EP0726306A1 - Process for the simultaneous hydrogenation of hydrocarbon containing gases and condensates - Google Patents

Process for the simultaneous hydrogenation of hydrocarbon containing gases and condensates Download PDF

Info

Publication number
EP0726306A1
EP0726306A1 EP96101496A EP96101496A EP0726306A1 EP 0726306 A1 EP0726306 A1 EP 0726306A1 EP 96101496 A EP96101496 A EP 96101496A EP 96101496 A EP96101496 A EP 96101496A EP 0726306 A1 EP0726306 A1 EP 0726306A1
Authority
EP
European Patent Office
Prior art keywords
gas
condensate
stage
hydrogenation
hydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96101496A
Other languages
German (de)
French (fr)
Other versions
EP0726306B1 (en
Inventor
Maximilian Dr. Vicari
Uwe Dr. Stabel
Helmut Dr. Wörz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Der Gruene Punkt Duales System Deutschland AG
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0726306A1 publication Critical patent/EP0726306A1/en
Application granted granted Critical
Publication of EP0726306B1 publication Critical patent/EP0726306B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal

Definitions

  • the present invention relates to a new process for the joint hydrogenation of hydrocarbon-containing gases and condensates.
  • DE-A 43 11 034 proposes that the gas, condensate and the bottom phase containing the viscous depolymerization products obtained by depolymerizing plastic wastes be drawn off in separate substreams and that the condensate and the bottom phase be worked up separately. This document also teaches a one-step hydrogenation of the condensate over a fixed bed catalyst.
  • a process for the catalytic hydrogenation of a gas and a condensate, each containing essentially saturated and unsaturated and, in the case of the condensate, aromatic hydrocarbons was found with hydrogen, which is characterized in that the condensate is used at a hydrogen partial pressure of 1 to 50 bar and also catalytically hydrogenated part of the gas in a first stage at 160 to 250 ° C., added the remaining part of the gas to the hydrogenation product and catalytically hydrogenating the mixture thus obtained in a second stage at 250 to 420 ° C.
  • gases and condensates to be hydrogenated according to the invention are gaseous or liquid under normal pressure.
  • the main components of the gases contain saturated hydrocarbons such as methane, ethane, propane, n-butane, isobutane and n-pentane.
  • saturated hydrocarbons such as methane, ethane, propane, n-butane, isobutane and n-pentane.
  • unsaturated hydrocarbons they contain e.g. Ethylene, propylene, 1-butene and 1-pentene.
  • gases to be processed can contain other components such as hydrogen, carbon monoxide, carbon dioxide, ammonia, hydrogen sulfide and nitrogen, but also chlorinated carbons such as methyl chloride.
  • the content of unsaturated hydrocarbons in the gas is 0.5 to 35% by weight, but in special cases it can also be higher.
  • the gas preferably contains at least 50% by weight of saturated hydrocarbons, but only about 30% by weight can also occur in gases which contain particularly high proportions of unsaturated hydrocarbons.
  • the total chlorine content is generally 0.01 to 1% by weight.
  • the condensates generally have a boiling point at approximately 60 ° C. and a boiling point at approximately 180 ° C. (ASTM D-86).
  • saturated hydrocarbons they generally contain isomeric pentanes, hexanes, heptanes, octanes and nonanes, but also longer-chain alkanes.
  • Aromatic hydrocarbons such as benzene, toluene and ethylbenzene can occur as main components, as can xylenes.
  • the polymerizable unsaturated compounds are generally essentially styrene, methyl styrene and indene. Condensates with a styrene content of 1 to 4% by weight are preferred.
  • the diene number of the condensate is preferably 5 to 50 g / 100 g (UOP method 326-82), the bromine absorption is 20 to 60 g / 100 g (DIN 51 774), particularly preferably 40 to 50 g / 100 g.
  • the condensate can also contain chlorine-containing compounds (usually less than 500 ppm chlorine content, based on the mass) and sulfur compounds (usually less than 100 ppm sulfur by mass).
  • gases and condensates mentioned occur in thermal and catalytic cracking plants of hydrocarbon mixtures.
  • coke ovens, coke ovens, catalytic crackers or visbreakers are to be mentioned, the product range of which includes the gases and condensates mentioned, which can be provided, for example, by distillation if they are worked up accordingly.
  • plastic waste which is usually a mixture of polymers such as polyolefins, e.g. Polyethylene and polypropylene, polystyrene, polyvinyl chloride, blends such as ABS, but also of polyurethanes, polyesters and polyamides. If necessary, this waste is crushed and melted. The melt, e.g. at 400 to 550 ° C, converted into products, which are then usually separated by distillation. The resulting distillation residues can be returned to the reactor, solids and any acids being separated beforehand.
  • Particularly preferred for the preparation of the starting materials to be hydrogenated according to the invention is a procedure according to which a top product obtained at 200 to 280 ° C. is separated from the depolymerization product in a first column directly downstream of the reactor, and after partial condensation of a second column at 70 to 150 ° C. is fed and separated into a gas mixture emerging at the top of the column and a condensate obtained at the bottom of the column.
  • the gas and condensate obtained in this way can then be hydrogenated according to the invention.
  • the hydrogenation is carried out in two stages.
  • the temperature in the first stage is 160 to 250 ° C., that in the second stage 250 to 420 ° C., the temperatures of the individual stages preferably being different.
  • the partial pressure of the hydrogen used for the hydrogenation is 1 to 50 bar, the pressure range from 5 to 20 bar being preferred.
  • the hydrogenation is carried out on catalysts as are known per se to the person skilled in the art for the hydrogenation of hydrocarbon streams containing unsaturated compounds (for example pyrolysis gasoline hydrogenation, Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, VCH, vol. A3, p. 489, and benzene pressure refining, Ullmann's Encyclopedia of Technical Chemistry, 4th edition, VCH, Vol. 8, p. 389).
  • unsaturated compounds for example pyrolysis gasoline hydrogenation, Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, VCH, vol. A3, p. 489, and benzene pressure refining, Ullmann's Encyclopedia of Technical Chemistry, 4th edition, VCH, Vol. 8, p. 389.
  • Co-Mo and Ni-Mo catalysts are particularly preferred and EP-A 8 424.
  • the catalysts in both hydrogenation stages are arranged as a fixed bed.
  • a vertical first hydrogenation reactor is preferably flowed through from bottom to top in order to allow any liquid which may occur in the reactor feed or on the catalyst to drip down and to be removed in the bottom of the reactor.
  • the gas to be hydrogenated is divided between the two hydrogenation stages. A part is hydrogenated with the condensate to be hydrogenated in the first stage. The remaining part of the gas is then added to the hydrogenation product thus obtained before the mixture thus obtained is fed to the hydrogenation in the second stage. The result is that the heat of reaction released is distributed over both stages.
  • the distribution of the gas quantities to the first and second stages is advantageously regulated so that the temperature of the hydrogenation product emerging from the first stage is measured. If this temperature rises, less gas is metered into the first stage and vice versa. This procedure allows a relatively constant reaction temperature at the catalyst to be guaranteed even with fluctuating concentrations of individual components in the mixture to be hydrogenated.
  • the amount of gas added to the first stage depends on the amount of heat released during the hydrogenation of the gas, which depends on its composition, and on the reaction temperature in the first reactor. It can easily be determined by the expert by means of corresponding preliminary tests.
  • the process according to the invention is preferably operated in a cycle gas mode, ie gas is circulated in the hydrogenation stages, from which only the amount of hydrogenation product corresponding to the freshly supplied gas and condensate is taken off.
  • the product obtained after the second stage can be worked up in a manner known per se, for example by distillation.
  • Prefers is an expansion of the mixture in a column and subsequent fractionation.
  • the process products can be used in many ways, for example as raw gas for a steam cracker or as gasoline. It is also possible to further process the hydrogenation product in an aromatics plant to obtain pure aromatics.
  • condensate 1 with part of the gas 2 to be hydrogenated and the circulating gas 3 and hydrogen 4 is fed to an evaporator 5. If necessary, high-boiling fractions in the form of sludge are withdrawn from the bottom of the evaporator. The overhead vapors are heated against the outlet stream 6 from the second hydrogenation reactor and fed to the first hydrogenation reactor 7, which is flowed through from bottom to top. Any liquid can be removed from the sump. The remaining part of the gas 2 to be hydrogenated is added to the hydrogenation product and fed to the second hydrogenation reactor 8. Before this, the feed stream 9 is heated against the outlet stream 6 from the second hydrogenation reactor; if appropriate, a further heater is interposed.
  • the hydrogenated product is cooled and optionally washed, e.g. with water or with sodium hydroxide solution 10 for the separation of hydrogen chloride.
  • a separator 11 the hydrogenated condensate and optionally washing water are drawn off via a line 12.
  • the gas phase is partly discharged via a line 13 in order to avoid undesired constituents in the circulating gas being leveled up.
  • the remaining part is mixed with hydrogen 4 and returned to the process via a compressor 14.
  • FIG. 2 shows the described method with an optimized heat composite.
  • a pre-evaporator 15 is attached in front of the evaporator 5.
  • the pre-evaporation takes place in countercurrent to the reactor outlet stream 6 after preheating the pre-evaporator inlet stream.
  • the stream fed directly to the evaporator 5 is also preheated against the outlet stream of the pre-evaporator 16.
  • gases and condensates which essentially contain hydrocarbons are freed of unsaturated compounds, so that no undesired polymerization products occur during further processing of the process products.
  • the special distribution of the gas flow over both hydrogenation stages ensures a constant temperature on the catalyst, which leads to longer catalyst life. By avoiding excessive temperature increases on the catalyst, the process can be operated adiabatically, ie there are no costs for corresponding components for heat removal from the reactor. It was also found that the process dehalogenates chlorine-containing hydrocarbons, such as those present in feedstocks from the depolymerization of plastic waste. Hydrogen chloride formed here can easily be separated from the process product in a wash.

