EP0733716A1 - Intermetallic alloy based on titanium aluminide and suitable for casting techniques - Google Patents

Intermetallic alloy based on titanium aluminide and suitable for casting techniques Download PDF

Info

Publication number
EP0733716A1
EP0733716A1 EP96400598A EP96400598A EP0733716A1 EP 0733716 A1 EP0733716 A1 EP 0733716A1 EP 96400598 A EP96400598 A EP 96400598A EP 96400598 A EP96400598 A EP 96400598A EP 0733716 A1 EP0733716 A1 EP 0733716A1
Authority
EP
European Patent Office
Prior art keywords
alloy
alloy according
phase
atoms
colonies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96400598A
Other languages
German (de)
French (fr)
Other versions
EP0733716B1 (en
Inventor
Shigehisa Naka
Marc Thomas
Agnès Bachelier-Locq
Tasadduq Khan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP0733716A1 publication Critical patent/EP0733716A1/en
Application granted granted Critical
Publication of EP0733716B1 publication Critical patent/EP0733716B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the invention relates to an intermetallic alloy based on titanium aluminide for the production of foundry parts.
  • the inventors Undertook a study on the influence of various refractory addition elements on the flowability. They analyzed numerous TiAl-based alloys in which 2 to 10% of the atoms consisted of one or more of the addition elements Nb, Ta, Cr, Mo, W, Fe and Re, and in particular examined their microstructures both in the raw state of casting and after heat treatments. They thus came to the conclusion that the solidification process constitutes an important parameter for the quality of the foundry parts. The different alloys examined can indeed be classified in two categories, for which initially formed during solidification a phase of hexagonal crystal structure ⁇ and a phase of centered cubic structure ⁇ respectively.
  • the initial crystals of this phase tend to form columnar grains according to the thermal gradient during solidification and the columnar character of the microstructure in the raw pouring state is often extremely pronounced due to the preferential growth of the crystals parallel to the axis c which is unique in the hexagonal ⁇ structure.
  • all the lamellae of the ⁇ phase which precipitate in each of the columnar grains during subsequent cooling to form the so-called lamellar structure ⁇ + ⁇ 2 , are oriented perpendicular to the axis c of the hexagonal phase due to the relationship orientation (0001) ⁇ // (111) ⁇ and ⁇ 11 2 ⁇ 0> ⁇ // ⁇ 1 1 ⁇ 0> ⁇ inherent in the phase transformation mechanism involved.
  • the columnar character is on the other hand less pronounced, although the axis ⁇ 100> of the ⁇ phase remains the preferred direction of crystal growth during solidification.
  • the crystals of the ⁇ phase called initial grains, transform into crystals of the ⁇ phase. This transformation, which occurs according to the so-called Burgers orientation relationship (110) ⁇ // (0001) ⁇ and ⁇ 1 1 ⁇ 1> ⁇ // ⁇ 11 2 ⁇ 0> ⁇ , theoretically leads to the formation of twelve ⁇ variants.
  • the ⁇ phase precipitates in lamellar form in each variant ⁇ .
  • the resulting microstructure is characterized by the presence of numerous colonies (theoretically up to twelve orientation variants) inside each initial ⁇ grain. Each of these colonies is made up of numerous ⁇ platelets (or slats), these platelets (or slats) being sometimes delimited by residual ⁇ -phase borders. Each plate (or slat) finally has the lamellar structure ⁇ + ⁇ 2 .
  • Such a transformation sequence results in a minimization of the difficulties encountered in the alloys solidifying in ⁇ with the reduction in the frequency of the solidification defects and a less pronounced texture.
  • Solidification in ⁇ phase can be obtained for binary alloys sufficiently rich in Ti, as for example in the case of the composition Ti 60 Al 40 , whose Ti / Al atomic ratio of 1.5 is very far from that of the composition equiatomic Ti 50 Al 50 equal to 1.
  • alloys as rich in titanium are significantly heavier and less resistant to oxidation than the equiatomic alloy.
  • after preparation they have a two-phase structure ⁇ + ⁇ 2 in which the volume fraction of the slightly deformable ⁇ 2 phase is excessively large, which makes them extremely fragile.
  • the two-phase alloy of composition T1 52 Al 48 with an atomic ratio equal to 1.08 which has optimal ductility thanks to a fraction volume of phase ⁇ 2 of the order of 10%, can only solidify in ⁇ .
  • the invention relates in particular to an alloy of the kind defined in the introduction, and provides that its composition in atoms is included in the field defined below: Ti: 48.5 to 52.5% Al: 45.5 to 48.5% Re: 0.5 to 2.5% W: 0 to 2.0% Re + W: 2.0 to 2.5% Nb: 0 to 3.5% Re + W + Nb: 2.0 to 5.5% Yes : 0 to 1.0%
  • tungsten as an element favoring solidification in ⁇ , rather than rhenium alone, presents a economic interest due to the high cost of rhenium.
  • the addition of niobium provides good oxidation resistance, as well as a good level of heat resistance.
  • the addition of silicon aims to obtain a beneficial effect on the mechanical properties of use such as creep.
  • the invention also relates to a foundry piece made of an alloy as defined above, comprising the juxtaposition of a multiplicity of colonies within each initial ⁇ grain, colonies themselves comprising the juxtaposition of a multiplicity platelets each formed by an alternating stack of lamellas of crystallographic structure ⁇ and layers of crystallographic structure ⁇ 2 .
  • the platelets of the same colony are oriented according to one of the 12 ⁇ variants defined by the Burgers relationship from said ⁇ grain, the platelets of two neighboring colonies being oriented according to different variants.
  • FIGS. 1 and 2 schematically represent two successive stages in the solidification of an intermetallic alloy based on titanium aluminide.
  • FIG. 3 is a sectional view of an alloy conforming to that of FIG. 2.
  • FIGS 4 and 5 illustrate the structure of an alloy according to the invention.
  • FIG. 1 shows by way of example a cylindrical sample 1 of an alloy in the process of cooling in which columnar grains 2 of crystallographic structure ⁇ are formed. These grains are elongated in the crystallographic direction c, which coincides with the direction of the temperature gradient indicated by the arrow F, that is to say the radial direction of the cylinder 1.
  • FIG. 2 shows, on a larger scale, these same columnar grains 2 further cooled. Each of them contains lamellas 3 of crystallographic structure ⁇ oriented perpendicular to the longitudinal direction of the grain, separated from each other by layers 4 of crystallographic structure ⁇ 2 .
  • Figure 3 highlights the structure of such an alloy of the "first generation”.
  • FIG. 5 is a section of the same alloy showing, on the one hand, the orientation of the plates 7 in each colony 6 and, on the other hand, the alternating stack of lamellae of crystallographic structure ⁇ and layers of structure crystallographic ⁇ 2 .
  • the alloys according to the invention can be produced and used in the same way as the known intermetallic alloys based on titanium aluminide, so that it is not necessary to provide particular information in this regard.
  • Tests have confirmed the superiority of the alloys according to the invention compared to the alloys of the prior art, as regards the resistance to creep at high temperature which is a key factor for the industrial use of these materials.
  • the alloy of formula (1) above and the aforementioned alloy of formula Ti 48 Al 48 Cr 2 Nb 2 underwent the same heat treatments, four hours at 1250 ° C., then four hours at 900 ° C. After these treatments, the two alloys exhibited comparable tensile properties at 25 ° C., respectively 484 and 459 MPa for the elastic limit, 1.4% and 0.9% for the elastic elongation or ductility. On the other hand, a deformation of 0.5% in creep at 800 ° C. under 180 MPa was obtained in 145 hours for the alloy according to the invention against 5 hours for the known alloy. For the latter alloy, the resistance to hot creep could be improved by eliminating the aforementioned heat treatments, but this would result in a collapse of the ductility at room temperature due to the poor flowability associated with solidification in the ⁇ phase.

