EP0724683B1 - Integrationsbau von dampfkessel und dampfturbine und methode zur speisewasservorwärmung für die dampfturbine - Google Patents

Integrationsbau von dampfkessel und dampfturbine und methode zur speisewasservorwärmung für die dampfturbine Download PDF

Info

Publication number
EP0724683B1
EP0724683B1 EP94928907A EP94928907A EP0724683B1 EP 0724683 B1 EP0724683 B1 EP 0724683B1 EP 94928907 A EP94928907 A EP 94928907A EP 94928907 A EP94928907 A EP 94928907A EP 0724683 B1 EP0724683 B1 EP 0724683B1
Authority
EP
European Patent Office
Prior art keywords
supply water
steam
economizer
bled
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94928907A
Other languages
English (en)
French (fr)
Other versions
EP0724683A1 (de
Inventor
Ilmari MÄKILÄ
Markku Raiko
Sasu Valkamo
Jarmo Tuominen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fortum Power and Heat Oy
Original Assignee
Fortum Power and Heat Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fortum Power and Heat Oy filed Critical Fortum Power and Heat Oy
Publication of EP0724683A1 publication Critical patent/EP0724683A1/de
Application granted granted Critical
Publication of EP0724683B1 publication Critical patent/EP0724683B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/40Combinations of exhaust-steam and smoke-gas preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems

Definitions

  • the invention concerns a powerplant according to the preamble of the patent claim 1 and a method in preheating of the supply water for a steam turbine according to the preamble of the patent claim 5.
  • a flue-gas/air heat exchanger is understood as a heat exchanger between flue gas and combustion air, in' which the heat is transferred from flue gas to combustion air to preheat the combustion air.
  • an economizer is understood as a heat exchanger in which thermal energy is transferred from the flue gases to the supply water.
  • the supply water for the boiler can be preheated by means of bled steam from the steam turbine, whereby the efficiency of the steam turbine process is improved.
  • a flue-gas/air heat exchanger i.e. a heat exchanger in which thermal energy is transferred from the flue gases directly into the combustion air, is usually not used in small steam power plants because of its high cost.
  • the flue gases of the steam boiler are cooled, before they are passed into the smokestack, by means of an economizer.
  • the supply water cannot be preheated by means of bled steam from the steam turbine, because the preheating would raise the ultimate temperature of the flue gases and would thereby lower the efficiency of the boiler.
  • a flue gas-air heater is accomplished by means of an intermediate circuit.
  • the power of the heat exchanger is transferred in its entirety to preheating of air and thus it does not constitute a part of the preheating circuit of supply water.
  • the supply water serves as a fluid of the intermediate circuit.
  • the use of an intermediate circuit always involves exergy losses caused by temperature differences in heat transfer. In this case, preheating of air takes place by means of high-temperature supply water, and the energy losses associated therewith are considerable.
  • the ratio of the heat capacity flow of combustion air to that of supply water is 2 to 2.5.
  • the US patent 3,913,330 therefore, describes a conventional preheating system where a preheater of air (heat exchanger) is replaced by an indirect system.
  • the preheating power to be transferred from flue gases to combustion air is in this construction first transferred to the supply water, which transfers the heat to the combustion air, after which the supply water has cooled back to its starting temperature.
  • the supply water is only a fluid in said process, and thus it does not participate in the preheating process in the thermodynamical sense.
  • supply water there could also be a closed water circulation commonly used in heating, plumbing and air conditioning systems.
  • the invention is advantageous especially when the combustion air of the steam boiler is heated in one or several steam/air heat exchangers that are connected in series and that utilize bled steam.
  • the steam boiler is denoted with the reference numeral 10, the steam turbine with the reference numeral 11, and the electric generator that is rotated by the turbine and that generates electricity with the reference numeral 12.
  • the combustion air is introduced (arrow L 1 ) by means of the fresh-air blower 14 of the boiler 10 along the duct 13 into the furnace M of the boiler 10.
  • the fuel is introduced along the duct 15 as is indicated by the arrow L 2 .
  • the frame constructions of the boiler 10 are denoted with the reference R.
  • the flue gases are passed from the boiler 10 into the smokestack 16.
  • the condenser is denoted with the reference numeral 17 and the supply water tank with the reference numeral 18. From the condenser 17, which is a heat exchanger, there is, for example, a district heating duct 17a for utilization of the condensing heat.
  • the condensate pump is denoted with the reference numeral 19.
  • the steam duct 21a from the steam turbine 11 communicates with the inlet side of the condenser 17, and the condensate-water duct 21b communicates with the outlet side of the condenser 17, while the condensate-water pump 19 circulates the condensate water into the supply water tank 18.
  • a supply water duct 22a to the economizer 23', i.e. to the heat exchanger, which is placed inside the frame construction R of the boiler 10 as one heat face in connection with the flue gas duct D.
  • heat is transferred from the flue gas S before the smokestack 16, by means of the heat exchanger 23, to the supply water.
  • the heated supply water is made to flow by means of the pump 190 along the duct 22b to the supply-water preheater, i.e. the heat exchanger 26, to which a bled-steam duct 27a passes and from which heat exchanger 26 there is a duct 27b for condensate water to the supply water tank 18.
  • preheating of the supply water that flows in the duct 22b is carried out by means of the thermal energy obtained from bled steams.
  • the supply water is passed further along the duct 22b, after it has been brought to a higher temperature, into the second part 23'' of the economizer 23, i.e. of the flue-gas/supply-water heat exchanger, and further from the economizer 23'' through the vaporizer 240 to the superheater 24 and, in the form of steam, along the duct 24a, to the steam turbine 11.
  • Fig. 2 shows a first preferred embodiment of the invention which is in the other respects similar to that shown in Fig. 1, except that combustion-air preheaters 25a,25b, i.e. steam/air heat exchangers, are placed in the duct 13. They are heat exchangers in which bled-steam heat is transferred to the combustion air. It is a further difference in comparison with the embodiment shown in Fig. 1 that, between the first part 23' and the second part 23'' of the economizer of the boiler, the supply water is heated in two stages by means of thermal energy recovered from bled steams.
  • combustion-air preheaters 25a,25b i.e. steam/air heat exchangers
  • the steam boiler is denoted with the reference numeral 10, the steam turbine with the reference numeral 11, and the electric generator that generates electricity and that is rotated by the turbine with the reference numeral 12.
  • the combustion air is introduced (arrow L 1 ) by means of the fresh-air blower 14 of the boiler 10 along the duct 13 into the furnace M of the boiler 10.
  • the fuel is supplied along the duct 15 in the way indicated by the arrow L 2 .
  • the frame constructions of the boiler 10 are denoted with the letter R.
  • the flue gases are passed from the boiler 10 into the smokestack 16.
  • the condenser is denoted with the reference numeral 17, and the supply water tank with the reference numeral 18.
