EP0730214A2 - Current mirror in MOS technology with adjustable cascade stages - Google Patents

Current mirror in MOS technology with adjustable cascade stages Download PDF

Info

Publication number
EP0730214A2
EP0730214A2 EP96102646A EP96102646A EP0730214A2 EP 0730214 A2 EP0730214 A2 EP 0730214A2 EP 96102646 A EP96102646 A EP 96102646A EP 96102646 A EP96102646 A EP 96102646A EP 0730214 A2 EP0730214 A2 EP 0730214A2
Authority
EP
European Patent Office
Prior art keywords
current
input
output
circuit node
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96102646A
Other languages
German (de)
French (fr)
Other versions
EP0730214B1 (en
EP0730214A3 (en
Inventor
Ulrich Dr.-Ing. Theus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Publication of EP0730214A2 publication Critical patent/EP0730214A2/en
Publication of EP0730214A3 publication Critical patent/EP0730214A3/en
Application granted granted Critical
Publication of EP0730214B1 publication Critical patent/EP0730214B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a current mirror in MOS technology with widely controllable cascode stages, comprising a current bank which is controlled by a control circuit from a differential current which is tapped at a circuit node between the current mirror input and an associated, high-resistance cascode output, cf. the preamble of claim 1.
  • V DS ⁇ (V GS - V T ) with the n-channel transistor V DS ⁇ (V GS - V T ) with the p-channel transistor.
  • the main cause of the critical operating state of the n-channel current mirror in FIG. 1 is the gate potential of the common n-channel current bank control line, which is connected directly to the current mirror input. Since the series connection of the two drain-source current paths of the cascoded current mirror input is also located at this connection point, it can be seen immediately that the gate potential of the current bank transistor t1, which is also referred to below as a current mirror control transistor is referred to, the drain-source voltage of the cascode transistor t2 is higher than its drain potential.
  • V DSt2 denotes the drain-source voltage of the cascode transistor t2
  • V Tt1 denotes the threshold voltage of the current bank transistor t1.
  • the size of the threshold voltage V T is predetermined by the technology, whereby its negative temperature coefficient unfortunately just runs counter to the positive temperature coefficient of the effective gate voltage - for the same current but increasing crystal temperature.
  • the known circuit according to FIG. 2 provides a certain remedy, in which the gate electrode of the current mirror control transistor is controlled by a control circuit, the input of which is fed by a signal tapped at the current mirror input.
  • the input current path of the actual current mirror is separated electronically and a differential current is formed from the supplied current mirror input current and the output current of the current mirror control transistor. If the differential current becomes zero, then the input current supplied is equal to the output current of the current mirror control transistor and thus the setpoint of the control process is reached.
  • This measure sets the drive voltage for the gate connection of the current mirror control transistor and thus the potential of the common current bank control line to an uncritical value.
  • a simple examination of the resulting potential relationships shows that the potential of the common current bank control line can be significantly lower than the potential of the auxiliary voltage source and thus the desired saturation state for the current mirror control transistor and for the cascode stages of the current mirror is ensured.
  • An essential disadvantage of the circuit shown in FIG. 2, which contains a feedback operational amplifier as a control circuit, is the critical stability behavior, which can lead to control loop vibrations without suitable damping measures.
  • the circuit for stabilization requires at least one additional capacitor, which is particularly disadvantageous when the circuit is monolithically integrated.
  • the object of the invention characterized in claim 1 is therefore to provide an improved control for a current mirror in MOS technology with widely controllable cascode stages, with the aim of keeping the circuitry required low and the speed of the current mirror as high as possible.
  • control circuit contains, as an essential unit, a current-controlled current source, the control input of which is connected to the differential current tap in the current mirror input and the current output of which is connected to the common current bank control line, the control time constant being determined by a capacitive load on the Power source output is set.
  • the use of a current source in the control circuit has the advantage that the capacitive load of the common power bank control line, which can vary in size depending on the size and number of connected gate electrodes, represents the dominant pole point of the entire control loop and therefore essentially the control loop behavior certainly.
  • the other pole positions are less effective.
  • an additional internal or external capacity is not necessary due to the capacitive load of the common power bank control line.
  • the stability behavior also depends on the loop gain and thus on the current transformation ratio of the current-controlled current source. It is therefore advantageous if the current transformation ratio does not exceed the value 10, a preferred value being approximately 1, so that the input and output currents are approximately the same size.
  • the current transfer ratio can easily be set via the W / L ratio of the transistors coupled to the current source and current bank.
  • the potential of the low-impedance power source control input is determined in the type of gate circuit whose reference input, the gate terminal, is connected to a reference voltage and whose low-impedance signal input, the source terminal, forms the current source control input. It is pointed out that the input and output of the current source, and thus also the output of the voltage follower, operate in a bidirectional direction, ie the direction of flow of the respective currents can be positive or negative.
  • Such a current source can, for example, contain two interacting complementary current mirrors, an arrangement which particularly takes into account CMOS technology.
  • Such an arrangement connects, for example, an n- and a p-channel current mirror to one another such that the output of the p-channel current mirror is connected to the input of the n-channel current mirror directly or via cascode transistors.
  • the output of the n-channel current mirror is connected to the input of the p-channel current mirror directly or via cascode transistors.
  • Currents can be coupled in with low resistance and with high resistance via the cascode transistors in the two cross current paths.
  • Such a current mirror arrangement is therefore particularly suitable for the formation of a differential current, the differential current being able to be positive or negative. Capacitive influences on the frequency behavior of current mirrors are known per se from DE 42 01 155 C1, which relates to a switchable current mirror with MOS transistors of the same channel type in each case.
  • the known current mirror in FIG. 1 causes an input current ie generated by a source, not shown, to be fed to an n-channel current bank mb with the transistors t1, t3 is mirrored as the output current ia.
  • a cascode transistor t4 is connected between the current mirror output om and the drain electrode of the transistor t3.
  • the input current ie is also conducted via a cascode transistor t2, which lies between the current mirror input em and the drain connection of the current bank transistor t1, which also serves as a current mirror control transistor.
  • the common gate potential of the cascode transistors t2, t4 is connected to an auxiliary voltage uh, which is formed by means of an auxiliary current ih and an n-channel transistor t5 connected as a diode.
  • the common current bank control line cl of the current bank mb is connected to the drain electrode of the cascode transistor t2. It can easily be seen that the series connection of the two n-channel transistors t2, t1 makes the drain potential of the current bank transistor t1 too small in comparison to its gate potential under certain operating conditions, so that the required saturation of the transistors t1 and t2 is no longer present, as a result of which the current symmetry between the current bank transistors t1, t3 and possibly further current bank transistors is no longer maintained.
  • the main disadvantage of FIG. 1 - namely the relatively high gate potential of the current bank transistor t1 is eliminated by the common current bank control line being controlled by a control circuit r at the actual current mirror m.
  • the auxiliary voltage uh for the two cascode transistors t2, t4 is identical to the implementation according to FIG. 1. More complex circuits which serve to stabilize the auxiliary voltage uh are known, but have nothing to do with the actual invention.
  • the common current bank control line is connected to the output of an operational amplifier op, the non-inverting input of which is coupled to the current mirror input em and the inverting input of which is coupled to a reference voltage Ur.
  • the non-inverting input is connected to the common ground reference line M via an RC element R, C.
  • the drain-source current i1 which is controlled by the current bank control transistor t1 and also flows via the cascode transistor t2, depends in its size on the output voltage of the operational amplifier op.
  • the current mirror input em is fed by the arbitrary input current ie from a source, not shown. If both currents ie, i1 are not equal, then this must be one Differential current id result, which can be tapped at a first circuit node k1 or must be fed into this point.
  • the operational amplifier used here as usual, it is assumed that the output voltage is independent of the common mode voltage at the two operational amplifier inputs.
  • this decoupling means that the voltage at the current mirror input em can also be higher than the voltage of the current bank control line.
  • the RC element R, C is necessary to ensure the stability of the circuit. Due to the control effect, the drain-source current i1 changes and adjusts to the input current ie. The control goal is achieved when no residual current id flows and the current bank control line cl has reached its correct potential. Of course, with the size of the current i1, the output current ia of the current bank mb and thus the actual current level m has also changed proportionally.
  • the circuit according to FIG. 2 is very complex, the behavior of the circuit being satisfactory for stationary or slowly changing input currents. However, if the input currents change quickly and the output currents should generally follow these changes, the timing behavior of the control loop must be taken into account.
  • the critical factor here is the distribution of the poles and zeros of the closed control loop in the complex frequency level, which are coupled to the capacitances c1, c2, c3.
  • the first circuit node k1 is, for example, a high-resistance decoupling point and, together with the associated parasitic capacitance c1, forms a first pole point.
  • a second pole is formed by the negative feedback operational amplifier op and the RC element R, C, the frequency negative feedback of the operational amplifier by the capacitor c2 being indicated schematically.
  • its output signal is in every case 90 ° out of phase with its input signal.
  • the gate capacitances c3 of the current bank transistors t1, t3 and associated parasitic capacitances represent a third pole, which is effective in connection with the output resistance of the operational amplifier.
  • the three time constants of the pole points cause a phase shift that can easily cause the control loop to oscillate. This is particularly critical if the resulting ones Zero points / poles for the control loop are adjacent in frequency and the loop gain there is still large enough.
  • FIG. 3 shows an exemplary embodiment of a current mirror according to the invention. Circuit parts which are identical to those in FIG. 1 or FIG. 2 are represented with the same reference numerals, in particular the circuit parts of the actual current level m.
  • the input current path of the current mirror m is separated and a differential current id is formed from the input current ie and the current i1 from the current bank mb, which regulates the potential of the current bank control line cl via a control circuit r.
  • the control circuit r contains a current-controlled current source q, the low-resistance control input of which is fed with the differential current id and the high-resistance output, the circuit node k3, is connected directly to the current bank control line cl.
  • the use of a current source q to control the current bank transistors t1, t3 is an essential point of the invention, because it is generally assumed that MOS transistors are voltage and not current-controlled via the gate electrodes and their control should therefore be as low-resistance as possible , especially if the gate capacities are to be charged or discharged very quickly.
  • the controlled output current of the current source q is used in the current bank mb as the gate current ig for the gate capacitances c3, in order to track the current bank mb to the fluctuations in the input current ie.
  • the drive potential u3 of the current bank transistors t1, t3 is changed by the gate current ig.
  • the control target is reached, that is to say the input current ie is equal to the current bank current i1
  • the differential current id tapped at the first circuit node k1 has become zero, as a result of which the output current ig of the current source q also becomes zero.
  • the gate control potential u3 has then reached its setpoint - the control process is complete.
  • both the differential current id and the gate current ig must not be unidirectional, but rather the currents must be able to flow in a positive or negative direction.
  • This is achieved by implementing the current source q in FIG. 3.
  • the circuit implemented in CMOS technology is very advantageous since the current consumption is low due to the small number of cross current paths.
  • a four-transistor cell t6, t7, t8, t9 is inserted as a voltage follower sf into the current source q in such a way that all four transistors have a double function.
  • the voltage follower sf serves to determine the potential of the voltage level of the first circuit node k1, and thus the input em of the actual current mirror m. This is achieved by connecting the voltage follower input k4 to a reference voltage source Ur, the potential u4 of which is transmitted to the output k2 of the voltage follower sf.
  • the symmetrical design of the four-transistor cell with the n-channel transistors t6, t7 and the p-channel transistors t8, t9 has the effect that positive or negative currents can be tapped at the output k2 of the voltage follower sf.
  • the differential current id fed into the circuit node k2 is reflected back into the cross-current path pf with the circuit node k2 via two interacting complementary current mirrors m1, m2.
  • the differential current id injected into the circuit node k2 disturbs the predetermined current balance of the interacting current mirrors m1, m2 and generates a differential current ig which can be tapped at a circuit node k3. This is the gate current ig.
  • the high-resistance tap k3 is formed by the common connection point of the drain connections of an n-channel transistor t13 and the p-channel transistor t9.
  • the n-channel transistor t13 is the output transistor of the n-channel current mirror m2 and the transistor t9 is the p-channel output transistor of the four transistor cell.
  • the circuit node k3 thus represents the output of the current source q.
  • the common connection point k1, k2 is shown in FIG. 3 and the associated description as a separate circuit node k1, shown.
  • the potential u4 of the reference voltage source Ur determines the level u2 of the current mirror input em.
  • the gate drive potential for the cascode stages t2, t4 can easily be set lower than the current mirror input voltage u2 by appropriate selection of the auxiliary voltage uh.
  • the output voltage u3 the Current source q corresponds to the entire range of voltage u2 except for the saturation voltages of transistors t13 and t9.
  • the quiescent current of the two current mirrors m1, m2 connected in the chain is set by the current source currents i6, i8 in the input of the voltage follower sf.
  • An internal coupling of the two current sources makes currents i6 and i8 the same size. Since the potentials of the circuit nodes k2 and k4 are equal to one another, the n-channel transistors t6, t7 and the p-channel transistors t8, t9 can each be regarded as current mirrors which show the current source current i6 and the equally large current i8 mirror the respective output.
  • the differential current id which is supplied to the circuit node k3 in one direction via the current mirror m1, m2 and in the other direction via the transistor t9.
  • the current mirrors m1, m2 each have a current transmission ratio of 1: 1
  • the tapped output current ig is identical to the supplied differential current id.
  • More complex current source circuits can also be implemented, which have a current transformation ratio different from 1 between the input and output, for example between 0.1 and 10. This influences the charging or discharging of the current bank transistors t1, t3, but also changes the stability reserve.
  • the schematic representation of the auxiliary voltage source t5, the reference voltage source Ur and the current sources for the currents i6, i8 in FIG. 3 does not preclude known measures for improving the respective circuit function, for example the use of bandgap circuits to generate stable voltages or currents.
  • 3 shows only a single output current path for the current ie from the actual current level m. Other current outputs, also with any current transformation ratios, are not shown for the sake of clarity.
  • the exemplary embodiment in FIG. 3 contains q CMOS transistors in the current-controlled current source.
  • a current-controlled current source is also in pure n or. P-channel technology can be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The current mirror has a current bank including input and output side widely controllable cascade stages (t2,t4). A regulating circuit (r,p) generates the fixed potential of the cascade stages. A differential current (id) is fed to the control input of the regulating circuit. A first circuit node (k1) lies between a current mirror input and a first cascade stage (t2) coupled to a corresponding output of the current bank (mb). The regulation circuit includes a current controlled current source (q). The control input of the source, at a second circuit node (k2) is connected to the first node (k1). The output of the source, at a third node, is connected to a common control line (c1) for the current bank (mb). A capacitive load (c3), particularly one formed by capacitively charging the control line (c1), is connected to the third node (k3) to adjust a regulation time constant.