Abstract

An alloy which is readily shaped by casting comprises in atoms 48.5-52.5% Ti, 45.5-48.5% Al, 0.5-2.5, pref. 1-2% Re, 0-2.0% W, 0-3.5, pref. 3% Nb and 0-1.0, pref. 0.2-0.8% Si, with Re+W = 2.0-2.5% and Re+W+Nb = 2.0-5.5%. A casting of the alloy has a centred cubic crystal structure of mainly beta phase. Each beta grain consists a plurality of colonies of laminated structure, consisting of alternate layers of gamma and alpha-2 crystallography, oriented in 12 ways relative to the grain with neighbouring colonies being differently oriented.

Description

L'invention concerne un alliage intermétallique à base d'aluminiure de titane pour la réalisation de pièces de fonderie.The invention relates to an intermetallic alloy based on titanium aluminide for the production of foundry parts.

La transformation par fonderie des alliages intermétalliques dérivés de l'aluminiure de titane γ (TiAl) est considérée avec intérêt pour la réalisation de pièces de turbomachines aéronautiques. La fonderie est en effet généralement moins onéreuse que les autres procédés de mise en forme. De plus, elle a l'avantage de préserver en principe la résistance mécanique à chaud des pièces coulées du fait que la taille des grains métallurgiques obtenus est relativement importante.The transformation by foundry of intermetallic alloys derived from titanium aluminide γ (TiAl) is considered with interest for the production of parts of aeronautical turbomachines. Foundry is in fact generally less expensive than other shaping processes. In addition, it has the advantage of preserving in principle the mechanical resistance to hot of the castings because the size of the metallurgical grains obtained is relatively large.

Bien que des différences notables aient été constatées dans la coulabilité de ces alliages, c'est-à-dire leur aptitude à former des pièces de fonderie présentant une bonne qualité, garantissant la fiabilité et la reproductibilité des performances mécaniques, aucune donnée n'est disponible permettant d'expliquer ces différences, notamment en liaison avec le comportement des alliages lors de leur solidification et/ou avec leur composition chimique.Although significant differences have been noted in the flowability of these alloys, that is to say their ability to form foundry parts of good quality, guaranteeing reliability and reproducibility of mechanical performance, no data is available to explain these differences, in particular in connection with the behavior of the alloys during their solidification and / or with their chemical composition.