Abstract

Catalytically hydrogenating a gas and a condensate contg. (un)satd. aromatic hydrocarbons with hydrogen comprises: using a hydrogen partial pressure of 1-50 bar to catalytically hydrogenate the condensate and a part of the gas in a 1st step at 160-250 degrees C; adding the remaining part of the gas to the hydrogenated prod.; and catalytically hydrogenating the mixt. obtd. in a 2nd step at 250-420 degrees C.

Description

Die vorliegende Erfindung betrifft ein neues Verfahren zur gemeinsamen Hydrierung von kohlenwasserstoffhaltigen Gasen und Kondensaten.The present invention relates to a new process for the joint hydrogenation of hydrocarbon-containing gases and condensates.

Bei der thermischen Aufarbeitung von Kunststoffabfällen durch Depolymerisierung fallen gasförmige und flüssige Produktströme an. Diese Produktströme enthalten im wesentlichen gesättigte Kohlenwasserstoffe, daneben aber auch teilweise beträchtliche Anteile olefinisch oder acetylenisch ungesättigter Verbindungen. Die ungesättigten Kohlenwasserstoffe neigen zur Polymerisation, wodurch Feststoffe gebildet werden, die in nachfolgenden Verarbeitungsverfahren stören, indem sie beispielsweise Katalysatoren desaktivieren oder zu Verkokungen an Reaktor-, Rohr- und Wärmetauscherflächen führen.The thermal processing of plastic waste by depolymerization produces gaseous and liquid product flows. These product streams essentially contain saturated hydrocarbons, but also some significant proportions of olefinically or acetylenically unsaturated compounds. The unsaturated hydrocarbons tend to polymerize, which forms solids which interfere in subsequent processing processes, for example by deactivating catalysts or causing coking on the reactor, tube and heat exchanger surfaces.