Description

Die Erfindung betrifft einen Stromspiegel in MOS-Technik mit weit aussteuerbaren Kaskodestufen, eine Strombank enthaltend, die mittels einer Regelschaltung von einem Differenzstrom gesteuert ist, der an einem Schaltungsknoten zwischen dem Stromspiegeleingang und einem zugehörigen, hochohmigen Kaskodeausgang abgegriffen ist, vgl. den Oberbegriff des Anspruchs 1.The invention relates to a current mirror in MOS technology with widely controllable cascode stages, comprising a current bank which is controlled by a control circuit from a differential current which is tapped at a circuit node between the current mirror input and an associated, high-resistance cascode output, cf. the preamble of claim 1.

In monolithisch integrierten Schaltungen, insbesondere in analog arbeitenden Stufen, werden Stromspiegel mit gleicher oder unterschiedlicher Stromübersetzung und mit einem oder mit mehreren Stromausgängen für eine Vielzahl von Hilfsfunktionen verwendet. Um die Ausgangskennlinien der Stromspiegel möglichst spannungsunabhängig, also möglichst hochohmig zu machen, werden die einzelnen Stromspiegelausgänge als Kaskodestufen ausgebildet, wobei das Festpotential für die Steuerelektroden der Kaskodetransistoren mittels einer Hilfsspannungsquelle erzeugt wird. Ein sehr einfacher, oft verwendeter Stromspiegel mit Kaskodestufen in MOS-Technik ist in Fig. 1 dargestellt. Ein Nachteil dieser bekannten Schaltung ist, daß die Sättigung einiger Transistoren unter speziellen betriebs- und technologieabhängigen Bedingungen nicht gewährleistet ist. Dabei ist der Sättigungsbereich für einen n- bzw. p - Kanal-Transistor durch die bekannten Sättigungsgleichungen definiert: V DS ≧ (V GS - V T ) beim n-Kanal-Transistor und V DS ≦ (V GS - V T ) beim p-Kanal-Transistor.

