EP0723080A1 - Vacuum pumping system - Google Patents

Vacuum pumping system Download PDF

Info

Publication number
EP0723080A1
EP0723080A1 EP95116395A EP95116395A EP0723080A1 EP 0723080 A1 EP0723080 A1 EP 0723080A1 EP 95116395 A EP95116395 A EP 95116395A EP 95116395 A EP95116395 A EP 95116395A EP 0723080 A1 EP0723080 A1 EP 0723080A1
Authority
EP
European Patent Office
Prior art keywords
vacuum
vacuum pump
pump
line
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95116395A
Other languages
German (de)
French (fr)
Other versions
EP0723080B1 (en
Inventor
Heinrich Amlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGI-PROZESS-TECHNIK GmbH
Original Assignee
SGI-PROZESS-TECHNIK GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGI-PROZESS-TECHNIK GmbH filed Critical SGI-PROZESS-TECHNIK GmbH
Publication of EP0723080A1 publication Critical patent/EP0723080A1/en
Application granted granted Critical
Publication of EP0723080B1 publication Critical patent/EP0723080B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows

Definitions

  • the invention relates to a vacuum pumping station for the cyclical pumping out of a container and for maintaining an operating vacuum in the container, which has a first and second vacuum pump for pumping out the container, which are arranged one behind the other and form a first and a second pumping stage.
  • Pumping stations of the above type are used in technology, for example, for the cyclical pumping out of adsorbers, in order to carry out the regeneration of zeolites or other adsorbents under reduced pressure in vacuum swing systems or pressure-vacuum swing systems for oxygen and nitrogen enrichment.
  • pumping stations which are made up of multi-stage rotary blowers.
  • pumping stations are satisfactory in terms of their function, the effort of the experts is to further reduce their energy consumption, since this plays a major role in cyclical processes.
  • With the pumping stations formed from rotary lobe blowers little progress has recently been made in reducing the energy requirement.
  • the invention is based on the problem of designing a vacuum pumping station of the type mentioned at the outset that is as simple as possible and inexpensive to manufacture so that its energy requirement is as low as possible.
  • the first vacuum pump is a radial blower with an adjustable throttle connected to its intake line and the second vacuum pump is a rotary blower or a water ring pump in that the second vacuum pump is connected in a vacuum line parallel to an outlet line of the first vacuum pump and with its input is connected to the outlet line at a branch and that in terms of flow behind the branch in the vacuum line and the outlet line, a control part for steering the delivery volume at higher pressures from the first vacuum pump directly or at lower pressures from the first vacuum pump via the second vacuum pump to Outlet of the vacuum pumping station is arranged.
  • a radial blower as the first vacuum pump has so far been rejected by experts whenever the suction conditions for the radial blower fluctuate greatly.
  • adsorbers have to be evacuated cyclically from an absolute pressure of approximately 1000 mbar to approximately 300 mbar.
  • the energy consumption of radial fans is 1000 times higher with a suction state of 1000 mbar than, for example, with a suction state of 600 mbar. From 600 mbar up to approx. 100 mbar, the pumping speed of radial blowers is possible when the max. Pressure ratio almost constant, but the energy consumption is lower by the value of the differential pressure-dependent, volumetric losses with comparable rotary lobe blowers.
  • Radial blowers have due to their high speed of approx. 11,000 min -1 and more, hardly any gas backflow and therefore a volumetric efficiency of almost 1. With the same pumping speed between a radial blower and a rotary lobe blower, the energy consumption with a comparable differential pressure between inlet and outlet is clear for radial blowers less. This means that with a pressure on the Intake side of 600 mbar 18% and with an intake pressure of 300 mbar 23% less energy consumption is achieved using the maximum compression ratio in these operating conditions.
  • the second pump stage or further pump stages are designed according to the invention as rotary lobe blowers, because a radial blower designed as a second stage in comparison would have to work with an intake pressure between 1000 mbar and 600 mbar and would therefore always be in the energetically unfavorable working range for radial blowers.
  • the control part in the outlet line is designed as a non-return flap opening towards the outlet of the vacuum pumping station and the control part in the vacuum line is designed as a non-return flap opening towards the inlet of the second pump stage.
  • the controllable throttle upstream of the first vacuum pump could be a conventional swirl controller.
  • the throttle can at the same time shut off the line in which it is arranged, so that when starting, an evacuation of the pump line with the radial fan is possible without the arrangement of an additional shut-off device if, according to another development of the invention, the adjustable throttle upstream of the first vacuum pump is a motor-operated flap valve that can be moved into the closed position.
  • a flap valve makes it possible to change large cross sections quickly, so that low-inertia control is possible.
  • the rotary lobe blower forming the second pump stage can continue to run with particularly low losses if the second vacuum pump connects its outlet side and inlet side to one another Bypass with a motorized shut-off valve.
  • both vacuum pumps can work in parallel with one another at the beginning of the pumping, because the necessary gas volume can then be extracted as quickly as possible.
  • This can be achieved in a simple manner in that from the vacuum line connecting the outlet of the first vacuum pump to the inlet of the second vacuum pump, a suction line leads to the suction line of the first vacuum pump up to the throttle and the control part is motor-controlled.
  • the invention permits numerous embodiments. To further clarify its basic principle, one of them is shown schematically in the drawing and is described below. This shows a circuit diagram of a pumping station according to the invention.
  • the drawing schematically shows a container 1 to be pumped empty, from which a suction line 2 leads to an inlet 3 of a first vacuum pump 4.
  • This first vacuum pump 4 is designed according to the invention as a radial fan (turbocompressor).
  • an adjustable throttle 5 is connected in the suction line 2. This is regulated in a manner not shown, but usual for a person skilled in the art, with the aid of two pressure sensors 20, 21 so that there is always a suction pressure of not more than 600 mbar at the inlet 3 of the first vacuum pump 4, as long as the pressure in the container 1 is higher.
  • the first vacuum pump 4 has an outlet 6, from which an outlet line 7 leads to a pulsation damper 8 and thus via a silencer 9 to an outlet 10 of the vacuum pumping station.
  • the outlet line 7 is connected at a branch 11 to a vacuum line 12 running parallel to it, which likewise leads into the pulsation damper 8 and into which a second vacuum pump 13 is connected.
  • this second vacuum pump 13, which forms the second pump stage is a rotary lobe blower (root pump) or a water ring pump.
  • a control part 14 and 15 is arranged behind the branch 11 in the outlet line 7 and the vacuum line 12, which is a non-return valve in both cases.
  • the non-return flap of the control part 14 opens to the second vacuum pump 13 and the non-return flap of the control part 15 to the pulsation damper 8.
  • a bypass 16 with a check valve 17 is assigned to the second vacuum pump 13.
  • This bypass 16 is able to connect its output to the vacuum line 12 and therefore enables the second vacuum pump 13 to be short-circuited and therefore work with low energy consumption when idling under atmospheric pressure.
  • the vacuum line 12 allows the first vacuum pump 4 and the corresponding lines to be evacuated when the second vacuum pump 13 starts up with the throttle 5 closed.
  • the vacuum pump 4 which is designed as a radial fan, can operate at idle speed without suction and pressure difference in negative pressure with minimal energy consumption.
  • a suction line 18 shown in broken lines can lead to the suction line 2 in front of the throttle 5.
  • a check valve 19 is connected, which opens to the second vacuum pump 13.
  • Such a suction line 18 enables parallel operation of the first and second vacuum pumps 4, 13, which is advantageous if a large volume has to be extracted from the container 1 at the beginning of the suction phase, in particular if there is normal pressure in it.
  • a prerequisite for such a parallel operation is that the control part 14 can be actuated by a motor, so that it does not open automatically as a result of the negative pressure generated by the second vacuum pump 13, because then the second vacuum pump 13 would suck on both sides of the first vacuum pump 4.
  • this suction line 18 can be dispensed with in order to simplify the pumping station.
  • the first vacuum pump 4 and the second vacuum pump 13 work in parallel with one another, so that gas is conveyed via the suction line 2 and the suction line 18 via the pulsation damper 8 to the outlet 10. If the amount of gas delivered by the first vacuum pump 4 becomes smaller than the delivery volume possible by the second vacuum pump 13, then the second vacuum pump 13 sucks off the volume flow occurring at the outlet 6 of the first vacuum pump 13 via the vacuum line 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A vessel is evacuated and a vacuum maintained by a first, radial, pump and throttle valve and a second, rotary piston, pump in a pipe parallel, and connected, to that for the first pump. Control valves enable the first pump to extract at higher pressure and the second at lower pressure. The vessel (1), required to be evacuated, is connected to a radial pump (4) through a throttle valve (5) and a pipe (7). A rotary piston pump (13) is connected to the pipe (7) at a junction point (11). Control valves (14,15) determine whether the first pump alone or the second pump in series reduces the pressure in the vessel, according to the pressure value. The second pump alone can function through a back-pressure valve (19) in a pipe (18).

