EP0723080A1 - Vacuum pumping system - Google Patents
Vacuum pumping system Download PDFInfo
- Publication number
- EP0723080A1 EP0723080A1 EP95116395A EP95116395A EP0723080A1 EP 0723080 A1 EP0723080 A1 EP 0723080A1 EP 95116395 A EP95116395 A EP 95116395A EP 95116395 A EP95116395 A EP 95116395A EP 0723080 A1 EP0723080 A1 EP 0723080A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vacuum
- vacuum pump
- pump
- line
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005086 pumping Methods 0.000 title claims description 31
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- 230000010349 pulsation Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/06—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/10—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
- F04B37/14—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/005—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/046—Combinations of two or more different types of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
Definitions
- the invention relates to a vacuum pumping station for the cyclical pumping out of a container and for maintaining an operating vacuum in the container, which has a first and second vacuum pump for pumping out the container, which are arranged one behind the other and form a first and a second pumping stage.
- Pumping stations of the above type are used in technology, for example, for the cyclical pumping out of adsorbers, in order to carry out the regeneration of zeolites or other adsorbents under reduced pressure in vacuum swing systems or pressure-vacuum swing systems for oxygen and nitrogen enrichment.
- pumping stations which are made up of multi-stage rotary blowers.
- pumping stations are satisfactory in terms of their function, the effort of the experts is to further reduce their energy consumption, since this plays a major role in cyclical processes.
- With the pumping stations formed from rotary lobe blowers little progress has recently been made in reducing the energy requirement.
- the invention is based on the problem of designing a vacuum pumping station of the type mentioned at the outset that is as simple as possible and inexpensive to manufacture so that its energy requirement is as low as possible.
- the first vacuum pump is a radial blower with an adjustable throttle connected to its intake line and the second vacuum pump is a rotary blower or a water ring pump in that the second vacuum pump is connected in a vacuum line parallel to an outlet line of the first vacuum pump and with its input is connected to the outlet line at a branch and that in terms of flow behind the branch in the vacuum line and the outlet line, a control part for steering the delivery volume at higher pressures from the first vacuum pump directly or at lower pressures from the first vacuum pump via the second vacuum pump to Outlet of the vacuum pumping station is arranged.
- a radial blower as the first vacuum pump has so far been rejected by experts whenever the suction conditions for the radial blower fluctuate greatly.
- adsorbers have to be evacuated cyclically from an absolute pressure of approximately 1000 mbar to approximately 300 mbar.
- the energy consumption of radial fans is 1000 times higher with a suction state of 1000 mbar than, for example, with a suction state of 600 mbar. From 600 mbar up to approx. 100 mbar, the pumping speed of radial blowers is possible when the max. Pressure ratio almost constant, but the energy consumption is lower by the value of the differential pressure-dependent, volumetric losses with comparable rotary lobe blowers.
- Radial blowers have due to their high speed of approx. 11,000 min -1 and more, hardly any gas backflow and therefore a volumetric efficiency of almost 1. With the same pumping speed between a radial blower and a rotary lobe blower, the energy consumption with a comparable differential pressure between inlet and outlet is clear for radial blowers less. This means that with a pressure on the Intake side of 600 mbar 18% and with an intake pressure of 300 mbar 23% less energy consumption is achieved using the maximum compression ratio in these operating conditions.
- the second pump stage or further pump stages are designed according to the invention as rotary lobe blowers, because a radial blower designed as a second stage in comparison would have to work with an intake pressure between 1000 mbar and 600 mbar and would therefore always be in the energetically unfavorable working range for radial blowers.
- the control part in the outlet line is designed as a non-return flap opening towards the outlet of the vacuum pumping station and the control part in the vacuum line is designed as a non-return flap opening towards the inlet of the second pump stage.
- the controllable throttle upstream of the first vacuum pump could be a conventional swirl controller.
- the throttle can at the same time shut off the line in which it is arranged, so that when starting, an evacuation of the pump line with the radial fan is possible without the arrangement of an additional shut-off device if, according to another development of the invention, the adjustable throttle upstream of the first vacuum pump is a motor-operated flap valve that can be moved into the closed position.
- a flap valve makes it possible to change large cross sections quickly, so that low-inertia control is possible.
- the rotary lobe blower forming the second pump stage can continue to run with particularly low losses if the second vacuum pump connects its outlet side and inlet side to one another Bypass with a motorized shut-off valve.
- both vacuum pumps can work in parallel with one another at the beginning of the pumping, because the necessary gas volume can then be extracted as quickly as possible.
- This can be achieved in a simple manner in that from the vacuum line connecting the outlet of the first vacuum pump to the inlet of the second vacuum pump, a suction line leads to the suction line of the first vacuum pump up to the throttle and the control part is motor-controlled.
- the invention permits numerous embodiments. To further clarify its basic principle, one of them is shown schematically in the drawing and is described below. This shows a circuit diagram of a pumping station according to the invention.
- the drawing schematically shows a container 1 to be pumped empty, from which a suction line 2 leads to an inlet 3 of a first vacuum pump 4.
- This first vacuum pump 4 is designed according to the invention as a radial fan (turbocompressor).
