EP0735935B1 - Impulse drive system, especially for an impulse screwdriver - Google Patents

Impulse drive system, especially for an impulse screwdriver Download PDF

Info

Publication number
EP0735935B1
EP0735935B1 EP95902761A EP95902761A EP0735935B1 EP 0735935 B1 EP0735935 B1 EP 0735935B1 EP 95902761 A EP95902761 A EP 95902761A EP 95902761 A EP95902761 A EP 95902761A EP 0735935 B1 EP0735935 B1 EP 0735935B1
Authority
EP
European Patent Office
Prior art keywords
pulse
core part
percussion mechanism
lifting piston
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95902761A
Other languages
German (de)
French (fr)
Other versions
EP0735935A1 (en
Inventor
Horst Weidner
Robert Klenk
Wolfgang Backe
Egbert Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0735935A1 publication Critical patent/EP0735935A1/en
Application granted granted Critical
Publication of EP0735935B1 publication Critical patent/EP0735935B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/145Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for fluid operated wrenches or screwdrivers
    • B25B23/1453Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for fluid operated wrenches or screwdrivers for impact wrenches or screwdrivers

Definitions

  • the invention is based on a pulse hammer mechanism according to the preamble of claim 1.
  • a pulse hammer mechanism is already known (EP 460 592 A1), in which the angular momentum is generated by means of radially outwardly directed, spring-loaded slats which are movable in the radial direction and which at least temporarily have high-pressure spaces and seal adjacent low-pressure rooms from each other.
  • the outside of the lamellae has specially shaped sealing surfaces, which are to be manufactured as precisely as possible to avoid leakage losses, which requires a relatively high level of manufacturing complexity.
  • a pulse hammer mechanism is known according to the preamble of claim 1, which has a radially displaceable piston accommodated in a rotating body.
  • the piston performs a working stroke forced by means of a control cam.
  • the piston is reset by means of a return spring.
  • a pulse hammer mechanism which has a radially displaceable U-shaped piston which can be driven back and forth by means of an eccentric pin engaging in the piston.
  • the pin is connected to the output shaft of the pulse hammer mechanism and is overhung with it.
  • the pulse hammer mechanism according to the invention with the features of claim 1 has the advantage of having rotationally symmetrical sealing surfaces that are much easier and more precisely to produce, which means that manufacturing-related dimensional and / or shape deviations and the associated leakage losses can be reduced.
  • FIG. 1 shows a longitudinal section of a first exemplary embodiment of a pulse hammer mechanism designed according to the invention
  • FIG. 2 shows a cross section along line II-II in FIG. 1
  • FIGS. 3 and 4 each show cross sections through two further exemplary embodiments of a pulse hammer mechanism.
  • the pulse percussion mechanism shown in FIG. 1 has a cylindrical rotary body 13 which can be driven to rotate about an axis of rotation 15, for example in the direction of an arrow 15a, by means of a drive shaft 14 with the aid of a drive motor (not shown).
  • the rotary body 13 At its end facing away from the drive shaft 14, the rotary body 13 has a central receiving opening 16 which almost completely penetrates the rotary body 13 and in which a cylindrical core part 17 is arranged concentrically.
  • Perpendicular to the axis of rotation 15 there is a radial bore 18 approximately in the center of the rotating body 13, in which a reciprocating piston 19 is received in a radially displaceable manner.
  • the reciprocating piston 19 there is a through opening 20 which extends transversely to the lifting direction of the reciprocating piston 19 in the axial direction and in which the core part 17 extends through the reciprocating piston 19 with play.
  • the radial bore 18 can be closed by a cover 21 and sealed to the outside by means of suitable sealing means 22.
  • the core part 17 is rotationally coupled to an output shaft 25 which is provided at the end with a fastening device for a screwing tool, for example for a screwdriver bit.
  • Core part 17 and output shaft 25 are integrally connected to one another in the example.
  • the core part 17 is formed at the end on the output shaft 25.
  • Core part 17 and output shaft 25 are rotatably mounted in the receiving opening 16 in the circumferential direction with respect to the rotating body 13.
  • the mounting in sliding seats 27 and 28 takes place laterally to the radial bore 18.
  • a sliding seat 28 located closer to the fastening device 26 is formed by two axially offset annular collars 29 and 30 of the core part 17, between which a sealing ring 31 sits in an annular groove 32 , which seals the receiving opening 16 to the outside.
  • the core part 17 is fixed within the rotary body 13 by a locking ring 33 in the axial direction.
  • the reciprocating piston 19 is acted upon by a return spring 35 in the direction of the cover 21 with spring force and is pressed against a stop 34 projecting radially inwards on the cover 21.
  • the reciprocating piston 19 forms within the through opening 20 a peripheral control surface 36 which acts as a control means and which interacts with a control track 37 arranged on the core part 17 in the region of the radial bore 18.
  • the control track 37 has an almost cylindrical cross section with a radially projecting, strip-shaped control cam 38.
  • Cavities remaining within the rotating body 13 are almost completely filled with an essentially incompressible pressure medium, for example a hydraulic oil.
  • the reciprocating piston 19 separates a pressure chamber 40 located at the base of the radial bore 18 from a low-pressure chamber 41.
  • the low-pressure chamber 41 extends essentially over two partial areas, within the through opening 20 between the core part 17 and the rotating body 13, and between the reciprocating piston 19 and the cover 21. Both partial areas are located via a compensating line 24 in connection.
  • the piston surface of the reciprocating piston 19 facing the pressure chamber 40 forms a working surface 39.
  • the pressure chamber 40 is connected to the low-pressure chamber 41 via a first connecting line 42 running in the rotating body 13.
  • An adjustable control valve 43 is arranged in the first connecting line 42, with the aid of which an overflow cross section 44 to the first connecting line 42 can be controlled.
  • the control valve 43 is formed, for example, by an axially displaceable threaded pin 45 with a conical tip.
  • a seal 46 arranged on the outer circumference of the threaded pin 45 prevents pressure medium from passing the threaded pin 45 to the outside.
  • a second connecting line 47 is formed in the reciprocating piston 19 between the low pressure chamber 41 and the pressure chamber 40.
  • the second connecting line 47 extends radially from the control surface 36 to the working surface 39 of the reciprocating piston 19.
  • a backflow valve 48 is arranged, which blocks pressure in the pressure chamber 40 in the direction of the low-pressure chamber 41 and in the opposite direction in the case of a corresponding negative pressure in the pressure chamber 40 allows a backflow of pressure medium.
  • the backflow valve 48 is designed as a check valve and has a spherical valve closing body 49 which is acted upon by a valve closing spring 50 with spring force in the direction of the low pressure chamber 41.