Afin de mettre au point des compositions d'alliages adaptées à la fonderie, les inventeurs ont entrepris une étude sur l'influence de divers éléments d'addition réfractaires sur la coulabilité. Ils ont analysé de nombreux alliages à base de TiAl dans lesquels 2 à 10 % des atomes étaient constitués par un ou plusieurs des éléments d'addition Nb, Ta, Cr, Mo, W, Fe et Re, et ont en particulier examiné leurs microstructures aussi bien à l'état brut de coulée qu'après traitements thermiques. Ils sont ainsi arrivés à la conclusion que le processus de solidification constitue un paramètre important pour la qualité des pièces de fonderie. Les différents alliages examinés peuvent en effet être classés en deux catégories, pour lesquelles se forment initialement lors de la solidification une phase de structure cristalline hexagonale α et une phase de structure cubique centrée β respectivement.In order to develop alloy compositions suitable for the foundry, the inventors undertook a study on the influence of various refractory addition elements on the flowability. They analyzed numerous TiAl-based alloys in which 2 to 10% of the atoms consisted of one or more of the addition elements Nb, Ta, Cr, Mo, W, Fe and Re, and in particular examined their microstructures both in the raw state of casting and after heat treatments. They thus came to the conclusion that the solidification process constitutes an important parameter for the quality of the foundry parts. The different alloys examined can indeed be classified in two categories, for which initially formed during solidification a phase of hexagonal crystal structure α and a phase of centered cubic structure β respectively.

Dans le cas de la solidification en phase α, les cristaux initiaux de cette phase tendent à former des grains colonnaires suivant le gradient thermique pendant la solidification et le caractère colonnaire de la microstructure à l'état brut de coulée est souvent extrêmement prononcé en raison de la croissance préférentielle des cristaux parallèle à l'axe c qui est unique dans la structure α hexagonale. De plus, toutes les lamelles de la phase γ, qui précipitent dans chacun des grains colonnaires lors du refroidissement ultérieur pour former la structure dite lamellaire γ+α2, sont orientées perpendiculairement à l'axe c de la phase hexagonale du fait de la relation d'orientation (0001)α//(111)γ et <11 2 ¯

Figure imgb0001
0>α//<1 1 ¯
Figure imgb0002
0>γ inhérente au mécanisme de transformation de phase impliqué.In the case of solidification in the α phase, the initial crystals of this phase tend to form columnar grains according to the thermal gradient during solidification and the columnar character of the microstructure in the raw pouring state is often extremely pronounced due to the preferential growth of the crystals parallel to the axis c which is unique in the hexagonal α structure. In addition, all the lamellae of the γ phase, which precipitate in each of the columnar grains during subsequent cooling to form the so-called lamellar structure γ + α 2 , are oriented perpendicular to the axis c of the hexagonal phase due to the relationship orientation (0001) α // (111) γ and <11 2 ¯
Figure imgb0001
0> α // <1 1 ¯
Figure imgb0002
0> γ inherent in the phase transformation mechanism involved.

Ce mécanisme de transformation de phase permet d'expliquer certaines difficultés sérieuses rencontrées lors de l'élaboration de produits coulés à partir des alliages concernés, notamment divers défauts tels que fissures d'origine thermique et porosités introduits dans la zone intercolonnaire ainsi qu'un caractère fortement anisotrope des produits (texture), qui risquent d'être nuisibles sur le plan de leur performance mécanique. La plupart des alliages mis au point jusqu'à présent, dont le plus connu est la nuance Ti48Al48cr2Nb2 décrite dans US-A-4879092, appartiennent à cette catégorie d'alliages se solidifiant essentiellement en α et, lorsque ces alliages sont utilisés pour la fonderie, il est nécessaire de recourir à divers moyens technologiques, quoique souvent hasardeux, afin de réduire le caractère colonnaire de la solidification et la texture qui y est associée. Par conséquent, ces alliages de la "première génération" doivent plutôt être considérés comme destinés à être corroyés, puisque la suppression des défauts et la réduction de la texture peuvent être réalisées à l'aide de traitements thermomécaniques appropriés.This phase transformation mechanism makes it possible to explain certain serious difficulties encountered during the production of products cast from the alloys concerned, in particular various defects such as cracks of thermal origin and porosities introduced into the intercolumnar zone as well as a character strongly anisotropic of the products (texture), which may be harmful in terms of their mechanical performance. Most of the alloys developed so far, the best known of which is the grade Ti 48 Al 48 cr 2 Nb 2 described in US-A-4879092, belong to this category of alloys which solidify essentially in α and, when these alloys are used for foundry, it is necessary to resort to various technological means, although often hazardous, in order to reduce the columnar character of solidification and the texture which is associated with it. Consequently, these "first generation" alloys should rather be regarded as intended to be wrought, since the elimination of defects and the texture reduction can be achieved using appropriate thermomechanical treatments.

Dans le cas de la solidification en β, le caractère colonnaire est en revanche moins prononcé, bien que l'axe <100> de la phase β reste la direction préférentielle de la croissance cristalline pendant la solidification. Cependant, lors du refroidissement après solidification, les cristaux de la phase β dits grains initiaux se transforment en cristaux de la phase α. Cette transformation, qui se produit suivant la relation d'orientation dite de Burgers (110)β//(0001)α et <1 1 ¯