Description

Die Erfindung betrifft einen Vakuum-Pumpstand zum zyklischen Abpumpen eines Behälters und zum Aufrechterhalten eines Betriebsvakuums in dem Behälter, welcher zum Abpumpen des Behälters eine erste und zweite Vakuumpumpe hat, welche hintereinander angeordnet sind und eine erste und eine zweite Pumpstufe bilden.The invention relates to a vacuum pumping station for the cyclical pumping out of a container and for maintaining an operating vacuum in the container, which has a first and second vacuum pump for pumping out the container, which are arranged one behind the other and form a first and a second pumping stage.

Pumpstände der vorstehenden Art werden in der Technik beispielsweise zum zyklischen Abpumpen von Adsorbern eingesetzt, um die Regeneration von Zeolithen oder sonstigen Adsorptionsmitteln im Unterdruck bei Vakuum-Swing Anlagen oder Druck-Vakuum-Swing-Anlagen zur Sauerstoff- und Stickstoffanreicherung vorzunehmen. Bei solchen Anlagen kommt es darauf an, relativ rasch große Gasmengen aus einem Adsorber abzusaugen und anschließend in ihm einen Betriebsunterdruck aufrecht zu erhalten. Das geschieht derzeit mit Pumpständen, welche aus mehrstufig arbeitenden Drehkolbengebläsen aufgebaut sind. Solche Pumpstände befriedigen zwar von ihrer Funktion her, jedoch geht das Bemühen der Fachwelt dahin, ihren Energiebedarf weiter zu verringern, da dieser bei zyklischen Prozessen eine große Rolle spielt. Bei den aus Drehkolbengebläsen gebildeten Pumpständen sind jedoch in letzter Zeit nur noch geringe Fortschritte in Bezug auf eine Verminderung des Energiebedarfs erzielt worden.Pumping stations of the above type are used in technology, for example, for the cyclical pumping out of adsorbers, in order to carry out the regeneration of zeolites or other adsorbents under reduced pressure in vacuum swing systems or pressure-vacuum swing systems for oxygen and nitrogen enrichment. In such systems, it is important to suck off large amounts of gas from an adsorber relatively quickly and then to maintain an operating negative pressure in it. This is currently happening with pumping stations, which are made up of multi-stage rotary blowers. Although such pumping stations are satisfactory in terms of their function, the effort of the experts is to further reduce their energy consumption, since this plays a major role in cyclical processes. With the pumping stations formed from rotary lobe blowers, however, little progress has recently been made in reducing the energy requirement.

Der Erfindung liegt das Problem zugrunde, einen möglichst einfach aufgebauten und kostengünstig herstellbaren Vakuum-Pumpstand der eingangs genannten Art so auszubilden, daß sein Energiebedarf möglichst gering ist.The invention is based on the problem of designing a vacuum pumping station of the type mentioned at the outset that is as simple as possible and inexpensive to manufacture so that its energy requirement is as low as possible.