  • the condenser 17 is a heat exchanger. It comprises a cooling-water duct 17a for removal of the condensate heat. Thus, condensate heat is transferred from the exhaust steam of the turbine to the cooling water.
  • the condensate pump is denoted with the reference numeral 19.
  • the exhaust-steam duct 21a from the steam turbine 11 communicates with the inlet side of the condenser 17, and the condensate-water duct 21b communicates with the outlet side of the condenser 17 while the condensate-water pump 19 circulates the condensate water into the supply water tank 18.
  • the supply water is made to flow by means of the pump 190 along the supply-water duct 22a to the economizer 23', i.e. to the flue-gas/supply-water heat exchanger, in which thermal energy of the flue gas is transferred into the supply water through tubular heat faces of equivalent placed in the heat exchanger 23' in the flue-gas duct D.
  • the supply water which has been preheated in accordance with the invention is passed further into a first heat exchanger 26a, to which there is a bled-steam duct 27a from the steam turbine 11 and from which there is an outlet duct 27b for condensate/steam into the supply water tank 18.
  • the supply water that was preheated by means of bled steam from the steam turbine in the first heat exchanger 26a is transferred into a second heat exchanger 26b, to which there is a bled-steam duct 28a from the higher-pressure steam turbine side and from which there is an outlet duct 28b.
  • the duct 28b passes to the heat exchanger 26a, so that the condensate is transferred further through the outlet duct 27b into the supply water tank 18.
  • the supply water that was preheated in two stages by means of bled steams is transferred into the second part 23'' of the two-part economizer of the boiler 10, from which part 23'' the supply water is passed further into the vaporizer 240 placed next to the furnace of the boiler and into the superheater, and through its heat exchanger constructions along the duct 24a, in the form of steam into the steam turbine 11.
  • the bled-steam duct 27a includes a branch point C 2 for passing a bled-steam duct 29a to the heat exchanger 25a for preheating of the combustion air, and that the bled-steam duct 28a includes a branch point C 3 for passing a bled-steam duct 30a to the heat exchanger 25b. From the heat exchangers 25a,25b there are ducts 29b,30b to the branch point C 4 for passing the condensate to the duct 27b and further into the supply water tank 18.
  • bled steam of the same pressure level is passed into one or several supply-water preheaters and/or into one or several combustion-air preheaters.
  • the preheating of the supply water is carried out by means of bled steams from the steam turbine between the two parts of the two-part economizer. Further, in the construction, by means of the thermal energy recovered from the bled steams, combustion air is also heated, which is passed along the duct 13 into the furnace M of the boiler 10.
  • Fig. 2 illustrates a preferred mode of carrying out the invention.
  • the supply water is passed into the first economizer package 23' of the steam boiler at a temperature of about 100°C from the supply water tank.
  • the supply water is heated in the first economizer package to about 150°C.
  • the supply water is passed to the high-pressure side bled-steam preheater, i.e. to the heat exchanger 26a, in which the supply water is preheated by means of bled steam to about 175°C.
  • the supply water is passed to the second preheater, to the heat exchanger 26b, where the supply water is heated to about 200°C, and further into the second economizer package 23'', where the supply water is heated by further 50...100°C.
  • the combustion air is preheated, likewise by means of bled steam, in one or several steps, preferably to a temperature of about 200°C.
  • Fig. 3 shows a temperature/thermal-capacity graph of an economizer which corresponds to the conventional construction of Fig. 1.
  • the temperature is indicated in the vertical system of coordinates, and the thermal capacity in the horizontal system of coordinates.
  • the temperature increase line 1-2 illustrates a conventional prior-art solution, in which the supply water is heated from the state 1 to the state 2 and the flue gases are cooled from the state 3 to the state 4.
  • the solution of Fig. 1 is illustrated, in which, from the status point 5 to the status point 6, preheating of the supply water is carried out by means of bled steams, after which the supply water is heated further in the latter part 23'' of the economizer from the status point 6 to the status point 7.
  • Fig. 4 is a temperature/thermal-capacity graph of an economizer corresponding to the inventive embodiment of Fig. 2.
  • the embodiment of the figure is in the other respects similar to the illustration in Fig. 2 except that from the status point 5 to the status point 6 the preheating of the supply water is carried out in two steps, first from the point 5 to the point 5a and from the point 5a to the point 6. From the point 5 to the point 5a, the preheating of the supply water is carried out by means of bled steams at a lower pressure of steam, and from the status point 5a to the status point 6 the preheating of the supply water is carried out by means of bled steams at a higher pressure of steam.
  • the preheating of the supply water is carried out in two steps, first from the point 5 to the point 5a and from the point 5a to the point 6. From the point 5 to the point 5a, the preheating of the supply water is carried out by means of bled steams at a lower pressure of steam, and from
  • the preheating of the supply water takes place in four steps: from the status point 1 to the status point 5 by means of the first part 23' of the economizer; from the status point 5 to the status point 5a and from the status point 5a to the status point 6 by means of bled steams by means of the heat exchangers 26a,26b, and from the status point 6 to the status point 7 by means of the second part 23'' of the economizer.
  • the economizer comprises more than two parts, between which parts preheating of the supply water is carried out separately by means of bled steams.
  • An operation of an economizer in three parts is illustrated by the temperature/thermal-capacity graph of an economizer in Fig. 5. Preheating of the supply water by means of bled steams takes place between the economizer parts 23',23'' from the status point 5 to the status point 5a, and between the economizer parts 23'' and 23''' from the status point 5b to the status point 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)
  • Transformer Cooling (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Turbines (AREA)

