EP0734429B1 - Utilisation d'ether d'hexyle methyle tertiaire comme additif pour essence moteur - Google Patents

Utilisation d'ether d'hexyle methyle tertiaire comme additif pour essence moteur Download PDF

Info

Publication number
EP0734429B1
EP0734429B1 EP95904872A EP95904872A EP0734429B1 EP 0734429 B1 EP0734429 B1 EP 0734429B1 EP 95904872 A EP95904872 A EP 95904872A EP 95904872 A EP95904872 A EP 95904872A EP 0734429 B1 EP0734429 B1 EP 0734429B1
Authority
EP
European Patent Office
Prior art keywords
composition
methyl ether
blend according
mdmb
hexyl methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95904872A
Other languages
German (de)
English (en)
Other versions
EP0734429A1 (fr
Inventor
Dan Eldon Hendriksen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of EP0734429A1 publication Critical patent/EP0734429A1/fr
Application granted granted Critical
Publication of EP0734429B1 publication Critical patent/EP0734429B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/10Use of additives to fuels or fires for particular purposes for improving the octane number

Definitions

  • This invention relates to the use of one isomer of tertiary-hexyl methyl ether, which is 2-methoxy-2,3-dimethylbutane, as an octane booster in motor gasoline.
  • any component that has a research octane number over 105 and a motor octane number over 95 is considered to be an octane booster for use in motor gasoline. It is well known in the art that ethers made from C 4 and C 5 olefins are excellent octane boosters.
  • MTBE Methyl tertiary-butyl ether
  • RON research octane number
  • MON motor octane number
  • TAME tertiary-amyl methyl ether
  • EP-A-0 036 260 discloses the use of ethers produced from a mixture of C 4 through C 7 olefins as components in a motor gasoline blend from a refinery catalytic cracker unit, with 7% being C 6 olefins, but reinforces the belief that the octane booster effect is due to the ethers produced from C 4 and C 5 olefins rather than those ethers produced from C 6 or C 7 olefins.
  • This invention relates to using an octane boosting amount of a tertiary hexyl methyl ether component comprising 2-methoxy-2,3-dimethyl butane (MDMB) which enables providing a blend comprising
  • MDMB 2-methoxy-2,3-dimethyl butane
  • One embodiment includes providing a blend wherein the tertiary hexyl methyl ether component of composition (b) comprises in various amounts and ranges, including, greater than 10%, preferably from 20 to 100%, more preferably greater than 50%, even more preferably from 60% to 100%, and most preferably greater than 80% by weight of MDMB.
  • composition (b) contains greater than 50%, preferably from 60% to 100%, and more preferably greater than 80%, by weight of the tertiary hexyl methyl ether.
  • Yet another embodiment includes providing a method of increasing the octane number in motor gasoline comprising blending MDMB with the motor gasoline or with a motor gasoline feedstock to boost the octane number of the motor gasoline or motor gasoline feedstock which contains a sufficient amount of composition (b) to boost the octane number of component (a) by at least 1, preferably by at least 2, and more preferably by at least 3 units.
  • Still another embodiment includes the use of a tertiary hexyl methyl ether component comprising MDMB and having a blending RON greater than 100 and a blending MON greater than 90, as an octane booster for motor gasoline.
  • the tertiary hexyl methyl ether component comprising MDMB may be prepared by dimerizing propylenes and additional embodiments of the present invention include a blend wherein composition (b) is made by a process comprising:
  • step (ii) comprises partial etherification and is followed by (iii) hydrogenation of unetherified dimethylbutenes to form a tertiary hexyl methyl ether composition comprising MDMB and dimethyl butanes.
  • MMCP 1-Methoxy-1-methylcyclopentane
  • One isomer of tertiary-hexyl methyl ether has been found to be a very useful high octane booster for use in motor gasoline. That particular isomer is 2-methoxy-2,3-dimethylbutane (MDMB).
  • MDMB 2-methoxy-2,3-dimethylbutane