Dieses Problem wird erfindungsgemäß dadurch gelöst, daß die erste Vakuumpumpe ein Radialgebläse mit einer in ihre Ansaugleitung geschalteten, regelbaren Drossel und die zweite Vakuumpumpe ein Drehkolbengebläse oder eine Wasserringpumpe ist, daß die zweite Vakuumpumpe in eine Vakuumleitung parallel zu einer Auslaßleitung der ersten Vakuumpumpe geschaltet und mit ihrem Eingang an einer Abzweigung mit der Auslaßleitung verbunden ist und daß strömungsmäßig hinter der Abzweigung in der Vakuumleitung und der Auslaßleitung jeweils ein Steuerteil zum Lenken des Fördervolumens bei höheren Drücken von der ersten Vakuumpumpe unmittelbar oder bei geringeren Drücken von der ersten Vakuumpumpe über die zweite Vakuumpumpe zum Auslaß des Vakuum-Pumpstandes angeordnet ist.This problem is solved according to the invention in that the first vacuum pump is a radial blower with an adjustable throttle connected to its intake line and the second vacuum pump is a rotary blower or a water ring pump in that the second vacuum pump is connected in a vacuum line parallel to an outlet line of the first vacuum pump and with its input is connected to the outlet line at a branch and that in terms of flow behind the branch in the vacuum line and the outlet line, a control part for steering the delivery volume at higher pressures from the first vacuum pump directly or at lower pressures from the first vacuum pump via the second vacuum pump to Outlet of the vacuum pumping station is arranged.

Der Einsatz eines Radialgebläses als erste Vakuumpumpe wurde bislang von der Fachwelt immer dann verworfen, wenn die Ansaugzustände für das Radialgebläse stark schwanken. Beispielsweise müssen bei Vakuum-Swing-Anlagen Adsorber zyklisch von einem absoluten Druck von jeweils etwa 1000 mbar auf etwa 300 mbar evakuiert werden. Die Energieaufnahme von Radialgebläsen ist bei 1000 mbar Ansaugzustand um den Faktor 3,9 höher als zum Beispiel bei einem Ansaugzustand von 600 mbar. Von 600 mbar an bis ca. 100 mbar ist das Saugvermögen von Radialgebläsen bei Ausnutzung des max. Druckverhältnisses nahezu konstant, die Energieaufnahme ist jedoch um den Wert der differenzdruckabhängigen, volumetrischen Verluste bei vergleichbaren Drehkolbengebläsen geringer. Radialgebläse haben aufgrund ihrer hohen Drehzahl von ca. 11.000 min-1 und mehr, kaum Gasrückströmung und dadurch einen volumetrischen Wirkungsgrad von nahezu 1. Bei gleichem Saugvermögen zwischen einem Radialgebläse und einem Drehkolbengebläse ist somit die Energieaufnahme bei vergleichbarem Differenzdruck zwischen Einlaß und Auslaß bei Radialgebläsen deutlich geringer. Dies bedeutet, daß bei einem Druck an der Ansaugseite von 600 mbar 18 % und bei einem Ansaugdruck von 300 mbar 23 % weniger Energieaufnahme unter Ausnutzung des maximalen Kompressionsverhältnisses bei diesen Betriebszuständen erreicht wird.The use of a radial blower as the first vacuum pump has so far been rejected by experts whenever the suction conditions for the radial blower fluctuate greatly. For example, in vacuum swing systems, adsorbers have to be evacuated cyclically from an absolute pressure of approximately 1000 mbar to approximately 300 mbar. The energy consumption of radial fans is 1000 times higher with a suction state of 1000 mbar than, for example, with a suction state of 600 mbar. From 600 mbar up to approx. 100 mbar, the pumping speed of radial blowers is possible when the max. Pressure ratio almost constant, but the energy consumption is lower by the value of the differential pressure-dependent, volumetric losses with comparable rotary lobe blowers. Radial blowers have due to their high speed of approx. 11,000 min -1 and more, hardly any gas backflow and therefore a volumetric efficiency of almost 1. With the same pumping speed between a radial blower and a rotary lobe blower, the energy consumption with a comparable differential pressure between inlet and outlet is clear for radial blowers less. This means that with a pressure on the Intake side of 600 mbar 18% and with an intake pressure of 300 mbar 23% less energy consumption is achieved using the maximum compression ratio in these operating conditions.

Gemäß der Erfindung ergibt sich dadurch eine Energieeinsparung, daß durch die regelbare Drossel das Saugvermögen des Radialgebläses bei maximalem Druckverhältnis in jedem Ansaugzustand konstant gehalten wird. Dieses Drosseln zwischen einem Atmosphärendruck von 1000 mbar auf 600 mbar so lange, bis durch das Absaugen ein absoluter Druck von 600 mbar saugseitig erreicht ist, bedingt natürlich einen relativ hohen Energieverlust im Vergleich zu einem Drehkolbengebläse, bei dem eine solche Drosselung unnötig ist. Überraschenderweise konnte jedoch für den zyklischen Betrieb, bei dem relativ rasch hintereinander von Normaldruck auf einen Betriebsunterdruck abgesaugt werden muß, festgestellt werden, daß durch den besonders wirtschaftlichen Betrieb, der sich durch die Kombination eines Radialgebläses mit einem Drehkolbengebläse bei Saugdrücken kleiner 600 mbar ergibt, dieser anfängliche höhere Energiebedarf mehr als kompensiert wird, so daß es insgesamt zu einer Energieersparnis kommt, wenn man die Verrohrung so vornimmt, wie das im Anspruch 1 gekennzeichnet wurde. Diese ermöglicht es nämlich, beim Starten des Pumpstandes mit dem Drehkolbengebläse den Pumpenstrang mit dem Radialgebläse zu evakuieren.According to the invention, this results in an energy saving that the suction capacity of the radial blower is kept constant at the maximum pressure ratio in each suction state by the controllable throttle. This throttling between an atmospheric pressure of 1000 mbar to 600 mbar until an absolute pressure of 600 mbar is reached on the suction side naturally results in a relatively high energy loss compared to a rotary blower, in which such throttling is unnecessary. Surprisingly, however, it could be determined for cyclical operation, in which suction from normal pressure to an operating negative pressure must be taken relatively quickly, that the particularly economical operation, which results from the combination of a radial blower with a rotary blower at suction pressures of less than 600 mbar the initial higher energy requirement is more than compensated for, so that there is an overall energy saving if the piping is carried out as was characterized in claim 1. This makes it possible to evacuate the pump train with the radial blower when starting the pumping station with the rotary lobe blower.

