EP0733162B1 - Method of manufacturing a magnetic circuit for a valve - Google Patents

Method of manufacturing a magnetic circuit for a valve Download PDF

Info

Publication number
EP0733162B1
EP0733162B1 EP95916562A EP95916562A EP0733162B1 EP 0733162 B1 EP0733162 B1 EP 0733162B1 EP 95916562 A EP95916562 A EP 95916562A EP 95916562 A EP95916562 A EP 95916562A EP 0733162 B1 EP0733162 B1 EP 0733162B1
Authority
EP
European Patent Office
Prior art keywords
valve
valve housing
intermediate ring
inner pole
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95916562A
Other languages
German (de)
French (fr)
Other versions
EP0733162A1 (en
Inventor
Waldemar Hans
Robert Schmidt-Hebbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0733162A1 publication Critical patent/EP0733162A1/en
Application granted granted Critical
Publication of EP0733162B1 publication Critical patent/EP0733162B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8061Fuel injection apparatus manufacture, repair or assembly involving press-fit, i.e. interference or friction fit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/085Yoke or polar piece between coil bobbin and armature having a gap, e.g. filled with nonmagnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • the invention is based on methods for producing a Magnetic circuit for a valve, especially for a Injection valve for fuel injection systems from 2.
  • DE 40 13 832 A which forms the closest prior art, is already an electromagnetic one actuatable fuel injector known in which a Connection ring made of a non-magnetic, a high specific electrical resistance material is formed that is tight and tight with an inner pole and a valve jacket of the fuel injector connected is. This ensures that between the inner pole or no fuel to the valve jacket and the connecting ring a magnetic coil that surrounds the inner pole and from which Valve jacket itself is surrounded, can reach.
  • connection ring made of a non-magnetic material Since the Connection ring made of a non-magnetic material is formed, the influence of the connecting ring on the magnetic field is very low, rather it prevents a magnetic short circuit between the inner pole and the Valve jacket, and the emergence of additional Eddy current losses are avoided. Fitting the Connecting ring, however, represents a comparative represents a cost-intensive process Magnetic body made of inner pole, valve jacket and connecting ring are, for example, an inner and an outer solder ring necessary to be able to create tight and tight connections.
  • the individual components inner pole, Valve jacket and connecting ring must be manufactured very precisely be and fixed to each other before the joining process.
  • the manufacture of the individual high-precision components and that Fix the components until the tight and fixed connections are complex and costly Method.
  • the inventive method for producing a Magnetic circuit for a valve, especially for a Fuel injector, with the features of claim 1 has the advantage that with less Individual components than in the prior art Magnetic body is formed.
  • the is particularly advantageous Eliminate multiple highly accurate items by adding just one one-piece, for example extruded valve housing as Part of the magnetic body is used.
  • the valve housing is designed so that a by the invention Process later formed inner pole and also first Valve jacket to be trained with each other due to the one-piece valve housing are connected.
  • the valve housing has an outer contour, the later contours of the inner pole and the Valve jacket corresponds.
  • the inventive method for producing a Magnetic circuit for a valve, especially for a Fuel injector, with the features of claim 2, has the advantage that a magnetic body is simple and inexpensive to manufacture. It is advantageous that in the so-called metal injection molding (MIM) method a non-magnetic intermediate ring and a magnetic valve housing in one operation a conventional plastic injection molding machine as Moldings can be injection molded.
  • MIM metal injection molding
  • the composition of the metal powder used in each case can desired optimal magnetic properties of the Magnetic body can be matched.
  • valve housing Since the valve housing is in one piece from the beginning and even after the process steps according to the invention represents one-piece body with three assemblies is one the resulting pressure tightness is a particular advantage. With minimal use of fabric, it becomes a pressure-tight one Creates a magnetic circuit that does not use sealing elements, like O-rings, can be installed in the valve, so that on additional components can be dispensed with. Training of the valve housing according to the inventive method also enables a very simple construction of a Solenoid that is dry and tight from the valve body and a guide element is included and no additional Coil carrier body required.
  • Embodiments of inventive manufactured Fuel injectors or magnetic circuits are in the Drawing shown in simplified form and in the following Description explained in more detail.
  • 1 shows it 2 designed according to the invention one-piece valve housing
  • Figure 3 is a one-piece Valve housing with a non-magnetic intermediate ring in one Press tool before extrusion
  • Figure 4 is an enlarged Representation of the extrusion area from Figure 3
  • Figure 5 a Valve housing with an intermediate ring after extrusion
  • Figure 6 shows a valve housing with an intermediate ring according to the spatial separation of inner pole and valve jacket by a Fine machining
  • Figure 7 one using the MIM method manufactured intermediate ring
  • Figure 8 a MIM method manufactured valve housing with an intermediate ring before finishing.
  • Electromagnetically actuated fuel injector for Fuel injection systems for example mixture-compression-ignition internal combustion engines has a through the inventive method Production of a magnetic circuit for a valve, tubular valve housing comprising two assemblies 1 made of a ferromagnetic material, e.g. from a soft magnetic steel.
  • the valve housing 1 represents the Application of the method according to the invention in one piece ferromagnetic pressed part with a stepped contour, as shown in Figure 2.
  • Figure 2 When describing the individual process steps are also accurate Explanation of the geometry of the valve housing 1.
  • the valve housing 1 another shape that is particularly characterized by a resulting two-part is evident.
  • the valve housing 1 is namely now of a tubular Inner pole 3 and a still serving as housing, stepped, tubular valve jacket 4 is formed.
  • the spatial separation of the upstream inner pole 3 and the radially outward opposite the inner pole 3 offset and downstream valve jacket 4 is among other things by pressing a non-magnetic Intermediate ring 5 achieved.
  • the tubular inner pole 3 has a largely constant Outside diameter and is from a solenoid 7 partially surrounded.
  • the magnetic coil 7 both partially radially and axially enclosing guide element 10.
  • the magnet coil 7 is without an additional coil former between the inner pole 3, the Guide element 10, the valve jacket 4 and ultimately in Cross-section L-shaped intermediate ring 5 completely embedded.
  • the cup-shaped guide element 10 is replaced by an armature 8 facing away, perpendicular to a longitudinal valve axis 12 extending floor area 11 and an in Direction to the valve jacket 4 adjacent jacket area 14 formed.
  • the cladding region 14 surrounds the magnet coil 7 completely in the circumferential direction and is at his downstream end with the valve jacket 4 by z. Legs Flare connection firmly connected. It is also possible that the jacket region 14 only partially in the circumferential direction is trained, e.g. from several temple-like Sections exists.
  • the bottom area 11 of the guide element 10 covers the solenoid 7 at the armature 8 facing away Axial side. In the bottom area 11 there is a center through opening 17 is provided through which the inner pole 3rd runs. Especially the cup-shaped guide element 10 enables a particularly compact design of the injection valve in the Magnetic coil area 7.
  • valve longitudinal axis 12 All previously mentioned components of the injection valve extend concentrically to the valve longitudinal axis 12.
  • the also concentric with the valve longitudinal axis 12 trained tubular inner pole 3 represents a Fuel inlet nozzle and thus serves the Fuel supply inside the injector.
  • valve housing 1 or the valve jacket 4 With its lower end 13 encloses the Valve housing 1 or the valve jacket 4 in the axial direction partially a nozzle body 15.
  • a nozzle body 15 For liquid-tight Seal between the valve housing 1 and the nozzle body 15 is an annular groove on the circumference of the nozzle body 15 formed in which a sealing ring 16 is arranged.
  • cylindrical hollow armature 8 acts with the solenoid 7 and the inner pole 3 together and protrudes through Magnet line guide paragraph 18 of the valve jacket 4 and partially the non-magnetic intermediate ring 5 in the axial direction.
  • the armature engages around an end facing away from the magnet coil 7 8 is a holding part 19 of a valve needle 20 and is with the Valve needle 20 firmly connected.
  • the return spring 22 is supported at one end in one Through hole 24 of the inner pole 3, for example pressed-in adjusting sleeve 25.
  • the z. B. from rolled Spring steel sheet formed tubular adjusting sleeve 25 is used to adjust the spring preload on it return spring 22.
  • the return spring 22 is endeavors to anchor 8 and those related to it Valve needle 20 in the direction of a valve seat surface 27 move.
  • nozzle body 15 In the nozzle body 15 is concentric with the longitudinal axis of the valve 12 a stepped, continuous flow channel 28 educated. At its end facing away from the valve housing 1 the flow channel 28 has the conical valve seat surface 27. Two trained for example as a square Guide sections 29 of the valve needle 20 are by a Guided area 30 of the flow channel 28 out; she but also leave an axial passage for the fuel free.
  • the valve needle 20 penetrates one with radial play Through opening 32 in a stop plate 33, the between an armature 8 facing end face 34 of the Nozzle body 15 and one of the end faces 34 opposite inner shoulder 35 of the valve jacket 4 is jammed.
  • the stop plate 33 is used for limitation the movement of the in the flow channel 28 of the nozzle body 15 arranged valve needle 20th
  • the valve needle 20 faces away from the holding part 19 conical section 37 serving as valve closing part, the one with the conical valve seat surface 27 of the nozzle body 15 interacts and the opening or closing of the Fuel injector causes.
  • To the cone Valve seat surface 27 is included in the direction of flow End channel 38 of the nozzle body 15. This end channel 38 follows downstream z. B. a spray plate 40, the at least a z. B. introduced by punching or eroding Spray opening 41 through which the fuel is hosed.
  • the inner pole 3 is at least partially in the axial direction and the guide element 10 through a plastic sheathing 43 enclosed.
  • An electrical connector 45 through which the electrical contacting of the solenoid 7 and thus their excitement occurs, for example, together with the Plastic sheath 43 molded.
  • Fuel inlet connector serving inner pole 3 such designed that a fuel filter 48 can be used.
  • the through hole 24 upstream of the Adjustment sleeve 25 has a larger diameter than in Area of the pressed-in adjusting sleeve 25.
  • the fuel filter 48 can be mounted, with a Retaining ring 49 with a slight radial pressure on the Wall of the through hole 24 is present.
  • Fuel injector flows through incoming fuel the fuel filter 48 in a known manner and occurs in radial direction from the fuel filter 48.
  • FIG. 2 the one-piece valve housing 1 is shown, the under other by the inventive method in the Inner pole 3 and the valve jacket 4 according to FIGS. 1 and 6 is shared.
  • Valve housing 1 made of a ferromagnetic material as a Pressed part made so that the outer contours of the later inner pole 3 and the valve jacket 4 largely can remain unprocessed.
  • the elongated one Valve housing 1 are already z. B.
  • a blind hole 52nd as part of the later through hole 24 in the area of Fuel filter 48 and one on the blind hole 52 opposite side, stepped, likewise Blind hole-like opening 53 is provided.
  • the opening 53 has at least one of them axial section 55 already has the corresponding diameter, that is necessary for the installation of the nozzle body 15 in section 55 is.
  • the later required diameter for the anchor 8 can in the axial direction facing the blind bore 52 Section 54 of opening 53 is not immediately provided because the radially outside of section 54 remaining material partly in the following Process steps are needed. From the inner wall of the valve housing 1 in section 54 will later Magnetic line paragraph 18 formed.
  • the later Valve jacket 4 ie the area of the valve housing 1 with the inner opening 53, a larger outer diameter has than the later inner pole 3, results in Radial shoulder 57 on the valve housing 1.
  • the radial shoulder 57 forms the lower boundary surface for the space of the Magnetic coil 7, while an outer wall 58 of the inner pole 3 the inner boundary to the valve longitudinal axis 12 for the Magnetic coil 7 represents.
  • Starting from an outer The outer surface 60 of the valve jacket 4 runs Radial shoulder 57 not as a flat surface up to the wall 58, but it is in by a along the wall 58 in Direction to section 55, but otherwise annular groove 61 interrupted, the side walls parallel run to the valve longitudinal axis 12.
  • Section 54 of the Opening 53 extends in the direction of blind hole 52 a little beyond the radial shoulder 57 to an end face 62, so that the later valve jacket 4 completely and the later inner pole 3 only slightly axially from opening 53 to be penetrated.
  • An inner wall 58 of the inner pole 3 directly surrounding support sleeve 66 and an outer support sleeve 67 mainly perform tasks to manage an intermediate two enclosed compression sleeve 68 and to avoid the Tilting of the non-magnetic intermediate ring 5 during the Pressing process.
  • the press ram 65 runs in a second Die 69.
  • the individual sleeves 66, 67 and 68 have one such a width that the inner support sleeve 66 and Press sleeve 68 rest on the intermediate ring 5 while the outer support sleeve 67 to the radial shoulder 57 of Valve housing 1 is sufficient. With the compression sleeve 68 actual force for pressing the intermediate ring 5 upset.
  • a counterforce creates one in the opening 53 retracted support stamp 70, except for one end area 72 near the end surface 62 fills the opening 53 with a precise shape.
  • the support stamp 70 has namely a smaller diameter than the opening 53 so that an annular material-free, necessary for pressing Free space 73 is formed.
  • the free space 73 is located not only in the same axial area of the valve housing 1, but it also has approximately the same axial Extension like the intermediate ring 5.
  • FIG. 4 the one in FIG. 3 is enlarged once again area marked with a circle around the intermediate ring 5 and the free space 73 shown.
  • the arrows are there illustrate the directions in which material is moved and is pressed.
  • the press sleeve 68 is thus a linear acting stamp force, marked with arrows 74 is applied to the intermediate ring 5.
  • That's why it's about extrusion is a translational one Pressure forming process. Extrusion is called cold forming carried out. Due to the given free space 73 the material flow indicated by the arrows 75 largely at right angles to the direction of the stamp force, so that from a cross extrusion can be spoken.
  • the intermediate ring 5 also has a different contour, because Material radially in the direction of the longitudinal valve axis 12 in the Valve housing 1 is pressed so that a previously Area 77 belonging to valve housing 1, with a Dashed line is marked after the extrusion part of the intermediate ring 5.
  • a previously Area 77 belonging to valve housing 1, with a Dashed line is marked after the extrusion part of the intermediate ring 5.
  • the effective zone of the compression sleeve 68 creates a recess, whereby the intermediate ring 5 in Cross section receives an L-shape.
  • section 55 in its diameter can be left, the Section 54a completely and section 54b partially enlarged in diameter. In axial However, the direction is also increased Section 55.
  • the contours to be achieved depend on the Dimensions of the nozzle body 15, the stop plate 33 and the Anchor 8 from.
  • the opening 53 ultimately has an axial Length through a lower end face 79 of the inner pole 3 is limited, which continues to a small axial extent is upstream than the radial shoulder 57, but still clearly in the area of the intermediate ring 5 surrounding it.
  • a second example of making a magnetic circuit for a valve is shown below with reference to Figures 7 and 8 described.
  • MIM valve needle known metal injection molding
  • FIG 7 is one of those already described Intermediate ring 5 corresponding L-shaped in cross section Intermediate ring 5 'shown.
  • a metal powder e.g. non-magnetic Steel
  • a plastic used as a binder mixed and homogenized and to a granulate processed, that of the plastic injection molding machine provided.
  • the mold is created as injection molded part of the intermediate ring 5 '.
  • the Plastic injection molding machine the valve housing 1 '(e.g. soft magnetic steel + binder) with the already 5 known contour on or around the intermediate ring 5 ' injection molded ( Figure 8). Because of the simple and yourself tapering inwards into the valve housing 1 ' Blind hole 52 'and opening 53' is injection molding with simple stamps or sliders possible. After the injection molding is the valve housing 1 'together with the intermediate ring 5 'as a component. From the now The present injection molded part is then the components of the plastic binder by thermal Process removed, for example, under the influence of protective gas. It a metal powder framework remains largely thereafter.
  • valve housing 1 ' To the density of the molded part from valve housing 1 'and to increase intermediate ring 5 ', the molded part, for example sintered under the influence of protective gas in a sintering device.
  • the sintering process can also be influenced by hydrogen or be done in a vacuum.
  • the volume now reduced valve housing 1 ' is finally similar to that first embodiment of a fine machining for example by means of cutting manufacturing processes subjected. This creates a valve housing 1 ', which in the Figure 6 corresponds to valve housing 1 shown and therefore is not shown again.
  • Fuel injector assembled To the valve housing 1 'with the intermediate ring 5 'is subsequently in a known manner Fuel injector assembled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