  • the valve closing spring 50 is supported on a support ring 51 fixedly connected to the reciprocating piston.
  • the cylindrical structure of the rotating body 13 can be seen in FIG.
  • the likewise rotationally symmetrical reciprocating piston 19 is arranged in the radial bore 18.
  • the through opening 20 is located centrally in the reciprocating piston 19 and is penetrated by the core part 17.
  • the core part 17 is rotated by approximately 30 ° against the direction of the arrow 15a in relation to the position shown in FIG.
  • the control surface 36 is composed of two approximately semicircular partial surfaces 36a, 36b.
  • the first partial surface 36a located closer to the cover 21 has a greater radial distance from the axis of rotation 15 than the second partial surface 36b located opposite it and closer to the pressure chamber 40.
  • the radial distance between the second partial surface 36b and the axis of rotation 15 is smaller than the radial distance between the control cam 38.
  • the partial surfaces 36a and 36b are connected to one another by approximately radially extending shoulder surfaces 54 and 55.
  • the core part 17 When the pulse hammer mechanism 12 is idling, the core part 17 also rotates with the rotary body 13 due to the effects of friction. If the torque acting on the fastening device 26 when screwing in exceeds the friction torque, the rotating body 13 will rotate relative to the core part 17. The core part 17 then rotates more slowly than the rotary body 13.
  • the reciprocating piston 19 is then brought back into abutment against the stop 34 by the return spring 35 from its stroke position.
  • the control cam 38 again comes into contact with the shoulder surface 55 to generate a further angular momentum. Due to the symmetrical design of the control surface 36 and the control path 37, the pulse striking mechanism 12 can also be operated in the reverse drive direction.
  • a pressure is exerted on the pressure medium by the working surface 39.
  • Pressure medium can firstly reach the low-pressure chamber 41 via overflow grooves 56 arranged on the outer surface of the reciprocating piston 19 and via corresponding recesses in the rotary body 13 in the area of the radial bore 18 opposite these.
  • the overflow groove 56 and the recess 57 together form an overflow channel from the pressure chamber 40 to the low pressure chamber 41.
  • Axially extending sealing strips 58, 59 are arranged in the overflow groove 56 and within the recess 57, which come into congruence with one another with increasing stroke movement of the reciprocating piston 19. If this is the case, the pressure chamber 40 is sealed suddenly.
  • FIG. 3 shows a second exemplary embodiment of the pulse hammer mechanism 12.
  • a single reciprocating piston 19 is received in the radial bore 18.
  • the main difference from the first exemplary embodiment is the arrangement of a damping spring 60 between the reciprocating piston 19 and the cover 21.
  • the damping spring 60 is designed as a compression spring.
  • the damping spring 60 has the task of preventing or dampening an impact of the reciprocating piston 19 against the shoulder 34 during the return stroke of the reciprocating piston 19.
  • the damping spring 60 supports a jam-free passage of the control cam 38 on the partial surface 36b.
  • the radius of the first partial surface 36a of the control surface 36 corresponds approximately to that of the control cam 38.
  • the damping spring 60 acts on the reciprocating piston 19 in the direction of the pressure chamber 40 and causes the control cam 38 and the first partial surface 36a to bear against one another.
  • the return of the lifting piston 19 from the lifting position into the starting position shown takes place automatically in this case by the pressurized pressure medium in the pressure chamber 40 and is supported by the passage of the control cam 38 on the first partial surface 36a.
  • the return spring can therefore be dispensed with.
  • the valve closing spring 50 of the backflow valve 48 is supported on the bottom of the radial bore 18. In the basic position shown, the sealing strips 58, 59 are at a short distance from one another, so that a short stroke is sufficient to close the pressure chamber 40.
  • FIG. 4 shows a third embodiment of the pulse hammer mechanism 12. Parts that are the same and function the same as in the first or second exemplary embodiment are also identified by the same reference numerals.
  • the control surface 36 is designed without heel surfaces. While the first partial surface 36a has approximately the same radius as the control cam 38, the second partial surface 36b runs with a different radius, which in the circumferential direction of the control cam 38 starts from the radius of the control cam 38 into a radius corresponding to the radius of the core part 17 and then again into the Radius of the control cam 38 passes.
  • the second partial surface 36b has an arcuate course which is strongly adapted to the outer circumference of the core part 17, so that the reciprocating piston 19 abuts the control track 37 over a large area in the basic position shown.
  • the control track 37 accordingly forms a stop for the second partial surface 36b during the return stroke of the reciprocating piston 19.
  • a gap 61 is present between the reciprocating piston 19 and the cover 21, so that a damping spring which cushions the rebound against the cover 21 can be dispensed with.
  • a valve closing spring is also not required here, since the valve closing body 49 is closed by the pressure of the pressure medium in the pressure chamber 40.
  • a locking ring 52 prevents the valve closing body 49 from migrating out into the pressure chamber 40.
  • the assignment of the drive shaft 14 to the rotary body 13 and from the output shaft 25 to the core part 17 described in the exemplary embodiments is not mandatory, but is advantageous because of the higher moment of inertia of the rotary body 13 and the higher flywheel mass of the drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Motors (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Actuator (AREA)
  • Reciprocating Pumps (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Impulsschlagwerk nach der Gattung des Anspruchs 1. Es ist schon ein Impulsschlagwerk bekannt (EP 460 592 A1), bei dem die Drehimpulserzeugung mittels radial nach außen gerichteter, in radialer Richtung beweglicher, federbelasteter Lamellen erfolgt, die zumindest zeitweise Hochdruckräume und benachbarte Niederdruckräume dichtend voneinander trennen. Die Lamellen weisen auf ihrer Außenseite speziell geformte Dichtflächen auf, die zur Vermeidung von Leckageverlusten möglichst genau herzustellen sind, was einen relativ hohen fertigungstechnischen Aufwand erfordert.The invention is based on a pulse hammer mechanism according to the preamble of claim 1. A pulse hammer mechanism is already known (EP 460 592 A1), in which the angular momentum is generated by means of radially outwardly directed, spring-loaded slats which are movable in the radial direction and which at least temporarily have high-pressure spaces and seal adjacent low-pressure rooms from each other. The outside of the lamellae has specially shaped sealing surfaces, which are to be manufactured as precisely as possible to avoid leakage losses, which requires a relatively high level of manufacturing complexity.