Die zweite Pumpstufe oder weitere Pumpstufen sind erfindungsgemäß deshalb als Drehkolbengebläse ausgeführt, weil ein im Vergleich als zweite Stufe ausgeführtes Radialgebläse mit einem Ansaugdruck zwischen 1000 mbar bis 600 mbar arbeiten müßte und somit immer im energetisch ungünstigen Arbeitsbereich für Radialgebläse liegen würde.The second pump stage or further pump stages are designed according to the invention as rotary lobe blowers, because a radial blower designed as a second stage in comparison would have to work with an intake pressure between 1000 mbar and 600 mbar and would therefore always be in the energetically unfavorable working range for radial blowers.

Vorteilhaft bei dem erfindungsgemäßen Pumpstand ist auch, daß sich mit im Handel derzeit erhältlichen Vakuumpumpen maximale Saugleistungen von über 90.000 m3/h erreichen lassen und daß die Herstellungskosten geringer sind als die vergleichbarer Pumpstände.It is also advantageous with the pumping station according to the invention that maximum suction capacities of over 90,000 m 3 / h can be achieved with vacuum pumps currently available on the market and that the production costs are lower than comparable pumping stations.

Wenn die erste und zweite Vakuumpumpe so geschaltet sind, daß sie ausschließlich hintereinander und nicht parallel arbeiten, dann kann die Steuerung der Volumenströme zwangsläufig erfolgen, ohne daß hierzu die Steuerteile motorisch betätigt werden müssen, so daß die Verlegung von Steuerleitungen unnötig wird, wenn gemäß einer vorteilhaften Weiterbildung der Erfindung das Steuerteil in der Auslaßleitung als eine zum Auslaß des Vakuum-Pumpstandes hin öffnende Rückschlagklappe und das Steuerteil in der Vakuumleitung als eine zum Einlaß der zweiten Pumpstufe hin öffnende Rückschlagklappe ausgebildet ist.If the first and second vacuum pumps are switched in such a way that they only work in series and not in parallel, then the volume flows can inevitably be controlled without the control parts having to be actuated by a motor, so that the laying of control lines is unnecessary if according to one In an advantageous development of the invention, the control part in the outlet line is designed as a non-return flap opening towards the outlet of the vacuum pumping station and the control part in the vacuum line is designed as a non-return flap opening towards the inlet of the second pump stage.

Bei der der ersten Vakuumpumpe vorgeschalteten regelbaren Drossel könnte es sich um einen üblichen Drallregler handeln. Die Drossel vermag jedoch zugleich die Leitung, in der sie angeordnet ist, abzusperren, so daß beim Anfahren ein Evakuieren des Pumpenstranges mit dem Radialgebläse ohne Anordnung eines zusätzlichen Absperrorgans möglich wird, wenn gemäß einer anderen Weiterbildung der Erfindung die der ersten Vakuumpumpe vorgeschaltete, regelbare Drossel ein motorisch betätigbares und bis in Schließstellung bewegbares Klappenventil ist. Ein solches Klappenventil ermöglicht es, große Querschnitte rasch zu verändern, so daß eine trägheitsarme Regelung möglich wird.The controllable throttle upstream of the first vacuum pump could be a conventional swirl controller. However, the throttle can at the same time shut off the line in which it is arranged, so that when starting, an evacuation of the pump line with the radial fan is possible without the arrangement of an additional shut-off device if, according to another development of the invention, the adjustable throttle upstream of the first vacuum pump is a motor-operated flap valve that can be moved into the closed position. Such a flap valve makes it possible to change large cross sections quickly, so that low-inertia control is possible.

Beim Anfahren und während Leerlaufphasen kann das die zweite Pumpenstufe bildende Drehkolbengebläse besonders verlustarm weiterlaufen, wenn die zweite Vakuumpumpe einen ihre Auslaßseite und Einlaßseite miteinander verbindenden Bypass mit einem motorisch betätigbaren Sperrventil hat.When starting up and during idling phases, the rotary lobe blower forming the second pump stage can continue to run with particularly low losses if the second vacuum pump connects its outlet side and inlet side to one another Bypass with a motorized shut-off valve.

Wenn zu Beginn des Absaugens in dem abzusaugenden Behälter Normaldruck herrscht, dann ist es vorteilhaft, daß zu Beginn des Abpumpens beide Vakuumpumpen parallel zueinander arbeiten können, weil dann möglichst rasch das notwendige Gasvolumen abgesaugt werden kann. Das läßt sich auf einfache Weise dadurch erreichen, daß von der den Auslaß der ersten Vakuumpumpe mit dem Einlaß der zweiten Vakuumpumpe verbindenden Vakuumleitung eine Saugleitung zur Ansaugleitung der ersten Vakuumpumpe strömungsmäßig bis vor die Drossel führt und das Steuerteil motorisch gesteuert ist.If normal pressure prevails in the container to be extracted at the beginning of the suction, then it is advantageous that both vacuum pumps can work in parallel with one another at the beginning of the pumping, because the necessary gas volume can then be extracted as quickly as possible. This can be achieved in a simple manner in that from the vacuum line connecting the outlet of the first vacuum pump to the inlet of the second vacuum pump, a suction line leads to the suction line of the first vacuum pump up to the throttle and the control part is motor-controlled.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon schematisch in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt einen Schaltplan eines Pumpstandes nach der Erfindung.The invention permits numerous embodiments. To further clarify its basic principle, one of them is shown schematically in the drawing and is described below. This shows a circuit diagram of a pumping station according to the invention.

