EP0722617A1 - Microwave lamp - Google Patents

Microwave lamp

Info

Publication number
EP0722617A1
EP0722617A1 EP95929809A EP95929809A EP0722617A1 EP 0722617 A1 EP0722617 A1 EP 0722617A1 EP 95929809 A EP95929809 A EP 95929809A EP 95929809 A EP95929809 A EP 95929809A EP 0722617 A1 EP0722617 A1 EP 0722617A1
Authority
EP
European Patent Office
Prior art keywords
microwave
lamp
burner
reflector
reflector arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95929809A
Other languages
German (de)
French (fr)
Other versions
EP0722617B1 (en
Inventor
Janusz Teklak
Ingo Susemihl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram SBT GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP95929809A priority Critical patent/EP0722617B1/en
Publication of EP0722617A1 publication Critical patent/EP0722617A1/en
Application granted granted Critical
Publication of EP0722617B1 publication Critical patent/EP0722617B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/02Controlling the distribution of the light emitted by adjustment of elements by movement of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes

Definitions

  • the invention relates to a microwave lamp according to the preamble of claim 1.
  • a microwave lamp of this type is known from publications, e.g. B. from "The Washington Post", October 26, 1994, p. A3.
  • microwave energy generated by a microwave generator is used to excite a mixture of an inert gas and sulfur particles enclosed in a quartz glass ball for plasma formation.
  • this plasma emits radiation which, in the visible region of the spectrum, has a spectral distribution close to that of sunlight, a first property of this type of lamp which is essential for lighting applications.
  • Another of its advantageous properties is that, because of the type of energy conversion from electromagnetic radiation into visible radiation, no electrodes are required in the illuminant, the failure of which in the case of incandescent or fluorescent lamps is known to be one of the causes of a limited service life.
  • the advantage of this type of lamp is the high efficiency with which the energy supplied to the microwave generator is converted into visible radiation.
  • This property means that a microwave lamp forms a radiation-intensive light source, which is also used in particular as a light source for high-performance lights, eg. B. is suitable for spotlights or headlights.
  • the microwave resonator is therefore mechanically sensitive. Changes in shape caused by mechanical action can, however, change its resonator property. In addition, a contactor must also be ensured so that no microwave energy can be emitted as scattered radiation from the resonator chamber.
  • a piston made of a transparent material must therefore be arranged around the microwave resonator, similar to an incandescent lamp.
  • the present invention is therefore based on the object of further developing a microwave lamp of the type mentioned at the outset with simple means in such a way that it can also be used more flexibly and more flexibly than previously possible for lights with narrowly concentrated light emission.
  • this object is achieved according to the invention with the features described in the characterizing part of patent claim 1.
  • the microwave lamp essentially has the rotationally symmetrical light distribution of a point light source, apart from scatter radiation caused by the microwave generator, but in particular also the microwave resonator.
  • the reflector arrangement surrounding the burner forms an element that does not disturb the propagation of the microwaves, but instead reflects radiation in the visible range of the electromagnetic spectrum, and thus bundles this visible radiation transverse to the lamp symmetry axis. If, according to one of the developments of the invention, this reflector arrangement is designed to be rotationally symmetrical with respect to the lamp symmetry axis, then such a reflector arrangement results - in a plane containing the lamp symmetry axis - in a mirror-image symmetrical, butterfly-like light distribution characteristic with respect to this axis.
  • this radiation characteristic is of indisputable advantage because it enables this property to be used to equip luminaires without excessive scattered radiation
  • Favorable geometrical dimensions have a narrowly radiating, concentrated light emission, without the need for a great deal of optical aids in the luminaire itself in order to achieve the desired light distribution characteristic.
  • the solution according to the invention can be implemented using conventional means which are completely mastered in light and microwave technology.
  • Metallic mirror materials usually used predominantly in lighting technology cannot, of course, be used for this reflector arrangement. They would, at least in part inside the Microwave resonator arranged, overheated during lamp operation, thereby destroyed and probably also affecting the microwave resonator itself. This is different with materials such as quartz glass or mica with suitable dielectric layers. As is known per se, these are insensitive to radiation in the microwave range, but can be arranged relative to the burner of the microwave lamp and configured geometrically such that they act as mirror surfaces with respect to the optical radiation emitted by the burner.
  • FIG. 1 shows schematically the construction of a microwave lamp in a known embodiment in connection with a luminaire reflector
  • FIG. 2 shows a microwave lamp designed according to the invention, in which, in comparison to the embodiment according to FIG. 1, a reflector arrangement is additionally integrated in the lamp,
  • FIG. 3 shows a light distribution characteristic of the microwave lamp according to FIGS. 2 and
  • FIGS. 4 to 7 each show an example of different configurations of the reflector arrangement integrated in the microwave lamp and their practical applications in luminaires with different light emission characteristics.
  • a lamp reflector 1 with reflector shells 11, 12 is shown schematically in broken lines in FIG. 1, which are arranged in mirror image symmetry to an axis of symmetry 2, in many cases this lamp reflector 1 is rotationally symmetrical. Its outer edge forms the light outlet opening 3 of the lamp.
  • the known embodiment of a microwave lamp 5 is used in this lamp reflector 1, which is shown for reasons of clarity.
  • Radiation energy in the microwave range is generated in a microwave generator 50, which is fed by AC mains voltage, and is radiated into the interior of a microwave resonator 51.
  • a resonance oscillation in the form of a standing wave is formed with the aid of this microwave resonator 51, so that the radiation energy can be optimally used.
  • a burner 52 is arranged, which is preferably spherical and encloses a cavity in which an inert gas, e.g. B. argon mixed with portions of a material which emits visible radiation in the excited state, is included.
  • an inert gas e.g. B. argon mixed with portions of a material which emits visible radiation in the excited state
  • this material is pure sulfur. With this mixture of materials, it has been found in the known microwave lamp 5 that a plasma forms in the cavity of the burner 52 under the effect of the microwave radiation, the radiation spectrum of which correlates well with the radiation sensitivity of the human eye. This means that the light emitted by this light source appears very natural to humans.
  • the microwave resonator 51 must fulfill a double function in the application of the microwave lamp 5. He must concentrate the microwave radiation on the burner 52 in such a way that the required plasma is formed inside it with a high degree of efficiency, ie the microwave resonator 51 must be impermeable to microwave radiation. On the other hand, however, it should transmit the visible radiation emitted in its interior by the burner 52 as freely as possible to the outside. For this reason, it consists of a filigree metal wire cage which is correspondingly sensitive to mechanical influences. For this reason and also for reasons of radiation safety, protection against accidental contact is required, which, similar to an incandescent lamp, consists of an optically translucent lamp bulb 53.
  • This system-related construction of a microwave lamp is relatively voluminous compared to other conventional high-performance lamps, primarily because of the geometric dimensions of the microwave resonator 51, although the light source itself, ie. H. the burner 52 is quite concentrated.
  • the consequence of this is that, regardless of the individual design of the luminaire reflector 1, its parts near the lamp cannot be brought so directly to the burner 52 emitting the light radiation in order to use the light-directing properties alone the luminaire reflector 1 or its reflector surfaces 11 or 12 to achieve a luminaire with a narrowly focused light distribution characteristic. In FIG. 1, this is indicated by the large radiation angle ⁇ , which is thus geometrically determined.
  • the microwave lamp 5 which is also particularly suitable for applications in the case of spotlights or headlights, ie. H. luminaires with an extremely concentrated light distribution are suitable.