Aus der EP-A-0 186 316 ist ein Impulsschlagwerk nach dem Oberbegriff des Anspruchs 1 bekannt, das einen in einem Rotationskörper untergebrachten, radial verschiebbaren Kolben aufweist. Der Kolben führt einen mittels einer Steuerkurve erzwungenen Arbeitshub durch. Die Rückstellung des Kolbens erfolgt mittels einer Rückstellfeder.From EP-A-0 186 316 a pulse hammer mechanism is known according to the preamble of claim 1, which has a radially displaceable piston accommodated in a rotating body. The piston performs a working stroke forced by means of a control cam. The piston is reset by means of a return spring.

Aus der JP-A-49 014839 ist ein Impulsschlagwerk bekannt, das einen radial verschiebbaren U-förmigen Kolben aufweist, der mittels eines in den Kolben eingreifenden exzentrischen Zapfens hin- und hergehend antreibbar ist. Der Zapfen ist mit der Abtriebswelle des Impulsschlagwerks verbunden und mit dieser fliegend gelagert.From JP-A-49 014839 a pulse hammer mechanism is known which has a radially displaceable U-shaped piston which can be driven back and forth by means of an eccentric pin engaging in the piston. The pin is connected to the output shaft of the pulse hammer mechanism and is overhung with it.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Impulsschlagwerk mit den Merkmalen des Anspruchs 1 hat den Vorteil, wesentlich einfacher und genauer herstellbare rotationssymmetrische Dichtflächen aufzuweisen, wodurch fertigungsbedingte Maß- und/oder Formabweichungen und damit einhergehende Leckageverluste reduzierbar sind. Durch Ausbildung des Impulsschlagwerks mit wenigstens einem in radialer Richtung wirkenden Hubkolben läßt sich eine kompakte Bauweise in axialer Richtung erzielen.The pulse hammer mechanism according to the invention with the features of claim 1 has the advantage of having rotationally symmetrical sealing surfaces that are much easier and more precisely to produce, which means that manufacturing-related dimensional and / or shape deviations and the associated leakage losses can be reduced. By designing the pulse hammer mechanism with at least one reciprocating piston acting in the radial direction, a compact design in the axial direction can be achieved.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Impulsschlagwerks möglich.The measures listed in the subclaims enable advantageous developments and improvements of the pulse hammer mechanism specified in claim 1.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Längsschnitt eines ersten Ausführungsbeispiels eines erfindungsgemäß ausgebildeten Impulsschlagwerks, Figur 2 einen Querschnitt gemäß Linie II-II in Figur 1, die Figuren 3 und 4 jeweils Querschnitte durch zwei weitere Ausführungsbeispiele eines Impulsschlagwerks.Embodiments of the invention are shown in the drawing and explained in more detail in the following description. 1 shows a longitudinal section of a first exemplary embodiment of a pulse hammer mechanism designed according to the invention, FIG. 2 shows a cross section along line II-II in FIG. 1, FIGS. 3 and 4 each show cross sections through two further exemplary embodiments of a pulse hammer mechanism.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Das in Figur 1 dargestellte Impulsschlagwerk weist einen zylindrischen Rotationskörper 13 auf, der über eine Antriebswelle 14 mit Hilfe eines nicht näher dargestellten Antriebsmotors um eine Drehachse 15 beispielsweise in Richtung eines Pfeiles 15a drehend antreibbar ist. Der Rotationskörper 13 hat an seinem der Antriebwelle 14 abgewandten Ende eine den Rotationskörper 13 fast vollständig durchziehende zentrale Aufnahmeöffnung 16, in der ein zylindrisches Kernteil 17 konzentrisch angeordnet ist. Senkrecht zur Drehachse 15 befindet sich etwa mittig im Rotationskörper 13 eine Radialbohrung 18, in der ein Hubkolben 19 radial verschiebbar aufgenommen ist. Im Hubkolben 19 befindet sich eine Durchgangsöffnung 20, die sich quer zur Hubrichtung des Hubkolbens 19 in axialer Richtung erstreckt und in der das Kernteil 17 mit Spiel den Hubkolben 19 durchragt. Die Radialbohrung 18 ist durch einen Deckel 21 verschließbar und mittels geeigneter Dichtmittel 22 nach außen hin abgedichtet.The pulse percussion mechanism shown in FIG. 1 has a cylindrical rotary body 13 which can be driven to rotate about an axis of rotation 15, for example in the direction of an arrow 15a, by means of a drive shaft 14 with the aid of a drive motor (not shown). At its end facing away from the drive shaft 14, the rotary body 13 has a central receiving opening 16 which almost completely penetrates the rotary body 13 and in which a cylindrical core part 17 is arranged concentrically. Perpendicular to the axis of rotation 15 there is a radial bore 18 approximately in the center of the rotating body 13, in which a reciprocating piston 19 is received in a radially displaceable manner. In the reciprocating piston 19 there is a through opening 20 which extends transversely to the lifting direction of the reciprocating piston 19 in the axial direction and in which the core part 17 extends through the reciprocating piston 19 with play. The radial bore 18 can be closed by a cover 21 and sealed to the outside by means of suitable sealing means 22.