Figure imgb0001
In monolithically integrated circuits, especially in analog working stages, current mirrors with the same or different current ratios and with one or more current outputs are used for a large number of auxiliary functions. In order to make the output characteristics of the current mirrors as independent of the voltage as possible, i.e. as high as possible, the individual current mirror outputs are designed as cascode stages, the fixed potential for the control electrodes of the cascode transistors being generated by means of an auxiliary voltage source. A very simple, often used current mirror with cascode stages in MOS technology is shown in FIG. 1. A disadvantage of this known circuit is that the saturation of some transistors is not guaranteed under special operating and technology-dependent conditions. The saturation range for an n- or p-channel transistor is defined by the known saturation equations: V DS ≧ (V GS - V T ) with the n-channel transistor and V DS ≦ (V GS - V T ) with the p-channel transistor.
Figure imgb0001

Hauptursache für den kritischen Betriebszustand des n-Kanal-Stromspiegels in Fig. 1 ist das Gate-Potential der gemeinsamen n-Kanal-Strombanksteuerleitung, die direkt an den Stromspiegeleingang angeschlossen ist. Da an diesem Anschlußpunkt auch die Serienschaltung der beiden Drain-Source-Strompfade des kaskodierten Stromspiegeleingangs liegt, ist sofort erkennbar, daß das Gate-Potential des Strombanktransistors t1, der im folgenden auch als Stromspiegelsteuertransistor bezeichnet wird, um die Drain-Source-Spannung des Kaskodetransistors t2 höher liegt als sein Drain-Potential. Da die Transistoren t1 und t2 beide in Sättigung betrieben werden sollen, folgt aus den Sättigungsgleichungen: V DSt2 < V Tt1

Figure imgb0002
wobei VDSt2 die Drain-Source-Spannung des Kaskodetransistors t2 und VTt1 die Schwellenspannung des Strombanktransistors t1 bezeichnet.
Die Größe der Schwellenspannung VT ist durch die Technologie vorgegeben, wobei ihr negativer Temperaturkoeffizient dem positiven Temperaturkoeffizient der effektiven Gate-Spannung - für gleichen Strom aber zunehmende Kristalltemperatur - leider gerade entgegenläuft.The main cause of the critical operating state of the n-channel current mirror in FIG. 1 is the gate potential of the common n-channel current bank control line, which is connected directly to the current mirror input. Since the series connection of the two drain-source current paths of the cascoded current mirror input is also located at this connection point, it can be seen immediately that the gate potential of the current bank transistor t1, which is also referred to below as a current mirror control transistor is referred to, the drain-source voltage of the cascode transistor t2 is higher than its drain potential. Since the transistors t1 and t2 are both to be operated in saturation, it follows from the saturation equations: V DSt2 <V Tt1
Figure imgb0002
where V DSt2 denotes the drain-source voltage of the cascode transistor t2 and V Tt1 denotes the threshold voltage of the current bank transistor t1.
The size of the threshold voltage V T is predetermined by the technology, whereby its negative temperature coefficient unfortunately just runs counter to the positive temperature coefficient of the effective gate voltage - for the same current but increasing crystal temperature.

Eine gewisse Abhilfe stellt die bekannte Schaltung nach Figur 2 dar, bei der die Gate-Elektrode des Stromspiegelsteuertransistors von einer Regelschaltung gesteuert wird, deren Eingang von einem am Stromspiegeleingang abgegriffenen Signal gespeist wird. Hierzu wird gleichsam der Eingangsstrompfad des eigentlichen Stromspiegels elektronisch aufgetrennt und ein Differenzstrom aus dem zugeführten Stromspiegeleingangsstrom und dem Ausgangsstrom des Stromspiegelsteuertransistors gebildet. Wenn der Differenzstrom zu Null wird, dann ist der zugeführte Eingangsstrom gleich dem Ausgangsstrom des Stromspiegelsteuertransistors und damit der Sollwert des Regelvorgangs erreicht. Durch diese Maßnahme stellt sich die Ansteuerspannung für den Gate-Anschluß des Stromspiegelsteuertransistors und damit das Potential der gemeinsamen Strombanksteuerleitung von selbst auf einen unkritischen Wert ein. Eine einfache Betrachtung der resultierenden Potentialverhältnisse zeigt, daß das Potential der gemeinsamen Strombanksteuerleitung deutlich niedriger als das Potential der Hilfsspannungsquelle sein kann und damit der gewünschte Sättigungszustand für den Stromspiegelsteuertransistor und für die Kaskodestufen des Stromspiegels sichergestellt wird.The known circuit according to FIG. 2 provides a certain remedy, in which the gate electrode of the current mirror control transistor is controlled by a control circuit, the input of which is fed by a signal tapped at the current mirror input. For this purpose, the input current path of the actual current mirror is separated electronically and a differential current is formed from the supplied current mirror input current and the output current of the current mirror control transistor. If the differential current becomes zero, then the input current supplied is equal to the output current of the current mirror control transistor and thus the setpoint of the control process is reached. This measure sets the drive voltage for the gate connection of the current mirror control transistor and thus the potential of the common current bank control line to an uncritical value. A simple examination of the resulting potential relationships shows that the potential of the common current bank control line can be significantly lower than the potential of the auxiliary voltage source and thus the desired saturation state for the current mirror control transistor and for the cascode stages of the current mirror is ensured.

Ein wesentlicher Nachteil der in Fig. 2 dargestellten Schaltung, die als Regelschaltung einen gegengekoppelten Operationsverstärker enthält, ist das kritsche Stabilitätsverhalten, das ohne geeignete Dämpfungsmaßnahmen zu Regelkreisschwingungen führen kann.An essential disadvantage of the circuit shown in FIG. 2, which contains a feedback operational amplifier as a control circuit, is the critical stability behavior, which can lead to control loop vibrations without suitable damping measures.

Andererseits beeinflussen die üblichen Dämpfungsmaßnahmen das Frequenzverhalten des Stromspiegels, so daß er für viele Signalanwendungen zu langsam wird. Zudem erfordert die Schaltung zur Stabilisierung mindestens einen zusätzlichen Kondensator, der insbesondere bei der monolithischen Integration der Schaltung von Nachteil ist.On the other hand, the usual damping measures influence the frequency behavior of the current mirror, so that it becomes too slow for many signal applications. In addition, the circuit for stabilization requires at least one additional capacitor, which is particularly disadvantageous when the circuit is monolithically integrated.

Aufgabe der in Anspruch 1 gekennzeichneten Erfindung ist es daher, eine verbesserte Regelung für einen Stromspiegel in MOS-Technik mit weit aussteuerbaren Kaskodestufen anzugeben, mit dem Ziel, den erforderlichen Schaltungsaufwand gering und die Geschwindigkeit des Stromspiegels möglichst hoch zu halten.The object of the invention characterized in claim 1 is therefore to provide an improved control for a current mirror in MOS technology with widely controllable cascode stages, with the aim of keeping the circuitry required low and the speed of the current mirror as high as possible.

Die Lösung dieser Aufgabe folgt entsprechend den kennzeichnenden Merkmalen des Patentanspruchs 1 dadurch, daß die Regelschaltung als wesentliche Einheit eine stromgesteuerte Stromquelle enthält, deren Steuereingang mit dem Differenzstromabgriff im Stromspiegeleingang und deren Stromausgang mit der gemeinsamen Strombanksteuerleitung verbunden ist, wobei die Regelzeitkonstante durch eine kapazitive Belasung des Stromquellenausgangs eingestellt ist.This object is achieved in accordance with the characterizing features of patent claim 1 in that the control circuit contains, as an essential unit, a current-controlled current source, the control input of which is connected to the differential current tap in the current mirror input and the current output of which is connected to the common current bank control line, the control time constant being determined by a capacitive load on the Power source output is set.

Die Verwendung einer Stromquelle in der Regelschaltung hat den Vorteil, daß die kapazitive Last der gemeinsamen Strombanksteuerleitung, die je nach der Größe und Anzahl der angeschlossenen Gate-Elektroden sehr unterschiedlich groß sein kann, die dominante Polstelle des gesamten Regelkreises darstellt und daher im wesentlichen das Regelkreisverhalten bestimmt. Die anderen Polstellen treten in ihrer Wirkung dahinter zurück. In der Regel erübrigt sich wegen der kapazitiven Last der gemeinsamen Strombanksteuerleitung eine zusätzliche interne oder externe Kapazität.The use of a current source in the control circuit has the advantage that the capacitive load of the common power bank control line, which can vary in size depending on the size and number of connected gate electrodes, represents the dominant pole point of the entire control loop and therefore essentially the control loop behavior certainly. The other pole positions are less effective. As a rule, an additional internal or external capacity is not necessary due to the capacitive load of the common power bank control line.