In der DE-A 43 11 034 wird vorgeschlagen, das durch Depolymerisation von Kunststoffabfällen gewonnene Gas, Kondensat und die viskose Depolymerisationsprodukte enthaltende Sumpfphase in separaten Teilströmen abzuziehen und das Kondensat und die Sumpfphase voneinander getrennt aufzuarbeiten. Weiterhin lehrt dieses Dokument eine einstufige Hydrierung des Kondensats an einem Festbettkatalysator.DE-A 43 11 034 proposes that the gas, condensate and the bottom phase containing the viscous depolymerization products obtained by depolymerizing plastic wastes be drawn off in separate substreams and that the condensate and the bottom phase be worked up separately. This document also teaches a one-step hydrogenation of the condensate over a fixed bed catalyst.

Diese Aufarbeitungsweise ist technisch aufwendig, denn sie erfordert für die einzelnen Ströme getrennte technische Anlagen. Weiterhin können schwankende Zusammensetzungen des Kondensats und des Gases infolge von verschiedenen Zusammensetzungen der Kunststoffabfälle zu starken Temperaturschwankungen am Hydrierkatalysator führen und dessen Standzeit verkürzen.This method of processing is technically complex because it requires separate technical systems for the individual streams. Furthermore, fluctuating compositions of the condensate and gas as a result of different compositions of the plastic waste can lead to large temperature fluctuations in the hydrogenation catalyst and shorten its service life.

Aufgabe der vorliegenden Erfindung war es, ein Verfahren bereitzustellen, das in technisch einfacherer Weise als nach dem Stand der Technik zu einer Reduzierung der Polymerenbildung in im wesentlichen gesättigte und ungesättigte Kohlenwasserstoffe enthaltenden Gasen und Kondensaten führt. Ein weiterer Aspekt der Aufgabe bestand darin, ein Verfahren zu finden, das trotz Schwankungen in der Zusammensetzung der Einsatzströme eine konstante Betriebsweise ermöglicht.It was an object of the present invention to provide a process which, in a technically simpler manner than in the prior art, leads to a reduction in the formation of polymers in gases and condensates containing essentially saturated and unsaturated hydrocarbons. Another aspect of the task was to find a method that enables constant operation despite fluctuations in the composition of the feed streams.

Demgemäß wurde ein Verfahren zur katalytischen Hydrierung eines Gases und eines Kondensats, die jeweils im wesentlichen gesättigte und ungesättigte sowie im Falle des Kondensats aromatische Kohlenwasserstoffe enthalten, mit Wasserstoff gefunden, das dadurch gekennzeichnet ist, daß man bei einem Wasserstoffpartialdruck von 1 bis 50 bar das Kondensat sowie einen Teil des Gases in einer ersten Stufe bei 160 bis 250°C katalytisch hydriert, dem Hydrierprodukt den verbliebenen Teil des Gases zusetzt und das so erhaltene Gemisch in einer zweiten Stufe bei 250 bis 420°C katalytisch hydriert.Accordingly, a process for the catalytic hydrogenation of a gas and a condensate, each containing essentially saturated and unsaturated and, in the case of the condensate, aromatic hydrocarbons, was found with hydrogen, which is characterized in that the condensate is used at a hydrogen partial pressure of 1 to 50 bar and also catalytically hydrogenated part of the gas in a first stage at 160 to 250 ° C., added the remaining part of the gas to the hydrogenation product and catalytically hydrogenating the mixture thus obtained in a second stage at 250 to 420 ° C.

Die erfindungsgemäß zu hydrierenden Gase und Kondensate sind unter Normaldruck gasförmig bzw. flüssig.The gases and condensates to be hydrogenated according to the invention are gaseous or liquid under normal pressure.

Die Gase enthalten als Hauptkomponenten gesättigte Kohlenwasserstoffe wie Methan, Ethan, Propan, n-Butan, iso-Butan und n-Pentan. Als ungesättigte Kohlenwasserstoffe enthalten sie z.B. Ethylen, Propylen, 1-Buten und 1-Penten.The main components of the gases contain saturated hydrocarbons such as methane, ethane, propane, n-butane, isobutane and n-pentane. As unsaturated hydrocarbons they contain e.g. Ethylene, propylene, 1-butene and 1-pentene.

Daneben können die zu verarbeitenden Gase weitere Komponenten wie Wasserstoff, Kohlenmonoxid, Kohlendioxid, Ammoniak, Schwefelwasserstoff und Stickstoff, aber auch Chlorkohlenstoffe wie Methylchlorid enthalten.In addition, the gases to be processed can contain other components such as hydrogen, carbon monoxide, carbon dioxide, ammonia, hydrogen sulfide and nitrogen, but also chlorinated carbons such as methyl chloride.

In der Regel liegt der Gehalt an ungesättigten Kohlenwasserstoffen im Gas bei 0,5 bis 35 Gew.-%, in besonderen Fällen kann er aber auch höher liegen. Das Gas enthält bevorzugt mindestens 50 Gew.-% gesättigte Kohlenwasserstoffe, jedoch können auch nur etwa 30 Gew.-% in solchen Gasen auftreten, die besonders hohe Anteile ungesättigter Kohlenwasserstoffe enthalten. Der gesamte Chlorgehalt beträgt im allgemeinen 0,01 bis 1 Gew.-%.As a rule, the content of unsaturated hydrocarbons in the gas is 0.5 to 35% by weight, but in special cases it can also be higher. The gas preferably contains at least 50% by weight of saturated hydrocarbons, but only about 30% by weight can also occur in gases which contain particularly high proportions of unsaturated hydrocarbons. The total chlorine content is generally 0.01 to 1% by weight.