Das Kernteil 17 ist drehschlüssig mit einer Abtriebswelle 25 gekoppelt, die endseitig mit einer Befestigungseinrichtung für ein Schraubwerkzeug, beispielsweise für ein Schrauberbit, versehen ist. Kernteil 17 und Abtriebswelle 25 sind im Beispielsfall einstückig miteinander verbunden. Das Kernteil 17 ist endseitig an der Abtriebswelle 25 ausgebildet. Kernteil 17 bzw. Abtriebswelle 25 sind in der Aufnahmeöffnung 16 in Umfangsrichtung gegenüber dem Rotationskörper 13 verdrehbar gelagert. Im Ausführungsbeispiel erfolgt die Lagerung in Gleitsitzen 27 und 28 jeweils seitlich der Radialbohrung 18. Ein näher zur Befestigungseinrichtung 26 gelegener Gleitsitz 28 wird durch zwei axial versetzt zueinander angeordnete Ringbünde 29 und 30 des Kernteils 17 gebildet, zwischen denen ein Dichtring 31 in einer Ringnut 32 sitzt, der die Aufnahmeöffnung 16 nach außen hin abgedichtet. Das Kernteil 17 ist innerhalb des Rotationskörpers 13 durch einen Sicherungsring 33 in axialer Richtung festgelegt.The core part 17 is rotationally coupled to an output shaft 25 which is provided at the end with a fastening device for a screwing tool, for example for a screwdriver bit. Core part 17 and output shaft 25 are integrally connected to one another in the example. The core part 17 is formed at the end on the output shaft 25. Core part 17 and output shaft 25 are rotatably mounted in the receiving opening 16 in the circumferential direction with respect to the rotating body 13. In the exemplary embodiment, the mounting in sliding seats 27 and 28 takes place laterally to the radial bore 18. A sliding seat 28 located closer to the fastening device 26 is formed by two axially offset annular collars 29 and 30 of the core part 17, between which a sealing ring 31 sits in an annular groove 32 , which seals the receiving opening 16 to the outside. The core part 17 is fixed within the rotary body 13 by a locking ring 33 in the axial direction.

Der Hubkolben 19 wird mittels einer Rückstellfeder 35 in Richtung auf den Deckel 21 mit Federkraft beaufschlagt und gegen einen am Deckel 21 nach radial innen vorspringenden Anschlag 34 gedrückt gehalten. Der Hubkolben 19 bildet innerhalb der Durchgangsöffnung 20 eine als Steuermittel wirkende umlaufende Steuerfläche 36, die mit einer an Kernteil 17 im Bereich der Radialbohrung 18 angeordneten Steuerbahn 37 zusammenwirkt. Im Ausführungsbeispiel hat die Steuerbahn 37 einen nahezu zylindrischen Querschnitt mit einem radial vorstehenden, leistenförmigen Steuernocken 38.The reciprocating piston 19 is acted upon by a return spring 35 in the direction of the cover 21 with spring force and is pressed against a stop 34 projecting radially inwards on the cover 21. The reciprocating piston 19 forms within the through opening 20 a peripheral control surface 36 which acts as a control means and which interacts with a control track 37 arranged on the core part 17 in the region of the radial bore 18. In the exemplary embodiment, the control track 37 has an almost cylindrical cross section with a radially projecting, strip-shaped control cam 38.

Innerhalb des Rotationskörpers 13 verbleibende Hohlräume sind nahezu vollständig mit einem im wesentlichen inkompressiblen Druckmedium, beispielsweise einem Hydrauliköl, gefüllt. Der Hubkolben 19 trennt eine am Grund der Radialbohrung 18 liegende Druckkammer 40 von einem Niederdruckraum 41. Der Niederdruckraum 41 erstreckt sich im wesentlichen über zwei Teilbereiche, innerhalb der Durchgangsöffnung 20 zwischen Kernteil 17 und Rotationskörper 13, sowie zwischen dem Hubkolben 19 und dem Deckel 21. Beide Teilbereiche stehen über eine Ausgleichsleitung 24 miteinander in Verbindung. Die der Druckkammer 40 zugewandte Kolbenfläche des Hubkolbens 19 bildet eine Arbeitsfläche 39.Cavities remaining within the rotating body 13 are almost completely filled with an essentially incompressible pressure medium, for example a hydraulic oil. The reciprocating piston 19 separates a pressure chamber 40 located at the base of the radial bore 18 from a low-pressure chamber 41. The low-pressure chamber 41 extends essentially over two partial areas, within the through opening 20 between the core part 17 and the rotating body 13, and between the reciprocating piston 19 and the cover 21. Both partial areas are located via a compensating line 24 in connection. The piston surface of the reciprocating piston 19 facing the pressure chamber 40 forms a working surface 39.

Die Druckkammer 40 ist über eine im Rotationskörper 13 verlaufende erste Verbindungsleitung 42 mit dem Niederdruckraum 41 verbunden. In der ersten Verbindungsleitung 42 ist ein einstellbares Steuerventil 43 angeordnet, mit dessen Hilfe ein Überströmquerschnitt 44 zur ersten Verbindungsleitung 42 steuerbar ist. Das Steuerventil 43 wird beispielsweise von einem axial verschiebbaren Gewindestift 45 mit Kegelspitze gebildet. Eine am Außenumfang des Gewindestiftes 45 angeordnete Dichtung 46 verhindert, daß Druckmedium am Gewindestift 45 vorbei nach außen gelangt.The pressure chamber 40 is connected to the low-pressure chamber 41 via a first connecting line 42 running in the rotating body 13. An adjustable control valve 43 is arranged in the first connecting line 42, with the aid of which an overflow cross section 44 to the first connecting line 42 can be controlled. The control valve 43 is formed, for example, by an axially displaceable threaded pin 45 with a conical tip. A seal 46 arranged on the outer circumference of the threaded pin 45 prevents pressure medium from passing the threaded pin 45 to the outside.

Eine zweite Verbindungsleitung 47 ist im Hubkolben 19 zwischen Niederdruckraum 41 und Druckkammer 40 ausgebildet. Die zweite Verbindungsleitung 47 erstreckt sich radial von der Steuerfläche 36 zur Arbeitsfläche 39 des Hubkolbens 19. In der zweiten Verbindungsleitung 50 ist ein Rückströmventil 48 angeordnet, das bei Druck in der Druckkammer 40 in Richtung zum Niederdruckraum 41 sperrt und in umgekehrter Richtung bei entsprechendem Unterdruck in der Druckkammer 40 ein Rückströmen von Druckmedium zuläßt. Aus Figur 2 ist erkennbar, daß das Rückströmventil 48 als Rückschlagventil ausgebildet ist und einen kugelförmigen Ventilschließkörper 49 aufweist, der von einer Ventilschließfeder 50 mit Federkraft in Richtung auf den Niederdruckraum 41 beaufschlagt ist. Die Ventilschließfeder 50 stützt sich dabei an einem fest mit dem Hubkolben verbundenen Stützring 51 ab.A second connecting line 47 is formed in the reciprocating piston 19 between the low pressure chamber 41 and the pressure chamber 40. The second connecting line 47 extends radially from the control surface 36 to the working surface 39 of the reciprocating piston 19. In the second connecting line 50, a backflow valve 48 is arranged, which blocks pressure in the pressure chamber 40 in the direction of the low-pressure chamber 41 and in the opposite direction in the case of a corresponding negative pressure in the pressure chamber 40 allows a backflow of pressure medium. From Figure 2 it can be seen that the backflow valve 48 is designed as a check valve and has a spherical valve closing body 49 which is acted upon by a valve closing spring 50 with spring force in the direction of the low pressure chamber 41. The valve closing spring 50 is supported on a support ring 51 fixedly connected to the reciprocating piston.