  • MDMB may be prepared from propylene and methanol by first dimerizing the propylene to dimethylbutenes (2,3-dimethyl)-(1 and/or 2)-butene), and then by etherifying the dimethylbutenes with methanol, as shown in the following reaction equations. Both 2,3-dimethyl-1-butene and 2,3-dimethyl-2-butene react with methanol to form the desired product ether.
  • the propylene may be dimerized to dimethylbutenes (DMB) using a tungsten catalyst, such as that disclosed in U.S. Patent 5,059,739.
  • the dimethylbutenes (DMB) may also be produced using nickel with specific organo-phosphine ligands.
  • the ratio of olefin to tungsten should be such that a catalytic amount of the tungsten complex is used.
  • the reaction may be run in either a batch or a continuous manner.
  • the reaction pressure is normally the pressure generated by the olefin at the reaction temperature, although the pressure may be increased with an inert gas.
  • the reaction temperature may range, for example, from about 40 to 100°C, with 50 to 80°C being preferred.
  • the reaction or residence time may be, for example, from 5 minutes to about 3 hours, with 0.5 to 2.0 hours being preferred.
  • the preferred embodiment uses a catalyst which is prepared by taking a tungsten salt and an aniline to form a complex of the tungsten salt and aniline.
  • Substantially all of the hydrogen chloride produced in this reaction is removed from the solution during the course of the reaction.
  • an alkyl aluminum halide is added to the solution to form the active catalyst system of the invention.
  • the preferred feedstock is refinery grade propylene, after sufficient removal of water and other catalyst poisons.
  • the etherification of the dimethylbutenes with methanol to prepare MDMB may take place in a manner similar to the preparation of methyl tertiary-butyl ether (MTBE) from isobutylene or the preparation of tertiary-amyl methyl ether (TAME) from isoamylenes.
  • MTBE methyl tertiary-butyl ether
  • TAME tertiary-amyl methyl ether
  • the present invention involves the feeding of a mixture containing DMB and methanol into the feed zone of a reactor (i.e., a fixed-bed guard reactor), and contacting the resultant mixture of DMB and methanol with a fixed bed acidic cation exchange resin (e.g., Amberlyst® 15) in the reaction zone, thereby catalytically reacting the DMB with the methanol under conditions which favor forming the resultant 2-methoxy-2,3-dimethylbutane (MDMB).
  • a reactor i.e., a fixed-bed guard reactor
  • a fixed bed acidic cation exchange resin e.g., Amberlyst® 15
  • the catalytic material may be in any form which permits its incorporation into a distillation tower, such as a fixed bed, but may also be in a form which serves as a distillation packing, for example, rings, saddles, balls, irregular pieces, sheets, tubes, spirals, packed in bags, plated on grills or screens, and reticulated polymer foams.
  • Catalysts which have been found to be suitable for use in the etherification step of the present invention are resin catalysts such as cation exchange resin catalysts, acidic resin catalysts, macroreticular sulfonic acid cation exchange resin catalysts, and solid acid catalysts. Still others have used a zeolite as an etherification catalyst.
  • Preferred catalysts for purposes of the present invention are acid catalysts, such as acidic resin catalysts.
  • a more preferred catalyst for purposes of the present invention is a macroreticular sulfonic acid cation exchange resin such as a sulfonated copolymer of polystyrene-divinyl-benzene.
  • Such catalysts include Amberlyst ® 15 and 15C (marketed by Rohm and Haas), Lewatit SPC 118 and SPC 118 BG (marketed by Miles/Bayer), and Dowex M-31 and M-32 (marketed by the Dow Chemical Co.).
  • Amberlyst ® 15 and 15C marketed by Rohm and Haas
  • Lewatit SPC 118 and SPC 118 BG marketed by Miles/Bayer
  • Dowex M-31 and M-32 marketed by the Dow Chemical Co.
  • a special version of this type of catalyst i.e., Dowex DR-2040 (marketed by the Dow Chemical Co.), is used specifically for reactive distillation.
  • the composition of the resulting mixture of isomers may be as pure as 98 wt% MDMB, 2 wt% 2MMP, with negligible amounts of 3MMP and MMCP.
  • the isomer mixture is different, with more than 50% being 2MMP and approximately 7% being MDMB.