Das Stabilitätsverhalten hängt ferner von der Schleifenverstärkung und damit vom Stromübersetzungsverhältnis der stromgesteuerten Stromquelle ab. Es ist daher vorteilhaft, wenn das Stromübersetzungsverhältnis den Wert 10 nicht überschreitet, wobei ein bevorzugter Wert etwa bei 1 liegt, so daß die Ein- und Ausgangsströme etwa gleich groß sind. Über das W/L-Verhältnis der mit der Stromquelle und Strombank verkoppelten Transistoren läßt sich das Stromübersetzungsverhältnis leicht einstellen.The stability behavior also depends on the loop gain and thus on the current transformation ratio of the current-controlled current source. It is therefore advantageous if the current transformation ratio does not exceed the value 10, a preferred value being approximately 1, so that the input and output currents are approximately the same size. The current transfer ratio can easily be set via the W / L ratio of the transistors coupled to the current source and current bank.

Die Festlegung des Potentials des niederohmigen Stromquellensteuereingangs erfolgt in der Art einer Gate-Schaltung, deren Bezugseingang, der Gate-Anschluß, an einer Referenzspannung liegt und deren niederohmiger Signaleingang, der Source-Anschluß, den Stromquellensteuereingang bildet. Es wird darauf hingewiesen, daß der Ein- und Ausgang der Stromquelle, damit auch der Ausgang des Spannungsfolgers, in bidirektionaler Richtung arbeitet, d.h. die Flußrichtung der jeweiligen Ströme kann positiv oder negativ sein. Eine derartige Stromquelle kann beispielsweise zwei zusammenwirkende komplementäre Stromspiegel enthalten, eine Anordnung, die besonders die CMOS-Technik berücksichtigt. Eine derartige Anordnung verbindet beispielsweise einen n- und einen p-Kanal-Stromspiegel derart miteinander, daß der Ausgang des p-Kanal-Stromspiegels mit dem Eingang des n-Kanal-Stromspiegels direkt oder über Kaskodetransistoren verbunden ist. In gleicher Weise ist der Ausgang des n-Kanal-Stromspiegels mit dem Eingang des p-Kanal-Stromspiegels direkt oder über Kaskodetransistoren verbunden. Über die Kaskodetransistoren in den beiden Quer-Strompfaden können Ströme niederohmig ein- und hochohmig ausgekoppelt werden. Eine derartige Stromspiegelanordnung eignet sich daher besonders zur Differenzstrombildung, wobei der Differenzstrom positiv oder negativ sein kann. Kapazitive Beeinflussungen des Frequenzverhaltens von Stromspiegeln sind an sich aus der DE 42 01 155 C1 bekannt, die einen schaltbaren Stromspiegel mit MOS-Transistoren von jeweils gleichem Kanaltyp betrifft.The potential of the low-impedance power source control input is determined in the type of gate circuit whose reference input, the gate terminal, is connected to a reference voltage and whose low-impedance signal input, the source terminal, forms the current source control input. It is pointed out that the input and output of the current source, and thus also the output of the voltage follower, operate in a bidirectional direction, ie the direction of flow of the respective currents can be positive or negative. Such a current source can, for example, contain two interacting complementary current mirrors, an arrangement which particularly takes into account CMOS technology. Such an arrangement connects, for example, an n- and a p-channel current mirror to one another such that the output of the p-channel current mirror is connected to the input of the n-channel current mirror directly or via cascode transistors. In the same way, the output of the n-channel current mirror is connected to the input of the p-channel current mirror directly or via cascode transistors. Currents can be coupled in with low resistance and with high resistance via the cascode transistors in the two cross current paths. Such a current mirror arrangement is therefore particularly suitable for the formation of a differential current, the differential current being able to be positive or negative. Capacitive influences on the frequency behavior of current mirrors are known per se from DE 42 01 155 C1, which relates to a switchable current mirror with MOS transistors of the same channel type in each case.

Die Erfindung und weitere vorteilhafte Ausgestaltungen werden nun anhand der Figuren der Zeichnung näher erläutert:

  • Fig. 1 zeigt einen bekannten Stromspiegel mit Kaskodestufen,
  • Fig. 2 zeigt einen bekannten Stromspiegel mit Kaskodestufen, wobei das Gate-Potential der eigentlichen Strombank von einer Regelschaltung erzeugt wird und
  • Fig. 3 zeigt ein vorteilhaftes Ausführungsbeispiel eines Stromspiegels mit Kaskodestufen, wobei die Pegelregelung der Strombank nach der Erfindung erfolgt.
The invention and further advantageous embodiments are now explained in more detail with reference to the figures of the drawing:
  • 1 shows a known current mirror with cascode stages,
  • FIG. 2 shows a known current mirror with cascode stages, the gate potential of the actual current bank being generated by a control circuit and
  • 3 shows an advantageous exemplary embodiment of a current mirror with cascode stages, the level control of the current bank taking place according to the invention.

Der bekannte Stromspiegel in Fig. 1 bewirkt, daß ein von einer nicht dargestellten Quelle erzeugter Eingangsstrom ie an einer n-Kanal-Strombank mb mit den Transistoren t1, t3 als Ausgangsstrom ia gespiegelt wird. Zur Entkopplung des Ausgangsstromes ia von der jeweiligen Ausgangsspannung wird ein Kaskodetransistor t4 zwischen den Stromspiegelausgang om und die Drain-Elektrode des Transistors t3 geschaltet. Aus Symmetriegründen wird der Eingangsstrom ie ebenfalls über einen Kaskodetransistor t2 geführt, der zwischen dem Stromspiegeleingang em und dem Drainanschluß des Strombanktransistors t1 liegt, der auch als Stromspiegelsteuertransistor dient. Das gemeinsame Gate-Potential der Kaskodetransistoren t2, t4 liegt an einer Hilfsspannung uh, die mittels eines Hilfsstromes ih und eines als Diode geschalteten n-Kanal-Transistors t5 gebildet ist. Die gemeinsame Strombanksteuerleitung cl der Strombank mb ist an die Drain-Elektrode des Kaskodetransistors t2 angeschlossen. Es ist leicht einsehbar, daß durch die Serienschaltung der beiden n-Kanal-Transistoren t2, t1 das Drain-Potential des Strombanktransistors t1 im Vergleich zu seinem Gate-Potential bei bestimmten Betriebszuständen zu klein wird, so daß die vorausgesetzte Sättigung der Transistoren t1 und t2 nicht mehr vorhanden ist, wodurch die Stromsymmetrie zwischen den Strombanktransistoren t1, t3 und gegebenenfalls weiteren Strombanktransistoren nicht mehr gewahrt bleibt.The known current mirror in FIG. 1 causes an input current ie generated by a source, not shown, to be fed to an n-channel current bank mb with the transistors t1, t3 is mirrored as the output current ia. To decouple the output current ia from the respective output voltage, a cascode transistor t4 is connected between the current mirror output om and the drain electrode of the transistor t3. For reasons of symmetry, the input current ie is also conducted via a cascode transistor t2, which lies between the current mirror input em and the drain connection of the current bank transistor t1, which also serves as a current mirror control transistor. The common gate potential of the cascode transistors t2, t4 is connected to an auxiliary voltage uh, which is formed by means of an auxiliary current ih and an n-channel transistor t5 connected as a diode. The common current bank control line cl of the current bank mb is connected to the drain electrode of the cascode transistor t2. It can easily be seen that the series connection of the two n-channel transistors t2, t1 makes the drain potential of the current bank transistor t1 too small in comparison to its gate potential under certain operating conditions, so that the required saturation of the transistors t1 and t2 is no longer present, as a result of which the current symmetry between the current bank transistors t1, t3 and possibly further current bank transistors is no longer maintained.