Die Kondensate weisen im allgemeinen einen Siedebeginn bei ca. 60°C und ein Siedeende bei ca. 180°C (ASTM D-86) auf. Sie enthalten als gesättigte Kohlenwasserstoffe im allgemeinen isomere Pentane, Hexane, Heptane, Octane und Nonane, aber auch längerkettige Alkane. Als Hauptkomponenten können aromatische Kohlenwasserstoffe wie Benzol, Toluol und Ethylbenzol auftreten, weiterhin Xylole. Die polymerisierbaren ungesättigten Verbindungen sind im allgemeinen im wesentlichen Styrol, Methylstyrol und Inden. Bevorzugt sind Kondensate mit einem Styrolgehalt von 1 bis 4 Gew.-%. Bevorzugt liegt die Dienzahl des Kondensats bei 5 bis 50 g/100 g (UOP-Methode 326-82), die Bromaufnahme bei 20 bis 60 g/100 g (DIN 51 774), besonders bevorzugt 40 bis 50 g/100 g. Auch das Kondensat kann chlorhaltige Verbindungen enthalten (in der Regel weniger als 500 ppm Chlorgehalt, bezogen auf die Masse) sowie Schwefelverbindungen (in der Regel weniger als 100 ppm Schwefel, bezogen auf die Masse).The condensates generally have a boiling point at approximately 60 ° C. and a boiling point at approximately 180 ° C. (ASTM D-86). As saturated hydrocarbons, they generally contain isomeric pentanes, hexanes, heptanes, octanes and nonanes, but also longer-chain alkanes. Aromatic hydrocarbons such as benzene, toluene and ethylbenzene can occur as main components, as can xylenes. The polymerizable unsaturated compounds are generally essentially styrene, methyl styrene and indene. Condensates with a styrene content of 1 to 4% by weight are preferred. The diene number of the condensate is preferably 5 to 50 g / 100 g (UOP method 326-82), the bromine absorption is 20 to 60 g / 100 g (DIN 51 774), particularly preferably 40 to 50 g / 100 g. The condensate can also contain chlorine-containing compounds (usually less than 500 ppm chlorine content, based on the mass) and sulfur compounds (usually less than 100 ppm sulfur by mass).

Die genannten Gase und Kondensate treten in thermischen und katalytischen Spaltanlagen von Kohlenwasserstoffgemischen auf. Im einzelnen sind hier Koker, Kokereien, katalytische Cracker oder Visbreaker zu nennen, deren Produktspektrum die genannten Gase und Kondensate umfaßt, welche sich bei entsprechender Aufarbeitung etwa durch Destillation bereitstellen lassen.The gases and condensates mentioned occur in thermal and catalytic cracking plants of hydrocarbon mixtures. In particular, coke ovens, coke ovens, catalytic crackers or visbreakers are to be mentioned, the product range of which includes the gases and condensates mentioned, which can be provided, for example, by distillation if they are worked up accordingly.

Bevorzugt werden aber Gase und Kondensate, die nach einer thermischen Depolymerisation von Kunststoffabfällen anfallen, wie sie z.B. in der DE-A 43 11 034 oder der deutschen Patentanmeldung P 43 24 112.3 beschrieben sind. Als Ausgangsprodukt dienen in diesen Verfahren Kunststoffabfälle, die in der Regel als Gemisch von Polymeren wie Polyolefinen, z.B. Polyethylen und Polypropylen, weiterhin Polystyrol, Polyvinylchlorid, Blends wie ABS, aber auch von Polyurethanen, Polyestern und Polyamiden eingesetzt werden. Diese Abfälle werden gegebenenfalls zerkleinert und aufgeschmolzen. In einem Reaktor wird die Schmelze, z.B. bei 400 bis 550°C, in Produkte überführt, die dann in der Regel destillativ abgetrennt werden. Die dabei anfallenden Destillationsrückstände können in den Reaktor zurückgeführt werden, wobei zuvor Feststoffe sowie gegebenenfalls Säuren abgetrennt werden.However, preference is given to gases and condensates which arise after thermal depolymerization of plastic waste, such as those e.g. are described in DE-A 43 11 034 or German patent application P 43 24 112.3. The starting product in these processes is plastic waste, which is usually a mixture of polymers such as polyolefins, e.g. Polyethylene and polypropylene, polystyrene, polyvinyl chloride, blends such as ABS, but also of polyurethanes, polyesters and polyamides. If necessary, this waste is crushed and melted. The melt, e.g. at 400 to 550 ° C, converted into products, which are then usually separated by distillation. The resulting distillation residues can be returned to the reactor, solids and any acids being separated beforehand.

Besonders bevorzugt zur Herstellung der erfindungsgemäß zu hydrierenden Ausgangsstoffe wird eine Verfahrensweise, derzufolge aus dem Depolymerisationsprodukt in einer direkt dem Reaktor nachgeschalteten ersten Kolonne ein bei 200 bis 280°C anfallendes Kopfprodukt abgetrennt wird, das nach partieller Kondensation einer zweiten Kolonne bei 70 bis 150°C zugeführt wird und darin in ein am Kolonnenkopf austretendes Gasgemisch und ein am Sumpf der Kolonne anfallendes Kondensat getrennt wird. Das so erhaltene Gas und Kondensat kann dann erfindungsgemäß hydriert werden.Particularly preferred for the preparation of the starting materials to be hydrogenated according to the invention is a procedure according to which a top product obtained at 200 to 280 ° C. is separated from the depolymerization product in a first column directly downstream of the reactor, and after partial condensation of a second column at 70 to 150 ° C. is fed and separated into a gas mixture emerging at the top of the column and a condensate obtained at the bottom of the column. The gas and condensate obtained in this way can then be hydrogenated according to the invention.