Die Zeichnung zeigt schematisch einen leerzupumpenden Behälter 1, von dem eine Ansaugleitung 2 zu einem Einlaß 3 einer ersten Vakuumpumpe 4 führt. Diese erste Vakuumpumpe 4 ist erfindungsgemäß als Radialgebläse (Turboverdichter) ausgebildet. Um diesem ein wirtschaftliches Arbeiten bei Ansaugdrücken zwischen 600 mbar und 1000 mbar im Behälter 1 zu ermöglichen, ist in die Ansaugleitung 2 eine regelbare Drossel 5 geschaltet. Diese wird auf nicht gezeigte, jedoch für den Fachmann übliche Weise mit Hilfe von zwei Drucksensoren 20, 21 so geregelt, daß am Einlaß 3 der ersten Vakuumpumpe 4 immer ein Ansaugdruck von nicht über 600 mbar herrscht, solange der Druck im Behälter 1 höher ist.The drawing schematically shows a container 1 to be pumped empty, from which a suction line 2 leads to an inlet 3 of a first vacuum pump 4. This first vacuum pump 4 is designed according to the invention as a radial fan (turbocompressor). In order to enable this to work economically at suction pressures between 600 mbar and 1000 mbar in the container 1, an adjustable throttle 5 is connected in the suction line 2. This is regulated in a manner not shown, but usual for a person skilled in the art, with the aid of two pressure sensors 20, 21 so that there is always a suction pressure of not more than 600 mbar at the inlet 3 of the first vacuum pump 4, as long as the pressure in the container 1 is higher.

Die erste Vakuumpumpe 4 hat einen Auslaß 6, von dem eine Auslaßleitung 7 zu einem Pulsationsdämpfer 8 und damit über einen Schalldämpfer 9 zu einem Auslaß 10 des Vakuum-Pumpstandes führt.The first vacuum pump 4 has an outlet 6, from which an outlet line 7 leads to a pulsation damper 8 and thus via a silencer 9 to an outlet 10 of the vacuum pumping station.

Die Auslaßleitung 7 ist an einer Abzweigung 11 mit einer parallel zu ihr verlaufenden Vakuumleitung 12 verbunden, die ebenfalls in den Pulsationsdämpfer 8 führt und in die eine zweite Vakuumpumpe 13 geschaltet ist. Bei dieser zweiten Vakuumpumpe 13, welche die zweite Pumpstufe bildet, handelt es sich erfindungsgemäß um ein Drehkolbengebläse (Rootspumpe) oder um eine Wasserringpumpe.The outlet line 7 is connected at a branch 11 to a vacuum line 12 running parallel to it, which likewise leads into the pulsation damper 8 and into which a second vacuum pump 13 is connected. According to the invention, this second vacuum pump 13, which forms the second pump stage, is a rotary lobe blower (root pump) or a water ring pump.

Vom Auslaß 6 der ersten Vakuumpumpe 4 aus gesehen ist hinter der Abzweigung 11 in der Auslaßleitung 7 und der Vakuumleitung 12 jeweils ein Steuerteil 14 bzw. 15 angeordnet, bei dem es sich in beiden Fällen um eine Rückschlagklappe handelt. Dabei öffnet die Rückschlagklappe des Steuerteils 14 zur zweiten Vakuumpumpe 13 und die Rückschlagklappe des Steuerteils 15 zum Pulsationsdämpfer 8 hin.From the outlet 6 of the first vacuum pump 4, a control part 14 and 15 is arranged behind the branch 11 in the outlet line 7 and the vacuum line 12, which is a non-return valve in both cases. The non-return flap of the control part 14 opens to the second vacuum pump 13 and the non-return flap of the control part 15 to the pulsation damper 8.

Der zweiten Vakuumpumpe 13 ist ein Bypass 16 mit einem Sperrventil 17 zugeordnet. Dieser Bypass 16 vermag ihren Ausgang mit der Vakuumleitung 12 zu verbinden und ermöglicht es deshalb, daß die zweite Vakuumpumpe 13 kurzgeschlossen und deshalb mit geringem Energiebedarf im Leerlauf unter atmosphärishem Druck arbeiten kann. Die Vakuumleitung 12 erlaubt es, beim Anfahren mit der zweiten Vakuumpumpe 13 bei geschlossener Drossel 5 die erste Vakuumpumpe 4 und die entsprechenden Leitungen zu evakuieren. Dadurch kann die als Radialgebläse ausgebildete Vakuumpumpe 4 im Leerlauf ohne Saugvermögen und Druckdifferenz im Unterdruck bei minimalster Energieaufnahme arbeiten.A bypass 16 with a check valve 17 is assigned to the second vacuum pump 13. This bypass 16 is able to connect its output to the vacuum line 12 and therefore enables the second vacuum pump 13 to be short-circuited and therefore work with low energy consumption when idling under atmospheric pressure. The vacuum line 12 allows the first vacuum pump 4 and the corresponding lines to be evacuated when the second vacuum pump 13 starts up with the throttle 5 closed. As a result, the vacuum pump 4, which is designed as a radial fan, can operate at idle speed without suction and pressure difference in negative pressure with minimal energy consumption.

Von der Vakuumleitung 12 kann eine strichpunktiert dargestellte Saugleitung 18 zur Ansaugleitung 2 vor die Drossel 5 führen. In diese Saugleitung 18 ist eine Rückschlagklappe 19 geschaltet, welche zur zweiten Vakuumpumpe 13 hin öffnet. Eine solche Saugleitung 18 ermöglicht einen Parallelbetrieb der ersten und zweiten Vakuumpumpe 4, 13, was vorteilhaft ist, wenn zu Beginn der Absaugphase aus dem Behälter 1 ein großes Volumen abgesaugt werden muß, insbesondere wenn dann in ihm Normaldruck herrscht. Voraussetzung für einen solchen Parallelbetrieb ist, daß das Steuerteil 14 motorisch betätigbar ist, so daß es nicht infolge des von der zweiten Vakuumpumpe 13 erzeugten Unterdrucks von selbst öffnet, weil dann die zweite Vakuumpumpe 13 an beiden Seiten der ersten Vakuumpumpe 4 ansaugen würde.From the vacuum line 12, a suction line 18 shown in broken lines can lead to the suction line 2 in front of the throttle 5. In this suction line 18, a check valve 19 is connected, which opens to the second vacuum pump 13. Such a suction line 18 enables parallel operation of the first and second vacuum pumps 4, 13, which is advantageous if a large volume has to be extracted from the container 1 at the beginning of the suction phase, in particular if there is normal pressure in it. A prerequisite for such a parallel operation is that the control part 14 can be actuated by a motor, so that it does not open automatically as a result of the negative pressure generated by the second vacuum pump 13, because then the second vacuum pump 13 would suck on both sides of the first vacuum pump 4.