In Figur 2 ist der zylindrische Aufbau des Rotationskörpers 13 erkennbar. In der Radialbohrung 18 ist der ebenfalls rotationssymmetrische Hubkolben 19 angeordnet. Im Hubkolben 19 befindet sich zentral die Durchgangsöffnung 20, die vom Kernteil 17 durchragt wird. In Figur 2 ist das Kernteil 17 gegenüber der in Figur 1 gezeigten Lage um ca. 30° entgegen der Pfeilrichtung 15a gedreht. Die Steuerfläche 36 ist aus zwei jeweils etwa halbkreisförmigen Teilflächen 36a, 36b zusammengesetzt. Die näher zum Deckel 21 gelegene erste Teilfläche 36a weist einen größeren radialen Abstand zur Drehachse 15 auf, als die ihr gegenüberliegende, näher zur Druckkammer 40 gelegene zweite Teilfläche 36b. Der radiale Abstand der zweiten Teilfläche 36b zur Drehachse 15 ist dabei geringer, als der radiale Abstand des Steuernockens 38. Etwa senkrecht zur Drehachse 15 und zur Hubrichtung des Hubkolbens 19 sind die Teilflächen 36a und 36b durch etwa radial verlaufende Absatzflächen 54 und 55 miteinander verbunden.The cylindrical structure of the rotating body 13 can be seen in FIG. The likewise rotationally symmetrical reciprocating piston 19 is arranged in the radial bore 18. The through opening 20 is located centrally in the reciprocating piston 19 and is penetrated by the core part 17. In FIG. 2, the core part 17 is rotated by approximately 30 ° against the direction of the arrow 15a in relation to the position shown in FIG. The control surface 36 is composed of two approximately semicircular partial surfaces 36a, 36b. The first partial surface 36a located closer to the cover 21 has a greater radial distance from the axis of rotation 15 than the second partial surface 36b located opposite it and closer to the pressure chamber 40. The radial distance between the second partial surface 36b and the axis of rotation 15 is smaller than the radial distance between the control cam 38. Approximately perpendicular to the axis of rotation 15 and the stroke direction of the piston 19, the partial surfaces 36a and 36b are connected to one another by approximately radially extending shoulder surfaces 54 and 55.

Im Leerlauf des Impulsschlagwerks 12 dreht das Kernteil 17 aufgrund von Reibungseinflüssen mit dem Rotationskörper 13 mit. Übersteigt das beim Einschrauben an der Befestigungseinrichtung 26 wirkende Drehmoment das Reibmoment, so wird sich der Rotationskörper 13 gegenüber dem Kernteil 17 verdrehen. Das Kernteil 17 dreht dann langsamer als der Rotationskörper 13.When the pulse hammer mechanism 12 is idling, the core part 17 also rotates with the rotary body 13 due to the effects of friction. If the torque acting on the fastening device 26 when screwing in exceeds the friction torque, the rotating body 13 will rotate relative to the core part 17. The core part 17 then rotates more slowly than the rotary body 13.

Kommt es aus der gezeigten Position zu einer Relativverdrehung von Rotationskörper 13 und Kernteil 17, beispielsweise indem der Rotationskörper 13 gegenüber dem Kernteil 17 in Pfeilrichtung 15a weiterdreht, so gelangt der Steuernocken 38 des Kernteils 17 schließlich zur Anlage an die Absatzfläche 55. Je nach Größe des wirksamen Drehmoments wird sich dann der Hubkolben 19 entgegen der Kraft der Rückstellfeder 35 unter Verkleinerung des Volumens der Druckkammer 40 verschieben und dabei einen Drehimpuls auf die Befestigungseinrichtung 25 ausüben. Nach Überwindung der Absatzfläche 55 kann der Steuernocken 38 entlang der zweiten Teilfläche 36b gleiten, bis er nach einer weiteren halben Relativverdrehung nach Durchlaufen der zweiten Teilfläche 36b den Hubkolben 19 wieder freigibt. Der Hubkolben 19 wird dann von der Rückstellfeder 35 aus seiner Hubstellung wieder zur Anlage an den Anschlag 34 gebracht. Nach Durchlaufen der weiteren halben Relativverschiebung gelangt der Steuernocken 38 zur Erzeugung eines weiteren Drehimpulses erneut zur Anlage an die Absatzfläche 55. Aufgrund der symmetrischen Ausbildung der Steuerfläche 36 und der Steuerbahn 37 ist das Impulsschlagwerk 12 auch in umgekehrter Antriebsrichtung betreibbar.If there is a relative rotation of the rotary body 13 and the core part 17 from the position shown, for example by the rotary body 13 continuing to rotate in the direction of the arrow 15a relative to the core part 17, the control cam 38 of the core part 17 finally comes to rest against the heel surface 55. Depending on the size of the Effective torque, the reciprocating piston 19 will then move against the force of the return spring 35 while reducing the volume of the pressure chamber 40 and thereby exert an angular momentum on the fastening device 25. After overcoming the sales area 55 the control cam 38 slide along the second partial surface 36b until after a further half relative rotation after passing through the second partial surface 36b it releases the reciprocating piston 19 again. The reciprocating piston 19 is then brought back into abutment against the stop 34 by the return spring 35 from its stroke position. After passing through the further half relative displacement, the control cam 38 again comes into contact with the shoulder surface 55 to generate a further angular momentum. Due to the symmetrical design of the control surface 36 and the control path 37, the pulse striking mechanism 12 can also be operated in the reverse drive direction.