Die Hydrierung wird in zwei Stufen vorgenommen. Die Temperatur in der ersten Stufe beträgt 160 bis 250°C, die in der zweiten Stufe 250 bis 420°C, wobei die Temperaturen der einzelnen Stufen bevorzugt verschieden sind. Der Partialdruck des zur Hydrierung verwendeten Wasserstoffs beträgt 1 bis 50 bar, wobei der Druckbereich von 5 bis 20 bar bevorzugt wird.The hydrogenation is carried out in two stages. The temperature in the first stage is 160 to 250 ° C., that in the second stage 250 to 420 ° C., the temperatures of the individual stages preferably being different. The partial pressure of the hydrogen used for the hydrogenation is 1 to 50 bar, the pressure range from 5 to 20 bar being preferred.

Die Hydrierung erfolgt an Katalysatoren, wie sie dem Fachmann für die Hydrierung von ungesättigte Verbindungen enthaltenden Kohlenwasserstoffströmen an sich bekannt sind (z.B. Pyrolysebenzinhydrierung, Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, VCH, Bd. A3, S. 489, und Benzoldruckraffination, Ullmann's Encyclopädie der technischen Chemie, 4. Auflage, VCH, Bd. 8, S. 389). Es kommen insbesondere Katalysatoren mit den katalytisch aktiven Metallen Nickel, Cobalt, Chrom, Molybdän, Wolfram, Palladium und Platin sowie deren Gemischen in Betracht, die auf Träger wie Aluminiumoxid, Siliciumdioxid, Titanoxid und Zirkoniumoxid aufgebracht sind. Besonders bevorzugt sind solche handelsüblichen Katalysatoren, die Cobalt und Molybdän oder Nickel und Molybdän als aktive Katalysatoren enthalten, sogenannte Co-Mo- und Ni-Mo-Katalysatoren, wie sie beispielsweise in der DE-A 23 00 038, DE-A 29 03 193 und EP-A 8 424 beschrieben sind.The hydrogenation is carried out on catalysts as are known per se to the person skilled in the art for the hydrogenation of hydrocarbon streams containing unsaturated compounds (for example pyrolysis gasoline hydrogenation, Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, VCH, vol. A3, p. 489, and benzene pressure refining, Ullmann's Encyclopedia of Technical Chemistry, 4th edition, VCH, Vol. 8, p. 389). There are in particular catalysts with the catalytically active metals nickel, cobalt, chromium, molybdenum, tungsten, palladium and platinum and mixtures thereof, which are applied to supports such as aluminum oxide, silicon dioxide, titanium oxide and zirconium oxide. Commercial catalysts which contain cobalt and molybdenum or nickel and molybdenum as active catalysts, so-called Co-Mo and Ni-Mo catalysts, as described, for example, in DE-A 23 00 038, DE-A 29 03 193, are particularly preferred and EP-A 8 424.

Die Katalysatoren in beiden Hydrierstufen werden als Festbett angeordnet. Bevorzugt wird ein senkrecht stehender erster Hydrierreaktor von unten nach oben durchströmt, um eventuell im Reaktorzulauf oder auf dem Katalysator auftretende Flüssigkeit nach unten abtropfen zu lassen und im Sumpf des Reaktors entnehmen zu können.The catalysts in both hydrogenation stages are arranged as a fixed bed. A vertical first hydrogenation reactor is preferably flowed through from bottom to top in order to allow any liquid which may occur in the reactor feed or on the catalyst to drip down and to be removed in the bottom of the reactor.

Erfindungsgemäß wird das zu hydrierende Gas auf beide Hydrierstufen aufgeteilt. Ein Teil wird mit dem zu hydrierenden Kondensat in der ersten Stufe hydriert. Dem so erhaltenen Hydrierprodukt wird dann der verbliebene Teil des Gases zugesetzt, bevor das so erhaltene Gemisch der Hydrierung in der zweiten Stufe zugeführt wird. So wird erreicht, daß die freiwerdende Reaktionswärme auf beide Stufen verteilt wird. Eine Regelung der Verteilung der Gasmengen auf die erste und zweite Stufe erfolgt vorteilhaft so, daß die Temperatur des aus der ersten Stufe austretenden Hydrierprodukts gemessen wird. Steigt diese Temperatur an, wird weniger Gas in die erste Stufe dosiert und umgekehrt. Durch diese Verfahrensweise läßt sich auch bei schwankenden Konzentrationen an Einzelkomponenten im zu hydrierenden Gemisch eine relativ konstante Reaktionstemperatur am Katalysator gewährleisten.According to the invention, the gas to be hydrogenated is divided between the two hydrogenation stages. A part is hydrogenated with the condensate to be hydrogenated in the first stage. The remaining part of the gas is then added to the hydrogenation product thus obtained before the mixture thus obtained is fed to the hydrogenation in the second stage. The result is that the heat of reaction released is distributed over both stages. The distribution of the gas quantities to the first and second stages is advantageously regulated so that the temperature of the hydrogenation product emerging from the first stage is measured. If this temperature rises, less gas is metered into the first stage and vice versa. This procedure allows a relatively constant reaction temperature at the catalyst to be guaranteed even with fluctuating concentrations of individual components in the mixture to be hydrogenated.