Wenn schon zu Beginn des Absaugens des Behälters 1 in diesem ein relativ geringer Druck herrscht, beispielsweise 700 mbar, dann kann man zur Vereinfachung des Pumpstandes auf diese Saugleitung 18 verzichten.If there is already a relatively low pressure in the container 1 at the beginning of the suction, for example 700 mbar, then this suction line 18 can be dispensed with in order to simplify the pumping station.

Zu Beginn des Absaugens des Behälters 1 arbeiten die erste Vakuumpumpe 4 und die zweite Vakuumpumpe 13 parallel zueinander, so daß über die Ansaugleitung 2 und die Saugleitung 18 Gas über den Pulsationsdämpfer 8 zum Auslaß 10 gefördert wird. Wenn die von der ersten Vakuumpumpe 4 geförderte Gasmenge kleiner wird als das von der zweiten Vakuumpumpe 13 mögliche Fördervolumen, dann saugt die zweite Vakuumpumpe 13 über die Vakuumleitung 12 den am Auslaß 6 der ersten Vakuumpumpe 13 anfallenden Volumenstrom ab.At the beginning of the suction of the container 1, the first vacuum pump 4 and the second vacuum pump 13 work in parallel with one another, so that gas is conveyed via the suction line 2 and the suction line 18 via the pulsation damper 8 to the outlet 10. If the amount of gas delivered by the first vacuum pump 4 becomes smaller than the delivery volume possible by the second vacuum pump 13, then the second vacuum pump 13 sucks off the volume flow occurring at the outlet 6 of the first vacuum pump 13 via the vacuum line 12.

BezugszeichenlisteReference list

11
Behältercontainer
22nd
AnsaugleitungSuction pipe
33rd
EinlaßInlet
44th
erste Vakuumpumpefirst vacuum pump
55
regelbare Drosseladjustable throttle
66
AuslaßOutlet
77
AuslaßleitungExhaust pipe
88th
PulsationsdämpferPulsation damper
99
SchalldämpferSilencer
1010th
AuslaßOutlet
1111
AbzweigungJunction
1212th
VakuumleitungVacuum line
1313
zweite Vakuumpumpesecond vacuum pump
1414
SteuerteilControl section
1515
SteuerteilControl section
1616
Bypassbypass
1717th
SperrventilCheck valve
1818th
SaugleitungSuction line
1919th
RückschlagklappeCheck valve
2020th
DrucksensorPressure sensor
2121
DrucksensorPressure sensor

Claims (5)

Vakuum-Pumpstand zum zyklischen Abpumpen eines Behälters und zum Aufrechterhalten eines Betriebsvakuums in dem Behälter, welcher zum Abpumpen des Behälters eine erste und zweite Vakuumpumpe hat, welche hintereinander angeordnet sind und eine erste und eine zweite Pumpstufe bilden, dadurch gekennzeichnet, daß die erste Vakuumpumpe (4) ein Radialgebläse mit einer in ihre Ansaugleitung (2) geschalteten, regelbaren Drossel (5) und die zweite Vakuumpumpe (13) ein Drehkolbengebläse oder eine Wasserringpumpe ist, daß die zweite Vakuumpumpe (13) in eine Vakuumleitung (12) parallel zu einer Auslaßleitung (7) der ersten Vakuumpumpe (4) geschaltet und mit ihrem Eingang an einer Abzweigung (11) mit der Auslaßleitung (7) verbunden ist und daß strömungsmäßig hinter der Abzweigung (11) in der Vakuumleitung (12) und der Auslaßleitung (7) jeweils ein Steuerteil (14, 15) zum Lenken des Fördervolumens bei höheren Drücken von der ersten Vakuumpumpe (4) unmittelbar oder bei geringeren Drücken von der ersten Vakuumpumpe (4) über die zweite Vakuumpumpe (13) zum Auslaß (10) des Vakuum-Pumpstandes angeordnet ist.Vacuum pumping station for cyclically pumping out a container and for maintaining an operating vacuum in the container, which has a first and second vacuum pump for pumping out the container, which are arranged one behind the other and form a first and a second pumping stage, characterized in that the first vacuum pump ( 4) a radial blower with an adjustable throttle (5) connected into its intake line (2) and the second vacuum pump (13) a rotary lobe blower or a water ring pump is that the second vacuum pump (13) into a vacuum line (12) parallel to an outlet line (7) the first vacuum pump (4) switched and connected to its inlet at a branch (11) with the outlet line (7) and that in terms of flow behind the branch (11) in the vacuum line (12) and the outlet line (7) in each case a control part (14, 15) for directing the delivery volume at higher pressures from the first vacuum pump (4) directly or at lower Dr CKEN of the vacuum pump stand is arranged from the first vacuum pump (4) via the second vacuum pump (13) to the outlet (10). Vakuum-Pumpstand nach Anspruch 1, dadurch gekennzeichnet, daß das Steuerteil (15) in der Auslaßleitung (7) als eine zum Auslaß (10) des Vakuum-Pumpstandes hin öffnende Rückschlagklappe und das Steuerteil (14) in der Vakuumleitung (12) als eine zum Einlaß der zweiten Pumpstufe (13) hin öffnende Rückschlagklappe ausgebildet ist.Vacuum pumping station according to claim 1, characterized in that the control part (15) in the outlet line (7) as a non-return valve opening towards the outlet (10) of the vacuum pumping station and the control part (14) in the vacuum line (12) as one to the inlet of the second pump stage (13) opening check valve is formed. Vakuum-Pumpstand nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die der ersten Vakuumpumpe (4) vorgeschaltete, regelbare Drossel (5) ein motorisch betätigbares und bis in Schließstellung bewegbares Klappenventil ist.Vacuum pumping station according to claims 1 or 2, characterized in that the controllable throttle (5) connected upstream of the first vacuum pump (4) is a flap valve which can be actuated by a motor and moved up to the closed position. Vakuum-Pumpstand nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Vakuumpumpe (13) einen ihre Auslaßseite und Einlaßseite miteinander verbindenden Bypass (16) mit einem motorisch betätigbaren Sperrventil (17) hat.Vacuum pumping station according to at least one of the preceding claims, characterized in that the second vacuum pump (13) has a bypass (16) connecting its outlet side and inlet side with a motor-operated shut-off valve (17). Vakuum-Pumpstand nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß von der den Auslaß der ersten Vakuumpumpe (4) mit dem Einlaß der zweiten Vakuumpumpe (13) verbindenden Vakuumleitung (12) eine Saugleitung (18) zur Ansaugleitung (2) der ersten Vakuumpumpe (4) strömungsmäßig bis vor die Drossel (5) führt und das Steuerteil (14) motorisch gesteuert ist.Vacuum pumping station according to at least one of the preceding claims, characterized in that from the vacuum line (12) connecting the outlet of the first vacuum pump (4) to the inlet of the second vacuum pump (13), a suction line (18) to the suction line (2) of the first Vacuum pump (4) flows up to the throttle (5) and the control part (14) is motor-controlled.
EP95116395A 1995-01-13 1995-10-18 Vacuum pumping system Expired - Lifetime EP0723080B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19500823 1995-01-13
DE19500823A DE19500823A1 (en) 1995-01-13 1995-01-13 Vacuum pumping station