In prior-art electromagnetically operated fuel-injection valves, a connecting ring (5) made of non-magnetic material is securely fitted between the inner pole (3) and the separately fashioned valve shell (4) to form a tight seal. The manufacture of the high-precision components and fixing the components in place until the tight, secure connection has been produced are time-consuming and costly. The method proposed for the manufacture of a magnetic circuit for a valve is a particularly inexpensive variant using the minimum of materials. The one-piece valve housing (1) has a groove (61) into which the non-magnetic ring (5) is fitted. A pressing die (68) is used to exert a longitudinally acting compressive force on the ring (5), thus displacing material in the ring (5) and in the valve housing (1) radially. Simple machining techniques are then used to remove material form the valve housing (1), starting from an opening (53), until the inner pole (3) and valve shell (4) have been formed from the valve housing (1) as physically distinct components, separated by the ring (5). The magnetic circuit thus produced is particularly suitable for valves in the fuel-injection systems of compression-type spark-ignition internal-combustion engines.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von Verfahren zur Herstellung eines Magnetkreises für ein Ventil, insbesondere für ein Einspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen nach der Gattung des Anspruchs 1 bzw. 2. Aus der DE 40 13 832 A, die den nächstkommeden Stand der Technik bildet, ist schon ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, bei dem ein Verbindungsring aus einem nichtmagnetischen, einen hohen spezifischen elektrischen Widerstand aufweisenden Werkstoff ausgebildet ist, der fest und dicht mit einem Innenpol und einem Ventilmantel des Brennstoffeinspritzventils verbunden ist. Dadurch wird erreicht, daß zwischen dem Innenpol bzw. dem Ventilmantel und dem Verbindungsring kein Brennstoff zu einer Magnetspule, die den Innenpol umgibt und von dem Ventilmantel selbst umgeben ist, gelangen kann. Da der Verbindungsring aus einem nichtmagnetischen Werkstoff ausgebildet ist, ist der Einfluß des Verbindungsrings auf das magnetische Feld sehr gering, er verhindert vielmehr einen magnetischen Kurzschluß zwischen dem Innenpol und dem Ventilmantel, und das Entstehen von zusätzlichen Wirbelstromverlusten wird vermieden. Das Einpassen des Verbindungsrings stellt allerdings ein vergleichsweise kostenintensives Verfahren dar. Zur Fertigung des Magnetkörpers aus Innenpol, Ventilmantel und Verbindungsring sind beispielsweise noch ein innerer und ein äußerer Lotring nötig, um feste und dichte Verbindungen schaffen zu können. The invention is based on methods for producing a Magnetic circuit for a valve, especially for a Injection valve for fuel injection systems from 2. Internal combustion engines according to the preamble of claim 1 or 2. DE 40 13 832 A, which forms the closest prior art, is already an electromagnetic one actuatable fuel injector known in which a Connection ring made of a non-magnetic, a high specific electrical resistance material is formed that is tight and tight with an inner pole and a valve jacket of the fuel injector connected is. This ensures that between the inner pole or no fuel to the valve jacket and the connecting ring a magnetic coil that surrounds the inner pole and from which Valve jacket itself is surrounded, can reach. Since the Connection ring made of a non-magnetic material is formed, the influence of the connecting ring on the magnetic field is very low, rather it prevents a magnetic short circuit between the inner pole and the Valve jacket, and the emergence of additional Eddy current losses are avoided. Fitting the Connecting ring, however, represents a comparative represents a cost-intensive process Magnetic body made of inner pole, valve jacket and connecting ring are, for example, an inner and an outer solder ring necessary to be able to create tight and tight connections.