In Fig. 2 ist der Hauptnachteil gemäß Fig. 1 - nämlich das relativ hohe Gate-Potential des Strombanktransistors t1 beseitigt, indem beim eigentlichen Stromspiegel m, die gemeinsame Strombank-Steuerleitung von einer Regelschaltung r angesteuert wird. Die Hilfsspannung uh für die beiden Kaskodetransistoren t2, t4 ist identisch mit der Realisierung gemäß Fig. 1. Aufwendigere Schaltungen, die der Stabilisierung der Hilfsspannung uh dienen, sind bekannt, haben mit der eigentlichen Erfindung jedoch nichts zu tun. Bei der bekannten Strombankregelung nach Fig. 2 wird die gemeinsame Strombanksteuerleitung an den Ausgang eines Operationsverstärkers op angeschlossen, dessen nichtinvertierender Eingang mit dem Stromspiegeleingang em und dessen invertierender Eingang mit einer Referenzspannung Ur gekoppelt ist. Der nichtinvertierende Eingang ist über ein RC-Glied R,C mit der gemeinsamen Massebezugsleitung M verbunden. Der vom Strombanksteuertransistor t1 gesteuerte Drain-Source-Strom i1, der auch über den Kaskodetransistor t2 fließt, hängt in seiner Größe von der Ausgangsspannung des Operationsverstärkers op ab. Demgegenüber wird der Stromspiegeleingang em von dem zeitlich beliebigen Eingangsstrom ie aus einer nicht dargestellten Quelle gespeist. Sind beide Ströme ie, i1 ungleich, dann muß dies einen Differenzstrom id zur Folge haben, der an einem ersten Schaltungsknoten k1 abgreifbar ist oder in diesen Punkt eingespeist werden muß. Bei dem hier verwendeten Operationsverstärker wird wie üblich davon ausgegangen, daß die Ausgangsspannung unabhängig von der Gleichtaktspannung an den beiden Operationsverstärkereingängen ist. Damit wird erreicht, daß die Ansteuerspannung für die Strombanksteuerleitung unabhängig von der Spannung am Stromspiegeleingang em wird. Insbesondere kann durch diese Entkopplung die Spannung am Stromspiegeleingang em auch höher liegen als die Spannung der Strombanksteuerleitung. Das RC-Glied R, C ist notwendig, um die Stabilität der Schaltung sicherzustellen. Durch die Regelwirkung ändert sich der Drain-Source-Strom i1 und gleicht sich dem Eingangsstrom ie an. Das Regelziel ist erreicht, wenn kein Differenzstrom id mehr fließt und damit die Strombanksteuerleitung cl ihr richtiges Potential erreicht hat. Mit der Größe des Stromes i1 hat sich selbstverständlich auch der Ausgangsstrom ia der Strombank mb und damit des eigentlichen Stromspiegels m proportional mitgeändert.In Fig. 2, the main disadvantage of FIG. 1 - namely the relatively high gate potential of the current bank transistor t1 is eliminated by the common current bank control line being controlled by a control circuit r at the actual current mirror m. The auxiliary voltage uh for the two cascode transistors t2, t4 is identical to the implementation according to FIG. 1. More complex circuits which serve to stabilize the auxiliary voltage uh are known, but have nothing to do with the actual invention. 2, the common current bank control line is connected to the output of an operational amplifier op, the non-inverting input of which is coupled to the current mirror input em and the inverting input of which is coupled to a reference voltage Ur. The non-inverting input is connected to the common ground reference line M via an RC element R, C. The drain-source current i1, which is controlled by the current bank control transistor t1 and also flows via the cascode transistor t2, depends in its size on the output voltage of the operational amplifier op. In contrast, the current mirror input em is fed by the arbitrary input current ie from a source, not shown. If both currents ie, i1 are not equal, then this must be one Differential current id result, which can be tapped at a first circuit node k1 or must be fed into this point. In the operational amplifier used here, as usual, it is assumed that the output voltage is independent of the common mode voltage at the two operational amplifier inputs. This ensures that the control voltage for the current bank control line is independent of the voltage at the current mirror input em. In particular, this decoupling means that the voltage at the current mirror input em can also be higher than the voltage of the current bank control line. The RC element R, C is necessary to ensure the stability of the circuit. Due to the control effect, the drain-source current i1 changes and adjusts to the input current ie. The control goal is achieved when no residual current id flows and the current bank control line cl has reached its correct potential. Of course, with the size of the current i1, the output current ia of the current bank mb and thus the actual current level m has also changed proportionally.

Wie bereits angegeben, ist die Schaltung nach Fig. 2 sehr aufwendig, wobei für stationäre oder sich langsam ändernde Eingangsströme ie das Verhalten der Schaltung zufriedenstellend ist. Wenn sich die Eingangsströme ie jedoch rasch ändern und die Ausgangsströme ia diesen Änderungen folgen sollen, dann ist das zeitliche Verhalten der Regelschleife zu beachten. Kritisch ist hierbei die Verteilung der Pole und Nullstellen der geschlossenen Regelschleife in der komplexen Frequenzebene, die mit den Kapazitäten c1, c2, c3 verkoppelt sind. Der erste Schaltungsknoten k1 ist z.B. ein hochohmiger Auskoppelpunkt und bildet mit der zugehörigen parasitären Kapazität c1 eine erste Polstelle. Eine zweite Polstelle wird durch den gegengekoppelten Operationsverstärker op und das RC-Glied R,C gebildet, wobei die Frequenzgegenkopplung des Operationsverstärkers durch den Kondensator c2 schematisch angedeutet ist. Im normalen Frequenzbereich des Operationsverstärkers ist sein Ausgangssignal in jedem Fall um 90° gegenüber seinem Eingangssignal in der Phase gedreht. Schließlich stellen die Gate-Kapazitäten c3 der Strombanktransistoren t1, t3 und zugehörige parasitäre Kapazitäten eine dritte Polstelle dar, die in Verbindung mit dem Ausgangswiderstand des Operationsverstärkers wirksam wird. Die drei Zeitkonstanten der Polstellen bewirken eine Phasendrehung, die den Regelkreis leicht zum Schwingen bringen kann. Dies ist insbesondere dann kritisch, wenn die resultierenden Nullstellen/Pole für den Regelkreis frequenzmäßig benachbart sind und die Schleifenverstärkung dort noch groß genug ist. Als Abhilfe wird entweder die Schleifenverstärkung reduziert oder durch Vergrößerung der Kapazität c2 eine dominante Polstelle erzeugt oder eine Polstelle wird durch eine Nullstelle, hier das RC-Glied R, C, teilweise kompensiert. Alle Maßnahmen beeinflussen das Regelverhalten jedoch ungünstig, weil die Regelgeschwindigkeit verlangsamt wird.As already stated, the circuit according to FIG. 2 is very complex, the behavior of the circuit being satisfactory for stationary or slowly changing input currents. However, if the input currents change quickly and the output currents should generally follow these changes, the timing behavior of the control loop must be taken into account. The critical factor here is the distribution of the poles and zeros of the closed control loop in the complex frequency level, which are coupled to the capacitances c1, c2, c3. The first circuit node k1 is, for example, a high-resistance decoupling point and, together with the associated parasitic capacitance c1, forms a first pole point. A second pole is formed by the negative feedback operational amplifier op and the RC element R, C, the frequency negative feedback of the operational amplifier by the capacitor c2 being indicated schematically. In the normal frequency range of the operational amplifier, its output signal is in every case 90 ° out of phase with its input signal. Finally, the gate capacitances c3 of the current bank transistors t1, t3 and associated parasitic capacitances represent a third pole, which is effective in connection with the output resistance of the operational amplifier. The three time constants of the pole points cause a phase shift that can easily cause the control loop to oscillate. This is particularly critical if the resulting ones Zero points / poles for the control loop are adjacent in frequency and the loop gain there is still large enough. As a remedy, either the loop gain is reduced or a dominant pole point is generated by increasing the capacitance c2, or a pole point is partially compensated by a zero point, here the RC element R, C. However, all measures adversely affect the control behavior because the control speed is slowed down.