Figure imgb0003
1>β//<11 2 ¯
Figure imgb0004
0>α, conduit théoriquement à la formation de douze variants α. Lorsque le refroidissement se poursuit, la phase γ précipite sous forme lamellaire dans chaque variant α. La microstructure résultante est caractérisée par la présence de nombreuses colonies (théoriquement jusqu'à douze variants d'orientation) à l'intérieur de chaque grain β initial. Chacune de ces colonies est constituée de nombreuses plaquettes (ou lattes) α, ces plaquettes (ou lattes) étant parfois délimitées par des liserés de phase β résiduelle. Chaque plaquette (ou latte) présente enfin la structure lamellaire γ+α2. Une telle séquence de transformation se traduit par une minimisation des difficultés rencontrées dans les alliages se solidifiant en α avec la réduction de la fréquence des défauts de solidification et une texture moins prononcée.In the case of solidification in β, the columnar character is on the other hand less pronounced, although the axis <100> of the β phase remains the preferred direction of crystal growth during solidification. However, during cooling after solidification, the crystals of the β phase, called initial grains, transform into crystals of the α phase. This transformation, which occurs according to the so-called Burgers orientation relationship (110) β // (0001) α and <1 1 ¯
Figure imgb0003
1> β // <11 2 ¯
Figure imgb0004
0> α , theoretically leads to the formation of twelve α variants. When the cooling continues, the γ phase precipitates in lamellar form in each variant α. The resulting microstructure is characterized by the presence of numerous colonies (theoretically up to twelve orientation variants) inside each initial β grain. Each of these colonies is made up of numerous α platelets (or slats), these platelets (or slats) being sometimes delimited by residual β-phase borders. Each plate (or slat) finally has the lamellar structure γ + α 2 . Such a transformation sequence results in a minimization of the difficulties encountered in the alloys solidifying in α with the reduction in the frequency of the solidification defects and a less pronounced texture.

La solidification en phase β peut être obtenue pour des alliages binaires suffisamment riches en Ti, comme par exemple dans le cas de la composition Ti60Al40, dont le rapport atomique Ti/Al de 1,5 est très éloigné de celui de la composition équiatomique Ti50Al50 égal à 1. Cependant les alliages aussi riches en titane sont nettement plus lourds et moins résistants à l'oxydation que l'alliage équiatomique. Enfin, ils présentent après élaboration une structure biphasée γ + α2 dans laquelle la fraction volumique de la phase α2 peu déformable est excessivement importante, ce qui les rend extrêmement fragiles. Il est à noter que l'alliage biphasé de la composition T152Al48 de rapport atomique égal à 1,08, qui possède une ductilité optimale grâce à une fraction volumique de la phase α2 de l'ordre de 10%, ne peut se solidifier qu'en α.Solidification in β phase can be obtained for binary alloys sufficiently rich in Ti, as for example in the case of the composition Ti 60 Al 40 , whose Ti / Al atomic ratio of 1.5 is very far from that of the composition equiatomic Ti 50 Al 50 equal to 1. However, alloys as rich in titanium are significantly heavier and less resistant to oxidation than the equiatomic alloy. Finally, after preparation, they have a two-phase structure γ + α 2 in which the volume fraction of the slightly deformable α 2 phase is excessively large, which makes them extremely fragile. It should be noted that the two-phase alloy of composition T1 52 Al 48 with an atomic ratio equal to 1.08, which has optimal ductility thanks to a fraction volume of phase α 2 of the order of 10%, can only solidify in α.

On a donc recherché des éléments d'addition propres à favoriser la solidification en phase β tout en maintenant le rapport atomique Ti/Al proche de la valeur optimale 52/48, sans que celui-ci dépasse la valeur 1,16, et en minimisant l'addition d'éléments réfractaires afin de ne pas alourdir les alliages. On a ainsi constaté, de manière surprenante, que le rhénium est l'élément le plus efficace à cet égard, suivi de près par le tungstène. En effet, une addition de l'ordre de 2% en atomes de ces éléments dans l'alliage binaire de base Ti52Al48 est suffisante pour que la solidification se produise presque entièrement en phase β, alors que l'addition d'environ 5% en atomes est nécessaire pour d'autres éléments. Il s'est avéré également que l'effet d'addition était cumulatif. Par exemple, si l'on ajoute simultanément 1% de Re et 1% de W, l'alliage se solidifie en β, alors que l'addition séparée de chacun de ces éléments à la teneur indiquée n'est pas suffisante.We therefore sought elements of addition suitable for promoting solidification in the β phase while maintaining the atomic ratio Ti / Al close to the optimal value 52/48, without this exceeding the value 1.16, and minimizing the addition of refractory elements so as not to weigh down the alloys. It has thus been found, surprisingly, that rhenium is the most effective element in this regard, followed closely by tungsten. Indeed, an addition of the order of 2% by atom of these elements in the basic binary alloy Ti 52 Al 48 is sufficient for solidification to occur almost entirely in the β phase, while the addition of approximately 5% in atoms is necessary for other elements. It also turned out that the addition effect was cumulative. For example, if 1% of Re and 1% of W are added simultaneously, the alloy solidifies in β, while the separate addition of each of these elements to the content indicated is not sufficient.