Die Menge des der ersten Stufe zugesetzten Gases richtet sich nach der bei der Hydrierung des Gases freiwerdenden Wärmemenge, die von seiner Zusammensetzung abhängt, sowie von der Reaktionstemperatur im ersten Reaktor. Sie kann vom Fachmann leicht durch entsprechende Vorversuche bestimmt werden.The amount of gas added to the first stage depends on the amount of heat released during the hydrogenation of the gas, which depends on its composition, and on the reaction temperature in the first reactor. It can easily be determined by the expert by means of corresponding preliminary tests.

Bevorzugt wird das erfindungsgemäße Verfahren in Kreisgasfahrweise betrieben, d.h. es wird Gas in den Hydrierstufen im Kreis gefahren, dem jeweils nur die dem frisch zugeführten Gas und Kondensat entsprechende Menge Hydrierprodukt entnommen wird. Das nach der zweiten Stufe anfallende Produkt kann in an sich bekannter Weise, beispielsweise destillativ, aufgearbeitet werden. Bevorzugt ist eine Entspannung des Gemisches in einer Kolonne und anschließende Fraktionierung.The process according to the invention is preferably operated in a cycle gas mode, ie gas is circulated in the hydrogenation stages, from which only the amount of hydrogenation product corresponding to the freshly supplied gas and condensate is taken off. The product obtained after the second stage can be worked up in a manner known per se, for example by distillation. Prefers is an expansion of the mixture in a column and subsequent fractionation.

Die Verfahrensprodukte sind vielfältig verwendbar, beispielsweise als Rohgas für einen Steamcracker oder als Benzin. Es ist weiterhin möglich, das Hydrierprodukt in einer Aromatenanlage zur Gewinnung von Reinaromaten weiterzuverarbeiten.The process products can be used in many ways, for example as raw gas for a steam cracker or as gasoline. It is also possible to further process the hydrogenation product in an aromatics plant to obtain pure aromatics.

Im folgenden werden zwei besonders bevorzugte Ausführungsformen der Erfindung beschrieben.Two particularly preferred embodiments of the invention are described below.

Gemäß Figur 1 wird Kondensat 1 mit einem Teil des zu hydrierenden Gases 2 und dem Kreisgas 3 sowie Wasserstoff 4 einem Verdampfer 5 zugeführt. Aus dem Sumpf des Verdampfers werden gegebenenfalls schwersiedende Anteile in Form von Schlamm abgezogen. Die über Kopf gehenden Dämpfe werden gegen den Austrittsstrom 6 aus dem zweiten Hydrierreaktor erhitzt und dem ersten Hydrierreaktor 7 zugeführt, der von unten nach oben durchströmt wird. Gegebenenfalls anfallende Flüssigkeit kann aus dem Sumpf entfernt werden. Dem Hydrierprodukt wird der verbliebene Teil des zu hydrierenden Gases 2 zugemischt und dem zweiten Hydrierreaktor 8 zugeführt. Vorher wird der Einsatzstrom 9 gegen den Austrittsstrom 6 aus dem zweiten Hydrierreaktor erhitzt, gegebenenfalls wird ein weiterer Erhitzer zwischengeschaltet. Das hydrierte Produkt wird gekühlt und gegebenenfalls gewaschen, z.B. mit Wasser oder mit Natronlauge 10 zur Abtrennung von Chlorwasserstoff. In einem Abscheider 11 wird das hydrierte Kondensat sowie gegebenenfalls Waschwasser über eine Leitung 12 abgezogen. Die Gasphase wird teilweise über eine Leitung 13 ausgeschleust, um eine Aufpegelung von unerwünschten Bestandteilen im Kreisgas zu vermeiden. Der verbleibende Teil wird mit Wasserstoff 4 gemischt und über einen Verdichter 14 in das Verfahren zurückgeführt.According to FIG. 1, condensate 1 with part of the gas 2 to be hydrogenated and the circulating gas 3 and hydrogen 4 is fed to an evaporator 5. If necessary, high-boiling fractions in the form of sludge are withdrawn from the bottom of the evaporator. The overhead vapors are heated against the outlet stream 6 from the second hydrogenation reactor and fed to the first hydrogenation reactor 7, which is flowed through from bottom to top. Any liquid can be removed from the sump. The remaining part of the gas 2 to be hydrogenated is added to the hydrogenation product and fed to the second hydrogenation reactor 8. Before this, the feed stream 9 is heated against the outlet stream 6 from the second hydrogenation reactor; if appropriate, a further heater is interposed. The hydrogenated product is cooled and optionally washed, e.g. with water or with sodium hydroxide solution 10 for the separation of hydrogen chloride. In a separator 11, the hydrogenated condensate and optionally washing water are drawn off via a line 12. The gas phase is partly discharged via a line 13 in order to avoid undesired constituents in the circulating gas being leveled up. The remaining part is mixed with hydrogen 4 and returned to the process via a compressor 14.

Figur 2 zeigt das beschriebene Verfahren mit einem optimierten Wärmeverbund. Hier ist vor dem Verdampfer 5 ein Vorverdampfer 15 angebracht. Die Vorverdampfung geschieht im Gegenstrom zum Reaktoraustrittsstrom 6 nach Vorheizen des Vorverdampfereintrittsstrom. Auch der direkt dem Verdampfer 5 zugeleitete Strom wird gegen den Austrittsstrom des Vorverdampfers 16 vorgewärmt. Durch diese Maßnahmen können deutliche Einsparungen bei der Heizleistung des Verdampfers erzielt werden.FIG. 2 shows the described method with an optimized heat composite. Here, a pre-evaporator 15 is attached in front of the evaporator 5. The pre-evaporation takes place in countercurrent to the reactor outlet stream 6 after preheating the pre-evaporator inlet stream. The stream fed directly to the evaporator 5 is also preheated against the outlet stream of the pre-evaporator 16. These measures can result in significant savings in the heating capacity of the evaporator.