  • suitable light-directing means that is to say reflectors of a luminaire, cannot be brought close enough to the burner 52 of the microwave lamp 5 which is essentially to be regarded as a point light source.
  • additional light-directing means such as lenses or diaphragms, must therefore be used in the known structure of the microwave lamp 5, which increases the flexibility for the use of a microwave lamp in a wide spectrum of luminaires restricted.
  • FIG. 2 shows another embodiment of a microwave lamp 5 with which these disadvantages are eliminated.
  • a lamp reflector in this figure
  • FIG. 2 shows only to the microwave lamp 5 itself.
  • the structure of the microwave lamp 5 initially corresponds to the embodiment described with reference to FIG. 1.
  • Corresponding elements are therefore also designated with the same reference symbols. They therefore do not need to be repeated here either.
  • a reflector arrangement 4 is additionally provided directly near the burner 52 and consists of mirror surfaces 41, 42 which are on both sides of a focal plane 43 are arranged.
  • This focal plane 43 cuts through the burner 52 centrally and lies vertically and transversely to the axis of symmetry 2 of the lamp.
  • the mirror surfaces 41 and 42 are designed in the contour as conical cutting lines, but could also have other contours as long as they open out in a funnel shape.
  • the mirror surfaces 41, 42 can be fixed together with the burner 52 in the interior of the resonator chamber. It is also essential that the material from which they are made is selected with regard to their function.
  • the mirror surfaces 41, 42 should absorb as little energy as possible in the area of the microwave radiation. In addition, they should affect the wave propagation of the microwave radiation in the interior of the microwave resonator 51 as little as possible, and their degree of transmission in this area of the radiation spectrum should therefore be as high as possible. On the other hand, however, their degree of reflection should also be as high as possible in the range of visible radiation so that they can be used as light-directing means. Materials that meet these requirements include quartz glass or mica with corresponding dielectric properties.
  • This reflector arrangement 4, which is fixed near the burner 52, is therefore preferably located in the interior of the microwave resonator 51 and is therefore integrated into the microwave lamp 5 itself. As shown in FIG.
  • the bundling of the radiation emitted by the burner 52 enables a relatively simple light control at the light reflector 1.
  • the light reflector 1 can be designed with all its flexibility with regard to its light-directing function in such a way that all the light emitted by a light is maximal two reflections is emitted.
  • the microwave lamp 5 in which such a reflector arrangement 4 is integrated, it is therefore of only minor importance that the microwave lamp 5 as such and due to the technology used, in its overall dimensions in relation to that The size of the burner 52 is relatively voluminous. This eliminates a major obstacle that previously prevented the use of a microwave lamp in a wide range of applications.
  • a microwave lamp 5 of the type described above can be designed particularly expediently and can also be used with different types of luminaires. Since in these examples above all the different light distributions of luminaires to be achieved with the aid of the reflector arrangement 4 in combination with luminaire reflectors 1 or their reflector surfaces 11, 12 are to be demonstrated, the microwave lamp 5 itself is no longer shown completely in the following figures. but just to clarify it as almost punctiform light source shown burner in connection with the surrounding reflector arrangement 4. In order to clarify the lighting principle, these representations do not use scale scales, but the person skilled in the art knows how to choose the appropriate lighting parameters in the individual application using his lighting technology knowledge in order to optimize the lighting shapes to solve his individual problems Task to arrive.
  • the lamp shown schematically in FIG. 4 in a cross section has a lamp reflector 1 with reflector shells 11 and 12, the outer edges of which delimit the light exit opening 3 in a plane perpendicular to the axis of symmetry 2.
  • the burner 52 and the reflector arrangement 4 of the microwave lamp are shown in a simplified manner.
  • the mirror surfaces 41 and 42 of this reflector arrangement 4 are also formed in this example in the contour as conic section lines. In this embodiment, these are mutually penetrating parabolas, the penetration points of which lie in the axis of symmetry 2, the center of the burner 52 being arranged at the focal point of these parabolas.
  • a double arrow 6 indicates schematically that the microwave lamp 5 — here the reflector arrangement 4 — together with the burner 52 can be arranged displaceably along the axis of symmetry 2 with respect to the lamp reflector 1.
  • the microwave lamp 5 here the reflector arrangement 4 — together with the burner 52 can be arranged displaceably along the axis of symmetry 2 with respect to the lamp reflector 1.
  • various light beams 71 and 72 are shown in FIG. 4 by way of example.
  • the light rays 71 these are light rays of the first type, namely light rays that emanate from the
  • Burner 52 starting directly from the lamp reflector 1, in the example the reflector shell 11, and from there emerge from the luminaire after only one reflection through the light exit opening 3.
  • the light beams 72 represent light beams of the second type which - in relation to the focal plane 43 - emerge from the burner 52 at higher beam angles. These light beams are initially simply reflected on one of the mirror surfaces 41 or 42 of the reflector arrangement 4 and only then strike the lamp reflector 1, here the reflector shell 12, so that after a total of two reflections through the light exit opening 3 of the reflector assembly 12 Exit lamp.
  • the beam path illustrate that the light emerging from the burner 52 is preferably deflected in a direction transverse to the axis of symmetry 2 by the funnel-shaped configuration of the reflector arrangement 4, wherein it is reflected a maximum of once before striking the lamp reflector 1 .
  • all the light emitted by the burner 52 is reflected at most twice before it passes through the light exit opening 3.
  • the cross-sectional shape of the mirror surfaces 41 and 42 of the reflector arrangement 4 created by the penetration of the parabolas ensures that no light can be reflected back into the burner 52 itself.
  • FIG. 5 uses a further example to explain the design options that can be achieved with this design principle of a microwave lamp 5.
  • identical or comparable elements are again identified by the same reference numerals, so that repetitions of the description can be avoided.
  • the contours of the mirror surfaces 41 and 42 of the reflector arrangement 4 are designed as interpenetrating ellipses, the interpenetration points of these conic sections also lying on the axis of symmetry 2 here.
  • the two reflector shells 11 are here or 12 of the lamp reflector 1 pulled apart a little further.
  • This luminaire shape results in a rather narrow light distribution characteristic and is relatively flatter than the luminaire shape according to FIG. 4.
  • FIG. 6 A further possible embodiment is shown in FIG. 6.
  • This example is intended to demonstrate that there are further design options available for the mirror surfaces 41 and 42 of the reflector arrangement 4 of the microwave lamp 5, while maintaining the lighting principle.
  • the mirror surfaces 41, 42 of the reflector arrangement 4 are of mirror-symmetrical design with respect to the focal plane 43, whereas the mirror surfaces 41 and 42 according to the embodiment of FIG. 6 each have a completely different contour. Only the symmetry of the reflector arrangement 4 with respect to the axis of symmetry 2 and the symmetry of the luminaire reflector 1 with respect to this axis are retained.
  • FIG. 7 shows the embodiment described with reference to FIG. 6 again.
  • the two representations of FIGS. 6 and 7 are intended to show, in comparison to one another, how the distribution of the light emitted through the light exit opening 3 changes when the position of the light emitted by the reflector arrangement 4 and the burner 52 is schematically illustrated.
  • striated microwave lamp 5 changes by a longitudinal movement in the direction of the axis of symmetry 2.
  • the reflector arrangement 4 together with the burner 52 is shown drawn deeper into the lamp reflector 1, ie it is at a greater distance from the light exit surface 3 with respect to the same lamp reflector 1.
  • the radiation characteristic of the luminaire changes due to the conical contour of the reflector shells 11 and 12 of the luminaire reflector 1. While according to FIG. 6 there is a more broadly radiating characteristic, the radiation characteristic is according to the arrangement Figure 7 preferably narrow beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