Somit werden beispielsweise fünf Einzelteile zur Fertigung des Magnetkörpers benötigt. Die Einzelbauteile Innenpol, Ventilmantel und Verbindungsring müssen sehr genau gefertigt sein und vor dem Fügeverfahren zueinander fixiert werden. Das Herstellen der einzelnen hochgenauen Bauteile und das Fixieren der Bauteile bis zum Erreichen der dichten und festen Verbindungen sind aufwendige und kostspielige Verfahren.Thus, for example, five individual parts are used for production of the magnetic body is required. The individual components inner pole, Valve jacket and connecting ring must be manufactured very precisely be and fixed to each other before the joining process. The manufacture of the individual high-precision components and that Fix the components until the tight and fixed connections are complex and costly Method.

Aus der ebenfalls gattungsgemäßen DE 42 30 376 C ist unter anderem zur Herstellung einer Ventilnadel für ein elektromagnetisch betätigbares Ventil das Metal-Injection-Molding (MIM)-Verfahren bekannt. Dabei wird ein einteiliges, aus einem Ankerabschnitt und einem Ventilhülsenabschnitt bestehendes Betätigungsteil nach dem MIM-Verfahren hergestellt. Das MIM-Verfahren umfaßt die Herstellung von Formteilen aus einem Metallpulver mit einem Bindemittel, z.B. einem Kunststoffbindemittel, beispielsweise auf konventionellen Kunststoffspritzgießmaschinen und das nachfolgende Entfernen des Bindemittels und Sintern des verbleibenden Metallpulvergerüstes. Da die Zusammensetzung des Metallpulvers auf einfache Weise auf optimale magnetische Eigenschaften des gewünschten Formteils abgestimmt werden kann, bietet sich dieses Verfahren nicht nur zur Herstellung von Betätigungsteilen, wie Ventilnadeln, an, sondern auch zur Fertigung von Magnetkreisen für Ventile. Der Magnetkreis wird neben der Magnetspule und dem Anker mindestens aus den Bauteilen Kern, Zwischenring und Düsenträger als Ventilgehäuseteil gebildet.From also generic DE 42 30 376 C is under other for the manufacture of a valve needle for a Electrically actuated valve, metal injection molding (MIM) method known. A one-piece, from an armature section and a valve sleeve section existing actuating part according to the MIM method produced. The MIM process involves the production of Molded parts made of a metal powder with a binder, e.g. a plastic binder, for example conventional plastic injection molding machines and that then removing the binder and sintering the remaining metal powder structure. Because the composition of the metal powder in a simple way to optimal magnetic properties of the desired molded part this method cannot be coordinated only for the production of actuation parts, such as valve needles, but also for the production of magnetic circuits for Valves. The magnetic circuit is next to the solenoid and the Anchor at least from the core, intermediate ring and Nozzle carrier formed as a valve housing part.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren zur Herstellung eines Magnetkreises für ein Ventil, insbesondere für ein Brennstoffeinspritzventil, mit den Merkmalen des Anspruchs 1 hat den Vorteil, daß mit weniger Einzelbauteilen als beim Stand der Technik kostengünstig ein Magnetkörper gebildet wird. Besonders vorteilhaft ist der Wegfall mehrerer hochgenauer Einzelteile, indem nur noch ein einteiliges, beispielsweise fließgepreßtes Ventilgehäuse als Teil des Magnetkörpers zum Einsatz kommt. Das Ventilgehäuse ist dabei so ausgebildet, daß ein durch das erfindungsgemäße Verfahren später gebildeter Innenpol und ein ebenfalls erst auszubildender Ventilmantel noch miteinander aufgrund des einteilig ausgestalteten Ventilgehäuses verbunden sind. Das Ventilgehäuse besitzt dabei von vornherein eine Außenkontur, die den späteren Konturen des Innenpols und des Ventilmantels entspricht.The inventive method for producing a Magnetic circuit for a valve, especially for a Fuel injector, with the features of claim 1 has the advantage that with less Individual components than in the prior art Magnetic body is formed. The is particularly advantageous Eliminate multiple highly accurate items by adding just one one-piece, for example extruded valve housing as Part of the magnetic body is used. The valve housing is designed so that a by the invention Process later formed inner pole and also first Valve jacket to be trained with each other due to the one-piece valve housing are connected. The From the outset, the valve housing has an outer contour, the later contours of the inner pole and the Valve jacket corresponds.

Von Vorteil ist es, einen unmagnetischen, kreisringförmigen Zwischenring in eine am Ventilgehäuse vorgesehene Nut einzulegen. Das Einlegen des Zwischenrings ist besonders einfach, da durch die Nut eine definierte Position für den Zwischenring vorgegeben ist. Mit einem Preßwerkzeug, durch das eine axial wirkende Kraft auf den Zwischenring ausgeübt wird, wird ein Fließpreßvorgang hervorgerufen. Die auf den Zwischenring wirkende Kraft verursacht einen Materialfluß des Zwischenrings und des Ventilgehäuses radial weitgehend im rechten Winkel zur Wirkrichtung des Preßwerkzeugs, da im Preßwerkzeug ein entsprechender Freiraum für das fließende Material vorgesehen ist. Der Materialfluß bewirkt, daß der Zwischenring tiefer in das Material des Ventilgehäuses eindringt und eine feste Stoffverbindung eingeht. Das Herstellen der endgültigen räumlichen Trennung von Innenpol und Ventilmantel ist insofern vorteilhaft, daß sehr einfach und mit geringem Kostenaufwand ein Abtragen des überflüssigen Materials, beispielsweise mittels Drehen, in einer Öffnung des Ventilgehäuses erfolgt.It is advantageous to have a non-magnetic, circular ring Intermediate ring in a groove provided on the valve housing to insert. The insertion of the intermediate ring is special simply because the groove defines a defined position for the Intermediate ring is specified. With a press tool, through which exerts an axially acting force on the intermediate ring an extrusion process is caused. The on the Intermediate ring force causes material flow the intermediate ring and the valve housing radially largely at right angles to the direction of action of the press tool, because in Press tool a corresponding free space for the flowing Material is provided. The material flow causes the Intermediate ring deeper into the material of the valve housing penetrates and forms a firm bond. The Establish the final spatial separation of the inner pole and valve jacket is advantageous in that it is very simple and removal of the superfluous material, for example by turning, in opening of the valve housing takes place.

Das erfindungsgemäße Verfahren zur Herstellung eines Magnetkreises für ein Ventil, insbesondere für ein Brennstoffeinspritzventil, mit den Merkmalen des Anspruchs 2, hat den Vorteil, daß ein Magnetkörper auf einfache und kostengünstige Art und Weise herstellbar ist. Von Vorteil ist es, daß bei dem sogenannten Metal-Injection-Molding (MIM)-Verfahren ein unmagnetischer Zwischenring und ein magnetisches Ventilgehäuse in einem Arbeitsgang auf einer herkömmlichen Kunststoffspritzgießmaschine als Formteile spritzgegossen werden können. Die Zusammensetzung des jeweils verwendeten Metallpulvers kann dabei auf gewünschte optimale magnetische Eigenschaften des Magnetkörpers abgestimmt werden.The inventive method for producing a Magnetic circuit for a valve, especially for a Fuel injector, with the features of claim 2, has the advantage that a magnetic body is simple and inexpensive to manufacture. It is advantageous that in the so-called metal injection molding (MIM) method a non-magnetic intermediate ring and a magnetic valve housing in one operation a conventional plastic injection molding machine as Moldings can be injection molded. The composition of the metal powder used in each case can desired optimal magnetic properties of the Magnetic body can be matched.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 und 2 angegebenen Verfahren möglich.By the measures listed in the subclaims advantageous developments and improvements in Claim 1 and 2 specified method possible.

Von Vorteil ist es, wenn der Zwischenring aus einem unmagnetischen, einen hohen spezifischen elektrischen Widerstand aufweisenden Werkstoff ausgebildet ist, so daß der Einfluß des Zwischenrings auf das magnetische Feld sehr gering ist und das Entstehen von zusätzlichen Wirbelstromverlusten verhindert wird.It is advantageous if the intermediate ring from one non-magnetic, a high specific electrical Resistance material is formed so that the influence of the intermediate ring on the magnetic field very much is minor and the emergence of additional Eddy current loss is prevented.

Da das Ventilgehäuse von Anfang an einteilig vorliegt und auch nach den erfindungsgemäßen Verfahrensschritten einen einteiligen Körper mit drei Baugruppen darstellt, ist ein besonderer Vorteil die daraus resultierende Druckdichtheit. Mit minimalem Stoffeinsatz wird also ein druckdichter Magnetkreis erzeugt, der ohne Einsatz von Dichtelementen, wie O-Ringen, im Ventil einbaubar ist, so daß also auf weitere Bauelemente verzichtet werden kann. Die Ausbildung des Ventilgehäuses gemäß den erfindungsgemäßen Verfahren ermöglicht zudem eine sehr einfache Konstruktion einer Magnetspule, die trocken und dicht von dem Ventilgehäuse und einem Leitelement eingeschlossen ist und keinen zusätzlichen Spulenträgerkörper benötigt. Since the valve housing is in one piece from the beginning and even after the process steps according to the invention represents one-piece body with three assemblies is one the resulting pressure tightness is a particular advantage. With minimal use of fabric, it becomes a pressure-tight one Creates a magnetic circuit that does not use sealing elements, like O-rings, can be installed in the valve, so that on additional components can be dispensed with. Training of the valve housing according to the inventive method also enables a very simple construction of a Solenoid that is dry and tight from the valve body and a guide element is included and no additional Coil carrier body required.

Von Vorteil ist es, wenn als Bindemittel bei dem MIM-Verfahren ein Kunststoffbindemittel verwendet wird und wenn dieses Bindemittel durch eine thermische Behandlung des Formteils aus diesem Formteil entfernt wird. Auf diese Weise wird eine besonders einfache Herstellung des das Ventilgehäuse und den Zwischenring bildenden Formteiles ermöglicht, das bereits eine hohe Gefügedichte aufweist.It is advantageous if as a binder in the MIM process a plastic binder is used and if this binder by thermal treatment of the Molding is removed from this molding. In this way becomes a particularly simple manufacture of the Valve housing and molded part forming the intermediate ring enables that already has a high structural density.