In Fig. 3 ist ein Ausführungsbeispiel für einen Stromspiegel nach der Erfindung dargestellt. Schaltungsteile, die identisch zu denen in Fig. 1 oder Fig. 2 sind, werden mit gleichen Bezugszeichen dargestellt, insbesondere fallen hierunter die Schaltungsteile des eigentlichen Stromspiegels m. Wie in Fig. 2 wird der Eingangsstrompfad des Stromspiegels m aufgetrennt und aus dem zugeführten Eingangsstrom ie und dem Strom i1 der Strombank mb ein Differenzstrom id gebildet, der über eine Regelschaltung r das Potential der Strombanksteuerleitung cl regelt. Die Regelschaltung r enthält dabei eine stromgesteuerte Stromquelle q, deren niederohmiger Steuereingang mit dem Differenzstrom id gespeist ist und deren hochohmiger Ausgang, der Schaltungsknoten k3, direkt mit der Strombanksteuerleitung cl verbunden ist. Die Verwendung einer Stromquelle q zur Ansteuerung der Strombanktransistoren t1, t3 ist ein wesentlicher Punkt der Erfindung, denn in der Regel wird davon ausgegangen, daß MOS-Transistoren über die Gate-Elektroden spannungs- und nicht stromgesteuert sind und ihre Ansteuerung daher möglichst niederohmig sein sollte, insbesondere wenn die Auf- oder Entladung der Gate-Kapazitäten sehr schnell sein soll. Der gesteuerte Ausgangsstrom der Stromquelle q dient indessen bei der Strombank mb als Gate-Strom ig für die Gate-Kapazitäten c3, um die Strombank mb den Schwankungen des Eingangstromes ie nachzuführen. Durch den Gate-Strom ig wird das Ansteuerpotential u3 der Strombanktransistoren t1, t3 geändert. Wenn das Regelziel erreicht ist, also der Eingangsstrom ie gleich dem Strombankstrom i1 ist, dann ist der am ersten Schaltungsknoten k1 abgegriffene Differenzstrom id zu Null geworden, wodurch auch der Ausgangsstrom ig der Stromquelle q zu Null wird. Das Gate-Ansteuerpotential u3 hat dann seinen Sollwert erreicht - der Regelvorgang ist abgeschlossen.3 shows an exemplary embodiment of a current mirror according to the invention. Circuit parts which are identical to those in FIG. 1 or FIG. 2 are represented with the same reference numerals, in particular the circuit parts of the actual current level m. As in FIG. 2, the input current path of the current mirror m is separated and a differential current id is formed from the input current ie and the current i1 from the current bank mb, which regulates the potential of the current bank control line cl via a control circuit r. The control circuit r contains a current-controlled current source q, the low-resistance control input of which is fed with the differential current id and the high-resistance output, the circuit node k3, is connected directly to the current bank control line cl. The use of a current source q to control the current bank transistors t1, t3 is an essential point of the invention, because it is generally assumed that MOS transistors are voltage and not current-controlled via the gate electrodes and their control should therefore be as low-resistance as possible , especially if the gate capacities are to be charged or discharged very quickly. The controlled output current of the current source q is used in the current bank mb as the gate current ig for the gate capacitances c3, in order to track the current bank mb to the fluctuations in the input current ie. The drive potential u3 of the current bank transistors t1, t3 is changed by the gate current ig. If the control target is reached, that is to say the input current ie is equal to the current bank current i1, then the differential current id tapped at the first circuit node k1 has become zero, as a result of which the output current ig of the current source q also becomes zero. The gate control potential u3 has then reached its setpoint - the control process is complete.

Die beschriebene Funktionsweise des Regelvorgangs macht deutlich, daß sowohl der Differenzstrom id als auch der Gate-Strom ig nicht unidirektional sein dürfen, sondern die Ströme müssen in positiver oder negativer Richtung fließen können. Dies wird durch die Implementierung der Stromquelle q in Fig. 3 erreicht. Die in CMOS-Technik ausgeführte Schaltung ist sehr vorteilhaft, da die Stromaufnahme wegen der geringen Anzahl der Querstrompfade gering ist. Insbesonders fügt sich eine Viertransistorzelle t6, t7, t8, t9 als Spannungsfolger sf in die Stromquelle q so ein, daß allen vier Transistoren eine Doppelfunktion zukommt. Der Spannungsfolger sf dient dazu, den Spannungspegel des ersten Schaltungsknotens k1, und damit Eingang em des eigentlichen Stromspiegels m in seinem Potential festzulegen. Dies wird durch die Verbindung des Spannungsfolgereingangs k4 mit einer Referenzspannungsquelle Ur erreicht, deren Potential u4 auf den Ausgang k2 des Spannungsfolgers sf übertragen wird. Die symmetrische Ausbildung der Viertransistorzelle mit den n-Kanal-Transistoren t6, t7 und den p-Kanal-Transistoren t8, t9 bewirkt, daß am Ausgang k2 des Spannungsfolgers sf positive oder negative Ströme abgreifbar sind. Da der Ausgang k2 des Spannungsfolgers sf zugleich der Steuereingang der Stromquelle q ist, wird der in den Schaltungsknoten k2 eingespeist Differenzstrom id über zwei zusammenwirkende komplementäre Stromspiegel m1, m2 in den Querstrompfad pf mit dem Schaltungsknoten k2 zurückgespiegelt. Der in den Schaltungsknoten k2 eingekoppelte Differenzstrom id stört das vorgegebene Stromgleichgewicht der zusammenwirkenden Stromspiegel m1, m2 und erzeugt einen Differenzstrom ig, der an einem Schaltungsknoten k3 abgegriffen werden kann. Dies ist der Gate-Strom ig. Der hochohmige Abgriff k3 wird durch den gemeinsamen Verbindungspunkt der Drain-Anschlüsse eines n-Kanal-Transistors t13 und des p-Kanal-Transistors t9 gebildet. Der n-Kanal-Transistor t13 ist der Ausgangstransistor des n-Kanal-Stromspiegels m2 und der Transistor t9 ist der p-Kanal-Ausgangstransistor der Viertransistorzelle. Der Schaltungsknoten k3 stellt damit den Ausgang der Stromquelle q dar. Um die Funktionsweise des eigentlichen Stromspiegels m und der Stromquelle q in getrennter Form besser beschreiben zu können, ist in Fig. 3 und zugehöriger Beschreibung der gemeinsame Verbindungspunkt k1, k2 als getrennter Schaltungsknoten k1, k2 dargestellt.The described mode of operation of the control process makes it clear that both the differential current id and the gate current ig must not be unidirectional, but rather the currents must be able to flow in a positive or negative direction. This is achieved by implementing the current source q in FIG. 3. The circuit implemented in CMOS technology is very advantageous since the current consumption is low due to the small number of cross current paths. In particular, a four-transistor cell t6, t7, t8, t9 is inserted as a voltage follower sf into the current source q in such a way that all four transistors have a double function. The voltage follower sf serves to determine the potential of the voltage level of the first circuit node k1, and thus the input em of the actual current mirror m. This is achieved by connecting the voltage follower input k4 to a reference voltage source Ur, the potential u4 of which is transmitted to the output k2 of the voltage follower sf. The symmetrical design of the four-transistor cell with the n-channel transistors t6, t7 and the p-channel transistors t8, t9 has the effect that positive or negative currents can be tapped at the output k2 of the voltage follower sf. Since the output k2 of the voltage follower sf is also the control input of the current source q, the differential current id fed into the circuit node k2 is reflected back into the cross-current path pf with the circuit node k2 via two interacting complementary current mirrors m1, m2. The differential current id injected into the circuit node k2 disturbs the predetermined current balance of the interacting current mirrors m1, m2 and generates a differential current ig which can be tapped at a circuit node k3. This is the gate current ig. The high-resistance tap k3 is formed by the common connection point of the drain connections of an n-channel transistor t13 and the p-channel transistor t9. The n-channel transistor t13 is the output transistor of the n-channel current mirror m2 and the transistor t9 is the p-channel output transistor of the four transistor cell. The circuit node k3 thus represents the output of the current source q. In order to be able to better describe the functioning of the actual current level m and the current source q in a separate form, the common connection point k1, k2 is shown in FIG. 3 and the associated description as a separate circuit node k1, shown.

Das Potential u4 der Referenzspannungsquelle Ur bestimmt wie beschrieben den Pegel u2 des Stromspiegeleingangs em. Durch entsprechende Wahl der Hilfsspannung uh kann auf einfache Weise das Gate-Ansteuerpotential für die Kaskodestufen t2, t4 niedriger als die Stromspiegeleingangsspannung u2 eingestellt werden. Die Ausgangsspannung u3 der Stromquelle q entspricht bis auf die Sättigungsspannungen der Transistoren t13 bzw. t9 dem gesamten Bereich der Spannung u2.As described, the potential u4 of the reference voltage source Ur determines the level u2 of the current mirror input em. The gate drive potential for the cascode stages t2, t4 can easily be set lower than the current mirror input voltage u2 by appropriate selection of the auxiliary voltage uh. The output voltage u3 the Current source q corresponds to the entire range of voltage u2 except for the saturation voltages of transistors t13 and t9.