Claims (5)

  1. Kraftwerk, das aus einem mit einem Feuerungsraum versehenen Dampfkessel und aus einer Dampfturbine ausgebildet ist, in dem
    Dampf vom Dampfkessel (10) entlang einer Leitung (24a) zur Dampfturbine (11) geleitet wird, damit er einen elektrischen Generator (12) dreht, der elektrischen Strom erzeugt,
    das Speisewasser, das durch den Dampfkessel (10) zirkuliert wurde, in einem im Dampfkessel (10) untergebrachten Verdampfer (240) verdampft und in einem Überhitzer (24) überhitzt wird,
    das Speisewasser über einen als Wärmetauscher dienenden Ekonomiser (23), in dem Wärme vom Rauchgas des Kessels an das Speisewasser übertragen wird, in den Kessel geleitet wird,
    der Ekonomiser (23) aus zumindest zwei Teilen mit zumindest einem ersten Ekonomiserteil (23') und zumindest einem zweiten Ekonomiserteil (23'') besteht,
    das Speisewasser vom ersten Ekonomiserteil (23') zu einem Speisewasservorwärmer geleitet wird, der aus einem Wärmetauscher (26) besteht, in dem eine thermische Energie von Nebendampfströmen der Dampfturbine zum Speisewasser übertragen wird,
    das mittels Nebendampfströmen von der Dampfturbine vorgewärmte Speisewasser in den zweiten Ekonomiserteil (23'') des Dampfkessels (10) und weiter zum Verdampfer (240) und in den Überhitzer (24) und über den Überhitzer in die Dampfturbine geleitet wird, dadurch gekennzeichnet, daß
    im Kraftwerk die Speisewassertemperatur beständig gesteigert wird, während das Speisewasser in dem ersten Ekonomiserteil (23') und vom ersten Ekonomiserteil (23') zum Speisewasservorwärmer (26) und über den zum zweiten Ekonomiserteil (23'') fließt, und daß Nebendampfströme außer zum Speisewasservorwärmen auch zum Vorwärmen von Verbrennungsluft (L1) verwendet werden, wobei das Kraftwerk eine Nebendampfleitung zu einem Verbrennungsluftvorwärmer (25a, 25b) aufweist und die Verbrennungsluft mittels Nebendampfströmen in zumindest zwei Stufen vorgewärmt wird, wobei Nebendampf bei einer niedrigeren Dampfdruck in den Wärmetauscher (25a) der ersten Stufe geleitet wird und Nebendampf bei einem höheren Dampfdruck in den Wärmetauscher (25b) der letzten Stufe (in der Luftflußrichtung L1 gesehen) geleitet wird, und daß eine Nebendampfleitung (29a) von einem Verzweigungspunkt (C2) einer Nebendampfleitung (27a), die zu einem ersten Speisewasservorwärmer (26a) führt, zum Wärmetauscher des ersten Verbrennungsluftvorwärmers (25a) geleitet wird, und daß eine Nebendampfleitung (30a) von einer zweiten Nebendampfleitung (28a), die zu einem zweiten Speisewasservorwärmer (26b) führt, über einen Verzweigungspunkt (C3) zum Wärmetauscher des zweiten Verbrennungsluftvorwärmers (25b) geleitet wird.
  2. Kraftwerk nach Patentanspruch 1, dadurch gekennzeichnet, daß der Vorwärmer aus Wärmetauschern besteht, durch die Nebendampfströme geleitet werden, die als Kondensatwasser in einen Speisewassertank (18) geleitet wurden, nachdem sie ihre Wärme an die Verbrennungsluft abgegeben haben.
  3. Kraftwerk nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, daß die Wärmetauscherflächen des Ekonomisers (23) in einer Rauchgasleitung (D) des Dampfkessels (10) untergebracht sind, und daß der Fluß des Speisewasser zum Fließen in den Ekonomiserteil (23') gebracht wird, der in der Rauchgasflußrichtung (S) gesehen am Nachlaufende des Rauchgasflusses liegt, und nur danach durch eine Nebendampfvorwärmung in den zweiten Ekonomiserteil (23''), der in Bezug auf den zuerst angeführten Ekonomiserteil (23') auf der in der Rauchgasflußrichtung (S) gesehen Einlaßseite des liegt.