Gemäß dem erfindungsgemäßen Verfahren werden Gase und Kondensate, die im wesentlichen Kohlenwasserstoffe enthalten, von ungesättigten Verbindungen befreit, so daß bei der Weiterverarbeitung der Verfahrensprodukte keine unerwünschten Polymersationsprodukte auftreten. Die besondere Aufteilung des Gasstromes auf beide Hydrierstufen sorgt für eine gleichmäßige Temperatur am Katalysator, was zu längeren Katalysatorstandzeiten führt. Durch die Vermeidung von zu starken Temperaturerhöhungen am Katalysator kann das Verfahren adiabatisch betrieben werden, d.h. es entfallen die Kosten für entsprechende Bauteile zur Wärmeabfuhr aus dem Reaktor. Weiterhin wurde festgestellt, daß das Verfahren chlorhaltige Kohlenwasserstoffe dehalogeniert, wie sie vor allem in Einsatzstoffen aus der Depolymerisation von Kunststoffabfällen vorhanden sind. Dabei gebildeter Chlorwasserstoff kann leicht in einer Wäsche vom Verfahrensprodukt abgetrennt werden.In the process according to the invention, gases and condensates which essentially contain hydrocarbons are freed of unsaturated compounds, so that no undesired polymerization products occur during further processing of the process products. The special distribution of the gas flow over both hydrogenation stages ensures a constant temperature on the catalyst, which leads to longer catalyst life. By avoiding excessive temperature increases on the catalyst, the process can be operated adiabatically, ie there are no costs for corresponding components for heat removal from the reactor. It was also found that the process dehalogenates chlorine-containing hydrocarbons, such as those present in feedstocks from the depolymerization of plastic waste. Hydrogen chloride formed here can easily be separated from the process product in a wash.

Claims (7)

Verfahren zur katalytischen Hydrierung eines Gases und eines Kondensats, die jeweils im wesentlichen gesättigte und ungesättigte sowie im Falle des Kondensats weiterhin aromatische Kohlenwasserstoffe enthalten, mit Wasserstoff, dadurch gekennzeichnet, daß man bei einem Wasserstoffpartialdruck von 1 bis 50 bar das Kondensat sowie einen Teil des Gases in einer ersten Stufe bei 160 bis 250°C katalytisch hydriert, dem Hydrierprodukt den verbliebenen Teil des Gases zusetzt und das so erhaltene Gemisch in einer zweiten Stufe bei 250 bis 420°C katalytisch hydriert.Process for the catalytic hydrogenation of a gas and a condensate, each of which essentially contains saturated and unsaturated and, in the case of the condensate, also aromatic hydrocarbons, with hydrogen, characterized in that the condensate and part of the gas are at a hydrogen partial pressure of 1 to 50 bar catalytically hydrogenated in a first stage at 160 to 250 ° C, the remaining part of the gas is added to the hydrogenation product and the mixture thus obtained is catalytically hydrogenated in a second stage at 250 to 420 ° C. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die erste Stufe in einem senkrecht stehenden Reaktor ausführt, der vom zu hydrierenden Gas und Kondensat von unten nach oben durchströmt wird.Process according to claim 1, characterized in that the first stage is carried out in a vertical reactor through which the gas and condensate to be hydrogenated flow from bottom to top. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man in Kreisgasfahrweise arbeitet.A method according to claim 1 or 2, characterized in that one works in a cycle gas mode. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man in der ersten Stufe, der zweiten Stufe oder in beiden Stufen Katalysatoren verwendet, die Cobalt und Molybdän oder Nickel und Molybdän als katalytisch aktive Bestandteile enthalten.Process according to claims 1 to 3, characterized in that catalysts are used in the first stage, the second stage or in both stages which contain cobalt and molybdenum or nickel and molybdenum as catalytically active constituents. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man ein Gas und ein Kondensat verwendet, die bei der thermischen Depolymerisation von Kunststoffabfällen anfallen.Process according to claims 1 to 4, characterized in that a gas and a condensate are used which are obtained in the thermal depolymerization of plastic waste. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man ein Kondensat mit einer Bromaufnahme von 20 bis 60 g/100 g nach der DIN 51 774 verwendet.Process according to claims 1 to 5, characterized in that a condensate with a bromine uptake of 20 to 60 g / 100 g according to DIN 51 774 is used. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man ein Kondensat mit einem Styrolgehalt von 1 bis 4 Gew.-% verwendet.Process according to Claims 1 to 6, characterized in that a condensate with a styrene content of 1 to 4% by weight is used.
EP96101496A 1995-02-11 1996-02-02 Process for the simultaneous hydrogenation of hydrocarbon containing gases and condensates Expired - Lifetime EP0726306B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19504595 1995-02-11
DE19504595A DE19504595A1 (en) 1995-02-11 1995-02-11 Process for the joint hydrogenation of hydrocarbon-containing gases and condensates

Publications (2)

Publication Number Publication Date
EP0726306A1 true EP0726306A1 (en) 1996-08-14
EP0726306B1 EP0726306B1 (en) 1999-04-28

Family

ID=7753734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96101496A Expired - Lifetime EP0726306B1 (en) 1995-02-11 1996-02-02 Process for the simultaneous hydrogenation of hydrocarbon containing gases and condensates

Country Status (3)