Besonders vorteilhaft ist es, wenn das Formteil nach dem Sintern heißisostatisch gepreßt wird, so daß sich ein besonders dichtes Gefüge des Ventilgehäuses ergibt.It when the molded part after the Sintering is hot isostatically pressed, so that a results in a particularly dense structure of the valve housing.

Zeichnungdrawing

Ausführungsbeispiele von erfindungsgemäß hergestellten Brennstoffeinspritzventilen bzw. Magnetkreisen sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erfindungsgemäß ausgestaltetes Ventil, Figur 2 ein einteiliges Ventilgehäuse, Figur 3 ein einteiliges Ventilgehäuse mit einem unmagnetischen Zwischenring in einem Preßwerkzeug vor dem Fließpressen, Figur 4 eine vergrößerte Darstellung des Fließpreßbereichs aus Figur 3, Figur 5 ein Ventilgehäuse mit einem Zwischenring nach dem Fließpressen, Figur 6 ein Ventilgehäuse mit einem Zwischenring nach der räumlichen Trennung von Innenpol und Ventilmantel durch eine Feinbearbeitung, Figur 7 einen mittels MIM-Verfahren gefertigten Zwischenring und Figur 8 ein mittels MIM-Verfahren gefertigtes Ventilgehäuse mit einem Zwischenring vor der Feinbearbeitung.Embodiments of inventive manufactured Fuel injectors or magnetic circuits are in the Drawing shown in simplified form and in the following Description explained in more detail. 1 shows it 2 designed according to the invention one-piece valve housing, Figure 3 is a one-piece Valve housing with a non-magnetic intermediate ring in one Press tool before extrusion, Figure 4 is an enlarged Representation of the extrusion area from Figure 3, Figure 5 a Valve housing with an intermediate ring after extrusion, Figure 6 shows a valve housing with an intermediate ring according to the spatial separation of inner pole and valve jacket by a Fine machining, Figure 7 one using the MIM method manufactured intermediate ring and Figure 8 a MIM method manufactured valve housing with an intermediate ring before finishing.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Das in der Figur 1 beispielsweise dargestellte elektromagnetisch betätigbare Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von beispielsweise gemischverdichtenden fremdgezündeten Brennkraftmaschinen besitzt ein durch das erfindungsgemäße Verfahren zur Herstellung eines Magnetkreises für ein Ventil entstandenes, zwei Baugruppen umfassendes, rohrförmiges Ventilgehäuse 1 aus einem ferromagnetischen Material, z.B. aus einem weichmagnetischen Stahl. Das Ventilgehäuse 1 stellt vor der Anwendung des erfindungsgemäßen Verfahrens ein einteiliges ferromagnetisches Preßteil mit einer gestuften Kontur dar, so wie es die Figur 2 zeigt. Bei der Beschreibung der einzelnen Verfahrensschritte erfolgt auch eine genaue Erläuterung der Geometrie des Ventilgehäuses 1. Als Resultat des erfindungsgemäßen Verfahrens weist das Ventilgehäuse 1 eine andere Gestalt auf, die besonders durch eine entstandene Zweiteiligkeit augenscheinlich deutlich wird. Das Ventilgehäuse 1 wird nämlich nun von einem rohrförmigen Innenpol 3 und einem immer noch als Gehäuse dienenden, abgestuften, rohrförmigen Ventilmantel 4 gebildet. Die räumliche Trennung des stromaufwärts angeordneten Innenpols 3 und des radial nach außen gegenüber dem Innenpol 3 versetzten und stromabwärts folgenden Ventilmantels 4 ist unter anderem durch das Einpressen eines unmagnetischen Zwischenrings 5 erzielt. Vor der Beschreibung des erfindungsgemäßen Verfahrens soll nun in kurzer Form eine Beschreibung des Aufbaus eines beispielhaften Brennstoffeinspritzventils erfolgen.The example shown in Figure 1 Electromagnetically actuated fuel injector for Fuel injection systems, for example mixture-compression-ignition internal combustion engines has a through the inventive method Production of a magnetic circuit for a valve, tubular valve housing comprising two assemblies 1 made of a ferromagnetic material, e.g. from a soft magnetic steel. The valve housing 1 represents the Application of the method according to the invention in one piece ferromagnetic pressed part with a stepped contour, as shown in Figure 2. When describing the individual process steps are also accurate Explanation of the geometry of the valve housing 1. As a result of the method according to the invention has the valve housing 1 another shape that is particularly characterized by a resulting two-part is evident. The valve housing 1 is namely now of a tubular Inner pole 3 and a still serving as housing, stepped, tubular valve jacket 4 is formed. The spatial separation of the upstream inner pole 3 and the radially outward opposite the inner pole 3 offset and downstream valve jacket 4 is among other things by pressing a non-magnetic Intermediate ring 5 achieved. Before describing the The method according to the invention should now be in a short form Description of the structure of an exemplary Fuel injector take place.

Der rohrförmige Innenpol 3 weist einen weitgehend konstanten Außendurchmesser auf und ist von einer Magnetspule 7 teilweise umgeben. Neben dem Innenpol 3 und der Magnetspule 7 gehören zu dem elektromagnetischen Kreis des Brennstoffeinspritzventils ein Anker 8 und ein topfförmiges, die Magnetspule 7 sowohl teilweise radial als auch axial umschließendes Leitelement 10. Die Magnetspule 7 ist ohne einen zusätzlichen Spulenkörper zwischen dem Innenpol 3, dem Leitelement 10, dem Ventilmantel 4 und dem letztlich im Querschnitt L-förmigen Zwischenring 5 vollständig eingebettet.The tubular inner pole 3 has a largely constant Outside diameter and is from a solenoid 7 partially surrounded. In addition to the inner pole 3 and the solenoid 7 belong to the electromagnetic circuit of the Fuel injector an armature 8 and a cup-shaped, the magnetic coil 7 both partially radially and axially enclosing guide element 10. The magnet coil 7 is without an additional coil former between the inner pole 3, the Guide element 10, the valve jacket 4 and ultimately in Cross-section L-shaped intermediate ring 5 completely embedded.

Das topfförmige Leitelement 10 wird durch einen dem Anker 8 abgewandten, sich senkrecht zu einer Ventillängsachse 12 erstreckenden Bodenbereich 11 und einen sich daran in Richtung zum Ventilmantel 4 hin anschließenden Mantelbereich 14 gebildet. Der Mantelbereich 14 umgibt die Magnetspule 7 in Umfangsrichtung vollständig und ist an seinem stromabwärtigen Ende mit dem Ventilmantel 4 durch z. B. eine Bördelverbindung fest verbunden. Es ist auch möglich, daß der Mantelbereich 14 in Umfangsrichtung nur teilweise ausgebildet ist, also z.B. aus mehreren bügelähnlichen Abschnitten besteht. Der Bodenbereich 11 des Leitelements 10 deckt die Magnetspule 7 an deren dem Anker 8 abgewandter Seite axial ab. Im Bodenbereich 11 ist mittig eine durchgehende Öffnung 17 vorgesehen, durch die der Innenpol 3 verläuft. Gerade das topfförmige Leitelement 10 ermöglicht einen besonders kompakten Aufbau des Einspritzventils im Bereich der Magnetspule 7.The cup-shaped guide element 10 is replaced by an armature 8 facing away, perpendicular to a longitudinal valve axis 12 extending floor area 11 and an in Direction to the valve jacket 4 adjacent jacket area 14 formed. The cladding region 14 surrounds the magnet coil 7 completely in the circumferential direction and is at his downstream end with the valve jacket 4 by z. Legs Flare connection firmly connected. It is also possible that the jacket region 14 only partially in the circumferential direction is trained, e.g. from several temple-like Sections exists. The bottom area 11 of the guide element 10 covers the solenoid 7 at the armature 8 facing away Axial side. In the bottom area 11 there is a center through opening 17 is provided through which the inner pole 3rd runs. Especially the cup-shaped guide element 10 enables a particularly compact design of the injection valve in the Magnetic coil area 7.

Alle bisher erwähnten Bauteile des Einspritzventils erstrecken sich konzentrisch zu der Ventillängsachse 12. Der ebenfalls konzentrisch zu der Ventillängsachse 12 ausgebildete rohrförmige Innenpol 3 stellt einen Brennstoffeinlaßstutzen dar und dient damit der Brennstoffzufuhr in das Innere des Einspritzventils.All previously mentioned components of the injection valve extend concentrically to the valve longitudinal axis 12. The also concentric with the valve longitudinal axis 12 trained tubular inner pole 3 represents a Fuel inlet nozzle and thus serves the Fuel supply inside the injector.

Mit seinem unteren Gehäuseende 13 umschließt das Ventilgehäuse 1 bzw. der Ventilmantel 4 in axialer Richtung teilweise einen Düsenkörper 15. Zur flüssigkeitsdichten Abdichtung zwischen dem Ventilgehäuse 1 und dem Düsenkörper 15 ist am Umfang des Düsenkörpers 15 eine Ringnut ausgebildet, in der ein Dichtring 16 angeordnet ist. Der zylindrische hohle Anker 8 wirkt mit der Magnetspule 7 und dem Innenpol 3 zusammen und durchragt einen Magnetlinienleitabsatz 18 des Ventilmantels 4 und teilweise den unmagnetischen Zwischenring 5 in axialer Richtung. Mit einem der Magnetspule 7 abgewandten Ende umgreift der Anker 8 ein Halteteil 19 einer Ventilnadel 20 und ist mit der Ventilnadel 20 fest verbunden. An einer der Magnetspule 7 zugewandten Stirnseite des Halteteils 19 liegt eine Rückstellfeder 22 mit ihrem einen Ende an. Mit ihrem anderen Ende stützt sich die Rückstellfeder 22 an einer in einer Durchgangsbohrung 24 des Innenpols 3 beispielsweise eingepreßten Einstellhülse 25 ab. Die z. B. aus gerolltem Federstahlblech ausgeformte rohrförmige Einstellhülse 25 dient zur Einstellung der Federvorspannung der an ihr anliegenden Rückstellfeder 22. Die Rückstellfeder 22 ist bestrebt, den Anker 8 und die mit ihm in Verbindung stehende Ventilnadel 20 in Richtung einer Ventilsitzfläche 27 zu bewegen.With its lower end 13 encloses the Valve housing 1 or the valve jacket 4 in the axial direction partially a nozzle body 15. For liquid-tight Seal between the valve housing 1 and the nozzle body 15 is an annular groove on the circumference of the nozzle body 15 formed in which a sealing ring 16 is arranged. Of the cylindrical hollow armature 8 acts with the solenoid 7 and the inner pole 3 together and protrudes through Magnet line guide paragraph 18 of the valve jacket 4 and partially the non-magnetic intermediate ring 5 in the axial direction. With the armature engages around an end facing away from the magnet coil 7 8 is a holding part 19 of a valve needle 20 and is with the Valve needle 20 firmly connected. On one of the solenoid 7 facing end of the holding part 19 is one Return spring 22 with one end. With her other The return spring 22 is supported at one end in one Through hole 24 of the inner pole 3, for example pressed-in adjusting sleeve 25. The z. B. from rolled Spring steel sheet formed tubular adjusting sleeve 25 is used to adjust the spring preload on it return spring 22. The return spring 22 is endeavors to anchor 8 and those related to it Valve needle 20 in the direction of a valve seat surface 27 move.