<P>The lighting unit has a main reflector (1) formed from two identical reflector shells (11,2) that are located symmetrically about a centre axis (2). Located within the main reflector is an auxiliary reflector unit (4) that has a pair of surfaces (41,42). The lighting tube (5) is positioned between the surfaces. The auxiliary reflector arrangement and the lighting tube can be moved vertically (6) to vary the effect. The auxiliary reflector provides an indirect lighting effect.

Description

Beschreibungdescription
Mi rowellenlampeMi rowellen lamp
Die Erfindung bezieht sich auf eine Mikrowellenlampe gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a microwave lamp according to the preamble of claim 1.
Eine Mikrowellenlampe dieser Art ist aus Veröffentlichungen, z. B. aus "The Washington Post", 26. Oktober 1994, S. A3 be¬ kannt. Bei diesem Lampentyp wird in an sich bekannter Weise von einem Mikrowellengenerator erzeugte Mikrowellenenergie ausgenutzt, eine in einer Quarzglaskugel eingeschlossene Mi¬ schung aus einem inerten Gas und Schwefelteilchen zur Plasma- bildung anzuregen. In diesem Zustand gibt dieses Plasma ins¬ besondere aufgrund des Schwefelanteiles eine Strahlung ab, die im sichtbaren Bereich des Spektrums eine dem Sonnenlicht nahekommende Spektralverteilung besitzt, eine erste, für lichttechnische Anwendungen wesentliche Eigenschaft dieses Lampentyps. Eine andere seiner vorteilhaften Eigenschaften besteht darin, daß aufgrund der Art der Energieumwandlung von elektromagnetischer Strahlung in sichtbare Strahlung im Leuchtmittel keine Elektroden erforderlich sind, deren Aus¬ fall bei Glüh- oder Leuchtstofflampen bekanntlich eine der Ursachen für eine begrenzte Lebensdauer ist. Ein weitererA microwave lamp of this type is known from publications, e.g. B. from "The Washington Post", October 26, 1994, p. A3. In this type of lamp, in a manner known per se, microwave energy generated by a microwave generator is used to excite a mixture of an inert gas and sulfur particles enclosed in a quartz glass ball for plasma formation. In this state, due to the sulfur content, this plasma emits radiation which, in the visible region of the spectrum, has a spectral distribution close to that of sunlight, a first property of this type of lamp which is essential for lighting applications. Another of its advantageous properties is that, because of the type of energy conversion from electromagnetic radiation into visible radiation, no electrodes are required in the illuminant, the failure of which in the case of incandescent or fluorescent lamps is known to be one of the causes of a limited service life. Another
Vorteil dieses Lampentyps ist der hohe Wirkungsgrad, mit dem die dem Mikrowellengenerator zugeführte Energie in sichtbare Strahlung umgesetzt wird. Gerade diese Eigenschaft bedeutet, daß eine Mikrowellenlampe eine strahlungsintensive Licht- quelle bildet, die insbesondere auch als Leuchtmittel für leistungsstarke Leuchten, z. B. für Strahler oder Scheinwer¬ fer geeignet ist.The advantage of this type of lamp is the high efficiency with which the energy supplied to the microwave generator is converted into visible radiation. This property means that a microwave lamp forms a radiation-intensive light source, which is also used in particular as a light source for high-performance lights, eg. B. is suitable for spotlights or headlights.
Der uneingeschränkten Verwendung dieses Lampentyps, insbeson- dere auch bei solchen Leuchten steht allerdings ein Nachteil entgegen. Um die Füllung der Quarzglaskugel ausreichend ener¬ getisch anzuregen, bedarf es nicht nur eines Mikrowellengene- rators, sondern zusätzlich noch eines Mikrowellenresonators, um die Mikrowellenstrahlung in der Quarzglaskugel zu konzen¬ trieren. Im vorliegenden Anwendungsfall der Mikrowellentech- nik muß dieser Mikrowellenresonator einerseits für Mikrowel- lenstrahlung möglichst gute Reflexionseigenschaften besitzen, andererseits aber im Bereich des sichtbaren Lichtes möglichst verlustlos transmittieren. Der Mikrowellenresonator ist daher als ein filigraner, die Quarzglaskugel in einem solchen Ab¬ stand umgebender Metalldrahtkäfig ausgebildet, daß er durch das auch Infrarotstrahlung emittierende Plasma in der Quarz¬ glaskugel nicht angegriffen wird. Da er zugleich für Licht¬ strahlung möglichst durchlässig sein soll, wird ein möglichst dünner Metalldraht verwendet. Der Mikrowellenresonator ist deshalb mechanisch empfindlich. Durch mechanische Einwirkung hervorgerufene Formänderungen können aber seine Resonatorei¬ genschaft verändern. Außerdem ist ein Berührungsschütz auch schon deshalb sicherzustellen, damit keinerlei Mikrowellen¬ energie als Streustrahlung aus dem Resonatorraum abgestrahlt werden kann. Um den Mikrowellenresonator ist daher, ähnlich wie bei einer Glühlampe, zusätzlich ein Kolben aus einem transparenten Material anzuordnen. Wegen dieser systembeding¬ ten Eigenschaften einer Mikrowellenlampe ist es nicht mög¬ lich, eine der Lichtlenkung dienende Reflektorfläche einer Leuchte geometrisch so nahe an die Lichtquelle heranzusetzen, wie es wünschenswert wäre, um bei relativ kleinen Reflektor¬ abmessungen den Ausstrahlungswinkel der Leuchte so zu begren¬ zen, daß sich eine enge Lichtbündelung ergibt, wie sie insbe¬ sondere für Scheinwerfer oder Strahler gefordert wird, ohne daß zusätzliche optische, Linsen und dergleichen für die Len- kung des abgestrahlten Lichtes eingesetzt werden.The unrestricted use of this type of lamp, especially with such luminaires, however, is a disadvantage. In order to excite the filling of the quartz glass ball sufficiently energetically, it is not only necessary to use a microwave rators, but also a microwave resonator in order to concentrate the microwave radiation in the quartz glass sphere. In the present application of microwave technology, this microwave resonator must on the one hand have the best possible reflection properties for microwave radiation, but on the other hand must transmit as losslessly as possible in the range of visible light. The microwave resonator is therefore designed as a filigree metal wire cage surrounding the quartz glass ball at such a distance that it is not attacked by the plasma in the quartz glass ball, which also emits infrared radiation. Since it should at the same time be as transparent as possible to light radiation, the thinnest possible metal wire is used. The microwave resonator is therefore mechanically sensitive. Changes in shape caused by mechanical action can, however, change its resonator property. In addition, a contactor must also be ensured so that no microwave energy can be emitted as scattered radiation from the resonator chamber. A piston made of a transparent material must therefore be arranged around the microwave resonator, similar to an incandescent lamp. Because of the system-related properties of a microwave lamp, it is not possible to geometrically place a reflector surface of a luminaire for light control as close to the light source as would be desirable in order to limit the radiation angle of the luminaire with relatively small reflector dimensions zen that there is a narrow bundle of light, as is required in particular for headlights or spotlights, without additional optical, lenses and the like are used for the deflection of the emitted light.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Mikrowellenlampe der eingangs genannten Art mit einfa¬ chen Mitteln derart weiterzubilden, daß sie besser als bisher möglich auch für Leuchten mit eng gebündelter Lichtausstrah¬ lung und damit flexibler einsetzbar ist. Bei einer Mikrowellenlampe der eingangs genannten Art wird diese Aufgabe erfindungsge äß mit den im Kennzeichen des Pa¬ tentanspruches 1 beschriebenen Merkmalen gelöst.The present invention is therefore based on the object of further developing a microwave lamp of the type mentioned at the outset with simple means in such a way that it can also be used more flexibly and more flexibly than previously possible for lights with narrowly concentrated light emission. In a microwave lamp of the type mentioned, this object is achieved according to the invention with the features described in the characterizing part of patent claim 1.