L'invention vise notamment un alliage du genre défini en introduction, et prévoit que sa composition en atomes est comprise dans le domaine défini ci-après: Ti : 48,5 à 52,5 % Al : 45,5 à 48,5 % Re : 0,5 à 2,5 % W : 0 à 2,0 % Re+W : 2,0 à 2,5 % Nb : 0 à 3,5 % Re+W+Nb : 2,0 à 5,5 % Si : 0 à 1,0 % L'utilisation du tungstène, en tant qu'élément favorisant la solidification en β, plutôt que du rhénium seul, présente un intérêt économique en raison du coût élevé du rhénium. L'addition de niobium procure une bonne résistance à l'oxydation, ainsi qu'un bon niveau de résistance à chaud. Enfin, l'addition de silicium vise à obtenir un effet bénéfique sur les propriétés mécaniques d'usage telles que le fluage.The invention relates in particular to an alloy of the kind defined in the introduction, and provides that its composition in atoms is included in the field defined below: Ti: 48.5 to 52.5% Al: 45.5 to 48.5% Re: 0.5 to 2.5% W: 0 to 2.0% Re + W: 2.0 to 2.5% Nb: 0 to 3.5% Re + W + Nb: 2.0 to 5.5% Yes : 0 to 1.0% The use of tungsten, as an element favoring solidification in β, rather than rhenium alone, presents a economic interest due to the high cost of rhenium. The addition of niobium provides good oxidation resistance, as well as a good level of heat resistance. Finally, the addition of silicon aims to obtain a beneficial effect on the mechanical properties of use such as creep.

Des caractéristiques optionnelles de l'alliage selon l'invention, complémentaires ou alternatives, sont énoncées ci-après :

  • Il contient environ 2 % en atomes de Re + W.
  • Il contient environ 1 à 2 % en atomes de Re.
  • Il contient environ 3 % en atomes de Nb.
  • Il contient environ 0,2 à 0,8 % en atomes de Si.
  • Sa formule atomique est choisie parmi les suivantes:

            Ti50,6Al46,6Re2Si0,8     (1)



            Ti52Al46Re1W1     (2)



            Ti51,8Al46Re1W1Si0,2     (3)



            Ti49Al46Nb3Re1W1     (4)



            Ti48,8Al46Nb3Re1W1Si0,2     (5).

  • Il est propre à former lors de sa solidification une phase de structure cubique centrée β.
Optional characteristics of the alloy according to the invention, complementary or alternative, are set out below:
  • It contains approximately 2% of Re + W atoms.
  • It contains around 1 to 2% Re atoms.
  • It contains about 3 atomic% of Nb.
  • It contains about 0.2 to 0.8 atomic% of Si.
  • Its atomic formula is chosen from the following:

    Ti 50.6 Al 46.6 Re 2 Si 0.8 (1)



    Ti 52 Al 46 Re 1 W 1 (2)



    Ti 51.8 Al 46 Re 1 W 1 Si 0.2 (3)



    Ti 49 Al 46 Nb 3 Re 1 W 1 (4)



    Ti 48.8 Al 46 Nb 3 Re 1 W 1 Si 0.2 (5).

  • It is able to form during its solidification a cubic structure phase centered β.

L'invention a également pour objet une pièce de fonderie réalisée en un alliage tel que défini ci-dessus, comportant la juxtaposition d'une multiplicité de colonies au sein de chaque grain β initial, colonies comportant elles-mêmes la juxtaposition d'une multiplicité de plaquettes formées chacune par un empilement alterné de lamelles de structure cristallographique γ et de couches de structure cristallographique α2. Les plaquettes d'une même colonie sont orientées selon l'un des 12 variants α définis par la relation de Burgers à partir dudit grain β, les plaquettes de deux colonies voisines étant orientées selon des variants différents.The invention also relates to a foundry piece made of an alloy as defined above, comprising the juxtaposition of a multiplicity of colonies within each initial β grain, colonies themselves comprising the juxtaposition of a multiplicity platelets each formed by an alternating stack of lamellas of crystallographic structure γ and layers of crystallographic structure α 2 . The platelets of the same colony are oriented according to one of the 12 α variants defined by the Burgers relationship from said β grain, the platelets of two neighboring colonies being oriented according to different variants.

Dans les dessins et vues annexés, les figures 1 et 2 représentent schématiquement deux étapes successives de la solidification d'un alliage intermétallique à base d'aluminiure de titane.In the accompanying drawings and views, FIGS. 1 and 2 schematically represent two successive stages in the solidification of an intermetallic alloy based on titanium aluminide.

La figure 3 est une vue en coupe d'un alliage conforme à celui de la figure 2.FIG. 3 is a sectional view of an alloy conforming to that of FIG. 2.

Les figures 4 et 5 illustrent la structure d'un alliage conforme à l'invention.Figures 4 and 5 illustrate the structure of an alloy according to the invention.

Les figures 1 et 2 illustrent le processus de refroidissement en phase α décrit plus haut. La figure 1 montre à titre d'exemple un échantillon cylindrique 1 d'un alliage en cours de refroidissement dans lequel se forment des grains colonnaires 2 de structure cristallographique α. Ces grains sont allongés selon la direction cristallographique c, qui coïncide avec la direction du gradient de température indiqué par la flèche F, c'est-à-dire la direction radiale du cylindre 1. La figure 2 montre, à plus grande échelle, ces mêmes grains colonnaires 2 davantage refroidis. Chacun d'eux contient des lamelles 3 de structure cristallographique γ orientées perpendiculairement à la direction longitudinale du grain, séparées entre elles par des couches 4 de structure cristallographique α2.Figures 1 and 2 illustrate the α phase cooling process described above. FIG. 1 shows by way of example a cylindrical sample 1 of an alloy in the process of cooling in which columnar grains 2 of crystallographic structure α are formed. These grains are elongated in the crystallographic direction c, which coincides with the direction of the temperature gradient indicated by the arrow F, that is to say the radial direction of the cylinder 1. FIG. 2 shows, on a larger scale, these same columnar grains 2 further cooled. Each of them contains lamellas 3 of crystallographic structure γ oriented perpendicular to the longitudinal direction of the grain, separated from each other by layers 4 of crystallographic structure α 2 .