  4. Kraftwerk nach Patentanspruch 1, 2 oder 3 dadurch gekennzeichnet, daß der Speisewasservorwärmer aus zwei Wärmetauscherteilen besteht, in deren erstem Nebendampfströme bei einem niedrigeren Druck geleitet werden und in deren, in der Speisewasserflußrichtung gesehen, letztem Nebendampfströme bei einem höheren Druck geleitet werden, wobei das Vorwärmen des zum Dampfkessel (10) geleiteten Speisewassers in zwei Stufen stattfindet.
  5. Verfahren zum Vorwärmen von Speisewasser für eine Dampfturbine, bei dem
    das Speisewasser in einen Ekonomiser (23) eines mit einem Feuerungsraum versehenen Dampfkessels (10) geleitet wird, wobei in dem Ekonomiser Wärme von Rauchgasen in einem Wärmetauscher an das Speisewasser übertragen wird,
    der Ekonomiser (23) so angepaßt ist, daß seine Heizflächen zumindest teilweise in einer Rauchgasleitung (D) des Dampfkessels (10) untergebracht sind,
    ein Ekonomiser mit zumindest zwei Teilen (23', 23'') zum Wärmen von Speisewasser verwendet wird,
    das Speisewasser vor einem Verdampfer (240) in zumindest drei Stufen vorgewärmt ist, wobei das Vorwärmen zumindest zwei Ekonomiserteile (23', 23'') mit sich bringt,
    das erste Vorwärmen des Speisewassers im ersten Ekonomiserteil (23') mittels der dem Rauchgas des Kessels entnommenen thermischen Energie stattfindet,
    die zweite Vorwärmstufe (26), in der das Vorwärmen des Speisewassers mittels einer direkt oder indirekt von Nebendampfströmen entnommenen thermischen Energie durchgeführt wird, zwischen den Ekonomiserteilen (23', 23'') stattfindet,
    das mittels Nebendampfströmen vorgewärmte Speisewasser in den zweiten Ekonomiserteil (23'') und weiter in den Verdampfer (240) und in einen Überhitzer (24) und weiter, in der Form von Dampf, in die Dampfturbine (11) geleitet wird, so daß ein elektrischer Generator (12) gedreht und elektrischer Strom erzeugt wird, dadurch gekennzeichnet, daß
    im Verfahren die Temperatur des Speisewassers beständig gesteigert wird, während es im ersten Ekonomiserteil (23') und vom ersten Ekonomiserteil (23') zum Vorwärmer (26) und vom Vorwärmer (26) zum zweiten Ekonomiserteil (23'') fließt, der heißeres Speisewasser enthält, und daß
    im Verfahren auch eine Verbrennungsluft mittels einer Nebendampfströmen entnommenen Energie vorgewärmt wird, wobei im Verfahren ein Nebendampf auf demselben Druckwert außer zum Vorwärmen eines Speisewassers auch zum Vorwärmen einer Verbrennungsluft geleitet wird, und daß Nebendampf bei demselben Druck von derselben Leitung sowohl zum Vorwärmen einer Verbrennungsluft als auch zum Vorwärmen eines Speisewassers geleitet wird.
EP94928907A 1993-10-19 1994-10-11 Integrationsbau von dampfkessel und dampfturbine und methode zur speisewasservorwärmung für die dampfturbine Expired - Lifetime EP0724683B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI934603 1993-10-19
FI934603A FI101163B (fi) 1993-10-19 1993-10-19 Höyrykattilan ja höyryturbiinin välinen kytkentärakenne ja menetelmä h öyryturbiinin syöttöveden esilämmityksessä
PCT/FI1994/000455 WO1995011370A1 (en) 1993-10-19 1994-10-11 Integration construction between a steam boiler and a steam turbine and method in preheating of the supply water for a steam turbine