Der Ruhestrom der in Kette geschalteten beiden Stromspiegel m1, m2 wird durch die Stromquellenströme i6, i8 im Eingang des Spannungsfolgers sf eingestellt. Eine interne Verkopplung der beiden Stromquellen macht die Ströme i6 und i8 gleichgroß. Da die Potentiale der Schaltungsknoten k2 und k4 einander gleich sind, können die n-Kanal-Transistoren t6, t7 bzw. die p-Kanal-Transistoren t8, t9 jeweils als Stromspiegel angesehen werden, die den Stromquellenstrom i6 bzw. den gleichgroßen Strom i8 auf den jeweiligen Ausgang spiegeln. Diesen Strömen überlagert sich der Differenzstrom id, der in der einen Richtung über die Stromspiegel m1, m2 und in der anderen Richtung über den Transistor t9 dem Schaltungsknoten k3 zugeführt wird. Wenn die Stromspiegel m1, m2 jeweils ein Stromübersetzungsverhältnis 1:1 aufweisen, dann ist der abgreifbare Ausgangsstrom ig identisch mit dem zugeführten Differenzstrom id. Es sind auch aufwendigere Stromquellenschaltungen realisierbar, die zwischen dem Ein- und Ausgang ein von 1 unterschiedliches Stromübersetzungsverhältnis aufweisen, beispielsweise zwischen 0,1 und 10. Dies beeinflußt die Auf oder Entladung der Strombanktransistoren t1, t3, verändert aber auch die Stabilitätsreserve. Die ist indessen bei der gewählten Schaltungsanordnung von Fig. 3 sehr groß, da die dominante Zeitkonstante durch die Gate-Kapazität c3 der Strombanksteuerleitung cl in Verbindung mit dem hochohmigen Anschlußpunkt k3 gebildet wird. Denn die mit dem Schaltungsknoten k1 verkoppelte parasitäre Kapazität c1 "sieht" lediglich den niederohmigen Ausgang k2 des Spannungsfolgers sf.The quiescent current of the two current mirrors m1, m2 connected in the chain is set by the current source currents i6, i8 in the input of the voltage follower sf. An internal coupling of the two current sources makes currents i6 and i8 the same size. Since the potentials of the circuit nodes k2 and k4 are equal to one another, the n-channel transistors t6, t7 and the p-channel transistors t8, t9 can each be regarded as current mirrors which show the current source current i6 and the equally large current i8 mirror the respective output. These currents are superimposed on the differential current id, which is supplied to the circuit node k3 in one direction via the current mirror m1, m2 and in the other direction via the transistor t9. If the current mirrors m1, m2 each have a current transmission ratio of 1: 1, the tapped output current ig is identical to the supplied differential current id. More complex current source circuits can also be implemented, which have a current transformation ratio different from 1 between the input and output, for example between 0.1 and 10. This influences the charging or discharging of the current bank transistors t1, t3, but also changes the stability reserve. 3 is very large, since the dominant time constant is formed by the gate capacitance c3 of the current bank control line cl in connection with the high-resistance connection point k3. This is because the parasitic capacitance c1 coupled to the circuit node k1 only "sees" the low-impedance output k2 of the voltage follower sf.

Die schematische Darstellung der Hilfsspannungsquelle t5, der Referenzspannungsquelle Ur und der Stromquellen für die Ströme i6, i8 in Fig. 3 schließt bekannte Maßnahmen zur Verbesserung der jeweiligen Schaltungsfunktion nicht aus, z.B. die Verwendung von Bandgap-Schaltungen zur Erzeugung von stabilen Spannungen oder Strömen. Ferner zeigt Fig. 3 vom eigentlichen Stromspiegel m lediglich einen einzigen Ausgangsstrompfad für den Strom ie. Weitere Stromausgänge, auch mit beliebigen Stromübersetzungsverhältnissen, sind der besseren Übersicht wegen nicht dargestellt. Das Ausführungsbeispiel von Fig. 3 enthält in der stromgesteuerten Stromquelle q CMOS-Transistoren. Selbstverständlich ist eine stromgesteuerte Stromquelle auch in reiner n-bzw. p-Kanal-Technik realisierbar.The schematic representation of the auxiliary voltage source t5, the reference voltage source Ur and the current sources for the currents i6, i8 in FIG. 3 does not preclude known measures for improving the respective circuit function, for example the use of bandgap circuits to generate stable voltages or currents. 3 shows only a single output current path for the current ie from the actual current level m. Other current outputs, also with any current transformation ratios, are not shown for the sake of clarity. The exemplary embodiment in FIG. 3 contains q CMOS transistors in the current-controlled current source. Of course, a current-controlled current source is also in pure n or. P-channel technology can be implemented.

Claims (7)

Stromspiegel in MOS-Technik mit - einer Strombank (mb), die ein- und ausgangsseitig weit aussteuerbare Kaskodestufen (t2, t4) enthält, - einer Regelschaltung (r, p), die das Festpotential der Kaskodestufen (t2, t4) erzeugt und deren Steuereingang ein Differenzstrom (id) zugeführt ist, und - einem ersten Schaltungsknoten (k1), der zwischen einem Stromspiegeleingang (em) und einer mit einem zugehörigen Ausgang der Strombank (mb) gekoppelten ersten Kaskodestufe (t2) liegt und an dem der Differenzstrom (id) abgreifbar ist,
dadurch gekennzeichnet, daß
- die Regelschaltung (r) eine stromgesteuerte Stromquelle (q) enthält, deren Steuereingang, der zweite Schaltungsknoten (k2), mit dem ersten Schaltungsknoten (k1) und deren Ausgang, der dritte Schaltungsknoten (k3), mit einer gemeinsamen Steuerleitung (cl) für die Strombank (mb) verbunden ist, und - am dritten Schaltungsknoten (k3) eine kapazitive Last (c3), die insbesondere durch die kapazitive Belastung der gemeinsamen Steuerleitung (cl) gebildet ist, zur Einstellung einer Regelzeitkonstanten angeschlossen ist.
Current mirror in MOS technology with a power bank (mb) which contains cascode levels (t2, t4) which can be widely controlled on the input and output sides, - A control circuit (r, p) which generates the fixed potential of the cascode stages (t2, t4) and whose control input is supplied with a differential current (id), and a first circuit node (k1), which lies between a current mirror input (em) and a first cascode stage (t2) coupled to an associated output of the current bank (mb) and at which the differential current (id) can be tapped,
characterized in that
- The control circuit (r) contains a current-controlled current source (q), whose control input, the second circuit node (k2), with the first circuit node (k1) and whose output, the third circuit node (k3), with a common control line (cl) for the power bank (mb) is connected, and - A capacitive load (c3), which is formed in particular by the capacitive load of the common control line (cl), is connected to the third circuit node (k3) for setting a control time constant.
Stromspiegel nach Anspruch 1, dadurch gekennzeichnet, daß die Stromquelle (q) zwischen ihrem Ein- und Ausgang, dem zweiten bzw. dritten Schaltungsknoten (k2 bzw. k3), ein Stromübersetzungsverhältnis aufweist, das zwischen 0,1 und 10, insbesondere im Bereich von 1 liegt.Current mirror according to claim 1, characterized in that the current source (q) between its input and output, the second or third circuit node (k2 or k3), has a current transformation ratio which is between 0.1 and 10, in particular in the range of 1 lies. Stromspiegel nach Anspruch 2, dadurch gekennzeichnet, daß die Stromquelle (q) zur Festlegung des Potentials am zweiten Schaltungsknoten (k2) einen Spannungsfolger (sf) enthält, dessen Eingang, ein vierter Schaltungsknoten (k4), mit einer Referenzspannungsquelle (Ur) verbunden ist und dessen niederohmiger Ausgang identisch mit dem Eingang (k2) der Stromquelle (q) ist.Current mirror according to claim 2, characterized in that the current source (q) for determining the potential at the second circuit node (k2) contains a voltage follower (sf) whose input, a fourth circuit node (k4), is connected to a reference voltage source (Ur) and whose low-resistance output is identical to the input (k2) of the current source (q). Stromspiegel nach Anspruch 3, dadurch gekennzeichnet, daß die Stromquelle (q) zwei zusammenwirkende komplementäre Stromspiegel (m1, m2) enthält.Current mirror according to claim 3, characterized in that the current source (q) contains two interacting complementary current mirrors (m1, m2). Stromspiegel nach Anspruch 4, dadurch gekennzeichnet, daß ein Strompfad (pf) der zusammenwirkenden komplementären Stromspiegel (m1, m2) den Ausgang des Spannungsfolgers (sf) enthält, indem in den Strompfad (pf) ein komplementäres Transistorpaar (t7, t9) in Serienschaltung eingefügt ist, deren gemeinsamer Source-Anschluß den zweiten Schaltungsknoten (k2) bildet und deren Gate-Anschlüsse über jeweils eine MOS-Diode (t6 bzw t8) mit dem vierten Schaltungsknoten (k4) verbunden sind.Current mirror according to claim 4, characterized in that a current path (pf) of the cooperating complementary current mirrors (m1, m2) contains the output of the voltage follower (sf) by inserting a complementary pair of transistors (t7, t9) in series connection into the current path (pf) whose common source connection forms the second circuit node (k2) and whose gate connections are each connected to the fourth circuit node (k4) via a MOS diode (t6 or t8). Stromspiegel nach Anspruch 5, dadurch gekennzeichnet, daß der als Ausgang der stromgesteuerten Stromquelle (q) dienende dritte Schaltungsknoten (k3) durch den gemeinsamen Drain-Anschluß zwischen zwei komplementären, in Serie geschalteten Transistoren (t9, t13) im Strompfad (pf) gebildet ist.Current mirror according to Claim 5, characterized in that the third circuit node (k3) serving as the output of the current-controlled current source (q) is formed by the common drain connection between two complementary, series-connected transistors (t9, t13) in the current path (pf) . Stromspiegel nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der Spannungsfolger (sf) eine Viertransistorzelle aus zwei komplementären Transistorpaaren (t6, t8 bzw. t7, t9) enthält, deren Transistoren unabhängig vom Leitungstyp zueinander in ihren elektrischen Eigenschaften gepaart sind.Current mirror according to one of Claims 3 to 6, characterized in that the voltage follower (sf) contains a four-transistor cell composed of two complementary transistor pairs (t6, t8 or t7, t9), the transistors of which are paired with one another in their electrical properties, irrespective of the conductivity type.
EP96102646A 1995-03-01 1996-02-22 Current mirror in MOS technology with adjustable cascade stages Expired - Lifetime EP0730214B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19507155 1995-03-01
DE19507155A DE19507155C1 (en) 1995-03-01 1995-03-01 Current mirror in MOS technology with widely controllable cascode levels