La figure 3 met en évidence la structure d'un tel alliage de la "première génération".Figure 3 highlights the structure of such an alloy of the "first generation".

Au centre de la figure 4, coupe d'un alliage conforme à la présente invention, apparaît nettement la frontière 5 d'un grain β initial. Dans ce grain, chaque colonie 6 est mise en évidence par l'orientation des plaquettes qui la composent. Chaque orientation suit la relation de Burgers.In the center of Figure 4, section of an alloy according to the present invention, clearly appears the border 5 of an initial β grain. In this grain, each colony 6 is highlighted by the orientation of the platelets which compose it. Each orientation follows the Burgers relationship.

La figure 5 est une coupe du même alliage mettant en évidence, d'une part, l'orientation des plaquettes 7 dans chaque colonie 6 et, d'autre part, l'empilement alterné de lamelles de structure cristallographique γ et de couches de structure cristallographique α2.FIG. 5 is a section of the same alloy showing, on the one hand, the orientation of the plates 7 in each colony 6 and, on the other hand, the alternating stack of lamellae of crystallographic structure γ and layers of structure crystallographic α 2 .

Les alliages selon l'invention peuvent être élaborés et mis en oeuvre de la même façon que les alliages intermétalliques à base d'aluminiure de titane connus, de sorte qu'il n'est pas nécessaire de fournir d'indications particulières à cet égard.The alloys according to the invention can be produced and used in the same way as the known intermetallic alloys based on titanium aluminide, so that it is not necessary to provide particular information in this regard.

Des essais ont confirmé la supériorité des alliages selon l'invention par rapport aux alliages de la technique antérieure, en ce qui concerne la résistance au fluage à haute température qui est un facteur clé pour l'utilisation industrielle de ces matériaux.Tests have confirmed the superiority of the alloys according to the invention compared to the alloys of the prior art, as regards the resistance to creep at high temperature which is a key factor for the industrial use of these materials.

L'alliage de la formule (1) ci-dessus et l'alliage précité de formule Ti48Al48Cr2Nb2 ont subi les mêmes traitements thermiques, quatre heures à 1250 °C, puis quatre heures à 900 °C. Après ces traitements, les deux alliages présentaient des propriétés de traction à 25 °C comparables, respectivement 484 et 459 MPa pour la limite élastique, 1,4 % et 0,9 % pour l'allongement élastique ou ductilité. En revanche, une déformation de 0,5 % en fluage à 800 °C sous 180 MPa a été obtenue en 145 heures pour l'alliage selon l'invention contre 5 heures pour l'alliage connu. Pour ce dernier alliage, la résistance au fluage à chaud pourrait être améliorée en supprimant les traitements thermiques précités, mais il en résulterait un effondrement de la ductilité à température ambiante en raison de la mauvaise coulabilité associée à la solidification en phase α.The alloy of formula (1) above and the aforementioned alloy of formula Ti 48 Al 48 Cr 2 Nb 2 underwent the same heat treatments, four hours at 1250 ° C., then four hours at 900 ° C. After these treatments, the two alloys exhibited comparable tensile properties at 25 ° C., respectively 484 and 459 MPa for the elastic limit, 1.4% and 0.9% for the elastic elongation or ductility. On the other hand, a deformation of 0.5% in creep at 800 ° C. under 180 MPa was obtained in 145 hours for the alloy according to the invention against 5 hours for the known alloy. For the latter alloy, the resistance to hot creep could be improved by eliminating the aforementioned heat treatments, but this would result in a collapse of the ductility at room temperature due to the poor flowability associated with solidification in the α phase.

Les alliages des formules (1), (2) et (3) ci-dessus, et un alliage de formule Ti48Al46Nb3W1 développé par Allison et considéré comme très résistant au fluage, ont été soumis à un essai de fluage à 750 °C sous 200 MPa. Une déformation de 0,5 % a été obtenue au bout de 625 heures, 212 heures, 740 heures et 56 heures respectivement pour les quatre alliages, soit des durées quatre à treize fois plus élevées pour les alliages selon l'invention que pour l'alliage de la technique antérieure.The alloys of formulas (1), (2) and (3) above, and an alloy of formula Ti 48 Al 46 Nb 3 W 1 developed by Allison and considered to be very resistant to creep, were subjected to a test of creep at 750 ° C at 200 MPa. A deformation of 0.5% was obtained after 625 hours, 212 hours, 740 hours and 56 hours respectively for the four alloys, ie durations four to thirteen times higher for the alloys according to the invention than for the alloy of the prior art.