Im Düsenkörper 15 ist konzentrisch zu der Ventillängsachse 12 ein gestufter, durchgehender Strömungskanal 28 ausgebildet. An seinem dem Ventilgehäuse 1 abgewandten Ende besitzt der Strömungskanal 28 die keglige Ventilsitzfläche 27. Zwei beispielsweise als Vierkante ausgebildete Führungsabschnitte 29 der Ventilnadel 20 werden durch einen Führungsbereich 30 des Strömungskanals 28 geführt; sie lassen aber auch einen axialen Durchgang für den Brennstoff frei.In the nozzle body 15 is concentric with the longitudinal axis of the valve 12 a stepped, continuous flow channel 28 educated. At its end facing away from the valve housing 1 the flow channel 28 has the conical valve seat surface 27. Two trained for example as a square Guide sections 29 of the valve needle 20 are by a Guided area 30 of the flow channel 28 out; she but also leave an axial passage for the fuel free.

Die Ventilnadel 20 durchdringt mit Radialspiel eine Durchgangsöffnung 32 in einer Anschlagplatte 33, die zwischen einer dem Anker 8 zugewandten Stirnseite 34 des Düsenkörpers 15 und einer der Stirnseite 34 gegenüberliegenden Innenschulter 35 des Ventilmantels 4 eingeklemmt ist. Die Anschlagplatte 33 dient zur Begrenzung der Bewegung der in dem Strömungskanal 28 des Düsenkörpers 15 angeordneten Ventilnadel 20. The valve needle 20 penetrates one with radial play Through opening 32 in a stop plate 33, the between an armature 8 facing end face 34 of the Nozzle body 15 and one of the end faces 34 opposite inner shoulder 35 of the valve jacket 4 is jammed. The stop plate 33 is used for limitation the movement of the in the flow channel 28 of the nozzle body 15 arranged valve needle 20th

Dem Halteteil 19 abgewandt weist die Ventilnadel 20 einen als Ventilschließteil dienenden kegligen Abschnitt 37 auf, der mit der kegligen Ventilsitzfläche 27 des Düsenkörpers 15 zusammenwirkt und das Öffnen bzw. Schließen des Brennstoffeinspritzventils bewirkt. An die keglige Ventilsitzfläche 27 schließt sich in Strömungsrichtung ein Endkanal 38 des Düsenkörpers 15 an. Diesem Endkanal 38 folgt stromabwärts z. B. eine Spritzlochscheibe 40, die wenigstens eine z. B. durch Stanzen oder Erodieren eingebrachte Abspritzöffnung 41 aufweist, durch die der Brennstoff abgespritzt wird.The valve needle 20 faces away from the holding part 19 conical section 37 serving as valve closing part, the one with the conical valve seat surface 27 of the nozzle body 15 interacts and the opening or closing of the Fuel injector causes. To the cone Valve seat surface 27 is included in the direction of flow End channel 38 of the nozzle body 15. This end channel 38 follows downstream z. B. a spray plate 40, the at least a z. B. introduced by punching or eroding Spray opening 41 through which the fuel is hosed.

Zumindest teilweise sind in axialer Richtung der Innenpol 3 und das Leitelement 10 durch eine Kunststoffummantelung 43 umschlossen. Ein elektrischer Anschlußstecker 45, über den die elektrische Kontaktierung der Magnetspule 7 und damit deren Erregung erfolgt, ist beispielsweise zusammen mit der Kunststoffummantelung 43 ausgeformt.The inner pole 3 is at least partially in the axial direction and the guide element 10 through a plastic sheathing 43 enclosed. An electrical connector 45 through which the electrical contacting of the solenoid 7 and thus their excitement occurs, for example, together with the Plastic sheath 43 molded.

An seinem zulaufseitigen Ende 47 ist der dort als Brennstoffeinlaßstutzen dienende Innenpol 3 derart ausgestaltet, daß ein Brennstoffilter 48 einsetzbar ist. Dazu weist die Durchgangsbohrung 24 stromaufwärts der Einstellhülse 25 einen größeren Durchmesser auf als im Bereich der eingepreßten Einstellhülse 25. Beispielsweise durch Einschieben in die Durchgangsbohrung 24 des Innenpols 3 ist der Brennstoffilter 48 montierbar, wobei er mit einem Haltering 49 mit einer leichten radialen Pressung an der Wandung der Durchgangsbohrung 24 anliegt. Der in das Brennstoffeinspritzventil eintretende Brennstoff durchströmt den Brennstoffilter 48 in bekannter Weise und tritt in radialer Richtung aus dem Brennstoffilter 48 aus.At its inlet end 47, it is there as Fuel inlet connector serving inner pole 3 such designed that a fuel filter 48 can be used. For this purpose, the through hole 24 upstream of the Adjustment sleeve 25 has a larger diameter than in Area of the pressed-in adjusting sleeve 25. For example by pushing into the through hole 24 of the inner pole 3, the fuel filter 48 can be mounted, with a Retaining ring 49 with a slight radial pressure on the Wall of the through hole 24 is present. The one in that Fuel injector flows through incoming fuel the fuel filter 48 in a known manner and occurs in radial direction from the fuel filter 48.

Anhand der Figuren 2 bis 6 werden nun nachfolgend die einzelnen Verfahrensschritte zur Herstellung eines Magnetkreises mit den Bauteilen Innenpol 3, Ventilmantel 4 und Zwischenring 5 detailliert beschrieben. In der Figur 2 ist das einteilige Ventilgehäuse 1 gezeigt, das unter anderem durch die erfindungsgemäßen Verfahren in den Innenpol 3 und den Ventilmantel 4 gemäß den Figuren 1 und 6 geteilt wird. In einem ersten Verfahrensschritt wird das Ventilgehäuse 1 aus einem ferromagnetischen Material als ein Preßteil so hergestellt, daß die äußeren Konturen des späteren Innenpols 3 und des Ventilmantels 4 weitgehend unbearbeitet bleiben können. In dem langgestreckten Ventilgehäuse 1 sind bereits z. B. eine Sacklochbohrung 52 als Teil der späteren Durchgangsbohrung 24 im Bereich des Brennstoffilters 48 und eine auf der der Sacklochbohrung 52 gegenüberliegenden Seite eingebrachte, gestufte, ebenfalls sacklochähnliche Öffnung 53 vorgesehen. Die Öffnung 53 besitzt dabei zumindest in ihrem einen axialen Abschnitt 55 bereits den entsprechenden Durchmesser, der für den Einbau des Düsenkörpers 15 im Abschnitt 55 nötig ist. Der später erforderliche Durchmesser für den Anker 8 kann im zur Sacklochbohrung 52 hin gewandten axialen Abschnitt 54 der Öffnung 53 noch nicht sofort vorgesehen werden, da das radial außerhalb des Abschnitts 54 verbleibende Material zum Teil in den folgenden Verfahrensschritten benötigt wird. Von der inneren Wandung des Ventilgehäuses 1 im Abschnitt 54 aus wird später der Magnetlinienleitabsatz 18 ausgeformt. Da der spätere Ventilmantel 4, also der Bereich des Ventilgehäuses 1 mit der inneren Öffnung 53, einen größeren Außendurchmesser aufweist als der spätere Innenpol 3, ergibt sich ein Radialabsatz 57 am Ventilgehäuse 1. Der Radialabsatz 57 bildet die untere Begrenzungsfläche für den Raum der Magnetspule 7, während eine äußere Wandung 58 des Innenpols 3 die innere Begrenzung zur Ventillängsachse 12 hin für die Magnetspule 7 darstellt. Ausgehend von einer äußeren Mantelfläche 60 des Ventilmantels 4 verläuft der Radialabsatz 57 nicht als ebene Fläche bis hin zur Wandung 58, sondern er wird von einer an der Wandung 58 entlang in Richtung zum Abschnitt 55 hin verlaufenden, ansonsten aber ringförmigen Nut 61 unterbrochen, deren Seitenwände parallel zur Ventillängsachse 12 verlaufen. Der Abschnitt 54 der Öffnung 53 erstreckt sich in Richtung der Sacklochbohrung 52 über den Radialabsatz 57 etwas hinaus bis zu einer Endfläche 62, so daß der spätere Ventilmantel 4 vollständig und der spätere Innenpol 3 nur gering axial von der Öffnung 53 durchdrungen werden.With the help of Figures 2 to 6, the individual process steps for producing a Magnetic circuit with the components inner pole 3, valve jacket 4 and intermediate ring 5 described in detail. In FIG. 2 the one-piece valve housing 1 is shown, the under other by the inventive method in the Inner pole 3 and the valve jacket 4 according to FIGS. 1 and 6 is shared. In a first step, this is Valve housing 1 made of a ferromagnetic material as a Pressed part made so that the outer contours of the later inner pole 3 and the valve jacket 4 largely can remain unprocessed. In the elongated one Valve housing 1 are already z. B. a blind hole 52nd as part of the later through hole 24 in the area of Fuel filter 48 and one on the blind hole 52 opposite side, stepped, likewise Blind hole-like opening 53 is provided. The opening 53 has at least one of them axial section 55 already has the corresponding diameter, that is necessary for the installation of the nozzle body 15 in section 55 is. The later required diameter for the anchor 8 can in the axial direction facing the blind bore 52 Section 54 of opening 53 is not immediately provided because the radially outside of section 54 remaining material partly in the following Process steps are needed. From the inner wall of the valve housing 1 in section 54 will later Magnetic line paragraph 18 formed. Because the later Valve jacket 4, ie the area of the valve housing 1 with the inner opening 53, a larger outer diameter has than the later inner pole 3, results in Radial shoulder 57 on the valve housing 1. The radial shoulder 57 forms the lower boundary surface for the space of the Magnetic coil 7, while an outer wall 58 of the inner pole 3 the inner boundary to the valve longitudinal axis 12 for the Magnetic coil 7 represents. Starting from an outer The outer surface 60 of the valve jacket 4 runs Radial shoulder 57 not as a flat surface up to the wall 58, but it is in by a along the wall 58 in Direction to section 55, but otherwise annular groove 61 interrupted, the side walls parallel run to the valve longitudinal axis 12. Section 54 of the Opening 53 extends in the direction of blind hole 52 a little beyond the radial shoulder 57 to an end face 62, so that the later valve jacket 4 completely and the later inner pole 3 only slightly axially from opening 53 to be penetrated.

