH

Free format text: IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE) -TRANSFER TO- IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140218

Year of fee payment: 19

Ref country code: DE

Payment date: 20140219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140212

Year of fee payment: 19

Ref country code: IT

Payment date: 20140227

Year of fee payment: 19

Ref country code: FR

Payment date: 20140219

Year of fee payment: 19

Ref country code: ES

Payment date: 20140226

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140218

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59601530

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 178366

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150207

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150208