Publications (3)

Publication Number Publication Date
EP0730214A2 true EP0730214A2 (en) 1996-09-04
EP0730214A3 EP0730214A3 (en) 1997-07-16
EP0730214B1 EP0730214B1 (en) 2001-10-17

Family

ID=7755363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96102646A Expired - Lifetime EP0730214B1 (en) 1995-03-01 1996-02-22 Current mirror in MOS technology with adjustable cascade stages

Country Status (5)

Country Link
US (1) US5654629A (en)
EP (1) EP0730214B1 (en)
JP (1) JP3880649B2 (en)
KR (1) KR960036010A (en)
DE (2) DE19507155C1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801523A (en) * 1997-02-11 1998-09-01 Motorola, Inc. Circuit and method of providing a constant current
JP3315652B2 (en) * 1998-09-07 2002-08-19 キヤノン株式会社 Current output circuit
DE19903577C2 (en) * 1999-01-29 2000-11-23 Micronas Intermetall Gmbh Circuit arrangement of an integrated current mirror
JP2007508771A (en) * 2003-10-15 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Bipolar signal amplification electronics
JP4170963B2 (en) * 2004-07-22 2008-10-22 浜松ホトニクス株式会社 LED drive circuit
US8786359B2 (en) * 2007-12-12 2014-07-22 Sandisk Technologies Inc. Current mirror device and method
JP5163437B2 (en) * 2008-11-12 2013-03-13 ソニー株式会社 Differential output circuit and communication device
US20110050198A1 (en) * 2009-09-01 2011-03-03 Zhiwei Dong Low-power voltage regulator
FR2964274B1 (en) * 2010-08-26 2013-06-28 St Microelectronics Sa CUTTING CONVERTER
TWI461702B (en) * 2012-04-27 2014-11-21 Powerforest Technology Corp Ultra low startup current power detection apparatus
FR3103333A1 (en) * 2019-11-14 2021-05-21 Stmicroelectronics (Tours) Sas Device for generating a current

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583037A (en) * 1984-08-23 1986-04-15 At&T Bell Laboratories High swing CMOS cascode current mirror
US4983929A (en) * 1989-09-27 1991-01-08 Analog Devices, Inc. Cascode current mirror
US5099205A (en) * 1990-11-29 1992-03-24 Brooktree Corporation Balanced cascode current mirror
EP0606123A1 (en) * 1993-01-06 1994-07-13 Philips Electronics Uk Limited Electrical circuit arrangement
EP0613072A1 (en) * 1993-02-12 1994-08-31 Koninklijke Philips Electronics N.V. Integrated circuit comprising a cascode current mirror

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4201155C1 (en) * 1992-01-17 1993-01-28 Texas Instruments Deutschland Gmbh, 8050 Freising, De
NL9201053A (en) * 1992-06-15 1994-01-03 Koninkl Philips Electronics Nv SWITCHED CAPACITOR LOADING PUMP AND SAW Tooth Oscillator equipped with such a SWITCHED CAPACITOR LOADING PUMP.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583037A (en) * 1984-08-23 1986-04-15 At&T Bell Laboratories High swing CMOS cascode current mirror
US4983929A (en) * 1989-09-27 1991-01-08 Analog Devices, Inc. Cascode current mirror
US5099205A (en) * 1990-11-29 1992-03-24 Brooktree Corporation Balanced cascode current mirror
EP0606123A1 (en) * 1993-01-06 1994-07-13 Philips Electronics Uk Limited Electrical circuit arrangement
EP0613072A1 (en) * 1993-02-12 1994-08-31 Koninklijke Philips Electronics N.V. Integrated circuit comprising a cascode current mirror

Also Published As

Publication number Publication date
EP0730214B1 (en) 2001-10-17
KR960036010A (en) 1996-10-28
DE59607907D1 (en) 2001-11-22
JPH08274550A (en) 1996-10-18
US5654629A (en) 1997-08-05
EP0730214A3 (en) 1997-07-16
JP3880649B2 (en) 2007-02-14
DE19507155C1 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
DE3631099C2 (en) CMOS output stage
EP0096944B1 (en) Circuit with several signal paths formed by active arrangements
DE69328348T2 (en) Current detection circuit
DE3874974T2 (en) CMOS POWER OPERATIONAL AMPLIFIER.
EP0483537B1 (en) Current source circuit
DE19959180C2 (en) Differential amplifier
DE2310266C2 (en) amplifier
DE60105932T2 (en) VOLTAGE-LIMITING PRELOAD CIRCUIT FOR REDUCING DEGRADATION EFFECTS IN MOS CASCODE CIRCUITS
DE68906601T2 (en) Symmetrical integrated amplifier with controlled offset DC voltage.
DE69934629T2 (en) differential amplifier
DE102005005290A1 (en) Constant current source device with two depletion mode MOS transistors
DE69219182T2 (en) Transconductance operational amplifier with large common mode level
DE69020748T2 (en) Differential amplifier with voltage shift to achieve input capability over the entire, very low supply voltage range.
DE19507155C1 (en) Current mirror in MOS technology with widely controllable cascode levels
DE2855303A1 (en) LINEAR AMPLIFIER
DE3881934T2 (en) Differential amplifier with balanced output.
DE102019209071A1 (en) Voltage generator
DE68921136T2 (en) Transistor amplifier for high slew rates and capacitive loads.
DE10207802B4 (en) CMOS differential amplifier
DE2757464A1 (en) AMPLIFIER
DE69508826T2 (en) Constant current source with field effect transistor
DE69209498T2 (en) Reference voltage generator for dynamic memory with random access
DE69231151T2 (en) Transconductance level
DE3856194T2 (en) Amplifier circuit and display device provided with the amplifier circuit
DE69413235T2 (en) Operational amplifier switchable in different configurations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICRONAS INTERMETALL GMBH

17P Request for examination filed

Effective date: 19980116

17Q First examination report despatched

Effective date: 19991203

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICRONAS GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 59607907

Country of ref document: DE

Date of ref document: 20011122

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020104

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070223

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070521

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070221

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080222

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100223

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607907

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901