  • ethers are used as motor gasoline additives to enhance the quality of the motor gasoline due to environmental regulations, both existing and pending in the USA.
  • an oxygenate rather than its counter part olefin in motor gasoline
  • less carbon monoxide pollution is produced upon combustion of the motor gasoline.
  • the rules regulating reformulated gasoline which is a particular type of motor gasoline, require that a lower olefin content be present in the gasoline due to the fact that olefins contribute to ozone formation more than their counter part ethers.
  • An additional advantage of using the ether rather than the olefin in motor gasoline is that the ether has a lower Reid vapor pressure, which reduces evaporative emissions which contribute to pollution.
  • composition (a) consists of the motor gasoline or motor gasoline feedstock which is blended with composition (b) which comprises an octane boosting amount of a tertiary hexyl methyl ether component comprising 2-methoxy-2,3-dimethyl butane (MDMB) in an amount of at least 10% by weight based on the total weight of tertiary hexyl methyl ether, wherein the composition (b) has a Research Octane Number (RON) and/or a Motor Octane Number (MON) greater than those of composition (a).
  • RON Research Octane Number
  • MON Motor Octane Number
  • composition (b) may include other components.
  • additional components may be any other hydrocarbons typically found in motor gasoline or motor gasoline feedstocks, including, but not limited to, aromatics, olefins, and saturates.
  • composition (b) may include either MTBE or TAME, or mixtures thereof.
  • Composition (b) may have a RON greater than 95, preferably greater than 100, and/or a MON greater than 85, preferably greater than 90.
  • composition (b) has a blending RON greater than 100, preferably greater than 105 and/or a blending MON greater than 90, preferably greater than 95.
  • the tertiary hexyl methyl ether component of composition (b) may comprise greater than 10%, preferably from 20 to 100%, by weight of MDMB.
  • this tertiary hexyl methyl ether component of composition (b) may comprise from 50 to 100%, preferably greater than 80%, by weight of MDMB.
  • the tertiary hexyl methyl ether component may have a RON greater than 100 and/or a MON greater than 90.
  • this tertiary hexyl methyl ether component may have a blending RON greater than 100 and/or a blending MON greater than 90.
  • the MDMB component of composition (b) may have a RON greater than 105 and/or a MON greater than 95.
  • the MDMB component may have a blending RON greater than 105 and/or a blending MON greater than 95.
  • the resulting blend may have a RON greater than 90, preferably greater than 93, and/or a MON greater than 80, preferably greater than 83.
  • composition (b) A sufficient amount of composition (b) must be blended with composition (a) such that the octane number of component (a) is boosted by at least 1, preferably by at least 2, and more preferably by at least 3 units.
  • the resulting blend may which comprise greater than 1%, preferably greater than 2%, and most preferably greater than 5 %, by volume of MDMB.
  • MDMB has the added benefit of not significantly increasing the Reid vapor pressure (RVP) of the motor gasoline blend as is typical with other octane boosters, such as MTBE or TAME.
  • RVP Reid vapor pressure
  • MTBE has a blending RVP of 57.9 kPa (8.4 psi) and TAME has a blending RVP of 27.6 kPa (4.0 psi), both of which are higher than that of MDMB being 6.9 kPa (1 psi).
  • an additional embodiment of the present invention includes the use of more than one octane booster to achieve the maximum octane boosting effect and without the corresponding undesirable increase in RVP.
  • One embodiment of the invention includes a blend which contains a sufficient amount of composition (b) to boost the octane number of component (a) by at least 1, while at the same time increasing the Reid vapor pressure of component (a) by less than 13.8 kPa (2 psi), preferably by less than 6.9 kPa (1 psi), and more preferably by less than 3.4 kPa (0.5 psi).
  • the MDMB may be prepared using a process comprising (i) dimerizing propylene to form dimethylbutenes and (ii) etherifying the dimethyl butenes with methanol.
  • step (ii) comprises partial etherification