- an adjustable throttle 5 is connected in the suction line 2. This is regulated in a manner not shown, but usual for a person skilled in the art, with the aid of two pressure sensors 20, 21 so that there is always a suction pressure of not more than 600 mbar at the inlet 3 of the first vacuum pump 4, as long as the pressure in the container 1 is higher.
- the first vacuum pump 4 has an outlet 6, from which an outlet line 7 leads to a pulsation damper 8 and thus via a silencer 9 to an outlet 10 of the vacuum pumping station.
- the outlet line 7 is connected at a branch 11 to a vacuum line 12 running parallel to it, which likewise leads into the pulsation damper 8 and into which a second vacuum pump 13 is connected.
- this second vacuum pump 13, which forms the second pump stage is a rotary lobe blower (root pump) or a water ring pump.
- a control part 14 and 15 is arranged behind the branch 11 in the outlet line 7 and the vacuum line 12, which is a non-return valve in both cases.
- the non-return flap of the control part 14 opens to the second vacuum pump 13 and the non-return flap of the control part 15 to the pulsation damper 8.
- a bypass 16 with a check valve 17 is assigned to the second vacuum pump 13.
- This bypass 16 is able to connect its output to the vacuum line 12 and therefore enables the second vacuum pump 13 to be short-circuited and therefore work with low energy consumption when idling under atmospheric pressure.
- the vacuum line 12 allows the first vacuum pump 4 and the corresponding lines to be evacuated when the second vacuum pump 13 starts up with the throttle 5 closed.
- the vacuum pump 4 which is designed as a radial fan, can operate at idle speed without suction and pressure difference in negative pressure with minimal energy consumption.
- a suction line 18 shown in broken lines can lead to the suction line 2 in front of the throttle 5.
- a check valve 19 is connected, which opens to the second vacuum pump 13.
- Such a suction line 18 enables parallel operation of the first and second vacuum pumps 4, 13, which is advantageous if a large volume has to be extracted from the container 1 at the beginning of the suction phase, in particular if there is normal pressure in it.
- a prerequisite for such a parallel operation is that the control part 14 can be actuated by a motor, so that it does not open automatically as a result of the negative pressure generated by the second vacuum pump 13, because then the second vacuum pump 13 would suck on both sides of the first vacuum pump 4.
- this suction line 18 can be dispensed with in order to simplify the pumping station.
- the first vacuum pump 4 and the second vacuum pump 13 work in parallel with one another, so that gas is conveyed via the suction line 2 and the suction line 18 via the pulsation damper 8 to the outlet 10. If the amount of gas delivered by the first vacuum pump 4 becomes smaller than the delivery volume possible by the second vacuum pump 13, then the second vacuum pump 13 sucks off the volume flow occurring at the outlet 6 of the first vacuum pump 13 via the vacuum line 12.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Jet Pumps And Other Pumps (AREA)
- Details Of Reciprocating Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Die Erfindung betrifft einen Vakuum-Pumpstand zum zyklischen Abpumpen eines Behälters und zum Aufrechterhalten eines Betriebsvakuums in dem Behälter, welcher zum Abpumpen des Behälters eine erste und zweite Vakuumpumpe hat, welche hintereinander angeordnet sind und eine erste und eine zweite Pumpstufe bilden.The invention relates to a vacuum pumping station for the cyclical pumping out of a container and for maintaining an operating vacuum in the container, which has a first and second vacuum pump for pumping out the container, which are arranged one behind the other and form a first and a second pumping stage.
Pumpstände der vorstehenden Art werden in der Technik beispielsweise zum zyklischen Abpumpen von Adsorbern eingesetzt, um die Regeneration von Zeolithen oder sonstigen Adsorptionsmitteln im Unterdruck bei Vakuum-Swing Anlagen oder Druck-Vakuum-Swing-Anlagen zur Sauerstoff- und Stickstoffanreicherung vorzunehmen. Bei solchen Anlagen kommt es darauf an, relativ rasch große Gasmengen aus einem Adsorber abzusaugen und anschließend in ihm einen Betriebsunterdruck aufrecht zu erhalten. Das geschieht derzeit mit Pumpständen, welche aus mehrstufig arbeitenden Drehkolbengebläsen aufgebaut sind. Solche Pumpstände befriedigen zwar von ihrer Funktion her, jedoch geht das Bemühen der Fachwelt dahin, ihren Energiebedarf weiter zu verringern, da dieser bei zyklischen Prozessen eine große Rolle spielt. Bei den aus Drehkolbengebläsen gebildeten Pumpständen sind jedoch in letzter Zeit nur noch geringe Fortschritte in Bezug auf eine Verminderung des Energiebedarfs erzielt worden.Pumping stations of the above type are used in technology, for example, for the cyclical pumping out of adsorbers, in order to carry out the regeneration of zeolites or other adsorbents under reduced pressure in vacuum swing systems or pressure-vacuum swing systems for oxygen and nitrogen enrichment. In such systems, it is important to suck off large amounts of gas from an adsorber relatively quickly and then to maintain an operating negative pressure in it. This is currently happening with pumping stations, which are made up of multi-stage rotary blowers. Although such pumping stations are satisfactory in terms of their function, the effort of the experts is to further reduce their energy consumption, since this plays a major role in cyclical processes. With the pumping stations formed from rotary lobe blowers, however, little progress has recently been made in reducing the energy requirement.