Ohne eine solche zusätzliche Reflektoranordnung besitzt die Mikrowellenlampe, sieht man von durch den Mikrowellengenera¬ tor, insbesondere aber auch den Mikrowellenresonator hervor¬ gerufener Streustrahlung ab, im wesentlichen die rotations¬ symmetrische Lichtverteilung einer Punktlichtquelle. Die den Brenner umgebende Reflektoranordnung aber bildet ein die Aus¬ breitung der Mikrowellen nicht störendes, Strahlung im sicht¬ baren Bereich des elektromagnetischen Spektrums dagegen re¬ flektierendes Element, das somit diese sichtbare Strahlung quer zur Lampensymmetrieachse bündelt. Ist diese Reflektoran- Ordnung gemäß einer der Weiterbildungen der Erfindung bezüg¬ lich der Lampensymmetrieachse rotationssymmetrisch ausgebil¬ det, so ergibt sich aufgrund einer solchen Reflektoranordnung - in einer die Lampensymmetrieachse enthaltenden Ebene - eine zu dieser Achse spiegelbildlich symmetrische, schmetterlings- artige Lichtverteilungscharakteristik. Für einen breiten An¬ wendungsbereich dieses Lampentyps, der ja insbesondere auch dort einsetzbar ist, wo leistungsstarke Lichtquellen benötigt werden, ist diese Abstrahlungscharakteristik von unbestreit¬ barem Vorteil, weil es diese Eigenschaft ermöglicht, ohne un- zulässig hohe Streustrahlung Leuchten damit auszurüsten, die bei günstigen geometrischen Abmessungen eine eng strahlende, gebündelte Lichtausstrahlung besitzen, ohne daß ein hoher Aufwand an optischen Hilfsmitteln in der Leuchte selbst er¬ forderlich ist, um die gewünschte Lichtverteilungscharakteri- stik zu erzielen.Without such an additional reflector arrangement, the microwave lamp essentially has the rotationally symmetrical light distribution of a point light source, apart from scatter radiation caused by the microwave generator, but in particular also the microwave resonator. The reflector arrangement surrounding the burner, however, forms an element that does not disturb the propagation of the microwaves, but instead reflects radiation in the visible range of the electromagnetic spectrum, and thus bundles this visible radiation transverse to the lamp symmetry axis. If, according to one of the developments of the invention, this reflector arrangement is designed to be rotationally symmetrical with respect to the lamp symmetry axis, then such a reflector arrangement results - in a plane containing the lamp symmetry axis - in a mirror-image symmetrical, butterfly-like light distribution characteristic with respect to this axis. For a wide range of applications of this type of lamp, which can also be used wherever powerful light sources are required, this radiation characteristic is of indisputable advantage because it enables this property to be used to equip luminaires without excessive scattered radiation Favorable geometrical dimensions have a narrowly radiating, concentrated light emission, without the need for a great deal of optical aids in the luminaire itself in order to achieve the desired light distribution characteristic.
Technologisch betrachtet, ist die erfindungsgemäße Lösung mit herkömmlichen, in der Licht- und Mikrowellentechnik durchaus beherrschten Mitteln zu realisieren. Metallische, üblicher- weise in der Lichttechnik überwiegend eingesetzte Spiegelma¬ terialien sind für diese Reflektoranordnung natürlich nicht verwendbar. Sie würden, mindestens teilweise im Innern des Mikrowellenresonators angeordnet, während des Lampenbetriebes überhitzt, dabei zerstört und wohl auch den Mikrowellenreso¬ nator selbst in Mitleidenschaft ziehen. Anders ist dies aber bei Materialien wie Quarzglas oder Glimmer mit geeigneten dielektrischen Schichten. Diese sind - wie an sich bekannt - für Strahlung im Mikrowellenbereich unempfindlich, können aber relativ zum Brenner der Mikrowellenlampe so angeordnet und geometrisch ausgebildet werden, daß sie in bezug auf die vom Brenner emittierte optische Strahlung als Spiegelflächen wirken.From a technological point of view, the solution according to the invention can be implemented using conventional means which are completely mastered in light and microwave technology. Metallic mirror materials usually used predominantly in lighting technology cannot, of course, be used for this reflector arrangement. They would, at least in part inside the Microwave resonator arranged, overheated during lamp operation, thereby destroyed and probably also affecting the microwave resonator itself. This is different with materials such as quartz glass or mica with suitable dielectric layers. As is known per se, these are insensitive to radiation in the microwave range, but can be arranged relative to the burner of the microwave lamp and configured geometrically such that they act as mirror surfaces with respect to the optical radiation emitted by the burner.
Weitere Vorteile beziehungsweise vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus Ausführungsbeispielen, die im folgenden anhand der Zeichnung näher beschrieben werden. Da- bei zeigt:Further advantages or advantageous refinements of the invention result from exemplary embodiments which are described in more detail below with reference to the drawing. This shows:
Figur 1 schematisch den Aufbau einer Mikrowellenlampe in ei¬ ner bekannten Ausführungsform in Verbindung mit einem Leuch¬ tenreflektor,FIG. 1 shows schematically the construction of a microwave lamp in a known embodiment in connection with a luminaire reflector,
Figur 2 eine erfindungsgemäß ausgebildet Mikrowellenlampe, bei der im Vergleich zur Ausführungsform gemäß Figur 1 zu¬ sätzlich eine Reflektoranordnung in die Lampe integriert ist,FIG. 2 shows a microwave lamp designed according to the invention, in which, in comparison to the embodiment according to FIG. 1, a reflector arrangement is additionally integrated in the lamp,
Figur 3 eine Lichtverteilungscharakteristik der Mikrowellen¬ lampe gemäß Figur 2 undFIG. 3 shows a light distribution characteristic of the microwave lamp according to FIGS. 2 and
Figur 4 bis Figur 7 jeweils ein Beispiel für unterschiedliche Ausgestaltungen der in die Mikrowellenlampe integierten Re- flektoranordnung bzw. deren praktische Anwendungen in Leuch¬ ten unterschiedlicher Lichtausstrahlungscharakteristiken.FIGS. 4 to 7 each show an example of different configurations of the reflector arrangement integrated in the microwave lamp and their practical applications in luminaires with different light emission characteristics.
Schematisch ist in Figur 1 ein Leuchtenreflektor 1 mit Re¬ flektorschalen 11, 12 in unterbrochenen Linien dargestellt, die zu einer Symmetrieachse 2 spiegelbildlich symmetrisch an¬ geordnet sind, in vielen Fällen ist dieser Leuchtenreflektor 1 rotationssymmetrisch. Sein äußerer Rand bildet die Licht- ausstrittsöffnung 3 der Leuchte. In diesen, aus Gründen der Klarheit dargestellten Leuchtenreflektor 1 ist die bekannte Ausführungsform einer Mikrowellenlampe 5 eingesetzt. In einem durch Netzwechselspannung gespeisten Mikrowellengenerator 50 wird Strahlungsenergie im Mikrowellenbereich erzeugt und in das Innere eines Mikrowellenresonators 51 abgestrahlt. Wie in der Mikrowellentechnik durchaus üblich, wird mit Hilfe dieses Mikrowellenresonators 51 eine ResonanzSchwingung in Form ei¬ ner stehenden Welle ausgebildet, sodaß die Strahlungsenergie optimal nutzbar ist. Im Bereich eines Schwingungsmaximums dieser Mikrowellenschwingung ist ein Brenner 52 angeordnet, der vorzugsweise kugelförmig ausgebildet ist und einen Hohl¬ raum umschließt, in dem ein inertes Gas, z. B. Argon, ver¬ mischt mit Anteilen eines Materials, das im angeregten Zu- stand sichtbare Strahlung emittiert, eingeschlossen ist. Bei der bekannten Mikrowellenlampe 5 ist dieses Material reiner Schwefel. Bei dieser Materialmischung hat sich bei der be¬ kannten Mikrowellenlampe 5 ergeben, daß sich im Hohlraum des Brenners 52 unter der Wirkung der Mikrowellenstrahlung ein Plasma bildet, dessen Strahlungsspektrum gut mit der Strah¬ lungsempfindlichkeit des menschlichen Auges korreliert. Das bedeutet, daß das von dieser Lichtquelle abgegebene Licht für den Menschen sehr natürlich wirkt.A lamp reflector 1 with reflector shells 11, 12 is shown schematically in broken lines in FIG. 1, which are arranged in mirror image symmetry to an axis of symmetry 2, in many cases this lamp reflector 1 is rotationally symmetrical. Its outer edge forms the light outlet opening 3 of the lamp. The known embodiment of a microwave lamp 5 is used in this lamp reflector 1, which is shown for reasons of clarity. Radiation energy in the microwave range is generated in a microwave generator 50, which is fed by AC mains voltage, and is radiated into the interior of a microwave resonator 51. As is quite common in microwave technology, a resonance oscillation in the form of a standing wave is formed with the aid of this microwave resonator 51, so that the radiation energy can be optimally used. In the area of an oscillation maximum of this microwave oscillation, a burner 52 is arranged, which is preferably spherical and encloses a cavity in which an inert gas, e.g. B. argon mixed with portions of a material which emits visible radiation in the excited state, is included. In the known microwave lamp 5, this material is pure sulfur. With this mixture of materials, it has been found in the known microwave lamp 5 that a plasma forms in the cavity of the burner 52 under the effect of the microwave radiation, the radiation spectrum of which correlates well with the radiation sensitivity of the human eye. This means that the light emitted by this light source appears very natural to humans.