  • the process may further comprise the additional step of (iii) hydrogenation of the unetherified dimethylbutenes to form a tertiary hexyl methyl ether composition comprising MDMB and dimethyl butanes.
  • Composition (b) may contain dimethylbutenes and may also contain less than 1% methanol and/or less than 5% olefins. Composition (b) may contain greater than 50%, preferably from 60% to 100%, and more preferably greater than 80%, by weight of the tertiary hexyl methyl ether.
  • the octane number of the blended gasoline may be increased by 1 or more units, preferably 2 or more units, and most preferably 3 or more units, over the original octane number of the motor gasoline or motor gasoline feedstock.
  • This comparative example illustrates that not all ethers produced from C 6 olefins are useful as octane boosters.
  • An ion exchange resin in the acid form (Amberlyst R15, washed with methanol) was added to a 5000 mL round-bottom flask along with 1000 g of 2-methyl-1-pentene and 416 g methanol.
  • the slurry of resin catalyst was stirred magnetically and refluxed at atmospheric pressure for 16 hours. In the refluxing process, the material boils at atmospheric pressure and condenses the vapors back into the boiling material.
  • the resin catalyst was filtered from the product mixture, and then unconverted methanol and methyl pentenes were distilled away from the product ether (2MMP). The unconverted materials were placed back in the reaction flask with the resin catalyst and refluxed again for another 16 hours.
  • the octane numbers and Reid vapor pressure results were measured using the standard test methods well known in the art.
  • the Research Octane Number (RON) was 88.3 and the Motor Octane Number (MON) was approximately 90.
  • the precise MON could not be measured as the fuel/air ratio was set at the highest setting available on the test engine. In the standard test procedure, the fuel/air ratio is continually increased until maximum knock is obtained.
  • the Reid vapor pressure was 8.6 kPa (1.25 psi).
  • This example of the invention illustrates that one of the ethers produced from C 6 olefins, specifically MDMB, is useful as an octane booster.
  • MDMB 2-Methoxy-2,3-dimethyl butane
  • 2MMP 2-Methoxy-2,3-dimethyl butane
  • the product had a boiling point of 115°C and a product purity of 98.2% 2-methoxy-2,3-dimethylbutane with the balance being 2-methoxy-2-methyl pentane from 2-methylpentene impurity in the starting material.
  • the Research Octane Number measured for this MDMB rich product was 108.1 and the Motor Octane Number was 96.8.
  • the Reid vapor pressure was 7.3 kPa (1.06 psi).
  • MDMB has RON and MON values which make it surprisingly good as an octane booster for motor gasoline.
  • blending values In addition to the component RON, MON, and Reid vapor pressure (RVP) numbers being determined, a set of corresponding blending values for MDMB was also ascertained. As it is well known to one of ordinary skill in the art, the "blending" RON, MON, and RVP values vary based upon the base gasoline composition. Typically, the “Blending Values” (BV) are higher for RON and MON and are slightly lower for RVP.
  • Gasoline A Gasoline B RON 93 97 MON 83 87 RVP, kPa 50.3 (7.3 psi) 53.8 (7.8 psi)
  • RVP VOL gasoline VOL gasoline + VOL MDMB * RVP gasoline + VOL MDMB VOL gasoline + VOL MDMB * BV RVP MDMB
  • This example illustrates that the blending values for the properties of MDMB for the RON and MON are somewhat higher with an average of 110 and 97 respectively, and the RVP is somewhat lower at 6.9 kPa (1 psi), which is typical, as compared to the component values for the RON, MON, and RVP of the MDMB component, which were 108, 97, and 7.3 kPa (1.06 psi) respectively. Also shown for reference are the typical blending values for 15% MTBE, 10% ethanol and 12% TAME.
  • MDMB blending RON and MON values are comparable to those of MTBE, ethanol, and TAME, which makes MDMB attractive as an octane booster for motor gasoline.
  • MDMB's low blending RVP value makes it especially attractive as an octane booster in comparison to MTBE, ethanol, and TAME, as it does not carry a high RVP debit as is typically associated with the other octane boosters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Claims (25)