Der Erfindung liegt das Problem zugrunde, einen möglichst einfach aufgebauten und kostengünstig herstellbaren Vakuum-Pumpstand der eingangs genannten Art so auszubilden, daß sein Energiebedarf möglichst gering ist.The invention is based on the problem of designing a vacuum pumping station of the type mentioned at the outset that is as simple as possible and inexpensive to manufacture so that its energy requirement is as low as possible.
Dieses Problem wird erfindungsgemäß dadurch gelöst, daß die erste Vakuumpumpe ein Radialgebläse mit einer in ihre Ansaugleitung geschalteten, regelbaren Drossel und die zweite Vakuumpumpe ein Drehkolbengebläse oder eine Wasserringpumpe ist, daß die zweite Vakuumpumpe in eine Vakuumleitung parallel zu einer Auslaßleitung der ersten Vakuumpumpe geschaltet und mit ihrem Eingang an einer Abzweigung mit der Auslaßleitung verbunden ist und daß strömungsmäßig hinter der Abzweigung in der Vakuumleitung und der Auslaßleitung jeweils ein Steuerteil zum Lenken des Fördervolumens bei höheren Drücken von der ersten Vakuumpumpe unmittelbar oder bei geringeren Drücken von der ersten Vakuumpumpe über die zweite Vakuumpumpe zum Auslaß des Vakuum-Pumpstandes angeordnet ist.This problem is solved according to the invention in that the first vacuum pump is a radial blower with an adjustable throttle connected to its intake line and the second vacuum pump is a rotary blower or a water ring pump in that the second vacuum pump is connected in a vacuum line parallel to an outlet line of the first vacuum pump and with its input is connected to the outlet line at a branch and that in terms of flow behind the branch in the vacuum line and the outlet line, a control part for steering the delivery volume at higher pressures from the first vacuum pump directly or at lower pressures from the first vacuum pump via the second vacuum pump to Outlet of the vacuum pumping station is arranged.
Der Einsatz eines Radialgebläses als erste Vakuumpumpe wurde bislang von der Fachwelt immer dann verworfen, wenn die Ansaugzustände für das Radialgebläse stark schwanken. Beispielsweise müssen bei Vakuum-Swing-Anlagen Adsorber zyklisch von einem absoluten Druck von jeweils etwa 1000 mbar auf etwa 300 mbar evakuiert werden. Die Energieaufnahme von Radialgebläsen ist bei 1000 mbar Ansaugzustand um den Faktor 3,9 höher als zum Beispiel bei einem Ansaugzustand von 600 mbar. Von 600 mbar an bis ca. 100 mbar ist das Saugvermögen von Radialgebläsen bei Ausnutzung des max. Druckverhältnisses nahezu konstant, die Energieaufnahme ist jedoch um den Wert der differenzdruckabhängigen, volumetrischen Verluste bei vergleichbaren Drehkolbengebläsen geringer. Radialgebläse haben aufgrund ihrer hohen Drehzahl von ca. 11.000 min-1 und mehr, kaum Gasrückströmung und dadurch einen volumetrischen Wirkungsgrad von nahezu 1. Bei gleichem Saugvermögen zwischen einem Radialgebläse und einem Drehkolbengebläse ist somit die Energieaufnahme bei vergleichbarem Differenzdruck zwischen Einlaß und Auslaß bei Radialgebläsen deutlich geringer. Dies bedeutet, daß bei einem Druck an der Ansaugseite von 600 mbar 18 % und bei einem Ansaugdruck von 300 mbar 23 % weniger Energieaufnahme unter Ausnutzung des maximalen Kompressionsverhältnisses bei diesen Betriebszuständen erreicht wird.The use of a radial blower as the first vacuum pump has so far been rejected by experts whenever the suction conditions for the radial blower fluctuate greatly. For example, in vacuum swing systems, adsorbers have to be evacuated cyclically from an absolute pressure of approximately 1000 mbar to approximately 300 mbar. The energy consumption of radial fans is 1000 times higher with a suction state of 1000 mbar than, for example, with a suction state of 600 mbar. From 600 mbar up to approx. 100 mbar, the pumping speed of radial blowers is possible when the max. Pressure ratio almost constant, but the energy consumption is lower by the value of the differential pressure-dependent, volumetric losses with comparable rotary lobe blowers. Radial blowers have due to their high speed of approx. 11,000 min -1 and more, hardly any gas backflow and therefore a volumetric efficiency of almost 1. With the same pumping speed between a radial blower and a rotary lobe blower, the energy consumption with a comparable differential pressure between inlet and outlet is clear for radial blowers less. This means that with a pressure on the Intake side of 600