Publications (2)

Publication Number Publication Date
EP0723080A1 true EP0723080A1 (en) 1996-07-24
EP0723080B1 EP0723080B1 (en) 1999-09-22

Family

ID=7751409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95116395A Expired - Lifetime EP0723080B1 (en) 1995-01-13 1995-10-18 Vacuum pumping system

Country Status (6)

Country Link
US (1) US5595477A (en)
EP (1) EP0723080B1 (en)
JP (1) JPH08232870A (en)
AT (1) ATE184963T1 (en)
DE (2) DE19500823A1 (en)
ES (1) ES2136232T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630264A1 (en) * 1996-07-26 1998-01-29 Klein Schanzlin & Becker Ag Method for switching devices or machines in a flow system
GB2331126A (en) * 1997-09-22 1999-05-12 Aisin Seiki Multi-stage vacuum pump assembly having pumps connected both in parallel and series.

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE504483C2 (en) * 1995-06-26 1997-02-17 Tetra Laval Holdings & Finance Procedure for controlling the vacuum level in a milking plant and milking plant
DE19524609A1 (en) * 1995-07-06 1997-01-09 Leybold Ag Device for the rapid evacuation of a vacuum chamber
RU2113636C1 (en) * 1997-06-16 1998-06-20 Сергей Анатольевич Попов Pump ejector plant (versions)
DE10018526A1 (en) * 2000-04-13 2001-10-25 Tbs Tech Betr Schmidt Gmbh Coating machine for furniture or structural components has pressure chamber, heat radiator with metal plate, and cover
DE10144210A1 (en) * 2001-09-08 2003-03-27 Sgi Prozess Technik Gmbh pump system
US6589023B2 (en) * 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption
DE10225774C1 (en) * 2002-06-10 2003-12-11 Vacuubrand Gmbh & Co Kg Vacuum pump, for condensing and aggressive gases, is a dry pump with a membrane pump stage and a spiral scroll pump stage
US7021888B2 (en) * 2003-12-16 2006-04-04 Universities Research Association, Inc. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump
GB0418771D0 (en) 2004-08-20 2004-09-22 Boc Group Plc Evacuation of a load lock enclosure
DE102005042451B4 (en) * 2005-09-06 2007-07-26 Vacuubrand Gmbh + Co Kg Vacuum pump device
DE102008009715A1 (en) * 2008-02-19 2009-08-20 Oerlikon Leybold Vacuum Gmbh Vacuum pumping system and use of a multi-stage vacuum pump
KR101012581B1 (en) * 2009-01-19 2011-02-07 김재선 A water pump
ES2731202T3 (en) * 2009-12-24 2019-11-14 Sumitomo Seika Chemicals Double vacuum pump device, gas purification system equipped with a double vacuum pump device and exhaust gas vibration suppression device in a double vacuum pump device
CN101982658B (en) * 2010-09-01 2012-02-15 中国科学院广州地球化学研究所 Small scale/minitype ultrahigh vacuum device
DE102011015464B4 (en) * 2010-11-30 2012-09-06 Von Ardenne Anlagentechnik Gmbh Vacuum pumping device and method for dusty gases
CH706231B1 (en) * 2012-03-05 2016-07-29 Ateliers Busch Sa pumping system and method for controlling such an installation.
FR2998010A1 (en) * 2012-11-09 2014-05-16 Centre Nat Rech Scient PUMPING DEVICE, COMPRISING A SET OF SERIES PUMPS AND A COMMON SWITCHING ELEMENT
GB2510829B (en) * 2013-02-13 2015-09-02 Edwards Ltd Pumping system
DE102013108090A1 (en) * 2013-07-29 2015-01-29 Hella Kgaa Hueck & Co. pump assembly
FR3017425A1 (en) * 2014-02-12 2015-08-14 Adixen Vacuum Products PUMPING SYSTEM AND PRESSING DESCENT METHOD IN LOADING AND UNLOADING SAS
US20160319810A1 (en) * 2015-04-30 2016-11-03 Atlas Copco Comptec, Llc Gas handling system and method for efficiently managing changes in gaseous conditions
CN105545783B (en) * 2016-02-26 2018-07-27 武汉艾德沃泵阀有限公司 Vacuum keeps system
EP3491243A1 (en) * 2016-07-12 2019-06-05 Dr.-ing. K. Busch GmbH Evacuation system
WO2020101973A1 (en) 2018-11-15 2020-05-22 Flowserve Management Company Apparatus and method for evacuating very large volumes
US11815095B2 (en) * 2019-01-10 2023-11-14 Elival Co., Ltd Power saving vacuuming pump system based on complete-bearing-sealing and dry-large-pressure-difference root vacuuming root pumps
US11492020B2 (en) 2020-05-05 2022-11-08 Flowserve Management Company Method of intelligently managing pressure within an evacuated transportation system
US11619231B1 (en) * 2021-12-28 2023-04-04 Elvac Co., Ltd Complete bearing-sealed root vacuum pump system capable of promoting vacuum ability of condenser of power plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922110A (en) * 1974-01-28 1975-11-25 Henry Huse Multi-stage vacuum pump
DE2462187A1 (en) * 1974-06-24 1976-09-02 Siemens Ag Vacuum pump with preceeding side channel ring compressor - drive of ring compressor is controllable by output requirements in terms of revolutions
US4699570A (en) * 1986-03-07 1987-10-13 Itt Industries, Inc Vacuum pump system
US4850806A (en) * 1988-05-24 1989-07-25 The Boc Group, Inc. Controlled by-pass for a booster pump
EP0541989A1 (en) * 1991-11-11 1993-05-19 Balzers-Pfeiffer GmbH Multi-stage vacuum pumping system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1711902A (en) * 1924-11-11 1929-05-07 Neumann Fritz Water-ring pump
US3642384A (en) * 1969-11-19 1972-02-15 Henry Huse Multistage vacuum pumping system
DE2430314C3 (en) * 1974-06-24 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Liquid ring vacuum pump with upstream compressor
US4505647A (en) * 1978-01-26 1985-03-19 Grumman Allied Industries, Inc. Vacuum pumping system
EP0420899A1 (en) * 1988-06-24 1991-04-10 Siemens Aktiengesellschaft Multi-stage vacuum-pump set