Der Mikrowellenresonator 51 muß in dem Anwendungsfall der Mikrowellenlampe 5 eine Doppelfunktion erfüllen. Er muß die Mikrowellenstrahlung auf den Brenner 52 so konzentrieren, daß sich in dessen Innerem mit hohem Wirkungsgrad das erforderli¬ che Plasma bildet, d. h. der Mikrowellenresonator 51 muß für Mikrowellenstrahlung undurchlässig sein. Andererseits soll er aber die in seinem Innenraum vom Brenner 52 emittierte sicht¬ bare Strahlung möglichst ungehindert nach außen transmittie- ren. Aus diesem Grunde besteht er aus einem filigranen Me¬ talldrahtkäfig, der gegenüber mechanischen Einwirkungen ent- sprechend empfindlich ist. Deshalb und auch aus Gründen der Strahlungssicherheit ist ein Berührungsschutz erforderlich, der ähnlich wie bei einer Glühlampe aus einem optisch durch¬ scheinenden Lampenkolben 53 besteht.The microwave resonator 51 must fulfill a double function in the application of the microwave lamp 5. He must concentrate the microwave radiation on the burner 52 in such a way that the required plasma is formed inside it with a high degree of efficiency, ie the microwave resonator 51 must be impermeable to microwave radiation. On the other hand, however, it should transmit the visible radiation emitted in its interior by the burner 52 as freely as possible to the outside. For this reason, it consists of a filigree metal wire cage which is correspondingly sensitive to mechanical influences. For this reason and also for reasons of radiation safety, protection against accidental contact is required, which, similar to an incandescent lamp, consists of an optically translucent lamp bulb 53.
Dieser systembedingte Aufbau einer Mikrowellenlampe ist im Vergleich zu anderen herkömmlichen leistungsstarken Leucht¬ mitteln vor allem wegen der geometrischen Abmessungen des Mi¬ krowellenresonators 51 relativ voluminös, obwohl die Licht¬ quelle selbst, d. h. der Brenner 52 durchaus konzentriert ist. Wie Figur 1 schematisch andeutet, hat dies zur Folge, daß man ungeachtet der individuellen Ausgestaltung des Leuch¬ tenreflektors 1 gerade dessen lampennahe Teile nicht so un¬ mittelbar an den die Lichtstrahlung emittierenden Brenner 52 heranbringen kann, um allein mit Hilfe der lichtlenkenden Ei¬ genschaften des Leuchtenreflektors 1 bzw. seiner Reflektor- flächen 11 bzw. 12 eine Leuchte mit eng bündelnder Lichtver¬ teilungscharakteristik zu erzielen. In Figur 1 ist dies durch den somit geometrisch bedingten, großen Ausstrahlungswinkel α angedeutet.This system-related construction of a microwave lamp is relatively voluminous compared to other conventional high-performance lamps, primarily because of the geometric dimensions of the microwave resonator 51, although the light source itself, ie. H. the burner 52 is quite concentrated. As schematically indicated in FIG. 1, the consequence of this is that, regardless of the individual design of the luminaire reflector 1, its parts near the lamp cannot be brought so directly to the burner 52 emitting the light radiation in order to use the light-directing properties alone the luminaire reflector 1 or its reflector surfaces 11 or 12 to achieve a luminaire with a narrowly focused light distribution characteristic. In FIG. 1, this is indicated by the large radiation angle α, which is thus geometrically determined.
Einerseits hat man also eine leistungsstarke Lichtquelle in Form der bekannten Mikrowellenlampe 5 zur Verfügung, die sich insbesondere auch deshalb für Anwendungen bei Strahlern oder Scheinwerfern, d. h. also Leuchten mit einer ausgesprochen gebündelten Lichtverteilung eignet. Andererseits aber lassen sich geeignete lichtlenkende Mittel, also Reflektoren einer Leuchte nicht genügend nahe an den im wesentlichen als Punkt¬ lichtquelle zu betrachtenden Brenner 52 der Mikrowellenlampe 5 heranbringen. Für die Bündelung des von einer Leuchte abge¬ strahlten Lichtes müssen bei dem bekannten Aufbau der Mikro- wellenlampe 5 daher zusätzlich weitere lichtlenkende Mittel, wie Linsen oder Blenden eingesetzt werden, was die Flexibili¬ tät für den Einsatz einer Mikrowellenlampe in einem weiten Spektrum von Leuchten einschränkt.On the one hand, there is therefore a powerful light source in the form of the known microwave lamp 5, which is also particularly suitable for applications in the case of spotlights or headlights, ie. H. luminaires with an extremely concentrated light distribution are suitable. On the other hand, however, suitable light-directing means, that is to say reflectors of a luminaire, cannot be brought close enough to the burner 52 of the microwave lamp 5 which is essentially to be regarded as a point light source. For the bundling of the light emitted by a luminaire, additional light-directing means, such as lenses or diaphragms, must therefore be used in the known structure of the microwave lamp 5, which increases the flexibility for the use of a microwave lamp in a wide spectrum of luminaires restricted.
In Figur 2 ist nun eine weitere Ausführungsform einer Mikro¬ wellenlampe 5 dargestellt, mit der diese Nachteile behoben werden. Dabei ist in dieser Figur ein Leuchtenreflektor der Deutlichkeit halber weggelassen und somit verdeutlicht, daß sich die Darstellung von Figur 2 lediglich auf die Mikrowel¬ lenlampe 5 selbst bezieht. Im Prinzip entspricht der Aufbau der Mikrowellenlampe 5 zunächst der anhand von Figur 1 be- schriebenen Ausführungsform. Deshalb sind übereinstimmende Elemente auch mit den gleichen Bezugszeichen bezeichnet. Sie bedürfen daher hier auch nicht einer wiederholten Erläute¬ rung.FIG. 2 shows another embodiment of a microwave lamp 5 with which these disadvantages are eliminated. Here is a lamp reflector in this figure For the sake of clarity, this is omitted and thus clarifies that the illustration in FIG. 2 relates only to the microwave lamp 5 itself. In principle, the structure of the microwave lamp 5 initially corresponds to the embodiment described with reference to FIG. 1. Corresponding elements are therefore also designated with the same reference symbols. They therefore do not need to be repeated here either.
Der wesentliche Unterschied zu der anhand von Figur 1 be¬ schriebenen bekannten Ausführungsform der Mikrowellenlampe 5 besteht nun darin, daß zusätzlich unmittelbar nahe dem Bren¬ ner 52 eine Reflektoranordnung 4 vorgesehen ist, die aus Spiegelflächen 41, 42 besteht, die zu beiden Seiten einer Brennpunktebene 43 angeordnet sind. Diese Brennpunktebene 43 durchschneidet zentral den Brenner 52 und liegt vertikal und quer zur Symmetrieachse 2 der Lampe. Die Spiegelflächen 41 bzw. 42 sind in diesem Beispiel in der Kontur als Kegel¬ schnittlinien ausgebildet, könnten aber auch andere Konturen besitzen, solange sie sich nach außen trichterförmig öffnen. Die Spiegelflächen 41, 42 können gemeinsam mit dem Brenner 52 im Inneren des Resonatorraumes festgelegt sein. Wesentlich ist auch, daß das Material, aus dem sie bestehen, im Hinblick auf ihre Funktion ausgewählt ist. Die Spiegelflächen 41, 42 sollen möglichst wenig Energie im Bereich der Mikrowellen¬ strahlung absorbieren. Darüber hinaus sollen sie die Wellen¬ ausbreitung der Mikrowellenstrahlung im Inneren des Mikrowel¬ lenresonators 51 möglichst wenig beeinträchtigen, ihr Trans¬ missionsgrad in diesem Bereich des Strahlungsspektrums soll daher möglichst hoch liegen. Andererseits aber soll auch ihr Reflexionsgrad im Bereich der sichtbaren Strahlung möglichst hoch liegen, damit sie als lichtlenkende Mittel eingesetzt werden können. Materialien, die diese Voraussetzungen erfül¬ len, sind u. a. Quarzglas oder Glimmer mit entsprechend di- elektrischen Eigenschaften. Diese nahe dem Brenner 52 festgelegte Reflektoranordnung 4 liegt also vorzugsweise im Inneren des Mikrowellenresonators 51 und ist damit in die Mikrowellenlampe 5 selbst integriert. Wie in Figur 3 in dem Diagramm einer Lichtverteilungskurve gezeigt ist, bewirkt sie eine Umlenkung der vom Brenner 52 emittierten sichtbaren Strahlung mit einer Hauptstrahlrich¬ tung quer zur Symmetrieachse 2 der Mikrowellenlampe 5. Zu¬ nächst läßt sich damit bei Leuchten, die mit einer so ausge¬ statteten Mikrowellenlampe 5 ausgerüstet sind, die Ausstrah- lung jedes Direktanteiles der vom Brenner 52 emittiertenThe main difference from the known embodiment of the microwave lamp 5 described with reference to FIG. 1 is that a reflector arrangement 4 is additionally provided directly near the burner 52 and consists of mirror surfaces 41, 42 which are on both sides of a focal plane 43 are arranged. This focal plane 43 cuts through the burner 52 centrally and lies vertically and transversely to the axis of symmetry 2 of the lamp. In this example, the mirror surfaces 41 and 42 are designed in the contour as conical cutting lines, but could also have other contours as long as they open out in a funnel shape. The mirror surfaces 41, 42 can be fixed together with the burner 52 in the interior of the resonator chamber. It is also essential that the material from which they are made is selected with regard to their function. The mirror surfaces 41, 42 should absorb as little energy as possible in the area of the microwave radiation. In addition, they should affect the wave propagation of the microwave radiation in the interior of the microwave resonator 51 as little as possible, and their degree of transmission in this area of the radiation spectrum should therefore be as high as possible. On the other hand, however, their degree of reflection should also be as high as possible in the range of visible radiation so that they can be used as light-directing means. Materials that meet these requirements include quartz glass or mica with corresponding dielectric properties. This reflector arrangement 4, which is fixed near the burner 52, is therefore preferably located in the interior of the microwave resonator 51 and is therefore integrated into the microwave lamp 5 itself. As shown in FIG. 3 in the diagram of a light distribution curve, it causes the visible radiation emitted by the burner 52 to be deflected with a main beam direction transverse to the axis of symmetry 2 of the microwave lamp 5 ¬ equipped microwave lamp 5, the radiation of each direct portion of the emitted by the burner 52