  1. Mélange comprenant
    (a) de l'essence pour moteurs ou une matière première d'essence pour moteurs ; et
    (b) une quantité, à effet d'augmentation d'indice d'octane, d'un constituant tertio-hexylméthyléther comprenant du 2-méthoxy-2,3-diméthylbutane (MDMB) en une quantité d'au moins 10 % en poids sur la base du poids total du tertio-hexylméthyléther,
    dans lequel la composition (b) a un indice d'octane recherche (RON) et/ou un indice d'octane moteur (MON) supérieurs à ceux de la composition (a).
  2. Mélange suivant la revendication 1, dans lequel la composition (b) a un RON supérieur à 95 et/ou un MON supérieur à 85.
  3. Mélange suivant l'une quelconque des revendications précédentes, dans lequel la composition (b) a un RON supérieur à 105 et/ou un MON supérieur à 95.
  4. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant tertio-hexylméthyléther de la composition (b) représente une proportion supérieure à 10 %.
  5. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant tertio-hexylméthyléther de la composition (b) comprend 20 à 100 % en poids de MDMB.
  6. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant tertio-hexylméthyléther de la composition (b) représente une proportion de 50 à 100 %.
  7. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant tertio-hexylméthyléther de la composition (b) comprend plus de 80 % en poids de MDMB.
  8. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant tertio-hexylméthyléther a un RON supérieur à 100 et/ou un MON supérieur à 90.
  9. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant tertio-hexylméthyléther a un RON de mélange supérieur à 100 et/ou un MON de mélange supérieur à 90.
  10. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant MDMB a un RON supérieur à 105 et/ou un MON supérieur à 95.
  11. Mélange suivant l'une quelconque des revendications précédentes, dans lequel le constituant MDMB a un RON de mélange supérieur à 105 et/ou un MON de mélange supérieur à 95.
  12. Mélange suivant l'une quelconque des revendications précédentes, qui a un RON supérieur à 90 et/ou un MON supérieur à 80.
  13. Mélange suivant l'une quelconque des revendications précédentes, qui a un RON supérieur à 93 et/ou un MON supérieur à 83.
  14. Mélange suivant l'une quelconque des revendications précédentes, qui contient une quantité suffisante de composition (b) pour augmenter l'indice d'octane du constituant (a) d'au moins 1, avantageusement d'au moins 2 et de préférence d'au moins 3 unités.
  15. Mélange suivant l'une quelconque des revendications précédentes, qui comprend plus de 1 %, avantageusement plus de 2 % et de préférence plus de 5 % en volume de MDMB.
  16. Mélange suivant l'une quelconque des revendications précédentes, dans lequel la composition (b) est préparée par un procédé comprenant les étapes consistant :
    (i) à dimériser du propylène pour former des diméthylbutènes ; et
    (ii) à éthérifier les diméthylbutènes avec du méthanol,
    pour former la composition désirée.
  17. Mélange suivant la revendication 16, dans lequel l'étape (ii) comprend une éthérification partielle et est suivie par
    (iii) l'hydrogénation des diméthylbutènes non éthérifés
    pour former une composition de tertio-hexylméthyléther comprenant du MDMB et des diméthylbutanes.
  18. Mélange suivant l'une quelconque des revendications précédentes, dans lequel la composition (b) contient également des diméthylbutènes.
  19. Mélange suivant l'une quelconque des revendications précédentes, dans lequel la composition (b) contient également moins de 1 % de méthanol.
  20. Mélange suivant l'une quelconque des revendications précédentes, dans lequel la composition (b) contient également moins de 5 % d'oléfines.
  21. Mélange suivant l'une quelconque des revendications précédentes, dans lequel la composition (b) contient plus de 50 %, avantageusement 60 % à 100 % et de préférence plus de 80 % en poids du tertio-hexylméthyléther.
  22. Mélange suivant l'une quelconque des revendications précédentes, qui contient une quantité suffisante de composition (b) pour augmenter l'indice d'octane du constituant (a) d'au moins une unité, tout en augmentant en même temps la pression de vapeur Reid du constituant (a) de moins de 13,8 kPa (2 psi), avantageusement de moins de 6,9 kPa (1 psi) et de préférence de moins de 3,4 kPa (0,5 psi).
  23. Utilisation d'un constituant tertio-hexylméthyléther comprenant du MDMB en une quantité d'au moins 10 % en poids sur la base du poids total du constituant tertio-hexylméthyléther et ayant un RON de mélange supérieur à 100 et un MON de mélange supérieur à 90, comme composant à haut indice d'octane pour une essence pour moteurs.
  24. Utilisation d'un constituant tertio-hexylméthyléther comprenant du MDMB en une quantité d'au moins 10 % en poids sur la base du poids total du constituant tertio-hexylméthyléther, comme composant à haut indice d'octane pour une essence pour moteurs, dans laquelle le RON de mélange et/ou le MON de mélange du constituant tertiohexyl-méthyléther sont supérieurs au RON et/ou au MON de l'essence non traitée pour moteurs.
  25. Utilisation d'un constituant tertio-hexylméthyléther suivant la revendication 23 ou 24, dans lequel la pression de vapeur Reid de l'essence traitée pour moteurs est supérieure de moins de 13,8 kPa (2 psi), avantageusement de moins de 6,9 kPa (1 psi) et de préférence de moins de 3,4 kPa (0,5 psi).
EP95904872A 1993-12-15 1994-12-13 Utilisation d'ether d'hexyle methyle tertiaire comme additif pour essence moteur Expired - Lifetime EP0734429B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16739093A 1993-12-15 1993-12-15
US167390 1993-12-15
PCT/US1994/014234 WO1995016763A1 (fr) 1993-12-15 1994-12-13 Utilisation d'ether d'hexyle methyle tertiaire comme additif pour essence moteur