Während der Volumenverkleinerung der Druckkammer 40 wird von der Arbeitsfläche 39 ein Druck auf das Druckmedium ausgeübt. Über an der Außenfläche des Hubkolbens 19 angeordnete Überströmnuten 56 und über entsprechende, diesen gegenüberliegende Aussparungen im Rotationskörper 13 im Bereich der Radialbohrung 18 kann zunächst Druckmedium zum Niederdruckraum 41 gelangen. Die Überströmnut 56 und die Aussparung 57 bilden zusammen einen Überströmkanal von der Druckkammer 40 zum Niederdruckraum 41. In der Überströmnut 56 und innerhalb der Aussparung 57 sind sich axial erstreckende Dichtleisten 58, 59 angeordnet, die bei zunehmender Hubbewegung des Hubkolbens 19 miteinander in Deckung kommen. Ist dies der Fall, so wird die Druckkammer 40 schlagartig abgedichtet. Je nach Größe des einstellbaren Überströmquerschnitts am Steuerventil 43 wirkt dann auf den Hubkolben 19 ein mehr oder weniger großer Druckwiderstand. Das Rückschlagventil 48 ist dabei gesperrt. Der Überströmquerschnitt muß so gewählt werden, daß ein Blockieren des Impulsschlagwerkes 12 vermieden wird. Wirkt in der Druckkammer 40 ein erhöhter Druckwiderstand, so wird über die Steuerfläche 36 und den Steuernocken 38 ein entsprechend starker Drehimpuls auf das Kernteil 13 übertragen.During the volume reduction of the pressure chamber 40, a pressure is exerted on the pressure medium by the working surface 39. Pressure medium can firstly reach the low-pressure chamber 41 via overflow grooves 56 arranged on the outer surface of the reciprocating piston 19 and via corresponding recesses in the rotary body 13 in the area of the radial bore 18 opposite these. The overflow groove 56 and the recess 57 together form an overflow channel from the pressure chamber 40 to the low pressure chamber 41. Axially extending sealing strips 58, 59 are arranged in the overflow groove 56 and within the recess 57, which come into congruence with one another with increasing stroke movement of the reciprocating piston 19. If this is the case, the pressure chamber 40 is sealed suddenly. Depending on the size of the adjustable overflow cross section on the control valve 43, a more or less large pressure resistance acts on the reciprocating piston 19. The check valve 48 is blocked. The overflow cross section must be selected so that blocking of the pulse hammer mechanism 12 is avoided. If an increased pressure resistance acts in the pressure chamber 40, a correspondingly strong angular momentum is transmitted to the core part 13 via the control surface 36 and the control cam 38.

Aufgrund der relativ großen Schwungmasse des Rotationskörpers 13 und des mit diesem gekoppelten Antriebsstranges können relativ große Drehimpulse erzielt werden, ohne daß das Impulsschlagwerk 12 blockiert. Bei der anschließenden Volumenvergrößerung der Druckkammer 40 nach Durchlaufen der Teilfläche 36b kann Druckmedium infolge des damit einhergehenden Unterdrucks in der Druckkammer 40 über das Rückströmventil 48 nachströmen.Due to the relatively large flywheel mass of the rotating body 13 and the drive train coupled to it, relatively large angular momentum can be achieved without the impulse mechanism 12 blocking. When the volume of the pressure chamber 40 subsequently increases after passing through the sub-area 36b, pressure medium can flow in via the backflow valve 48 as a result of the associated negative pressure in the pressure chamber 40.

In Figur 3 ist ein zweites Ausführungsbeispiel des Impulsschlagwerkes 12 dargestellt. Gegenüber dem ersten Ausführungsbeispiel nach den Figuren 1 und 2 gleiche und gleichwirkende Teile sind durch gleiche Bezugszeichen gekennzeichnet. Auch hier ist ein einzelner Hubkolben 19 in der Radialbohrung 18 aufgenommen. Hauptunterschied zum ersten Ausführungsbeispiel ist die Anordnung einer Dämpfungsfeder 60 zwischen Hubkolben 19 und Deckel 21. Die Dämpfungsfeder 60 ist als Druckfeder ausgebildet. Die Dämpfungsfeder 60 hat die Aufgabe, beim Rückhub des Hubkolbens 19 einen Aufprall des Hubkolbens 19 gegen den Absatz 34 zu verhindern bzw. zu dämpfen. Außerdem unterstützt die Dämpfungsfeder 60 einen klemmfreien Durchlauf des Steuernockens 38 an der Teilfläche 36b. Der Radius der ersten Teilfläche 36a der Steuerfläche 36 enspricht etwa dem des Steuernockens 38. Die Dämpfungsfeder 60 beaufschlagt den Hubkolben 19 in Richtung auf die Druckkammer 40 und bewirkt, daß Steuernocken 38 und erste Teilfläche 36a aneinander anliegen.FIG. 3 shows a second exemplary embodiment of the pulse hammer mechanism 12. Compared to the first exemplary embodiment according to FIGS. 1 and 2, parts that are the same and have the same effect are identified by the same reference numerals. Here, too, a single reciprocating piston 19 is received in the radial bore 18. The main difference from the first exemplary embodiment is the arrangement of a damping spring 60 between the reciprocating piston 19 and the cover 21. The damping spring 60 is designed as a compression spring. The damping spring 60 has the task of preventing or dampening an impact of the reciprocating piston 19 against the shoulder 34 during the return stroke of the reciprocating piston 19. In addition, the damping spring 60 supports a jam-free passage of the control cam 38 on the partial surface 36b. The radius of the first partial surface 36a of the control surface 36 corresponds approximately to that of the control cam 38. The damping spring 60 acts on the reciprocating piston 19 in the direction of the pressure chamber 40 and causes the control cam 38 and the first partial surface 36a to bear against one another.

Die Rückstellung des Hubkolbens 19 aus der Hubstellung in die gezeigte Ausgangsstellung erfolgt in diesem Fall selbsttätig durch das unter Druck stehende Druckmedium in der Druckkammer 40 und wird unterstützt durch das Durchlaufen des Steuernocken 38 an der ersten Teilfläche 36a. Auf die Rückstellfeder kann daher verzichtet werden. Die Ventilschließfeder 50 des Rückströmventils 48 stützt sich bei dieser Ausführung am Grund der Radialbohrung 18 ab. Die Dichtleisten 58, 59 haben in der gezeigten Grundstellung einen geringen Abstand voneinander, so daß ein geringer Hub zum Schließen der Druckkammer 40 ausreicht.The return of the lifting piston 19 from the lifting position into the starting position shown takes place automatically in this case by the pressurized pressure medium in the pressure chamber 40 and is supported by the passage of the control cam 38 on the first partial surface 36a. The return spring can therefore be dispensed with. In this embodiment, the valve closing spring 50 of the backflow valve 48 is supported on the bottom of the radial bore 18. In the basic position shown, the sealing strips 58, 59 are at a short distance from one another, so that a short stroke is sufficient to close the pressure chamber 40.