Strahlung praktisch völlig ausschließen. Weiterhin ermöglicht die Bündelung der vom Brenner 52 emittierten Strahlung eine relativ einfache Lichtlenkung an dem Leuchtenreflektor 1. Schließlich läßt sich dann auch der Leuchtenreflektor 1 bei aller Flexibilität hinsichtlich seiner lichtlenkenden Funk¬ tion so ausgestalten, daß alles von einer Leuchte abge¬ strahlte Licht nach maximal zwei Reflexionen ausgestrahlt wird. Damit ist es bei der Ausführungsform der Mikrowellen¬ lampe 5, in die eine derartige Reflektoranordnung 4 inte- griert ist, nur noch von untergeordneter Bedeutung, daß die Mikrowellenlampe 5 als solche und bedingt durch die angewen¬ dete Technologie in ihren Gesamtabmessungen im Verhältnis zu der Größe des Brenners 52 relativ voluminös ist. Damit ist ein Haupthindernis beseitigt, das der Verwendung einer Mikrowellenlampe in einem breiten Anwendungsbereich bisher entgegenstand.Exclude radiation practically completely. Furthermore, the bundling of the radiation emitted by the burner 52 enables a relatively simple light control at the light reflector 1. Finally, the light reflector 1 can be designed with all its flexibility with regard to its light-directing function in such a way that all the light emitted by a light is maximal two reflections is emitted. In the embodiment of the microwave lamp 5, in which such a reflector arrangement 4 is integrated, it is therefore of only minor importance that the microwave lamp 5 as such and due to the technology used, in its overall dimensions in relation to that The size of the burner 52 is relatively voluminous. This eliminates a major obstacle that previously prevented the use of a microwave lamp in a wide range of applications.
Im folgenden soll an einigen Beispielen gezeigt werden, wie sich eine Mikrowellenlampe 5 der vorstehend beschriebenen Art besonders zweckmäßig ausgestalten und auch bei unterschiedli¬ chen Leuchtenformen einsetzen läßt. Da in diesen Beispielen vor allem die mit Hilfe der Reflektoranordnung 4 in Kombina¬ tion mit Leuchtenreflektoren 1 bzw. deren Reflektorflächen 11, 12 zu erzielenden unterschiedlichen Lichtverteilungen von Leuchten demonstriert werden sollen, ist in den nachfolgenden Figuren die Mikrowellenlampe 5 selbst nicht mehr vollständig gezeigt, sondern lediglich ihr zur Verdeutlichung als nahezu punktförmige Lichtquelle gezeichneter Brenner in Verbindung mit der ihn umgebenden Reflektoranordnung 4 dargestellt. Da¬ mit wird in diesen Darstellungen, um das lichttechnische Prinzip zu verdeutlichen, auf Maßstabstreue verzichtet, wobei aber der Fachmann im individuellen Anwendungsfall unter Ver¬ wendung seines lichttechnischen Wissens die entsprechenden Leuchtenparameter zu wählen weiß, um zu optimierten Leuchten¬ formen zur Lösung seiner individuellen Aufgabe zu gelangen.In the following, some examples will show how a microwave lamp 5 of the type described above can be designed particularly expediently and can also be used with different types of luminaires. Since in these examples above all the different light distributions of luminaires to be achieved with the aid of the reflector arrangement 4 in combination with luminaire reflectors 1 or their reflector surfaces 11, 12 are to be demonstrated, the microwave lamp 5 itself is no longer shown completely in the following figures. but just to clarify it as almost punctiform light source shown burner in connection with the surrounding reflector arrangement 4. In order to clarify the lighting principle, these representations do not use scale scales, but the person skilled in the art knows how to choose the appropriate lighting parameters in the individual application using his lighting technology knowledge in order to optimize the lighting shapes to solve his individual problems Task to arrive.
Die in Figur 4 in einem Querschnitt schematisch dargestellte Leuchte besitzt einen Leuchtenreflektor 1 mit Reflektorscha¬ len 11 bzw. 12, deren Außenränder die Lichtaustrittsöffnung 3 in einer zur Symmetrieachse 2 senkrecht stehenden Ebene be¬ grenzen. Im Inneren des Hauptreflektors 1 ist vereinfachend von der Mikrowellenlampe lediglich deren Brenner 52 sowie die Reflektoranordnung 4 dargestellt. Die Spiegelflächen 41 bzw. 42 dieser Reflektoranordnung 4 sind auch in diesem Beispiel in der Kontur als Kegelschnittlinien ausgebildet. Dabei han¬ delt es sich in dieser Ausführungsform um einander durchdrin- gende Parabeln, deren Durchdringungspunkte in der Symmetrie¬ achse 2 liegen, wobei der Mittelpunkt des Brenners 52 im Brennpunkt dieser Parabeln angeordnet ist.The lamp shown schematically in FIG. 4 in a cross section has a lamp reflector 1 with reflector shells 11 and 12, the outer edges of which delimit the light exit opening 3 in a plane perpendicular to the axis of symmetry 2. In the interior of the main reflector 1, only the burner 52 and the reflector arrangement 4 of the microwave lamp are shown in a simplified manner. The mirror surfaces 41 and 42 of this reflector arrangement 4 are also formed in this example in the contour as conic section lines. In this embodiment, these are mutually penetrating parabolas, the penetration points of which lie in the axis of symmetry 2, the center of the burner 52 being arranged at the focal point of these parabolas.
Durch einen Doppelpfeil 6 ist schematisch angedeutet, daß die Mikrowellenlampe 5 - hier die Reflektoranordnung 4 - zusammen mit dem Brenner 52 gegenüber dem Leuchtenreflektor 1 längs der Symmetrieachse 2 verschiebbar angeordnet sein kann. Auf diese Weise ist es möglich, bei ein und derselben Ausgestal¬ tung des Leuchtenreflektors 1 die Lichtverteilungscharakteri- stik der Leuchte zu verändern, wie noch näher gezeigt werden wird. Weiterhin sind zur Erläuterung der lichttechnischen Funktion dieser Leuchtenanordnung in Figur 4 noch verschie¬ dene Lichtstrahlen 71 bzw. 72 beispielhaft eingezeichnet. Im Falle der Lichtstrahlen 71 handelt es sich dabei um Licht- strahlen erster Art, nämlich um Lichtstrahlen, die von demA double arrow 6 indicates schematically that the microwave lamp 5 — here the reflector arrangement 4 — together with the burner 52 can be arranged displaceably along the axis of symmetry 2 with respect to the lamp reflector 1. In this way, it is possible to change the light distribution characteristic of the luminaire with one and the same configuration of the luminaire reflector 1, as will be shown in more detail below. Furthermore, in order to explain the lighting function of this lamp arrangement, various light beams 71 and 72 are shown in FIG. 4 by way of example. In the case of the light rays 71, these are light rays of the first type, namely light rays that emanate from the
Brenner 52 ausgehend unmittelbar auf den Leuchtenreflektor 1, im Beispiel die Reflektorschale 11, auftreffen und von dort nach nur einmaliger Reflexion durch die Lichtaustrittsöffnung 3 aus der Leuchte austreten. Die Lichtstrahlen 72 stellen Lichtstrahlen zweiter Art dar, die - auf die Brennpunktebene 43 bezogen - unter höheren Ausstrahlungswinkeln aus dem Bren- ner 52 austreten. Diese Lichtstrahlen werden zunächst an ei¬ ner der Spiegelflächen 41 bzw. 42 der Reflektoranordnung 4 einfach reflektiert und treffen erst dann auf den Leuchtenre¬ flektor 1, hier die Reflektorschale 12 auf, so daß sie nach insgesamt zweimaliger Reflexion durch die Lichtaustrittsöff- nung 3 der Leuchte austreten.Burner 52 starting directly from the lamp reflector 1, in the example the reflector shell 11, and from there emerge from the luminaire after only one reflection through the light exit opening 3. The light beams 72 represent light beams of the second type which - in relation to the focal plane 43 - emerge from the burner 52 at higher beam angles. These light beams are initially simply reflected on one of the mirror surfaces 41 or 42 of the reflector arrangement 4 and only then strike the lamp reflector 1, here the reflector shell 12, so that after a total of two reflections through the light exit opening 3 of the reflector assembly 12 Exit lamp.