Publications (2)

Publication Number Publication Date
EP0724683A1 EP0724683A1 (de) 1996-08-07
EP0724683B1 true EP0724683B1 (de) 2000-06-28

Family

ID=8538797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94928907A Expired - Lifetime EP0724683B1 (de) 1993-10-19 1994-10-11 Integrationsbau von dampfkessel und dampfturbine und methode zur speisewasservorwärmung für die dampfturbine

Country Status (11)

Country Link
EP (1) EP0724683B1 (de)
AT (1) ATE194208T1 (de)
AU (1) AU7814694A (de)
DE (1) DE69425064T2 (de)
DK (1) DK0724683T3 (de)
EE (1) EE03219B1 (de)
ES (1) ES2148346T3 (de)
FI (1) FI101163B (de)
GR (1) GR3034073T3 (de)
PT (1) PT724683E (de)
WO (1) WO1995011370A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019020864A1 (en) 2017-07-27 2019-01-31 Sumitomo SHI FW Energia Oy FLUIDIZED BED HEATING SYSTEM AND METHOD FOR PREHEATING A COMBUSTION GAS IN A FLUIDIZED BED HEATING SYSTEM

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111288B (fi) * 2000-12-29 2003-06-30 Fortum Oyj Kattilan ja höyryturbiinin välinen kytkentärakenne ja menetelmä höyryturbiinin syöttöveden esilämmityksessä ja sen säädössä
FI111182B (fi) * 2000-12-29 2003-06-13 Fortum Oyj Kattilan ja höyryturbiinin välinen kytkentärakenne ja menetelmä höyryturbiinin syöttöveden esilämmityksessä ja sen säädössä
FI20106010A (fi) * 2010-09-30 2012-03-31 Aaf Consult Oy Menetelmä lämmön talteenottamiseksi savukaasusta ja höyryvoimalaitos

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913330A (en) * 1974-06-17 1975-10-21 Combustion Eng Vapor generator heat recovery system
AT377578B (de) * 1980-03-21 1985-04-10 Siemens Ag Oesterreich Dampfkraftanlage mit dampfturbine
CH645433A5 (de) * 1980-04-11 1984-09-28 Sulzer Ag Kombinierte gasturbinen-dampfkraftanlage.
FR2547863B1 (fr) * 1983-06-27 1987-09-18 Stein Industrie Procede de production d'energie repondant a des pointes de consommation, et dispositif de mise en oeuvre de ce procede

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019020864A1 (en) 2017-07-27 2019-01-31 Sumitomo SHI FW Energia Oy FLUIDIZED BED HEATING SYSTEM AND METHOD FOR PREHEATING A COMBUSTION GAS IN A FLUIDIZED BED HEATING SYSTEM
US11079108B2 (en) 2017-07-27 2021-08-03 Sumitomo SHI FW Energia Oy Fluidized bed boiler plant and a method of preheating combustion gas in a fluidized bed boiler plant