In Figur 4 ist ein drittes Ausführungsbeispiel des Impulsschlagwerks 12 dargestellt. Gegenüber dem ersten bzw. dem zweiten Ausführungsbeispiel gleiche und gleichwirkende Teile sind ebenfalls durch gleiche Bezugszeichen gekennzeichnet. Auch hier ist keine zusätzliche Rückstellfeder 35 für den Hubkolben 19 vorhanden, da die Rückstellung über die erste Teilfläche 36a erfolgt. Im Gegensatz zu den vorhergehenden Ausführungsbeispielen ist die Steuerfläche 36 ohne Absatzflächen ausgebildet. Während die erste Teilfläche 36a etwa den gleichen Radius wie der Steuernocken 38 hat, verläuft die zweite Teilfläche 36b mit unterschiedlichem Radius, der in Umlaufrichtung des Steuernockens 38 ausgehend vom Radius des Steuernockens 38 in einen dem Radius des Kernteils 17 entsprechenden Radius und anschließend wieder in den Radius des Steuernockens 38 übergeht. Die zweite Teilfläche 36b hat dabei einen bogenförmigen Verlauf, der an den Außenumfang des Kernteils 17 stark angepaßt ist, so daß der Hubkolben 19 in der gezeigten Grundstellung großflächig an der Steuerbahn 37 anliegt.FIG. 4 shows a third embodiment of the pulse hammer mechanism 12. Parts that are the same and function the same as in the first or second exemplary embodiment are also identified by the same reference numerals. Here, too, there is no additional return spring 35 for the reciprocating piston 19, since the reset takes place via the first partial surface 36a. In contrast to the previous exemplary embodiments, the control surface 36 is designed without heel surfaces. While the first partial surface 36a has approximately the same radius as the control cam 38, the second partial surface 36b runs with a different radius, which in the circumferential direction of the control cam 38 starts from the radius of the control cam 38 into a radius corresponding to the radius of the core part 17 and then again into the Radius of the control cam 38 passes. The second partial surface 36b has an arcuate course which is strongly adapted to the outer circumference of the core part 17, so that the reciprocating piston 19 abuts the control track 37 over a large area in the basic position shown.

Die Steuerbahn 37 bildet demnach einen Anschlag für die zweite Teilfläche 36b beim Rückhub des Hubkolbens 19. Zwischen Hubkolben 19 und Deckel 21 ist in der Grundstellung ein Spalt 61 vorhanden, so daß auf eine den Rückschlag gegen den Deckel 21 abfedernde Dämpfungsfeder verzichtet werden kann. Auch eine Ventilschließfeder wird hier nicht benötigt, da der Ventilschließkörper 49 vom Druck des Druckmediums in der Druckkammer 40 geschlossen wird. Ein Sicherungsring 52 verhindert das Herauswandern des Ventilschließkörpers 49 in die Druckkammer 40.The control track 37 accordingly forms a stop for the second partial surface 36b during the return stroke of the reciprocating piston 19. In the basic position, a gap 61 is present between the reciprocating piston 19 and the cover 21, so that a damping spring which cushions the rebound against the cover 21 can be dispensed with. A valve closing spring is also not required here, since the valve closing body 49 is closed by the pressure of the pressure medium in the pressure chamber 40. A locking ring 52 prevents the valve closing body 49 from migrating out into the pressure chamber 40.

Die in den Ausführungsbeispielen beschriebene Zuordnung von Antriebswelle 14 zum Rotationskörper 13 und von der Abtriebswelle 25 zum Kernteil 17 ist nicht zwingend, wegen des höheren Flächenträgheitsmomentes des Rotationskörpers 13 und der somit höheren Schwungmasse des Antriebs jedoch vorteilhaft.The assignment of the drive shaft 14 to the rotary body 13 and from the output shaft 25 to the core part 17 described in the exemplary embodiments is not mandatory, but is advantageous because of the higher moment of inertia of the rotary body 13 and the higher flywheel mass of the drive.

Claims (7)

  1. Pulse-type percussion mechanism, in particular for pulse-type screwdrivers, with a driven or power take-off body of revolution (13) which is rotatable about an axis of rotation (15) of the pulse-type percussion mechanism (12) and which has an axially extending central receiving orifice (16), and with a core part (17) which leads to the power take-off or drive and which is arranged within the receiving orifice (16) rotatably relative to the body of revolution (13), there being provided in the body of revolution (13) at least one radial bore (18) which runs perpendicularly to the axis of rotation (15) and in which an individual lifting piston (19) is received so as to be radially displaceable, which lifting piston (19) has, on the end face, a working surface (39) and control means (36) located in the region of the core part (17), the control means (36) cooperating with at least one peripheral control track (37) which is connected to the core part (17) and which, in the direction of rotation of the core part (17), is at a changing radial distance from the axis of rotation (15) for the purpose of generating a radial displacement of the lifting piston (19), as a result of which radial displacement a pressure medium located in a pressure chamber (40) is capable of being loaded with pressure via the working surface (39), characterized in that the lifting piston (19) is provided with a passage orifice (20) which extends in the axial direction transversely to the stroke direction of the lifting piston (19) and in which the core part (17) projects with play through the lifting piston (19).
  2. Pulse-type percussion mechanism according to Claim 1, characterized in that the body of revolution (13) is connected fixedly in terms of rotation to a drive shaft (14) and the core part (17) is connected fixedly in terms of rotation to a power take-off shaft (25) of the pulse-type percussion mechanism (12).
  3. Pulse-type percussion mechanism according to Claim 1 or 2, characterized in that the pressure chamber (40) is connected to a low-pressure space (41) via a first connecting conduit (42), there being arranged in the first connecting conduit (42) a control valve (43), by means of which an overflow cross section (44) can be set in the first connecting conduit (42).
  4. Pulse-type percussion mechanism according to one of the preceding claims, characterized in that the pressure chamber (40) is connected to a low-pressure space (41) via a second connecting conduit (47), a non-return valve (48) being arranged in the second connecting conduit (47).
  5. Pulse-type percussion mechanism according to one of the preceding claims, characterized in that, as control means (36) at least one rolling body is arranged in a control surface of the lifting piston (19) and/or at least one further rolling body, if appropriate cooperating with the said rolling body, is arranged in the control track (37) of the core part (17).
  6. Pulse-type percussion mechanism according to one of the preceding claims, characterized in that the lifting piston (19) is positively controlled in the radial direction in the event of a rotation of the core part (17) relative to the body of revolution (13).
  7. Pulse-type percussion mechanism according to one of the preceding claims, characterized in that the body of revolution (13) has a radial bore (18) which is open on one side and capable of being closed by means of a cover (21) and in which the individual lifting piston (19) is arranged so as to be radially displaceable.
EP95902761A 1993-12-21 1994-12-14 Impulse drive system, especially for an impulse screwdriver Expired - Lifetime EP0735935B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4343582 1993-12-21
DE4343582A DE4343582A1 (en) 1993-12-21 1993-12-21 Impact mechanism, especially for pulse screwdrivers
PCT/DE1994/001484 WO1995017281A1 (en) 1993-12-21 1994-12-14 Impulse drive system, especially for an impulse screwdriver