Gemäß der Erfindung ergibt sich dadurch eine Energieeinsparung, daß durch die regelbare Drossel das Saugvermögen des Radialgebläses bei maximalem Druckverhältnis in jedem Ansaugzustand konstant gehalten wird. Dieses Drosseln zwischen einem Atmosphärendruck von 1000 mbar auf 600 mbar so lange, bis durch das Absaugen ein absoluter Druck von 600 mbar saugseitig erreicht ist, bedingt natürlich einen relativ hohen Energieverlust im Vergleich zu einem Drehkolbengebläse, bei dem eine solche Drosselung unnötig ist. Überraschenderweise konnte jedoch für den zyklischen Betrieb, bei dem relativ rasch hintereinander von Normaldruck auf einen Betriebsunterdruck abgesaugt werden muß, festgestellt werden, daß durch den besonders wirtschaftlichen Betrieb, der sich durch die Kombination eines Radialgebläses mit einem Drehkolbengebläse bei Saugdrücken kleiner 600 mbar ergibt, dieser anfängliche höhere Energiebedarf mehr als kompensiert wird, so daß es insgesamt zu einer Energieersparnis kommt, wenn man die Verrohrung so vornimmt, wie das im Anspruch 1 gekennzeichnet wurde. Diese ermöglicht es nämlich, beim Starten des Pumpstandes mit dem Drehkolbengebläse den Pumpenstrang mit dem Radialgebläse zu evakuieren.According to the invention, this results in an energy saving that the suction capacity of the radial blower is kept constant at the maximum pressure ratio in each suction state by the controllable throttle. This throttling between an atmospheric pressure of 1000 mbar to 600 mbar until an absolute pressure of 600 mbar is reached on the suction side naturally results in a relatively high energy loss compared to a rotary blower, in which such throttling is unnecessary. Surprisingly, however, it could be determined for cyclical operation, in which suction from normal pressure to an operating negative pressure must be taken relatively quickly, that the particularly economical operation, which results from the combination of a radial blower with a rotary blower at suction pressures of less than 600 mbar the initial higher energy requirement is more than compensated for, so that there is an overall energy saving if the piping is carried out as was characterized in
Die zweite Pumpstufe oder weitere Pumpstufen sind erfindungsgemäß deshalb als Drehkolbengebläse ausgeführt, weil ein im Vergleich als zweite Stufe ausgeführtes Radialgebläse mit einem Ansaugdruck zwischen 1000 mbar bis 600 mbar arbeiten müßte und somit immer im energetisch ungünstigen Arbeitsbereich für Radialgebläse liegen würde.The second pump stage or further pump stages are designed according to the invention as rotary lobe blowers, because a radial blower designed as a second stage in comparison would have to work with an intake pressure between 1000 mbar and 600 mbar and would therefore always be in the energetically unfavorable working range for radial blowers.
Vorteilhaft bei dem erfindungsgemäßen Pumpstand ist auch, daß sich mit im Handel derzeit erhältlichen Vakuumpumpen maximale Saugleistungen von über 90.000 m3/h erreichen lassen und daß die Herstellungskosten geringer sind als die vergleichbarer Pumpstände.It is also advantageous with the pumping station according to the invention that maximum suction capacities of over 90,000 m 3 / h can be achieved with vacuum pumps currently available on the market and that the production costs are lower than comparable pumping stations.
Wenn die erste und zweite Vakuumpumpe so geschaltet sind, daß sie ausschließlich hintereinander und nicht parallel arbeiten, dann kann die Steuerung der Volumenströme zwangsläufig erfolgen, ohne daß hierzu die Steuerteile motorisch betätigt werden müssen, so daß die Verlegung von Steuerleitungen unnötig wird, wenn gemäß einer vorteilhaften Weiterbildung der Erfindung das Steuerteil in der Auslaßleitung als eine zum Auslaß des Vakuum-Pumpstandes hin öffnende Rückschlagklappe und das Steuerteil in der Vakuumleitung als eine zum Einlaß der zweiten Pumpstufe hin öffnende Rückschlagklappe ausgebildet ist.If the first and second vacuum pumps are switched in such a way that they only work in series and not in parallel, then the volume flows can inevitably be controlled without the control parts having to be actuated by a motor, so that the laying of control lines is unnecessary if according to one In an advantageous development of the invention, the control part in the outlet line is designed as a non-return flap opening towards the outlet of the vacuum pumping station and the control part in the vacuum line is designed as a non-return flap opening towards the inlet of the second pump stage.
Bei der der ersten Vakuumpumpe vorgeschalteten regelbaren Drossel könnte es sich um einen üblichen Drallregler handeln. Die Drossel vermag jedoch zugleich die Leitung, in der sie angeordnet ist, abzusperren, so daß beim Anfahren ein Evakuieren des Pumpenstranges mit dem Radialgebläse ohne Anordnung eines zusätzlichen Absperrorgans möglich wird, wenn gemäß einer anderen Weiterbildung der Erfindung die der ersten Vakuumpumpe vorgeschaltete, regelbare Drossel ein motorisch betätigbares und bis in Schließstellung bewegbares Klappenventil ist. Ein solches Klappenventil ermöglicht es, große Querschnitte rasch zu verändern, so daß eine trägheitsarme Regelung möglich wird.The controllable throttle upstream of the first vacuum pump could be a conventional swirl controller. However, the throttle can at the same time shut off the line in which it is arranged, so that when starting, an evacuation of the pump line with the radial fan is possible without the arrangement of an additional shut-off device if, according to another development of the invention, the adjustable throttle upstream of the first vacuum pump is a motor-operated flap valve that can be moved into the closed position. Such a flap valve makes it possible to change large cross sections quickly, so that low-inertia control is possible.