Diese Beispiele für den Strahlenverlauf verdeutlichen, daß das aus dem Brenner 52 austretende Licht durch die trichter¬ förmige Ausgestaltung der Reflektoranordnung 4 vorzugsweise in eine Richtung quer zur Symmetrieachse 2 umgelenkt wird, wobei es vor dem Auftreffen auf den Leuchtenreflektor 1 maxi¬ mal einmal reflektiert wird. Bei entsprechender Gestaltung der Reflektorschalen 11 bzw. 12 wird somit alles von dem Brenner 52 abgestrahlte Licht vor dem Durchtritt durch die Lichtaustrittsöffnung 3 höchstens zweimal reflektiert. Dabei sorgt die durch die Durchdringung der Parabeln geschaffene Querschnittsform der Spiegelflächen 41 bzw. 42 der Reflek¬ toranordnung 4 dafür, daß von dieser selbst kein Licht in den Brenner 52 zurückgestrahlt werden kann.These examples of the beam path illustrate that the light emerging from the burner 52 is preferably deflected in a direction transverse to the axis of symmetry 2 by the funnel-shaped configuration of the reflector arrangement 4, wherein it is reflected a maximum of once before striking the lamp reflector 1 . With a corresponding design of the reflector shells 11 and 12, all the light emitted by the burner 52 is reflected at most twice before it passes through the light exit opening 3. The cross-sectional shape of the mirror surfaces 41 and 42 of the reflector arrangement 4 created by the penetration of the parabolas ensures that no light can be reflected back into the burner 52 itself.
Figur 5 erläutert an einem weiteren Beispiel die Gestaltungs¬ möglichkeiten, die mit diesem Aufbauprinzip einer Mikrowel¬ lenlampe 5 zu erzielen sind. Im Vergleich zu den vorstehend beschriebenen Ausführungsformen sind übereinstimmende bzw. vergleichbare Elemente wieder mit den gleichen Bezugszeichen bezeichnet, so daß Wiederholungen der Beschreibung vermeidbar sind. In diesem Ausführungsbeispiel sind die Spiegelflächen 41 bzw. 42 der Reflektoranordnung 4 in ihrer Kontur als ein¬ ander durchdringende Ellipsen ausgebildet, wobei auch hier die Durchdringungspunkte dieser Kegelschnitte auf der Symme¬ trieachse 2 liegen. In Anpassung an diese Ausgestaltung der Reflektoranordnung 4 sind hier die beiden Reflektorschalen 11 bzw. 12 des Leuchtenreflektors 1 etwas weiter auseinanderge¬ zogen. Insbesondere diese Leuchtenform ergibt eine eher tief strahlende Lichtverteilungscharakteristik und ist im Ver¬ gleich zur Leuchtenform gemäß Figur 4 relativ flacher ausge- bildet.FIG. 5 uses a further example to explain the design options that can be achieved with this design principle of a microwave lamp 5. In comparison to the embodiments described above, identical or comparable elements are again identified by the same reference numerals, so that repetitions of the description can be avoided. In this exemplary embodiment, the contours of the mirror surfaces 41 and 42 of the reflector arrangement 4 are designed as interpenetrating ellipses, the interpenetration points of these conic sections also lying on the axis of symmetry 2 here. In adaptation to this configuration of the reflector arrangement 4, the two reflector shells 11 are here or 12 of the lamp reflector 1 pulled apart a little further. This luminaire shape, in particular, results in a rather narrow light distribution characteristic and is relatively flatter than the luminaire shape according to FIG. 4.
Eine weitere Ausgestaltungsmöglichkeit ist in Figur 6 ge¬ zeigt. Mit diesem Beispiel soll demonstriert werden, daß für die Spiegelflächen 41 bzw. 42 der Reflektoranordnung 4 der Mikrowellenlampe 5, unter Beibehaltung des lichttechnischen Prinzips, weitere Gestaltungsmδglichkeiten zur Verfügung ste¬ hen. In den vorstehend beschriebenen Ausführungsformen sind die Spiegelflächen 41, 42 der Reflektoranordnung 4 bezüglich der Brennpunktebene 43 spiegelbildlich symmetrisch ausgebil- det, dagegen haben die Spiegelflächen 41 bzw. 42 gemäß der Ausführungsform von Figur 6 eine jeweils völlig unterschied¬ liche Kontur. Beibehalten ist lediglich die Symmetrie der Re¬ flektoranordnung 4 bezüglich der Symmetrieachse 2 und auch die Symmetrie des Leuchtenreflektors 1 bezüglich dieser Achse. Dieses Beispiel mit einer Spiegelfläche 41 von angenä¬ hert hyperbolischer Kontur und einer aus geraden Abschnitten zusammengesetzten, dachförmig ausgebildeten Spiegelfläche 42 demonstriert Möglichkeiten der Ausgestaltung der Reflektoran¬ ordnung 4 im Hinblick auf die Geometrie des Brenners 52, wo- bei lediglich einschränkend festzustellen ist, daß sich die Spiegelflächen 41 bzw. 42 bezüglich der Brennpunktebene 43 trichterförmig nach außen öffnen und im Schnittpunkt mit der Syrnmetrieebene 2 einen eindeutigen Umkehrpunkt bilden sollen, so daß eine Retroreflexion des vom Brenner 52 emittierten Lichtes in diesen vermieden wird.A further possible embodiment is shown in FIG. 6. This example is intended to demonstrate that there are further design options available for the mirror surfaces 41 and 42 of the reflector arrangement 4 of the microwave lamp 5, while maintaining the lighting principle. In the above-described embodiments, the mirror surfaces 41, 42 of the reflector arrangement 4 are of mirror-symmetrical design with respect to the focal plane 43, whereas the mirror surfaces 41 and 42 according to the embodiment of FIG. 6 each have a completely different contour. Only the symmetry of the reflector arrangement 4 with respect to the axis of symmetry 2 and the symmetry of the luminaire reflector 1 with respect to this axis are retained. This example with a mirror surface 41 of approximately hyperbolic contour and a roof-shaped mirror surface 42 composed of straight sections demonstrates possibilities for the configuration of the reflector arrangement 4 with regard to the geometry of the burner 52, whereby it can be stated only in a restrictive manner that the mirror surfaces 41 and 42 open outward in a funnel shape with respect to the focal plane 43 and should form a clear reversal point at the intersection with the symmetry plane 2, so that retroreflection of the light emitted by the burner 52 is avoided in the latter.
In Figur 7 ist die anhand von Figur 6 beschriebene Ausfüh¬ rungsform nochmals dargestellt. Die beiden Darstellungen von Figur 6 bzw. 7 sollen im Vergleich zueinander zeigen, wie sich die Verteilung des durch die Lichtaustrittsöffnung 3 ausgestrahlten Lichtes ändert, wenn die Lage der durch die Reflektoranordnung 4 und den Brenner 52 schematisch illu- strierten Mikrowellenlampe 5 durch eine Längsbewegung in Richtung der Symmetrieachse 2 ändert. In Figur 7 ist die Re¬ flektoranordnung 4 samt Brenner 52 tiefer in den Leuchtenre¬ flektor 1 hineingezogen dargestellt, d. h. sie steht damit in bezug auf den gleichen Leuchtenreflektor 1 in einem größeren Abstand von der Lichtaustrittsfläche 3. Diese Lageänderung in der Pfeilrichtung 6' (gemäß Figur 7) verändert die Ausstrah¬ lungscharakteristik der Leuchte aufgrund der Kegelschnittkon¬ tur der Reflektorschalen 11 bzw. 12 des Leuchtenreflektors 1. Während sich gemäß Figur 6 bei der dortigen Anordnung eine eher breit strahlende Charakteristik ergibt, ist die Strah¬ lungscharakteristik der Anordnung gemäß Figur 7 bevorzugt tief strahlend.FIG. 7 shows the embodiment described with reference to FIG. 6 again. The two representations of FIGS. 6 and 7 are intended to show, in comparison to one another, how the distribution of the light emitted through the light exit opening 3 changes when the position of the light emitted by the reflector arrangement 4 and the burner 52 is schematically illustrated. striated microwave lamp 5 changes by a longitudinal movement in the direction of the axis of symmetry 2. In FIG. 7, the reflector arrangement 4 together with the burner 52 is shown drawn deeper into the lamp reflector 1, ie it is at a greater distance from the light exit surface 3 with respect to the same lamp reflector 1. This change in position in the direction of the arrow 6 '( According to FIG. 7), the radiation characteristic of the luminaire changes due to the conical contour of the reflector shells 11 and 12 of the luminaire reflector 1. While according to FIG. 6 there is a more broadly radiating characteristic, the radiation characteristic is according to the arrangement Figure 7 preferably narrow beam.
Die vorstehend erläuterten Ausführungsformen für mit einer Mikrowellenlampe 5 ausgerüsteten Leuchten illustrieren einen weiten Anwendungsbereich für dieses leistungsstarke Leucht¬ mittel, wenn man es zusätzlich mit einer in die Lampe inte¬ grierten Reflektoranordnung 4 ausstattet. Dabei stehen für die Gestaltung dieser Reflektoranordnung 4 durchaus unter¬ schiedliche Lösungsmöglichkeiten zur Verfügung, um die ge¬ wünschte Lichtlenkung insbesondere materialgerecht sowie an die Geometrie des Brenners 52 der Mikrowellenlampe 5 angepaßt zu erreichen. Damit steht dem Leuchtenhersteller ein Leucht- mittel zur Verfügung, das von ihm in einem weiten Anwendungs¬ bereich zweckmäßig und mit einem hohen Wirkungsgrad einge¬ setzt werden kann. The embodiments explained above for lamps equipped with a microwave lamp 5 illustrate a wide range of applications for this powerful lamp when it is additionally equipped with a reflector arrangement 4 integrated into the lamp. There are quite different possible solutions for the design of this reflector arrangement 4 in order to achieve the desired light control, in particular in a material-appropriate manner and adapted to the geometry of the burner 52 of the microwave lamp 5. The luminaire manufacturer is thus provided with a light source that can be used expediently and with a high degree of efficiency in a wide range of applications.