In einem folgenden Verfahrensschritt wird der unmagnetische, korrosionsfeste, beispielsweise aus einem austenitischen Stahl bestehende Zwischenring 5 über den Innenpol 3 entlang der Wandung 58 bis in die Nut 61 eingeschoben und dort abgelegt. In der Figur 3 ist das Ventilgehäuse 1 nach dem Einbringen des unmagnetischen Zwischenrings 5 zu sehen. Der Zwischenring 5 wird nun mit einem in der Figur 3 schematisch verdeutlichten Werkzeug verpreßt. Dazu wird das Ventilgehäuse 1 mit dem späteren Ventilmantel 4 in einer ersten formgenauen Matrize 64 eingesetzt. Als eigentliches Preßwerkzeug dient ein dreiteiliger hülsenförmiger Preßstempel 65. Eine innere, die Wandung 58 des Innenpols 3 direkt umgebende Stützhülse 66 und eine äußere Stützhülse 67 erfüllen hauptsächlich Aufgaben zur Führung einer zwischen beiden eingeschlossenen Preßhülse 68 und zur Vermeidung des Verkippens des unmagnetischen Zwischenrings 5 während des Preßvorgangs. Der Preßstempel 65 verläuft in einer zweiten Matrize 69. Die einzelnen Hülsen 66, 67 und 68 weisen eine solche Breite auf, daß die innere Stützhülse 66 und die Preßhülse 68 auf dem Zwischenring 5 aufliegen, während die äußere Stützhülse 67 bis zu dem Radialabsatz 57 des Ventilgehäuses 1 reicht. Mit der Preßhülse 68 wird die eigentliche Kraft zum Verpressen des Zwischenrings 5 aufgebracht. Eine Gegenkraft erzeugt ein in die Öffnung 53 eingefahrener Stutzstempel 70, der bis auf einen Endbereich 72 nahe der Endfläche 62 die Öffnung 53 formgenau ausfüllt. In diesem Endbereich 72 weist nämlich der Stutzstempel 70 einen kleineren Durchmesser auf als die Öffnung 53, so daß ein ringförmiger materialfreier, zum Verpressen notwendiger Freiraum 73 gebildet wird. Der Freiraum 73 befindet sich nicht nur im gleichen Axialbereich des Ventilgehäuses 1, sondern er besitzt dabei ungefähr auch dieselbe axiale Erstreckung wie der Zwischenring 5.In a subsequent process step, the non-magnetic, corrosion-resistant, for example from an austenitic Steel existing intermediate ring 5 along the inner pole 3 along the wall 58 inserted into the groove 61 and there filed. In Figure 3, the valve housing 1 after Introducing the non-magnetic intermediate ring 5 to see. Of the Intermediate ring 5 is now shown schematically with one in FIG illustrated tool pressed. This will be Valve housing 1 with the later valve jacket 4 in one first form-accurate die 64 used. As the real thing Press tool is a three-part sleeve-shaped Press die 65. An inner wall 58 of the inner pole 3 directly surrounding support sleeve 66 and an outer support sleeve 67 mainly perform tasks to manage an intermediate two enclosed compression sleeve 68 and to avoid the Tilting of the non-magnetic intermediate ring 5 during the Pressing process. The press ram 65 runs in a second Die 69. The individual sleeves 66, 67 and 68 have one such a width that the inner support sleeve 66 and Press sleeve 68 rest on the intermediate ring 5 while the outer support sleeve 67 to the radial shoulder 57 of Valve housing 1 is sufficient. With the compression sleeve 68 actual force for pressing the intermediate ring 5 upset. A counterforce creates one in the opening 53 retracted support stamp 70, except for one end area 72 near the end surface 62 fills the opening 53 with a precise shape. In this end area 72 the support stamp 70 has namely a smaller diameter than the opening 53 so that an annular material-free, necessary for pressing Free space 73 is formed. The free space 73 is located not only in the same axial area of the valve housing 1, but it also has approximately the same axial Extension like the intermediate ring 5.

In der Figur 4 ist noch einmal vergrößert der in der Figur 3 mit einem Kreis gekennzeichnete Bereich um den Zwischenring 5 und den Freiraum 73 dargestellt. Die Pfeile sollen dabei verdeutlichen, in welche Richtungen Material verschoben und verpreßt wird. Mit der Preßhülse 68 wird also eine linear wirkende Stempelkraft, die mit den Pfeilen 74 gekennzeichnet ist, auf den Zwischenring 5 aufgebracht. Deshalb handelt es sich beim Fließpressen um ein translatorisches Druckumformverfahren. Das Fließpressen wird als Kaltumformen durchgeführt. Aufgrund des vorgegebenen Freiraums 73 erfolgt der mit den Pfeilen 75 angedeutete Werkstofffluß weitgehend im rechten Winkel zur Richtung der Stempelkraft, so daß von einem Querfließpressen gesprochen werden kann. Durch die in den Zwischenring 5 eindringende Preßhülse 68 wird Material des Zwischenrings 5 und des Ventilgehäuses 1 radial verschoben. Der Materialfluß in axialer Richtung ist vernachlässigbar gering. Material des Ventilgehäuses 1 füllt nach dem Verpressen den Freiraum 73 vollständig aus.In FIG. 4, the one in FIG. 3 is enlarged once again area marked with a circle around the intermediate ring 5 and the free space 73 shown. The arrows are there illustrate the directions in which material is moved and is pressed. With the press sleeve 68 is thus a linear acting stamp force, marked with arrows 74 is applied to the intermediate ring 5. That's why it's about extrusion is a translational one Pressure forming process. Extrusion is called cold forming carried out. Due to the given free space 73 the material flow indicated by the arrows 75 largely at right angles to the direction of the stamp force, so that from a cross extrusion can be spoken. By in the intermediate ring 5 penetrating press sleeve 68 becomes material of the intermediate ring 5 and the valve housing 1 radially postponed. The material flow is in the axial direction negligible. Material of the valve housing 1 fills after pressing the free space 73 completely.

Der Zwischenring 5 erhält ebenfalls eine andere Kontur, da Material radial in Richtung Ventillängsachse 12 in das Ventilgehäuse 1 gedrückt wird, so daß ein vorher zum Ventilgehäuse 1 gehörender Bereich 77, der mit einer Strichlinie gekennzeichnet ist, nach dem Fließpressen Teil des Zwischenrings 5 ist. In der Wirkzone der Preßhülse 68 entsteht eine Aussparung, wodurch der Zwischenring 5 im Querschnitt eine L-Form erhält. Durch das Verpressen sind der Zwischenring 5 und das Ventilgehäuse 1 eine unlösbare Stoffverbindung eingegangen. The intermediate ring 5 also has a different contour, because Material radially in the direction of the longitudinal valve axis 12 in the Valve housing 1 is pressed so that a previously Area 77 belonging to valve housing 1, with a Dashed line is marked after the extrusion part of the intermediate ring 5. In the effective zone of the compression sleeve 68 creates a recess, whereby the intermediate ring 5 in Cross section receives an L-shape. By pressing the intermediate ring 5 and the valve housing 1 an unsolvable Received substance connection.

In der Figur 5 ist das Ventilgehäuse 1 zusammen mit dem Zwischenring 5 nach dem Fließpressen dargestellt. Dabei wird deutlich, daß der nun im Querschnitt L-förmige Zwischenring 5 in geringem Maße über die Wandung 58 hinein in Richtung zur Ventillängsachse 12 ragt. Aufgrund der Form des Stutzstempels 70 und des vollzogenen Materialflusses ist der axiale Abschnitt 54 der Öffnung 53 in zwei Teilabschnitte 54a und 54b unterteilt. Die beiden Teilabschnitte 54a und 54b weisen unterschiedliche Durchmesser auf, wobei der im axialen Bereich des Zwischenrings 5 gebildete obere Teilabschnitt 54b einen kleineren Durchmesser hat als der mit dem Abschnitt 55 direkt in Verbindung stehende Teilabschnitt 54a. Der Teilabschnitt 54b gehört im fertigen Ventilgehäuse 1 zumindest teilweise zur Durchgangsbohrung 24.In Figure 5, the valve housing 1 together with the Intermediate ring 5 shown after extrusion. Doing so clearly that the intermediate ring is now L-shaped 5 to a small extent via the wall 58 in the direction protrudes to the valve longitudinal axis 12. Due to the shape of the Support stamp 70 and the completed material flow is the axial section 54 of the opening 53 in two sections 54a and 54b divided. The two sections 54a and 54b have different diameters, the im axial region of the intermediate ring 5 formed upper Section 54b has a smaller diameter than that directly related to section 55 Section 54a. The section 54b belongs in the finished Valve housing 1 at least partially for the through hole 24th