Beim Anfahren und während Leerlaufphasen kann das die zweite Pumpenstufe bildende Drehkolbengebläse besonders verlustarm weiterlaufen, wenn die zweite Vakuumpumpe einen ihre Auslaßseite und Einlaßseite miteinander verbindenden Bypass mit einem motorisch betätigbaren Sperrventil hat.When starting up and during idling phases, the rotary lobe blower forming the second pump stage can continue to run with particularly low losses if the second vacuum pump connects its outlet side and inlet side to one another Bypass with a motorized shut-off valve.
Wenn zu Beginn des Absaugens in dem abzusaugenden Behälter Normaldruck herrscht, dann ist es vorteilhaft, daß zu Beginn des Abpumpens beide Vakuumpumpen parallel zueinander arbeiten können, weil dann möglichst rasch das notwendige Gasvolumen abgesaugt werden kann. Das läßt sich auf einfache Weise dadurch erreichen, daß von der den Auslaß der ersten Vakuumpumpe mit dem Einlaß der zweiten Vakuumpumpe verbindenden Vakuumleitung eine Saugleitung zur Ansaugleitung der ersten Vakuumpumpe strömungsmäßig bis vor die Drossel führt und das Steuerteil motorisch gesteuert ist.If normal pressure prevails in the container to be extracted at the beginning of the suction, then it is advantageous that both vacuum pumps can work in parallel with one another at the beginning of the pumping, because the necessary gas volume can then be extracted as quickly as possible. This can be achieved in a simple manner in that from the vacuum line connecting the outlet of the first vacuum pump to the inlet of the second vacuum pump, a suction line leads to the suction line of the first vacuum pump up to the throttle and the control part is motor-controlled.
Die Erfindung läßt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon schematisch in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt einen Schaltplan eines Pumpstandes nach der Erfindung.The invention permits numerous embodiments. To further clarify its basic principle, one of them is shown schematically in the drawing and is described below. This shows a circuit diagram of a pumping station according to the invention.
Die Zeichnung zeigt schematisch einen leerzupumpenden Behälter 1, von dem eine Ansaugleitung 2 zu einem Einlaß 3 einer ersten Vakuumpumpe 4 führt. Diese erste Vakuumpumpe 4 ist erfindungsgemäß als Radialgebläse (Turboverdichter) ausgebildet. Um diesem ein wirtschaftliches Arbeiten bei Ansaugdrücken zwischen 600 mbar und 1000 mbar im Behälter 1 zu ermöglichen, ist in die Ansaugleitung 2 eine regelbare Drossel 5 geschaltet. Diese wird auf nicht gezeigte, jedoch für den Fachmann übliche Weise mit Hilfe von zwei Drucksensoren 20, 21 so geregelt, daß am Einlaß 3 der ersten Vakuumpumpe 4 immer ein Ansaugdruck von nicht über 600 mbar herrscht, solange der Druck im Behälter 1 höher ist.The drawing schematically shows a
Die erste Vakuumpumpe 4 hat einen Auslaß 6, von dem eine Auslaßleitung 7 zu einem Pulsationsdämpfer 8 und damit über einen Schalldämpfer 9 zu einem Auslaß 10 des Vakuum-Pumpstandes führt.The
Die Auslaßleitung 7 ist an einer Abzweigung 11 mit einer parallel zu ihr verlaufenden Vakuumleitung 12 verbunden, die ebenfalls in den Pulsationsdämpfer 8 führt und in die eine zweite Vakuumpumpe 13 geschaltet ist. Bei dieser zweiten Vakuumpumpe 13, welche die zweite Pumpstufe bildet, handelt es sich erfindungsgemäß um ein Drehkolbengebläse (Rootspumpe) oder um eine Wasserringpumpe.The
Vom Auslaß 6 der ersten Vakuumpumpe 4 aus gesehen ist hinter der Abzweigung 11 in der Auslaßleitung 7 und der Vakuumleitung 12 jeweils ein Steuerteil 14 bzw. 15 angeordnet, bei dem es sich in beiden Fällen um eine Rückschlagklappe handelt. Dabei öffnet die Rückschlagklappe des Steuerteils 14 zur zweiten Vakuumpumpe 13 und die Rückschlagklappe des Steuerteils 15 zum Pulsationsdämpfer 8 hin.From the
Der zweiten Vakuumpumpe 13 ist ein Bypass 16 mit einem Sperrventil 17 zugeordnet. Dieser Bypass 16 vermag ihren Ausgang mit der Vakuumleitung 12 zu verbinden und ermöglicht es deshalb, daß die zweite Vakuumpumpe 13 kurzgeschlossen und deshalb mit geringem Energiebedarf im Leerlauf unter atmosphärishem Druck arbeiten kann. Die Vakuumleitung 12 erlaubt es, beim Anfahren mit der zweiten Vakuumpumpe 13 bei geschlossener Drossel 5 die erste Vakuumpumpe 4 und die entsprechenden Leitungen zu evakuieren. Dadurch kann die als Radialgebläse ausgebildete Vakuumpumpe 4 im Leerlauf ohne Saugvermögen und Druckdifferenz im Unterdruck bei minimalster Energieaufnahme arbeiten.A