Claims

Patentansprüche claims
1. Mikrowellenlampe mit einem Mikrowellengenerator (50) zum Erzeugen von Mikrowellenstrahlung, einem aus einem Me- talldrahtkäfig gebildeten Mikrowellenresonator (51) zum Bün¬ deln dieser Mikrowellenstrahlung und mit einem innerhalb des Mikrowellengenerators angeordneten abgeschlossenen Brenner (52), gefüllt mit einem inerten Gas sowie einem im angeregten Energiezustand sichtbare Strahlung emittierenden Element, d a d u r c h g e k e n n z e i c h n e t , daß den Brenner (52) umgebend eine sich senkrecht und quer zu einer Symmetrieachse (2) des Mikrowellenresonators (51) erstreckende, vom Brenner (52) nach außen öffnende, optisch wirksame, Mikrowellenstrah¬ lung dagegen transmittierende Reflektoranordnung (4) vorgese- hen ist.1. Microwave lamp with a microwave generator (50) for generating microwave radiation, a microwave resonator (51) formed from a metal wire cage for bundling this microwave radiation and with a closed burner (52) arranged inside the microwave generator, filled with an inert gas and a radiation-emitting element which is visible in the excited energy state, characterized in that the burner (52) surrounds an optically effective microwave beam which extends outwards and extends vertically and transversely to an axis of symmetry (2) of the microwave resonator (51) and which opens outward from the burner (52) on the other hand, a transmitting reflector arrangement (4) is provided.
2. Mikrowellenlampe nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Reflektoranordnung (4) dachförmig ausgebildet, optische Spiegelflächen (41 bzw. 42) aufweist, die - im Querschnitt betrachtet - jeweils dem Bren¬ ner (52) zugekehrte Dachflächen aufweisen und eine ebene bzw. eine als Kegelschnittlinie ausgebildete Kontur besitzen.2. Microwave lamp according to claim 1, dadurchge ¬ indicates that the reflector arrangement (4) is roof-shaped, has optical mirror surfaces (41 and 42) which - viewed in cross section - each have the Bren¬ ner (52) facing roof surfaces and a flat or have a contour designed as a conic section line.
3. Mikrowellenlampe nach Anspruch 2, d a d u r c h g e - k e n n z e i c h n e t , daß die Reflektoranordnung (4) be¬ züglich der Symmetrieachse (2) rotationssymmetrisch ausgebil¬ det ist.3. The microwave lamp as claimed in claim 2, so that the reflector arrangement (4) is designed to be rotationally symmetrical with respect to the axis of symmetry (2).
4. Mikrowellenlampe nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß die Spiegelflächen (41 bzw. 42)der Reflektoranordnung (4) als Kegelschnittflächen ausge¬ bildet sind, die einander in der Symmetrieachse (2) durch¬ dringen und in deren dazu senkrecht ausgerichteten Brenn¬ punktsebene (43) der Brenner (52) angeordnet ist.4. Microwave lamp according to claim 2 or 3, characterized in that the mirror surfaces (41 or 42) of the reflector arrangement (4) are formed as conical surfaces which penetrate each other in the axis of symmetry (2) and in their perpendicularly aligned focal point ¬ point level (43) of the burner (52) is arranged.
5. Mikrowellenlampe nach einem der Ansprüche 1 bis 4, d a - d u r c h g e k e n n z e i c h n e t , daß die Reflektoran¬ ordnung (4) vollständig innerhalb des Mikrowellenresonators (51) angeordnet ist5. microwave lamp according to one of claims 1 to 4, since - characterized in that the reflector arrangement (4) is arranged entirely within the microwave resonator (51)
6. Mikrowellenlampe nach einem der Ansprüche 1 bis 4, d a ¬ d u r c h g e k e n n z e i c h n e t , daß die Reflektoran¬ ordnung (4) seitlich durch den Mikrowellenresonator (51) hin¬ durchreichend ausgebildet ist.6. Microwave lamp according to one of claims 1 to 4, d a ¬ d u r c h g e k e n n z e i c h n e t that the reflector arrangement (4) is formed laterally by the microwave resonator (51) sufficiently.
7. Mikrowellenlampe nach einem der Ansprüche 1 bis 6, d a ¬ d u r c h g e k e n n z e i c h n e t , daß die Reflektoran¬ ordnung (4), mit dem Brenner (52) mechanisch verbunden, im Inneren des Mikrowellenresonators (51) festgelegt ist. 7. Microwave lamp according to one of claims 1 to 6, d a ¬ d u r c h g e k e n n z e i c h n e t that the reflector arrangement (4), mechanically connected to the burner (52), is fixed inside the microwave resonator (51).
EP95929809A 1994-08-09 1995-08-07 Microwave lamp Expired - Lifetime EP0722617B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95929809A EP0722617B1 (en) 1994-08-09 1995-08-07 Microwave lamp

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP94112443A EP0696705B1 (en) 1994-08-09 1994-08-09 Indirect lighting device
EP94112443 1994-08-09
EP95929809A EP0722617B1 (en) 1994-08-09 1995-08-07 Microwave lamp
PCT/EP1995/003133 WO1996005609A1 (en) 1994-08-09 1995-08-07 Microwave lamp

Publications (2)

Publication Number Publication Date
EP0722617A1 true EP0722617A1 (en) 1996-07-24
EP0722617B1 EP0722617B1 (en) 1997-12-17

Family

ID=8216189

Family Applications (2)

Application Number Title Priority Date Filing Date
EP94112443A Expired - Lifetime EP0696705B1 (en) 1994-08-09 1994-08-09 Indirect lighting device
EP95929809A Expired - Lifetime EP0722617B1 (en) 1994-08-09 1995-08-07 Microwave lamp

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP94112443A Expired - Lifetime EP0696705B1 (en) 1994-08-09 1994-08-09 Indirect lighting device

Country Status (4)

Country Link
EP (2) EP0696705B1 (en)
AT (2) ATE144606T1 (en)
DE (2) DE59400919D1 (en)
WO (1) WO1996005609A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105202416A (en) * 2015-09-24 2015-12-30 广东生迪科技有限公司 Angle-adjustable track lamp

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262711B1 (en) 2001-06-01 2008-09-24 Siteco Beleuchtungstechnik GmbH Luminaire and luminaire with an additional housing
AUPS119302A0 (en) * 2002-03-20 2002-04-18 Haines, Christopher Alan A lighting fixture including two reflectors
AU2003209844B2 (en) * 2002-03-20 2007-07-19 Christopher Alan Haines A lighting fixture including two reflectors
IT1396316B1 (en) * 2009-10-06 2012-11-16 Giovine Di PROJECTOR WITH WIDE SPREAD WITH PRELIMINARY LEDS SOURCES.
DE102011090136B4 (en) * 2011-12-29 2013-07-25 Trilux Gmbh & Co. Kg LED light

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH190264A (en) * 1936-09-25 1937-04-15 H Frauenfelder Johann Luminaires for indirect, glare-free room lighting.
JPS62105355A (en) * 1985-10-31 1987-05-15 Mitsubishi Electric Corp Microwave discharge light source device
DE3807584A1 (en) * 1988-03-08 1989-09-21 Stierlen Maquet Ag Surgical luminaire
US5334913A (en) * 1993-01-13 1994-08-02 Fusion Systems Corporation Microwave powered lamp having a non-conductive reflector within the microwave cavity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9605609A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105202416A (en) * 2015-09-24 2015-12-30 广东生迪科技有限公司 Angle-adjustable track lamp

Also Published As

Publication number Publication date
EP0722617B1 (en) 1997-12-17
EP0696705A1 (en) 1996-02-14
ATE144606T1 (en) 1996-11-15
WO1996005609A1 (en) 1996-02-22
DE59501128D1 (en) 1998-01-29
DE59400919D1 (en) 1996-11-28
ATE161359T1 (en) 1998-01-15
EP0696705B1 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
EP0402740B1 (en) Reflector for a lamp and method to determine the shape of a reflector
DE69608044T2 (en) LAMP
DE69231059T2 (en) GLOW LIGHTING DEVICE
DE2144300B2 (en) Lighting arrangement
DE2717773C2 (en)
DE69529679T2 (en) signal system
EP0191264B2 (en) Non-blinding device for large-area lighting fixtures
DE69411647T2 (en) lamp
EP0722617B1 (en) Microwave lamp
EP1132680B1 (en) Luminaire with non homogeneus light radiation
DE1201275B (en) Headlights for illuminating a right-angled area
EP3098504B1 (en) Twisted deep radiator reflectors
DE3150195A1 (en) &#34;REFLECTOR LAMP&#34;
DE3035068A1 (en) ELLIPSOID-SHAPED PISTON FOR A BULB WITH REFLECTION OF INFRARED RADIATION
EP0496921B1 (en) Lamp
DE29817617U1 (en) Fluorescent tube
EP0372272A1 (en) Lighting fixture with a reflecting grid
DE3008773C2 (en) Rear fog lights for automobiles
WO2012103919A1 (en) Illumination device comprising phosphor element and optical system
DE102004020398A1 (en) Dielectric barrier discharge lamp with external electrodes and lighting system with this lamp
DE3438519A1 (en) UV RADIATION DEVICE
DE3125247C2 (en) Luminaire with a tubular fluorescent lamp
AT400886B (en) LAMP
DE102012103272B3 (en) Lamp base for gas discharge lamp
EP1130311B1 (en) Luminaire having a polygonal light emission window and a rectilinear prism structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970127

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BELEUCHTUNGSTECHNIK GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971217

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971217

REF Corresponds to:

Ref document number: 161359

Country of ref document: AT

Date of ref document: 19980115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59501128

Country of ref document: DE

Date of ref document: 19980129

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19971217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS BELEUCHTUNGSTECHNIK GMBH & CO. KG -DANN AN

Ref country code: CH

Ref legal event code: PFA

Free format text: SESVENNA SECHZEHNTE VERWALTUNGSGESELLSCHAFT MBH TRANSFER- SITECO BELEUCHTUNGSTECHNIK GMBH

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SITECO BELEUCHTUNGSTECHNIK GMBH

26N No opposition filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SITECO BELEUCHTUNGSTECHNIK GMBH

NLS Nl: assignments of ep-patents

Owner name: SITECO BELEUCHTUNGSTECHNIK GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020806

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030831

Year of fee payment: 9

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050804

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050811

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050815

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070807