Claims (8)

Alliage intermétallique à base d'aluminiure de titane pour la réalisation de pièces de fonderie, caractérisé en ce que sa composition en atomes est comprise dans le domaine défini ci-après: Ti : 48,5 à 52,5 % Al : 45,5 à 48,5 % Re : 0,5 à 2,5 % W : 0 à 2,0 % Re+W : 2,0 à 2,5 % Nb : 0 à 3,5 % Re+W+Nb : 2,0 à 5,5 % Si : 0 à 1,0 %
Intermetallic alloy based on titanium aluminide for the production of foundry parts, characterized in that its composition in atoms is included in the field defined below: Ti: 48.5 to 52.5% Al: 45.5 to 48.5% Re: 0.5 to 2.5% W: 0 to 2.0% Re + W: 2.0 to 2.5% Nb: 0 to 3.5% Re + W + Nb: 2.0 to 5.5% Yes : 0 to 1.0%
Alliage selon la revendication 1, caractérisé en ce qu'il contient environ 2 % en atomes de Re + W.Alloy according to claim 1, characterized in that it contains approximately 2% of Re + W atoms. Alliage selon la revendication 2, caractérisé en ce qu'il contient environ 1 à 2 % en atomes de Re.Alloy according to claim 2, characterized in that it contains approximately 1 to 2% in Re atoms. Alliage selon l'une des revendications précédentes, caractérisé en ce qu'il contient environ 3 % en atomes de Nb.Alloy according to one of the preceding claims, characterized in that it contains approximately 3 atomic% of Nb. Alliage selon l'une des revendications précédentes, caractérisé en ce qu'il contient environ 0,2 à 0,8 % en atomes de Si.Alloy according to one of the preceding claims, characterized in that it contains approximately 0.2 to 0.8% Si atoms. Alliage selon l'une ou l'autre des revendications précédentes, caractérisé en ce que sa composition atomique est choisie parmi les suivantes:

        Ti50,6Al46,6Re2Si0,8



        Ti52Al46Re1W1



        Ti51,8Al46Re1W1Si0,2



        Ti49Al46Nb3Re1W1



        Ti48,8Al46Nb3Re1W1Si0,2.

Alloy according to either of the preceding claims, characterized in that its atomic composition is chosen from the following:

Ti 50.6 Al 46.6 Re 2 Si 0.8



Ti 52 Al 46 Re 1 W 1



Ti 51.8 Al 46 Re 1 W 1 Si 0.2



Ti 49 Al 46 Nb 3 Re 1 W 1



Ti 48.8 Al 46 Nb 3 Re 1 W 1 Si 0.2 .

Alliage selon l'une des revendications précédentes, caractérisé en ce qu'il est propre à former lors de sa solidification une phase de structure cubique centrée β.Alloy according to one of the preceding claims, characterized in that it is capable of forming, during its solidification, a phase of cubic structure centered β. Pièce de fonderie réalisée en un alliage selon la revendication 7, comportant la juxtaposition d'une multiplicité de colonies (6) au sein de chaque grain β initial, colonies comportant elles-mêmes la juxtaposition d'une multiplicité de plaquettes (7) formées chacune par un empilement alterné de lamelles de structure cristallographique γ et de couches de structure cristallographique α2, les plaquettes d'une même colonie étant orientées selon l'un des 12 variants α définis par la relation de Burgers à partir dudit grain β, et les plaquettes de deux colonies voisines étant orientées selon des variants différents.Foundry piece made of an alloy according to claim 7, comprising the juxtaposition of a multiplicity of colonies (6) within each initial β grain, colonies themselves comprising the juxtaposition of a multiplicity of platelets (7) each formed by an alternating stack of lamellas of crystallographic structure γ and layers of crystallographic structure α 2 , the platelets of the same colony being oriented according to one of the 12 variants α defined by the Burgers relationship from said grain β, and the platelets from two neighboring colonies being oriented according to different variants.
EP96400598A 1995-03-24 1996-03-21 Intermetallic alloy based on titanium aluminide and suitable for casting techniques Expired - Lifetime EP0733716B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9503511A FR2732038B1 (en) 1995-03-24 1995-03-24 INTERMETALLIC ALLOY BASED ON TITANIUM ALUMINIURE FOR FOUNDRY
FR9503511 1995-03-24
US08/622,668 US5846345A (en) 1995-03-24 1996-03-26 Intermetallic alloy based on titanium aluminide for casting

Publications (2)

Publication Number Publication Date
EP0733716A1 true EP0733716A1 (en) 1996-09-25
EP0733716B1 EP0733716B1 (en) 1999-10-20

Family

ID=26231833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400598A Expired - Lifetime EP0733716B1 (en) 1995-03-24 1996-03-21 Intermetallic alloy based on titanium aluminide and suitable for casting techniques

Country Status (5)

Country Link
US (1) US5846345A (en)
EP (1) EP0733716B1 (en)
JP (1) JP3913285B2 (en)
CA (1) CA2172476C (en)
FR (1) FR2732038B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710592A1 (en) * 1997-03-14 1998-09-17 Forschungszentrum Juelich Gmbh Oxidation resistant titanium-aluminium alloy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0613493A2 (en) * 2005-06-28 2011-01-11 Zbx Corp matrix membrane and analytical device
FR3006696B1 (en) 2013-06-11 2015-06-26 Centre Nat Rech Scient PROCESS FOR MANUFACTURING A TITANIUM ALUMINUM ALLOY PIECE
KR101614124B1 (en) * 2014-11-24 2016-04-21 한국기계연구원 A Ti-Al base alloy
CN115466867B (en) * 2022-09-14 2023-05-05 西北工业大学 TiAl alloy capable of improving uniform deformation capacity and preparation method thereof
CN115627386B (en) * 2022-11-07 2023-10-24 西北工业大学 TiAlRe alloy suitable for rolling deformation and rolling method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255632A (en) * 1988-04-04 1989-10-12 Mitsubishi Metal Corp Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
US4879092A (en) * 1988-06-03 1989-11-07 General Electric Company Titanium aluminum alloys modified by chromium and niobium and method of preparation
DE4304481A1 (en) * 1993-02-15 1994-08-18 Abb Research Ltd High-temperature alloy based on alloyed gamma-titanium aluminide and use of this alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783329A (en) * 1985-12-11 1988-11-08 Allied-Signal Inc. Hydriding solid solution alloys having a body centered cubic structure stabilized by quenching near euctectoid compositions
US5041262A (en) * 1989-10-06 1991-08-20 General Electric Company Method of modifying multicomponent titanium alloys and alloy produced