Von der Vakuumleitung 12 kann eine strichpunktiert dargestellte Saugleitung 18 zur Ansaugleitung 2 vor die Drossel 5 führen. In diese Saugleitung 18 ist eine Rückschlagklappe 19 geschaltet, welche zur zweiten Vakuumpumpe 13 hin öffnet. Eine solche Saugleitung 18 ermöglicht einen Parallelbetrieb der ersten und zweiten Vakuumpumpe 4, 13, was vorteilhaft ist, wenn zu Beginn der Absaugphase aus dem Behälter 1 ein großes Volumen abgesaugt werden muß, insbesondere wenn dann in ihm Normaldruck herrscht. Voraussetzung für einen solchen Parallelbetrieb ist, daß das Steuerteil 14 motorisch betätigbar ist, so daß es nicht infolge des von der zweiten Vakuumpumpe 13 erzeugten Unterdrucks von selbst öffnet, weil dann die zweite Vakuumpumpe 13 an beiden Seiten der ersten Vakuumpumpe 4 ansaugen würde.From the
Wenn schon zu Beginn des Absaugens des Behälters 1 in diesem ein relativ geringer Druck herrscht, beispielsweise 700 mbar, dann kann man zur Vereinfachung des Pumpstandes auf diese Saugleitung 18 verzichten.If there is already a relatively low pressure in the
Zu Beginn des Absaugens des Behälters 1 arbeiten die erste Vakuumpumpe 4 und die zweite Vakuumpumpe 13 parallel zueinander, so daß über die Ansaugleitung 2 und die Saugleitung 18 Gas über den Pulsationsdämpfer 8 zum Auslaß 10 gefördert wird. Wenn die von der ersten Vakuumpumpe 4 geförderte Gasmenge kleiner wird als das von der zweiten Vakuumpumpe 13 mögliche Fördervolumen, dann saugt die zweite Vakuumpumpe 13 über die Vakuumleitung 12 den am Auslaß 6 der ersten Vakuumpumpe 13 anfallenden Volumenstrom ab.At the beginning of the suction of the
- 11
- Behältercontainer
- 22nd
- AnsaugleitungSuction pipe
- 33rd
- EinlaßInlet
- 44th
- erste Vakuumpumpefirst vacuum pump
- 55
- regelbare Drosseladjustable throttle
- 66
- AuslaßOutlet
- 77
- AuslaßleitungExhaust pipe
- 88th
- PulsationsdämpferPulsation damper
- 99
- SchalldämpferSilencer
- 1010th
- AuslaßOutlet
- 1111
- AbzweigungJunction
- 1212th
- VakuumleitungVacuum line
- 1313
- zweite Vakuumpumpesecond vacuum pump
- 1414
- SteuerteilControl section
- 1515
- SteuerteilControl section
- 1616
- Bypassbypass
- 1717th
- SperrventilCheck valve
- 1818th
- SaugleitungSuction line
- 1919th
- RückschlagklappeCheck valve
- 2020th
- DrucksensorPressure sensor
- 2121
- DrucksensorPressure sensor
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19500823 | 1995-01-13 | ||
DE19500823A DE19500823A1 (en) | 1995-01-13 | 1995-01-13 | Vacuum pumping station |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0723080A1 true EP0723080A1 (en) | 1996-07-24 |
EP0723080B1 EP0723080B1 (en) | 1999-09-22 |
Family
ID=7751409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95116395A Expired - Lifetime EP0723080B1 (en) | 1995-01-13 | 1995-10-18 | Vacuum pumping system |
Country Status (6)
Country | Link |
---|---|
US (1) | US5595477A (en) |
EP (1) | EP0723080B1 (en) |
JP (1) | JPH08232870A (en) |
AT (1) | ATE184963T1 (en) |
DE (2) | DE19500823A1 (en) |
ES (1) | ES2136232T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19630264A1 (en) * | 1996-07-26 | 1998-01-29 | Klein Schanzlin & Becker Ag | Method for switching devices or machines in a flow system |
GB2331126A (en) * | 1997-09-22 | 1999-05-12 | Aisin Seiki | Multi-stage vacuum pump assembly having pumps connected both in parallel and series. |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE504483C2 (en) * | 1995-06-26 | 1997-02-17 | Tetra Laval Holdings & Finance | Procedure for controlling the vacuum level in a milking plant and milking plant |
DE19524609A1 (en) * | 1995-07-06 | 1997-01-09 | Leybold Ag | Device for the rapid evacuation of a vacuum chamber |
RU2113636C1 (en) * | 1997-06-16 | 1998-06-20 | Сергей Анатольевич Попов | Pump ejector plant (versions) |
DE10018526A1 (en) * | 2000-04-13 | 2001-10-25 | Tbs Tech Betr Schmidt Gmbh | Coating machine for furniture or structural components has pressure chamber, heat radiator with metal plate, and cover |
DE10144210A1 (en) * | 2001-09-08 | 2003-03-27 | Sgi Prozess Technik Gmbh | pump system |
US6589023B2 (en) * | 2001-10-09 | 2003-07-08 | Applied Materials, Inc. | Device and method for reducing vacuum pump energy consumption |
DE10225774C1 (en) * | 2002-06-10 | 2003-12-11 | Vacuubrand Gmbh & Co Kg | Vacuum pump, for condensing and aggressive gases, is a dry pump with a membrane pump stage and a spiral scroll pump stage |
US7021888B2 (en) * | 2003-12-16 | 2006-04-04 | Universities Research Association, Inc. | Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump |
GB0418771D0 (en) | 2004-08-20 | 2004-09-22 | Boc Group Plc | Evacuation of a load lock enclosure |
DE102005042451B4 (en) * | 2005-09-06 | 2007-07-26 | Vacuubrand Gmbh + Co Kg | Vacuum pump device |
DE102008009715A1 (en) * | 2008-02-19 | 2009-08-20 | Oerlikon Leybold Vacuum Gmbh | Vacuum pumping system and use of a multi-stage vacuum pump |
KR101012581B1 (en) * | 2009-01-19 | 2011-02-07 | 김재선 | A water pump |