In einem letzten Verfahrensschritt zur Herstellung eines Magnetkreises für ein Ventil erfolgt die Feinbearbeitung des Ventilgehäuses 1 (Figur 6). Die für den Einbau in einem Brennstoffeinspritzventil gewünschten Konturen des Ventilgehäuses 1 werden nun mittels spanender Fertigungsverfahren, wie z. B. Drehen, erzeugt. So wird beispielsweise durch Verbinden der Sacklochbohrung 52 mit dem Teilabschnitt 54b die Durchgangsbohrung 24 hergestellt. Die Außenkontur des Ventilmantels 4 wird ebenfalls durch Abtragen von Material am Umfang in gewünschter Weise verändert. Einen besonders wichtigen Schritt bei der spanenden Bearbeitung des Ventilgehäuses 1 stellt jedoch die Ausformung der Öffnung 53 dar. Durch das teilweise radiale Erweitern der Öffnungsweite des Teilabschnitts 54b der Öffnung 53 bis hin zum unmagnetischen Zwischenring 5 wird nämlich eine vollständige räumliche Trennung von Innenpol 3 und Ventilmantel 4 erreicht. Während der Abschnitt 55 in seinem Durchmesser belassen werden kann, werden der Teilabschnitt 54a vollständig und der Teilabschnitt 54b teilweise in ihren Durchmessern vergrößert. In axialer Richtung erfolgt jedoch auch eine Vergrößerung des Abschnitts 55. Die zu erzielenden Konturen hängen von den Maßen des Düsenkörpers 15, der Anschlagplatte 33 und des Ankers 8 ab. Die Öffnung 53 weist letztlich eine axiale Länge auf, die durch eine untere Endfläche 79 des Innenpols 3 begrenzt wird, die in geringem axialen Maß weiter stromaufwärts liegt als der Radialabsatz 57, aber immer noch deutlich im Bereich des sie umgebenden Zwischenrings 5.In a last process step for the production of a Magnetic circuit for a valve is the finishing of the Valve housing 1 (Figure 6). The one for installation in one Desired contours of the fuel injector Valve housing 1 are now machined Manufacturing processes such as B. rotating. So will for example by connecting the blind hole 52 with the portion 54b, the through hole 24 is made. The outer contour of the valve jacket 4 is also by Removal of material on the circumference in the desired manner changed. A particularly important step in the machining of the valve housing 1, however, represents the Forming the opening 53. By the partially radial Widen the opening width of section 54b of FIG Opening 53 to the non-magnetic intermediate ring 5 is namely a complete spatial separation of inner pole 3 and valve jacket 4 reached. During section 55 in its diameter can be left, the Section 54a completely and section 54b partially enlarged in diameter. In axial However, the direction is also increased Section 55. The contours to be achieved depend on the Dimensions of the nozzle body 15, the stop plate 33 and the Anchor 8 from. The opening 53 ultimately has an axial Length through a lower end face 79 of the inner pole 3 is limited, which continues to a small axial extent is upstream than the radial shoulder 57, but still clearly in the area of the intermediate ring 5 surrounding it.

Die Fertigmontage des Brennstoffeinspritzventils mit dem erfindungsgemäß hergestellten einteiligen, aber nun zwei Baugruppen umfassenden Ventilgehäuse 1 und dem unmagnetischen Zwischenring 5 erfolgt in bekannter Weise.The final assembly of the fuel injector with the one-piece manufactured according to the invention, but now two Assemblies comprising valve housing 1 and non-magnetic intermediate ring 5 takes place in a known manner.

Ein zweites Beispiel für die Herstellung eines Magnetkreises für ein Ventil wird anhand der Figuren 7 und 8 nachfolgend beschrieben. Bei dem nun zur Anwendung kommenden Verfahren handelt es sich um das Metal-Injection-Molding-Verfahren. Das bereits unter anderem aus der DE 42 30 376 C zur Herstellung einer Ventilnadel bekannte Metal-Injection-Molding (MIM)-Verfahren umfaßt die Herstellung von Formteilen aus einem Metallpulver mit einem Bindemittel, z. B. einem Kunststoffbindemittel, beispielsweise auf konventionellen Kunststoffspritzgießmaschinen und das nachfolgende Entfernen des Bindemittels und Sintern des verbleibenden Metallpulvergerüsts. Die bei diesem Ausführungsbeispiel in den Figuren 7 und 8 gegenüber dem in den Figuren 1 bis 6 dargestellten Ausführungsbeispiel gleichbleibenden bzw. gleichwirkenden Teile sind mit den gleichen Bezugszeichen und einem zusätzlichen Strich gekennzeichnet.A second example of making a magnetic circuit for a valve is shown below with reference to Figures 7 and 8 described. With the procedure now used is the metal injection molding process. This already from DE 42 30 376 C among others Production of a valve needle known metal injection molding (MIM) process involves the production of Molded parts made of a metal powder with a binder, e.g. B. a plastic binder, for example conventional plastic injection molding machines and that then removing the binder and sintering the remaining metal powder structure. The one at this Embodiment in Figures 7 and 8 compared to that in Figures 1 to 6 illustrated embodiment constant or equivalent parts are with the same reference numerals and an additional dash featured.

In der Figur 7 ist ein dem bereits beschriebenen Zwischenring 5 entsprechender im Querschnitt L-förmiger Zwischenring 5' dargestellt. Das Spritzen des unmagnetischen Zwischenrings 5' erfolgt beispielsweise auf einer herkömmlichen Kunststoffspritzgießmaschine in einem Arbeitsgang. Dazu wird ein Metallpulver (z.B. unmagnetischer Stahl) mit einem als Bindemittel verwendeten Kunststoff gemischt und homogenisiert und zu einem Granulat aufbereitet, das der Kunststoffspritzgießmaschine bereitgestellt wird. Entsprechend der Gießform entsteht als spritzgegossenes Formteil der Zwischenring 5'.In Figure 7 is one of those already described Intermediate ring 5 corresponding L-shaped in cross section Intermediate ring 5 'shown. The splash of the non-magnetic Intermediate ring 5 'takes place, for example, on a conventional plastic injection molding machine in one Operation. For this, a metal powder (e.g. non-magnetic Steel) with a plastic used as a binder mixed and homogenized and to a granulate processed, that of the plastic injection molding machine provided. According to the mold is created as injection molded part of the intermediate ring 5 '.

In einem folgenden Verfahrensschritt wird in der Kunststoffspritzgießmaschine das Ventilgehäuse 1' (z.B. weichmagnetischer Stahl + Bindemittel) mit der bereits aus der Figur 5 bekannten Kontur auf bzw. um den Zwischenring 5' spritzgegossen (Figur 8). Aufgrund der einfachen und sich nach innen in das Ventilgehäuse 1' hinein verjüngenden Sacklochbohrung 52' und Öffnung 53' ist das Spritzgießen mit einfachen Stempeln bzw. Schiebern problemlos möglich. Nach dem Spritzgießen liegt also das Ventilgehäuse 1' zusammen mit dem Zwischenring 5' als ein Bauteil vor. Aus dem nun vorliegenden spritzgegossenen Formteil werden anschließend die Bestandteile des Kunststoffbindemittels durch thermische Verfahren beispielsweise unter Schutzgaseinfluß entfernt. Es verbleibt danach weitgehend ein Metallpulvergerüst.In a subsequent step, the Plastic injection molding machine the valve housing 1 '(e.g. soft magnetic steel + binder) with the already 5 known contour on or around the intermediate ring 5 ' injection molded (Figure 8). Because of the simple and yourself tapering inwards into the valve housing 1 ' Blind hole 52 'and opening 53' is injection molding with simple stamps or sliders possible. After the injection molding is the valve housing 1 'together with the intermediate ring 5 'as a component. From the now The present injection molded part is then the components of the plastic binder by thermal Process removed, for example, under the influence of protective gas. It a metal powder framework remains largely thereafter.

Um die Dichte des Formteils aus Ventilgehäuse 1' und Zwischenring 5' zu erhöhen, wird das Formteil beispielsweise unter Schutzgaseinfluß in einer Sintervorrichtung gesintert. Der Sintervorgang kann aber auch unter Wasserstoffeinfluß oder in einem Vakuum vorgenommen werden. Das im Volumen nun verkleinerte Ventilgehäuse 1' wird abschließend ähnlich dem ersten Ausführungsbeispiel einer Feinbearbeitung beispielsweise mittels spanender Fertigungsverfahren unterzogen. So entsteht ein Ventilgehäuse 1', das dem in der Figur 6 dargestellten Ventilgehäuse 1 entspricht und deshalb nicht nochmals dargestellt ist. Um das Ventilgehäuse 1' mit dem Zwischenring 5' wird nachfolgend in bekannter Weise das Brennstoffeinspritzventil zusammengebaut.To the density of the molded part from valve housing 1 'and To increase intermediate ring 5 ', the molded part, for example sintered under the influence of protective gas in a sintering device. The sintering process can also be influenced by hydrogen or be done in a vacuum. The volume now reduced valve housing 1 'is finally similar to that first embodiment of a fine machining for example by means of cutting manufacturing processes subjected. This creates a valve housing 1 ', which in the Figure 6 corresponds to valve housing 1 shown and therefore is not shown again. To the valve housing 1 'with the intermediate ring 5 'is subsequently in a known manner Fuel injector assembled.