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255632A (en) * 1988-04-04 1989-10-12 Mitsubishi Metal Corp Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
US4879092A (en) * 1988-06-03 1989-11-07 General Electric Company Titanium aluminum alloys modified by chromium and niobium and method of preparation
GB2219310A (en) * 1988-06-03 1989-12-06 Gen Electric Chromium- and niobium-modified titanium aluminum alloys and method of preparation
DE4304481A1 (en) * 1993-02-15 1994-08-18 Abb Research Ltd High-temperature alloy based on alloyed gamma-titanium aluminide and use of this alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 007 (C - 673) 10 January 1989 (1989-01-10) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710592A1 (en) * 1997-03-14 1998-09-17 Forschungszentrum Juelich Gmbh Oxidation resistant titanium-aluminium alloy

Also Published As

Publication number Publication date
US5846345A (en) 1998-12-08
FR2732038A1 (en) 1996-09-27
EP0733716B1 (en) 1999-10-20
JP3913285B2 (en) 2007-05-09
CA2172476C (en) 2007-03-06
CA2172476A1 (en) 1996-09-25
FR2732038B1 (en) 1997-06-06
JPH08269595A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
CA2583140C (en) Nickel-based alloy
EP0971041B1 (en) Single crystal nickel-based superalloy with high solvus gamma prime phase
FR2557147A1 (en) PROCESS FOR FORGING HIGH-RESISTANCE NICKEL-BASED SUPERALLIER MATERIALS, ESPECIALLY IN MOLDED FORM
FR2462484A1 (en) TITANIUM ALLOY OF THE TI3AL TYPE
EP3850118B1 (en) Nickel-based superalloys
FR2557148A1 (en) PROCESS FOR INCREASING THE FORGEABILITY OF A NICKEL-BASED SUPERALLIAGE ARTICLE
FR2519350A1 (en) METHOD FOR MANUFACTURING A SUPERALLIANCE MATERIAL WITH A CONTROLLED ORIENTATION-CONTROLLED COLONIC CRYSTALLINE STRUCTURE
FR2461016A1 (en) NICKEL SUPERALLIAGE ARTICLE WITH SINGLE CRYSTALLINE STRUCTURE AND METHOD OF MANUFACTURE
EP1340832A1 (en) Thin products made of beta or quasi beta titanium alloys, manufacture by forging
FR2512837A1 (en) MONOCRYSTAL SUPER-NICKEL ARTICLES BASED ON NICKEL
EP4038214A1 (en) Aluminum alloy precision plates
FR2543578A1 (en) PRODUCTION OF METALLIC ARTICLES BY SUPERPLASTIC DEFORMATION
EP0733716B1 (en) Intermetallic alloy based on titanium aluminide and suitable for casting techniques
FR2655057A1 (en) TITANIUM-ALUMINUM-VANADIUM ALLOYS AND METHOD FOR TREATING FORGED PARTS OF SUCH ALLOYS
JP5010841B2 (en) Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material
EP1211335B1 (en) Nickel based superalloy having a very high resistance to hot corrosion for single crystal turbine blades of industrial turbines
JP2004524974A (en) High-temperature isostatic compression molding of castings
Hills et al. The mechanical properties of quenched uranium-molybdenum alloys: Part I: Tensile tests on polycbystalline specimens
EP3684530B1 (en) Alloy turbine component comprising a max phase
CA1106265A (en) Heat treating and tempering of forged workpieces
FR2670804A1 (en) PROCESS FOR FORMING TITANIUM ALUMINIENTS CONTAINING CHROMIUM, NIOBIUM AND BORON
US20230366064A1 (en) A platinum alloy composition
FR2670805A1 (en) PROCESS FOR FORMING TITANIUM ALUMINUM CONTAINING CHROMIUM, TANTALIUM AND BORON.
FR2860804A1 (en) SUPERALLIAGE BASED ON NICKEL AND PARTS DONE IN MONOCRYSTAL
FR2496702A1 (en) ALUMINUM ALLOY OPENING PRODUCT CONTAINING AFFINED INTERMETALLIC PHASES, PREPARATION AND USE THEREOF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

17P Request for examination filed

Effective date: 19970310

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990202

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REF Corresponds to:

Ref document number: 185851

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991028

REF Corresponds to:

Ref document number: 69604717

Country of ref document: DE

Date of ref document: 19991125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150219

Year of fee payment: 20

Ref country code: CH

Payment date: 20150224

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150226

Year of fee payment: 20

Ref country code: AT

Payment date: 20150220

Year of fee payment: 20

Ref country code: FR

Payment date: 20150319

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69604717

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160320

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 185851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160321