ES2731202T3 (en) * | 2009-12-24 | 2019-11-14 | Sumitomo Seika Chemicals | Double vacuum pump device, gas purification system equipped with a double vacuum pump device and exhaust gas vibration suppression device in a double vacuum pump device |
CN101982658B (en) * | 2010-09-01 | 2012-02-15 | 中国科学院广州地球化学研究所 | Small scale/minitype ultrahigh vacuum device |
DE102011015464B4 (en) * | 2010-11-30 | 2012-09-06 | Von Ardenne Anlagentechnik Gmbh | Vacuum pumping device and method for dusty gases |
CH706231B1 (en) * | 2012-03-05 | 2016-07-29 | Ateliers Busch Sa | pumping system and method for controlling such an installation. |
FR2998010A1 (en) * | 2012-11-09 | 2014-05-16 | Centre Nat Rech Scient | PUMPING DEVICE, COMPRISING A SET OF SERIES PUMPS AND A COMMON SWITCHING ELEMENT |
GB2510829B (en) * | 2013-02-13 | 2015-09-02 | Edwards Ltd | Pumping system |
DE102013108090A1 (en) * | 2013-07-29 | 2015-01-29 | Hella Kgaa Hueck & Co. | pump assembly |
FR3017425A1 (en) * | 2014-02-12 | 2015-08-14 | Adixen Vacuum Products | PUMPING SYSTEM AND PRESSING DESCENT METHOD IN LOADING AND UNLOADING SAS |
US20160319810A1 (en) * | 2015-04-30 | 2016-11-03 | Atlas Copco Comptec, Llc | Gas handling system and method for efficiently managing changes in gaseous conditions |
CN105545783B (en) * | 2016-02-26 | 2018-07-27 | 武汉艾德沃泵阀有限公司 | Vacuum keeps system |
EP3491243A1 (en) * | 2016-07-12 | 2019-06-05 | Dr.-ing. K. Busch GmbH | Evacuation system |
WO2020101973A1 (en) | 2018-11-15 | 2020-05-22 | Flowserve Management Company | Apparatus and method for evacuating very large volumes |
US11815095B2 (en) * | 2019-01-10 | 2023-11-14 | Elival Co., Ltd | Power saving vacuuming pump system based on complete-bearing-sealing and dry-large-pressure-difference root vacuuming root pumps |
US11492020B2 (en) | 2020-05-05 | 2022-11-08 | Flowserve Management Company | Method of intelligently managing pressure within an evacuated transportation system |
US11619231B1 (en) * | 2021-12-28 | 2023-04-04 | Elvac Co., Ltd | Complete bearing-sealed root vacuum pump system capable of promoting vacuum ability of condenser of power plant |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3922110A (en) * | 1974-01-28 | 1975-11-25 | Henry Huse | Multi-stage vacuum pump |
DE2462187A1 (en) * | 1974-06-24 | 1976-09-02 | Siemens Ag | Vacuum pump with preceeding side channel ring compressor - drive of ring compressor is controllable by output requirements in terms of revolutions |
US4699570A (en) * | 1986-03-07 | 1987-10-13 | Itt Industries, Inc | Vacuum pump system |
US4850806A (en) * | 1988-05-24 | 1989-07-25 | The Boc Group, Inc. | Controlled by-pass for a booster pump |
EP0541989A1 (en) * | 1991-11-11 | 1993-05-19 | Balzers-Pfeiffer GmbH | Multi-stage vacuum pumping system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1711902A (en) * | 1924-11-11 | 1929-05-07 | Neumann Fritz | Water-ring pump |
US3642384A (en) * | 1969-11-19 | 1972-02-15 | Henry Huse | Multistage vacuum pumping system |
DE2430314C3 (en) * | 1974-06-24 | 1982-11-25 | Siemens AG, 1000 Berlin und 8000 München | Liquid ring vacuum pump with upstream compressor |
US4505647A (en) * | 1978-01-26 | 1985-03-19 | Grumman Allied Industries, Inc. | Vacuum pumping system |
EP0420899A1 (en) * | 1988-06-24 | 1991-04-10 | Siemens Aktiengesellschaft | Multi-stage vacuum-pump set |
-
1995
- 1995-01-13 DE DE19500823A patent/DE19500823A1/en not_active Withdrawn
- 1995-10-18 EP EP95116395A patent/EP0723080B1/en not_active Expired - Lifetime
- 1995-10-18 DE DE59506893T patent/DE59506893D1/en not_active Expired - Fee Related
- 1995-10-18 AT AT95116395T patent/ATE184963T1/en not_active IP Right Cessation
- 1995-10-18 ES ES95116395T patent/ES2136232T3/en not_active Expired - Lifetime
- 1995-12-26 JP JP7338624A patent/JPH08232870A/en active Pending
-
1996
- 1996-01-16 US US08/590,053 patent/US5595477A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3922110A (en) * | 1974-01-28 | 1975-11-25 | Henry Huse | Multi-stage vacuum pump |
DE2462187A1 (en) * | 1974-06-24 | 1976-09-02 | Siemens Ag | Vacuum pump with preceeding side channel ring compressor - drive of ring compressor is controllable by output requirements in terms of revolutions |
US4699570A (en) * | 1986-03-07 | 1987-10-13 | Itt Industries, Inc | Vacuum pump system |
US4850806A (en) * | 1988-05-24 | 1989-07-25 | The Boc Group, Inc. | Controlled by-pass for a booster pump |
EP0541989A1 (en) * | 1991-11-11 | 1993-05-19 | Balzers-Pfeiffer GmbH | Multi-stage vacuum pumping system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19630264A1 (en) * | 1996-07-26 | 1998-01-29 | Klein Schanzlin & Becker Ag | Method for switching devices or machines in a flow system |
GB2331126A (en) * | 1997-09-22 | 1999-05-12 | Aisin Seiki | Multi-stage vacuum pump assembly having pumps connected both in parallel and series. |