Also Published As

Publication number Publication date
EP0724683A1 (de) 1996-08-07
FI934603A (fi) 1995-04-20
ES2148346T3 (es) 2000-10-16
GR3034073T3 (en) 2000-11-30
DE69425064T2 (de) 2001-03-08
ATE194208T1 (de) 2000-07-15
FI101163B (fi) 1998-04-30
DK0724683T3 (da) 2000-10-02
WO1995011370A1 (en) 1995-04-27
AU7814694A (en) 1995-05-08
PT724683E (pt) 2000-12-29
DE69425064D1 (de) 2000-08-03
EE03219B1 (et) 1999-08-16
FI934603A0 (fi) 1993-10-19

Similar Documents

Publication Publication Date Title
US5293841A (en) Arrangement for utilizing the heat contained in the exhaust gas of a coal-fired boiler
JP3783195B2 (ja) ガスタービン及び蒸気タービンを有する複合発電所における電流発生
JPH09203503A (ja) 外部燃焼型動力装置に熱を供給する方法及び装置
JPH08121703A (ja) 排熱回収装置
US5560209A (en) Arrangement for improving efficiency of a power plant
JPH0481693B2 (de)
JP2757290B2 (ja) 石炭ガス化設備を持ったガス・蒸気タービン複合設備
GB2170555A (en) Method and apparatus for driving an electrical power plant
US5396865A (en) Startup system for power plants
EP0724683B1 (de) Integrationsbau von dampfkessel und dampfturbine und methode zur speisewasservorwärmung für die dampfturbine
JPH0933004A (ja) 排熱回収ボイラ
EP0639254B1 (de) Methode anwendbar bei kleinen kraftanlagen
EP1346133B1 (de) Integrierte konstruktion von einem kessel und einer dampfturbine und verfahren zur vorwärmung des speisewassers für eine dampfturbine und zu ihrer steuerung
JPH06212910A (ja) 発電プラント
EP1346134B1 (de) Integrierte konstruktion von einem kessel und einer dampfturbine und verfahren zur vorwärmung des speisewassers für eine dampfturbine und zu ihrer steuerung
CN110056900A (zh) 一种燃机电厂启动锅炉余热利用系统
CN218864209U (zh) 一种锅炉烟气余热回收加热锅炉送风的系统
EP4286770A1 (de) Produzieren von wärme in kohlenstoffarmen energiesystemen
JPS6239321B2 (de)
RU1824510C (ru) Энергоблок теплоэлектростанций
EP0462921B1 (de) Verfahren und Vorrichtung zur Optimierung des Wirkungsgrades und Minimalisierung der NOx-Bildung bei Verbrennungsanlagen
CN116447572A (zh) 基于熔盐储热的燃煤锅炉启动装置及方法
SU1224417A1 (ru) Энергоблок тепловой электростанции
JPH0763303A (ja) ボイラーの燃焼排気ガス利用システム
JPH0788925B2 (ja) ボイラ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19970818

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORTUM POWER AND HEAT OY

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000628

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000628

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000628

REF Corresponds to:

Ref document number: 194208

Country of ref document: AT

Date of ref document: 20000715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69425064

Country of ref document: DE

Date of ref document: 20000803

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BIANCHETTI - BRACCO - MINOJA S.R.L.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001011

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2148346

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001114

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000918

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20131021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131022

Year of fee payment: 20

Ref country code: IE

Payment date: 20131029

Year of fee payment: 20

Ref country code: DE

Payment date: 20131021

Year of fee payment: 20

Ref country code: GB

Payment date: 20131021

Year of fee payment: 20

Ref country code: SE

Payment date: 20131022

Year of fee payment: 20

Ref country code: AT

Payment date: 20131011

Year of fee payment: 20

Ref country code: PT

Payment date: 20130412

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131028

Year of fee payment: 20

Ref country code: NL

Payment date: 20131022

Year of fee payment: 20

Ref country code: GR

Payment date: 20131021

Year of fee payment: 20

Ref country code: ES

Payment date: 20131029

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69425064

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20141011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69425064

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20141011

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20141011

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141010

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 194208

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141011

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150107

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 20000401765

Country of ref document: GR

Effective date: 20141012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141011

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141012

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141010

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141021