Claims (9)

  1. Method for producing a magnetic circuit for a valve, in particular for an injection valve for fuel injection systems of internal combustion engines, having a valve longitudinal axis (12), having an inner pole (3) extending concentrically to the valve longitudinal axis (12), having a magnetic coil (7) at least partially surrounding the inner pole (3), having a valve jacket (4) which partially serves as valve housing and which likewise extends concentrically about the valve longitudinal axis (12), and having a nonmagnetic, circular intermediate ring (5) preventing a direct contact of inner pole (3) and valve jacket (4), characterized in that in the first instance a unitary valve housing (1) is produced as magnetic body having an outer contour substantially corresponding to the later desired contour of inner pole (3) and valve jacket (4), thereafter the intermediate ring (5) is disposed at the valve housing (1), subsequently the valve housing (1) is disposed in a pressing tool (64, 65, 66, 67, 68, 69, 70), by which a force is applied to the intermediate ring (5), whereby material of the intermediate ring (5) and of the valve housing (1) is displaced at least partially radially in the direction towards the valve longitudinal axis (12), into a free space (73) provided within the pressing tool (70), and undergoes a substance bond, thereafter an inner opening (53) within the valve housing (1) is broadened out radially as far as the intermediate ring (5) by cutting finishing methods, in such a way that inner pole (3) and valve jacket (4) are entirely spatially separated from one another, and finally the desired contour of the valve housing (1) is produced.
  2. Method for producing a magnetic circuit for a valve, in particular for an injection valve for fuel injection systems of internal combustion engines, having a valve longitudinal axis (12), having an inner pole (3') extending concentrically to the valve longitudinal axis (12), having a magnetic coil (7) at least partially surrounding the inner pole (3'), having a valve jacket (4'), which partially serves as valve housing and which likewise extends concentrically about the valve longitudinal axis (12), and having a nonmagnetic, circular intermediate ring (5') preventing a direct contact of inner pole (3') and valve jacket (4'), characterized in that, by means of the metal injection moulding method, in the first instance the intermediate ring (5') is produced from a granulate, consisting of metal powder and a binder, by injection moulding, subsequently a valve housing (1') corresponding to the later desired contour of inner pole (3') and valve jacket (4') is injection moulded on or about the intermediate ring (5') by means of the MIM method, thereafter the components of the binder are removed from the valve housing (1') and the intermediate ring (5'), thereafter the valve housing (1') is sintered together with the intermediate ring (5'), and then an inner opening (53') within the valve housing (1') is broadened out radially as far as the intermediate ring (5') by cutting finishing methods, in such a way that inner pole (3') and valve jacket (4') are entirely spatially separated from one another, and finally the desired contour of the valve housing (1') is produced.
  3. Method according to Claim 1 or 2, characterized in that an austenitic steel is used as material for the intermediate ring (5, 5').
  4. Method according to Claim 1, characterized in that the pressing tool (64, 65, 66, 67, 68, 69, 70) is formed from a sleeve-shaped pressing punch (65), which in turn comprises a pressing sleeve (68) and an inner supporting sleeve (66) internally delimiting the latter, and an outer supporting sleeve (67) externally surrounding the pressing sleeve (68), a first and a second die (64, 69) surrounding the valve housing (1) and the pressing punch (65) respectively, and a supporting punch (70) projecting into the opening (53).
  5. Method according to Claim 4, characterized in that the actual force for pressing the intermediate ring (5) is applied by the pressing sleeve (68).
  6. Method according to Claim 5, characterized in that the pressing or extrusion moulding is a translatory pressure reshaping method which is carried out cold as cold reshaping.
  7. Method according to Claim 1, 5 or 6, characterized in that the material flow caused by the application of the pressing force takes place substantially at right angles to the direction of the pressing force of the pressing sleeve (68) as transverse extrusion moulding.
  8. Method according to Claim 2, characterized in that the injection moulding of the intermediate ring (5') and of the valve housing (1') is carried out in one operating step on a plastic material injection moulding machine.
  9. Method according to Claim 2, characterized in that a plastic material is used as binder.
EP95916562A 1994-09-13 1995-04-13 Method of manufacturing a magnetic circuit for a valve Expired - Lifetime EP0733162B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4432525A DE4432525A1 (en) 1994-09-13 1994-09-13 Method of manufacturing a magnetic circuit for a valve
DE4432525 1994-09-13
PCT/DE1995/000522 WO1996008647A1 (en) 1994-09-13 1995-04-13 Method of manufacturing a magnetic circuit for a valve

Publications (2)

Publication Number Publication Date
EP0733162A1 EP0733162A1 (en) 1996-09-25
EP0733162B1 true EP0733162B1 (en) 1998-10-14

Family

ID=6528067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95916562A Expired - Lifetime EP0733162B1 (en) 1994-09-13 1995-04-13 Method of manufacturing a magnetic circuit for a valve

Country Status (6)

Country Link
US (1) US5687468A (en)
EP (1) EP0733162B1 (en)
JP (1) JP3504273B2 (en)
KR (1) KR100351395B1 (en)
DE (2) DE4432525A1 (en)
WO (1) WO1996008647A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3338614B2 (en) * 1996-06-03 2002-10-28 愛三工業株式会社 Fuel injection valve
DE19744739A1 (en) * 1997-10-10 1999-04-15 Bosch Gmbh Robert Fuel injection valve for internal combustion engine
DE19808067A1 (en) * 1998-02-26 1999-09-02 Bosch Gmbh Robert Electromagnetically actuated valve
US6761182B1 (en) * 2002-04-03 2004-07-13 Hydro-Gear Limited Partnership Method for configuration of a valve
US6986363B1 (en) 2002-04-03 2006-01-17 Hydro-Gear Limited Partnership Valve assembly for use in a hydraulic component
US7320334B1 (en) 2002-04-03 2008-01-22 Hydro-Gear Limited Partnership Valve Assembly
US7066199B1 (en) 2002-04-03 2006-06-27 Hydro-Gear Limited Partnership Valve assembly
US6719005B1 (en) 2002-04-03 2004-04-13 Hydro-Gear, Limited Partnership Combination check valve and pressure release valve
US6964280B1 (en) 2002-04-03 2005-11-15 Hydro-Gear Limited Partnership Valve assembly for use in a hydraulic component
US6691512B1 (en) 2002-04-03 2004-02-17 Hydro-Gear Limited Partnership Hydraulic transmission with combination check valve and pressure release valve
JP3931143B2 (en) * 2003-01-28 2007-06-13 株式会社日立製作所 Fuel injection valve and fuel injection valve manufacturing method
US7028708B1 (en) 2003-05-09 2006-04-18 Hydro-Gear Limited Partnership Combined check valve and pressure relief valve
US6935454B1 (en) 2003-09-18 2005-08-30 Hydro-Gear Limited Partnership Valve for a hydraulic drive apparatus
US7316114B1 (en) 2003-09-18 2008-01-08 Hydro-Gear Limited Partnership Valve for a hydraulic drive apparatus
US7296594B1 (en) 2005-03-22 2007-11-20 Hydro-Gear Limited Partnership Combination check valve and neutral valve assembly for use in a hydraulic component
US7178787B2 (en) * 2005-05-05 2007-02-20 Trw Automotive U.S. Llc Valve assembly
US7451780B1 (en) 2005-05-16 2008-11-18 Hydro-Gear Limited Partnership Multifunction valve for use in a hydraulic component
DE102005061410A1 (en) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Electromagnetically operated valve comprises axle together with core and plastic coil body in which coil is wound
WO2009054848A1 (en) * 2007-10-23 2009-04-30 Brooks Instrument Llc Pressure retaining sleeve
DE102009055133A1 (en) 2009-12-22 2011-06-30 Robert Bosch GmbH, 70469 Pole core for solenoid valves manufactured by means of multi-material MIM
EP2363595A1 (en) * 2010-02-25 2011-09-07 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
DE102010038437B4 (en) * 2010-07-27 2022-08-25 Robert Bosch Gmbh Magnetic actuator and method for producing a one-piece pole core for a magnetic actuator
DE102011088463A1 (en) * 2011-06-29 2013-01-03 Robert Bosch Gmbh Component for a magnetic actuator and method for its production
DE102011080355A1 (en) * 2011-08-03 2013-02-07 Robert Bosch Gmbh Fuel injection valve
DE102013111302A1 (en) * 2013-10-14 2015-04-16 Baumer Hhs Gmbh Application head, application system and method for producing an application head
DE102018215648A1 (en) * 2018-09-14 2020-03-19 Volkswagen Aktiengesellschaft Internal combustion engine with a valve and a fluid-carrying component and method for monitoring a connection between a valve in a tank ventilation line and a fluid-carrying component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013832A1 (en) * 1990-04-30 1991-10-31 Bosch Gmbh Robert ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE
DE4018256A1 (en) * 1990-06-07 1991-12-12 Bosch Gmbh Robert ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE

Also Published As

Publication number Publication date
WO1996008647A1 (en) 1996-03-21
JPH09505380A (en) 1997-05-27
DE4432525A1 (en) 1996-03-14
KR960706022A (en) 1996-11-08
JP3504273B2 (en) 2004-03-08
KR100351395B1 (en) 2002-12-28
EP0733162A1 (en) 1996-09-25
US5687468A (en) 1997-11-18
DE59503923D1 (en) 1998-11-19

Similar Documents

Publication Publication Date Title
EP0733162B1 (en) Method of manufacturing a magnetic circuit for a valve
EP0789810B1 (en) Fuel injection valve
EP0685643B1 (en) Needle valve for an electromagnetically controlled valve
EP1919654B1 (en) Rigid housing production method
EP0720691B1 (en) Valve needle for an electromagnetic valve and method of producing the same
EP0612375B1 (en) Valve needle for an electromagnetically controlled valve and process for producing the same
EP1919655B1 (en) Method for producing a solid housing
EP1913254B1 (en) Fuel injection valve and method for shaping discharge ports
DE4137994C2 (en) Electromagnetically actuated injection valve with a nozzle holder and method for producing a nozzle holder of an injection valve
DE4310719C2 (en) Method of manufacturing a magnetic circuit for a valve
WO1999019620A1 (en) Fuel injection valve
EP1062421B1 (en) Fuel injector
DE19860631A1 (en) Electromagnetically actuated valve and method for producing a magnetic jacket for a valve
EP0937200B1 (en) Electromagnetically actuated valve
EP1699578B1 (en) Method for producing a sleeve-shaped housing made of a number of flat metal sheets
EP0925441B1 (en) Electromagnetically actuated valve
EP2320062B1 (en) Injection valve and manufacturing method thereof
EP1102931B1 (en) Fuel injection valve and method for producing the same
DE10059263B4 (en) Process for the production or assembly of a fuel injection valve
DE10052146A1 (en) Fuel injector
EP0954696A1 (en) Fuel injection valve and method for the production of a valve needle for a fuel injection valve
DE102022210875A1 (en) Fuel injector
DE102016226142A1 (en) Fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19960923

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971203

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59503923

Country of ref document: DE

Date of ref document: 19981119

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050407

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060420

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080426

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100624

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59503923

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59503923

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031