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922110A (en) * 1974-01-28 1975-11-25 Henry Huse Multi-stage vacuum pump
DE2462187A1 (en) * 1974-06-24 1976-09-02 Siemens Ag Vacuum pump with preceeding side channel ring compressor - drive of ring compressor is controllable by output requirements in terms of revolutions
US4699570A (en) * 1986-03-07 1987-10-13 Itt Industries, Inc Vacuum pump system
US4850806A (en) * 1988-05-24 1989-07-25 The Boc Group, Inc. Controlled by-pass for a booster pump
EP0541989A1 (en) * 1991-11-11 1993-05-19 Balzers-Pfeiffer GmbH Multi-stage vacuum pumping system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630264A1 (en) * 1996-07-26 1998-01-29 Klein Schanzlin & Becker Ag Method for switching devices or machines in a flow system
GB2331126A (en) * 1997-09-22 1999-05-12 Aisin Seiki Multi-stage vacuum pump assembly having pumps connected both in parallel and series.
US6196810B1 (en) 1997-09-22 2001-03-06 Aisin Seiki Kabushiki Kaisha Multistage vacuum pump assembly
GB2331126B (en) * 1997-09-22 2001-07-25 Aisin Seiki Multistage vacum pump assembly

Also Published As

Publication number Publication date
ATE184963T1 (en) 1999-10-15
DE19500823A1 (en) 1996-07-18
US5595477A (en) 1997-01-21
ES2136232T3 (en) 1999-11-16
DE59506893D1 (en) 1999-10-28
JPH08232870A (en) 1996-09-10
EP0723080B1 (en) 1999-09-22

Similar Documents

Publication Publication Date Title
EP0723080B1 (en) Vacuum pumping system
EP0848981B1 (en) Pressure swing adsorption plant to separate oxygen from the air and process to operate the same
DE60317659T2 (en) VACUUM PUMP AND METHOD FOR PRODUCING UNDERPRESSURE
EP0752531B2 (en) Apparatus for rapid evacuation of a vacuum chamber
DE4213763B4 (en) Process for evacuating a vacuum chamber and a high vacuum chamber, and high vacuum system for carrying it out
EP0847791A1 (en) Pressure swing adsorption plant to seperate oxygen from the air and process to operate the same
DE1628144C3 (en) Suction throttle control device
EP2227636B1 (en) Multi-level membrane suction pump
EP1434896B1 (en) Multi-chamber installation for treating objects under vacuum, method for evacuating said installation and evacuation system therefor
DE4331589C2 (en) Vacuum pumping system
WO2000058629A1 (en) Side channel compressor
EP0972938B1 (en) Gas ballast device for a multistage positive displacement pump
EP0682751B1 (en) Vacuum pump device
EP2419641A2 (en) Roughing pump method for a positive displacement pump
EP1278962B1 (en) Device for delivering moist gases
EP0541989B1 (en) Multi-stage vacuum pumping system
EP1600630B1 (en) Multistage gas compressor and its control method
DE10249062A1 (en) Multi-stage piston vacuum pump and method for its operation
DE2829889A1 (en) Metal foil food packaging method - using deep drawing in successive stages in air tight chambers
WO1990001590A1 (en) Suction waggon for disposal of sludges and liquids
DE19725678A1 (en) Pressure change system for extracting oxygen from the air and method for operating such
DE102004002772A1 (en) Screw compressor refrigeration system has a controlled economizer connection situated between an intermediate pressure separator and the compressor
DE102005016180B4 (en) Method and device on a refrigeration system with several screw compressors
DE20121634U1 (en) Multiple chamber plant used for degassing, coating or etching substrates comprises an evacuating system connected to chambers
CH347296A (en) Device to improve the partial load operation of a turbo compressor system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19961102

17Q First examination report despatched

Effective date: 19980914

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990922

REF Corresponds to:

Ref document number: 184963

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PPS POLYVALENT PATENT SERVICE AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991027

Year of fee payment: 5

Ref country code: IE

Payment date: 19991027

Year of fee payment: 5

REF Corresponds to:

Ref document number: 59506893

Country of ref document: DE

Date of ref document: 19991028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991029

Year of fee payment: 5

Ref country code: AT

Payment date: 19991029

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991103

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19991105

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991115

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2136232

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ITF It: translation for a ep patent filed
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

BERE Be: lapsed

Owner name: SGI-PROZESS-TECHNIK G.M.B.H.

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 95116395.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020910

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020917

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021017

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021217

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051018