US6196810B1 (en) | 1997-09-22 | 2001-03-06 | Aisin Seiki Kabushiki Kaisha | Multistage vacuum pump assembly |
GB2331126B (en) * | 1997-09-22 | 2001-07-25 | Aisin Seiki | Multistage vacum pump assembly |
Also Published As
Publication number | Publication date |
---|---|
ATE184963T1 (en) | 1999-10-15 |
DE19500823A1 (en) | 1996-07-18 |
US5595477A (en) | 1997-01-21 |
ES2136232T3 (en) | 1999-11-16 |
DE59506893D1 (en) | 1999-10-28 |
JPH08232870A (en) | 1996-09-10 |
EP0723080B1 (en) | 1999-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0723080B1 (en) | Vacuum pumping system | |
EP0848981B1 (en) | Pressure swing adsorption plant to separate oxygen from the air and process to operate the same | |
DE60317659T2 (en) | VACUUM PUMP AND METHOD FOR PRODUCING UNDERPRESSURE | |
EP0752531B2 (en) | Apparatus for rapid evacuation of a vacuum chamber | |
DE4213763B4 (en) | Process for evacuating a vacuum chamber and a high vacuum chamber, and high vacuum system for carrying it out | |
EP0847791A1 (en) | Pressure swing adsorption plant to seperate oxygen from the air and process to operate the same | |
DE1628144C3 (en) | Suction throttle control device | |
EP2227636B1 (en) | Multi-level membrane suction pump | |
EP1434896B1 (en) | Multi-chamber installation for treating objects under vacuum, method for evacuating said installation and evacuation system therefor | |
DE4331589C2 (en) | Vacuum pumping system | |
WO2000058629A1 (en) | Side channel compressor | |
EP0972938B1 (en) | Gas ballast device for a multistage positive displacement pump | |
EP0682751B1 (en) | Vacuum pump device | |
EP2419641A2 (en) | Roughing pump method for a positive displacement pump | |
EP1278962B1 (en) | Device for delivering moist gases | |
EP0541989B1 (en) | Multi-stage vacuum pumping system | |
EP1600630B1 (en) | Multistage gas compressor and its control method | |
DE10249062A1 (en) | Multi-stage piston vacuum pump and method for its operation | |
DE2829889A1 (en) | Metal foil food packaging method - using deep drawing in successive stages in air tight chambers | |
WO1990001590A1 (en) | Suction waggon for disposal of sludges and liquids | |
DE19725678A1 (en) | Pressure change system for extracting oxygen from the air and method for operating such | |
DE102004002772A1 (en) | Screw compressor refrigeration system has a controlled economizer connection situated between an intermediate pressure separator and the compressor | |
DE102005016180B4 (en) | Method and device on a refrigeration system with several screw compressors | |
DE20121634U1 (en) | Multiple chamber plant used for degassing, coating or etching substrates comprises an evacuating system connected to chambers | |
CH347296A (en) | Device to improve the partial load operation of a turbo compressor system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19961102 |
|
17Q | First examination report despatched |
Effective date: 19980914 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990922 |
|
REF | Corresponds to: |
Ref document number: 184963 Country of ref document: AT Date of ref document: 19991015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PPS POLYVALENT PATENT SERVICE AG Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990924 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19991027 Year of fee payment: 5 Ref country code: IE Payment date: 19991027 Year of fee payment: 5 |
|
REF | Corresponds to: |
Ref document number: 59506893 Country of ref document: DE Date of ref document: 19991028 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19991029 Year of fee payment: 5 Ref country code: AT Payment date: 19991029 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19991103 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19991105 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19991115 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2136232 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991222 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001018 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001018 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20001030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001031 |
|
BERE | Be: lapsed |
Owner name: SGI-PROZESS-TECHNIK G.M.B.H. Effective date: 20001031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010501 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 95116395.5 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010501 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020910 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020917 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20021017 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021217 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20031020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051018 |