Publications (2)

Publication Number Publication Date
EP0734429A1 EP0734429A1 (fr) 1996-10-02
EP0734429B1 true EP0734429B1 (fr) 2001-04-18

Family

ID=22607182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95904872A Expired - Lifetime EP0734429B1 (fr) 1993-12-15 1994-12-13 Utilisation d'ether d'hexyle methyle tertiaire comme additif pour essence moteur

Country Status (7)

Country Link
EP (1) EP0734429B1 (fr)
JP (1) JPH09506660A (fr)
AU (1) AU685564B2 (fr)
CA (1) CA2178955A1 (fr)
DE (1) DE69427133T2 (fr)
SG (1) SG67335A1 (fr)
WO (1) WO1995016763A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6356300A (en) * 1999-07-21 2001-02-13 Exxon Chemical Patents Inc. Ethers with low water solubility used in liquid fuels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0036260B2 (fr) * 1980-03-07 1988-12-14 The British Petroleum Company p.l.c. Préparation d'un composant de mélange d'un combustible pour moteurs
US4519809A (en) * 1984-04-23 1985-05-28 Exxon Research & Engineering Co. Method for reducing water sensitivity of ether containing gasoline compositions
US4746761A (en) * 1986-07-18 1988-05-24 Mobil Oil Corporation Process for coverting methanol to alkyl ethers
US4886925A (en) * 1988-05-02 1989-12-12 Mobil Oil Corp Olefins interconversion and etherification process

Also Published As

Publication number Publication date
SG67335A1 (en) 1999-09-21
DE69427133D1 (de) 2001-05-23
WO1995016763A1 (fr) 1995-06-22
JPH09506660A (ja) 1997-06-30
AU685564B2 (en) 1998-01-22
AU1338795A (en) 1995-07-03
CA2178955A1 (fr) 1995-06-22
DE69427133T2 (de) 2001-10-18
EP0734429A1 (fr) 1996-10-02

Similar Documents

Publication Publication Date Title
US3912463A (en) Hydrocarbon conversion process
CA1104821A (fr) Preparation d'essence renfermant un ether de methyle et d'amyle tertiaire
EP1640437A1 (fr) Préparation de composants de carburant
EP2665697A2 (fr) Procédé pour l'hydratation de butènes mélangés pour produire des alcools mélangés
US20130219777A1 (en) Process to produce clean gasoline/bio-ethers using ethanol
EP0643680B1 (fr) Procede de preparation d'ethers methyliques et ethyliques
US5752992A (en) Use of tertiary-hexyl methyl ether as a motor gasoline additive
US5084070A (en) Gum-free components containing alkyl tert.-alkyl ethers
EP0734429B1 (fr) Utilisation d'ether d'hexyle methyle tertiaire comme additif pour essence moteur
RU2616606C1 (ru) Высокооктановый автомобильный бензин и антидетонационная добавка для его получения
JP2833721B2 (ja) 高オクタン、低オレフインのモーター用燃料およびモーター用燃料成分の製造方法
DE69103312T2 (de) Ätherisierung von Benzin.
US5080691A (en) Process for the conversion of light olefins to ether-rich gasoline
Streicher et al. Separation of alcohol/ether/hydrocarbon mixtures in industrial etherification processes for gasoline production
US4988366A (en) High conversion TAME and MTBE production process
US5998675A (en) Process for preparing tertiary alkyl ethers
US20040060228A1 (en) Gasoline additive and method of making same
WO1992003401A1 (fr) Procede d'etherification
EP0036260B1 (fr) Préparation d'un composant de mélange d'un combustible pour moteurs
US5108719A (en) Reactor system for ether production
US4356001A (en) Method of extending hydrocarbon fuels including gasolines and fuels heavier than gasoline
GB2123411A (en) Preparation of a mixture of ethers useful as a gasoline additive
US7344632B2 (en) Production of fuel components
EP2262753A1 (fr) Nouveaux composants oxygenes pour carburants et leur fabrication
US5453550A (en) Production of tame from coker naphtha

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19981023

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010418

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010418

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010418

REF Corresponds to:

Ref document number: 69427133

Country of ref document: DE

Date of ref document: 20010523

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EXXONMOBIL CHEMICAL PATENTS INC.

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010718

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EXXONMOBIL CHEMICAL PATENTS INC.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051213