Publications (2)

Publication Number Publication Date
EP0735935A1 EP0735935A1 (en) 1996-10-09
EP0735935B1 true EP0735935B1 (en) 2000-04-05

Family

ID=6505597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95902761A Expired - Lifetime EP0735935B1 (en) 1993-12-21 1994-12-14 Impulse drive system, especially for an impulse screwdriver

Country Status (5)

Country Link
US (1) US5735354A (en)
EP (1) EP0735935B1 (en)
JP (1) JPH10501180A (en)
DE (2) DE4343582A1 (en)
WO (1) WO1995017281A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19506663C2 (en) * 1995-02-25 2003-03-06 Bosch Gmbh Robert impulse Tools
CA2421024C (en) * 2002-07-19 2011-04-26 Marcellin Bruneau Scaling bar
HK1049571A2 (en) * 2003-02-05 2003-04-25 Wing Wide Hk Ltd Electric wrench for vehicle repairing
DE502006005743D1 (en) * 2006-11-13 2010-02-04 Cooper Power Tools Gmbh & Co Tool with a hydraulic impact mechanism
DE102010063080A1 (en) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Hand tool with a mechanical percussion
TWM414304U (en) * 2011-05-20 2011-10-21 Hyphone Machine Ind Co Ltd Pneumatic tool
US9878435B2 (en) 2013-06-12 2018-01-30 Makita Corporation Power rotary tool and impact power tool
TWM562747U (en) 2016-08-25 2018-07-01 米沃奇電子工具公司 Impact tool
AT521254B1 (en) 2019-01-17 2019-12-15 Cutpack Com Gmbh jig
AT523492B1 (en) 2020-01-31 2022-04-15 Cutpack Com Gmbh Clamping device for clamping a workpiece

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914839A (en) * 1972-06-02 1974-02-08

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2850128A (en) * 1952-08-01 1958-09-02 Rotor Tool Company Rotary impact clutch
US2940566A (en) * 1958-02-17 1960-06-14 Master Pneumatic Tool Company Impact clutch
US3210959A (en) * 1963-05-17 1965-10-12 Ingersoll Rand Co Torque device
US3561543A (en) * 1969-02-07 1971-02-09 Ingersoll Rand Co Rotary impact wrench mechanism
JPS6033628B2 (en) * 1981-01-27 1985-08-03 株式会社 空研 Impact rotation device in impact wrench
SE432071B (en) 1982-09-24 1984-03-19 Atlas Copco Ab HYDRAULIC IMPULSE NUT BEARER
US4635731A (en) * 1984-12-13 1987-01-13 Chicago Pneumatic Tool Company Impulse tool
US5092410A (en) * 1990-03-29 1992-03-03 Chicago Pneumatic Tool Company Adjustable pressure dual piston impulse clutch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914839A (en) * 1972-06-02 1974-02-08

Also Published As

Publication number Publication date
DE4343582A1 (en) 1995-06-22
WO1995017281A1 (en) 1995-06-29
JPH10501180A (en) 1998-02-03
US5735354A (en) 1998-04-07
DE59409278D1 (en) 2000-05-11
EP0735935A1 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
DE3319822C2 (en) Hydraulic pump with pre-compression valve
EP0808421B1 (en) Adjustable hydrostatic pump
EP1828651B1 (en) Pressure limiting valve comprising a reduced differential surface
EP0735935B1 (en) Impulse drive system, especially for an impulse screwdriver
DE69601884T2 (en) Hydraulic rotary impact mechanism
DE4028595A1 (en) HYDRAULICALLY OPERATED PERFORMANCE
EP1076762A1 (en) Device for hydraulically adjusting the angle of rotation of a shaft in relation to a driving wheel
WO2018103982A1 (en) Hydraulic end stop for a vibration damper
DE2853838C2 (en) Adjustment device for the stroke ring of a hydraulic pump or a hydraulic motor of radial design
DE2009324A1 (en) Impact coupling for generating rotary impacts, especially on tools
EP0759340B1 (en) Impact tool
DE3109706C2 (en) Volume switchable hydraulic motor
DE3342131C2 (en)
DE4240075C2 (en) Hydraulic actuator
DE19961963A1 (en) Damping force device with adjustable damping force
EP0809736B1 (en) Slewing mechanism for an excavator grab
DE2242435C3 (en) Radial piston pump
DE10036546B4 (en) Device for changing the timing of gas exchange valves of an internal combustion engine, in particular hydraulic camshaft adjusting devices in rotary piston type
EP0089568B1 (en) Fluid operated linear-to-rotary actuator
DE102005033104B4 (en) Adjustable hydrostatic axial piston engine with mutually phase-displaceable displacement movements of the displacer
DE19962804A1 (en) Gear for a hydraulic machine
DE4320903A1 (en) Pulse hammer mechanism, preferably for pulse screwdrivers
EP1835111B1 (en) Door actuating device, in particular for a revolving door
DE4018084C1 (en)
DE2634065A1 (en) Reversible hydrostatic radial or axial piston engine - has control disc alternately connected with high and low pressure branches during each pump shaft revolution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

17Q First examination report despatched

Effective date: 19971205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59409278

Country of ref document: DE

Date of ref document: 20000511

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000615

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021202

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021218

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031215

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100105

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110222

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59409278

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703