Country Link
EP (1) EP0726306B1 (en)
DE (2) DE19504595A1 (en)
DK (1) DK0726306T3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969195A (en) * 1997-05-21 1999-10-19 Basf Aktiengesellschaft Hydrolysis of alkyl monohalides
US10442997B2 (en) 2016-06-29 2019-10-15 Sabic Global Technologies B.V. Plastic pyrolysis
US10513661B2 (en) 2016-09-22 2019-12-24 Sabic Global Technologies B.V. Integrated process configuration involving the steps of pyrolysis, hydrocracking, hydrodealkylation and steam cracking
US10561962B2 (en) 2016-01-12 2020-02-18 Sabic Global Technologies B.V. Dynamic melt crystallization process for purifying dicyclopentadiene from a mixed liquid hydrocarbon stream
US10865348B2 (en) 2016-07-13 2020-12-15 Sabic Global Technologies B.V. Process which does simultaneous dehydrochlorination and hydrocracking of pyrolysis oils from mixed plastic pyrolysis while achieving selective hydrodealkylation of C9+ aromatics
AU2019297562B2 (en) * 2018-07-06 2022-12-08 Quantafuel As Production of hydrocarbon fuels from waste plastic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145276A (en) * 1976-01-05 1979-03-20 Institut Francais Du Petrole Process for the 3-step catalytic treatment of highly unsaturated heavy fractions under hydrogen pressure
DE4311034A1 (en) * 1993-04-03 1994-10-06 Veba Oel Ag Process for the extraction of chemical raw materials and fuel components from old or waste plastic
EP0621332A2 (en) * 1993-04-22 1994-10-26 Veba Oel Ag Process for the composition and hydrogenation of polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145276A (en) * 1976-01-05 1979-03-20 Institut Francais Du Petrole Process for the 3-step catalytic treatment of highly unsaturated heavy fractions under hydrogen pressure
DE4311034A1 (en) * 1993-04-03 1994-10-06 Veba Oel Ag Process for the extraction of chemical raw materials and fuel components from old or waste plastic
EP0621332A2 (en) * 1993-04-22 1994-10-26 Veba Oel Ag Process for the composition and hydrogenation of polymers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969195A (en) * 1997-05-21 1999-10-19 Basf Aktiengesellschaft Hydrolysis of alkyl monohalides
US10561962B2 (en) 2016-01-12 2020-02-18 Sabic Global Technologies B.V. Dynamic melt crystallization process for purifying dicyclopentadiene from a mixed liquid hydrocarbon stream
US10442997B2 (en) 2016-06-29 2019-10-15 Sabic Global Technologies B.V. Plastic pyrolysis
US10865348B2 (en) 2016-07-13 2020-12-15 Sabic Global Technologies B.V. Process which does simultaneous dehydrochlorination and hydrocracking of pyrolysis oils from mixed plastic pyrolysis while achieving selective hydrodealkylation of C9+ aromatics
US10513661B2 (en) 2016-09-22 2019-12-24 Sabic Global Technologies B.V. Integrated process configuration involving the steps of pyrolysis, hydrocracking, hydrodealkylation and steam cracking
AU2019297562B2 (en) * 2018-07-06 2022-12-08 Quantafuel As Production of hydrocarbon fuels from waste plastic

Also Published As

Publication number Publication date
DE19504595A1 (en) 1996-08-14
DK0726306T3 (en) 1999-10-25
EP0726306B1 (en) 1999-04-28
DE59601740D1 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
DE3246134C2 (en)
EP0692009B1 (en) Process for processing used or waste plastic material
DE2601875C2 (en) Overall process for the production of olefins which are gaseous under normal conditions by means of steam cracking a hydrogenated petroleum feed
EP0710270B1 (en) Process for recycling plastics in a steam cracker
DE3711550C2 (en) Delayed coking process
EP2867336B1 (en) Method for converting hydrocarbon feedstocks by means of thermal steam cracking
WO2014023418A1 (en) Method for producing olefins by thermal steam-cracking
EP0940381A2 (en) process for the recovery of cyclopentane and/or cyclopentene
EP0726306B1 (en) Process for the simultaneous hydrogenation of hydrocarbon containing gases and condensates
EP0568791B1 (en) Process for regenerating packaging materials
DE1954004A1 (en) Process for the conversion and desulfurization of a sulfur-containing hydrocarbon feed
DE19512029A1 (en) Paraffin, wax and base oil prodn. from plastics
EP0823935A1 (en) Old or waste plastics treatment process
DE4344311A1 (en) Process and device for the thermal depolymerization of plastics
DE4441699A1 (en) Process for recycling plastics in a steam cracker
EP0521107B1 (en) Process for the production of heartcut distillate resin precursors
DE4417386A1 (en) Prodn. of distillable hydrocarbon(s) from waste plastics
DE880138C (en) Process for the production of styrene
DE1923564C3 (en)
DE1468687C (en) Process for the production of pure aromatics from mixtures of aromatic compounds containing impurities
EP0068231B1 (en) Process for the hydrogenation of coal, heavy oil, bitumen and the like
DE3002209C2 (en) Process for the conversion of hydrocarbons
WO2024030750A1 (en) Conversion of waste plastic liquified by addition of a solvent in fluidized catalytic cracker to produce para-xylene
DE1118913B (en) Process for the hydrogen refining of hydrocarbon mixtures
DE1468687B (en) Process for the production of pure aromatics from aromatic mixtures containing impurities

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19960816

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980824

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990428

REF Corresponds to:

Ref document number: 59601740

Country of ref document: DE

Date of ref document: 19990602

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990513

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030109

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030221

Year of fee payment: 8

Ref country code: DK

Payment date: 20030221

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030303

Year of fee payment: 8

NLS Nl: assignments of ep-patents

Owner name: DER GRUENE PUNKT-DUALES SYSTEM DEUTSCHLAND AKTIENG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

BERE Be: lapsed

Owner name: *DER GRUENE PUNKT - DUALES SYSTEM DEUTSCHLAND A.G.

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040202

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050202