EP0720663B1 - Procede de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnetique de produits metallurgiques galvanises - Google Patents

Procede de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnetique de produits metallurgiques galvanises Download PDF

Info

Publication number
EP0720663B1
EP0720663B1 EP94922281A EP94922281A EP0720663B1 EP 0720663 B1 EP0720663 B1 EP 0720663B1 EP 94922281 A EP94922281 A EP 94922281A EP 94922281 A EP94922281 A EP 94922281A EP 0720663 B1 EP0720663 B1 EP 0720663B1
Authority
EP
European Patent Office
Prior art keywords
enclosure
electroplating
dimensioning
flow
products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94922281A
Other languages
German (de)
English (en)
Other versions
EP0720663A1 (fr
Inventor
José Delot
Gérald Sanchez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sntn-Developpement Sa
Original Assignee
Delot Process SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delot Process SA filed Critical Delot Process SA
Publication of EP0720663A1 publication Critical patent/EP0720663A1/fr
Application granted granted Critical
Publication of EP0720663B1 publication Critical patent/EP0720663B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields

Definitions

  • the present invention relates to a method for dimensioning a galvanizing enclosure provided with a device for magnetic wiping of galvanized metallurgical products, in particular usable within the framework of a continuous galvanizing process.
  • the thickness deposited is then conditioned by that of the liquid film which is drained by the metallurgical product when it is pulled out of the liquid bath, a usable approximation being, in this case, that established by Landau and Levitch in an article referenced Acta Physicochimica USSR Vol 17, n ° 1-2, 1942: "Dragging of a liquid by a moving plate”.
  • patent FR-2 410 247 in the name of JOHN LYSAGHT AUSTRALIA LIMITED a similar device is shown but the geometries are different from those used in the previous patent with, in addition, pulsation frequencies of the magnetic field preferably established around 30 kHz.
  • ARBED described in patent BE-882,069, it is envisaged, among other things, to use a sliding electromagnetic field acting on the excess of liquid metal entrained by a sheet leaving a galvanizing bath.
  • patent DE-2 023 900 in the name of ASEA
  • the set of wiping possibilities outside the galvanizing bath is shown (fixed longitudinal, transverse alternating field or sliding field).
  • the galvanizing enclosure has orifices d 'inlet and outlet aligned with the movement of the products to be treated, the upper level of the covering liquid bath being situated above said orifices; therefore, it is necessary to provide sealing devices responsible for compensating for the hydrostatic pressure which tends, if not, to cause said liquid to flow outside the enclosure.
  • a continuous or alternative magnetic induction of a type generally used for magnetic wiping, can, by an identical physical mechanism, help to retain at least partially the liquid in the enclosure.
  • the present invention relates first of all to a method for dimensioning a galvanizing enclosure provided with at least one sealing and / or wiping device on the side from which the metallurgical products having passed through a liquid covering bath contained in said enclosure, said device preferably being an inducing element arranged for this purpose around an outlet channel of the enclosure to produce a transverse, alternating and sliding electromagnetic field, at the surface of said products, characterized in that it consists in calculating or verifying, mainly from: the transverse dimensions of said enclosure, its axial length, the cross section of said products, their speed, the dynamic viscosity of said covering liquid, its pressure in the enclosure, the transverse dimensions of the outlet channel of the enclosure, the speed of movement of the electrom agnetic sliding and its intensity in said liquid, and finally a parameter representative of the possible roughness of metallurgical products, the conditions for which the lengths of Duvet respectively associated with the flow of the covering liquid in the enclosure and in its outlet channel remain below the critical values beyond which said flows become clearly turbulent.
  • Couette flow is that which characterizes an incompressible and viscous fluid, conductive or not, located between two parallel plates assumed to be infinite, one of which is set in motion parallel to itself; the purpose of Couette's hydrodynamic calculation is to establish the parameters governing the profile of the velocities of the flow between the two plates, complications which can occur depending on the roughness of the surfaces in contact with the fluid; one speaks of a flow in shear.
  • the thickness of the laminar or turbulent boundary layer of the flow at the entrance to the outlet channel of the galvanizing enclosure must be kept below a limit value beyond which it n is no longer possible to control increase.
  • the dimensioning of the sealing and / or wiping device of the galvanizing enclosure can be '' express via dimensionless numbers usual in magnetohydrodynamics, namely the magnetic Reynolds number, the interaction parameter, the Hartmann number as well as two parameters related to the geometry of the sliding alternating magnetic field which is chosen to create the Lorenz magnetic force (s) inside the flow.
  • the solution posed by the invention goes first of all in the direction of a reduction in the length of the galvanizing enclosure which, depending on its transverse dimensions and the speed of the product, must remain less at the hydrodynamic quilt length of the flow.
  • This rule is moreover not contradictory with the conditions notably laid down in patent FR-2 323 772 in the name of Jose DELOT; in this last patent, it is indeed demonstrated that the use of a short galvanizing enclosure and of small volume is sufficient to obtain a correct metallurgical reaction between the product to be treated and the covering liquid, provided that the product to be galvanized has been pickled, heated and maintained in a controlled atmosphere at least upstream of the galvanizing enclosure.
  • the flow in the outlet zone of the galvanizing bath is close to the normally laminar flow which exists at the level the exit of processed products in vertical galvanizing installations; which simply means that the volume Lorenz force, developed in the liquid bath by the sliding alternating field, plays, in fact, a role analogous to gravity.
  • the dimensioning method according to the invention it is known to take into account the roughness of the metallurgical product treated on the nature of the flow and, therefore, on the thickness of coating deposited at the outlet of the galvanizing enclosure.
  • the model chosen to do this is that of Karman-Nikuradzé. This model, widely tested in the field of hydrodynamics, makes it possible to know, in particular by means of abacuses, the coefficient of friction to be taken into account according to the roughness of the product and the hydraulic Reynolds number of the flow.
  • the galvanizing enclosure 1 shown in the appended figure comprises two inlet 2 and outlet 3 orifices aligned with the passage of a metallurgical product 4 to be galvanized; this product 4 is, in the example chosen, a smooth steel wire or a concrete iron, therefore having notches distributed more or less regularly along its surface.
  • the enclosure 1 is arranged horizontally, downstream from a set of pickling and heating devices, for example by induction, and downstream from a cooling device, for example with water, these different units conventional post- and pre-treatment are not illustrated in the drawings so as not to obscure the representation of the means of galvanization and wiping which is discussed here.
  • the galvanizing enclosure 1 is intended to contain a liquid bath of a coating product, preferably a molten metal alloy such as zinc, copper, aluminum and their usual alloys (the bath can therefore also contain small proportions of lead, etc. ).
  • a liquid bath of a coating product preferably a molten metal alloy such as zinc, copper, aluminum and their usual alloys (the bath can therefore also contain small proportions of lead, etc. ).
  • the inlet 2 and outlet 3 orifices of the enclosure 1 must be provided with sealing means preventing the liquid bath from leaking through said orifices 2, 3; in the case described here of substantially cylindrical metallurgical products 4, it is chosen to use polyphase inductor windings 5, 6, which are respectively arranged around inlet 7 and outlet 8 channels of the enclosure 1 to generate, in the manner of synchronous linear motors, a magnetic back pressure on the conductive liquid product tending to flow by inertia through said channels inlet 7 and outlet 8; the transverse dimensions of these latter channels 7, 8 are calculated as a function of
  • a supply channel 9, here vertical connects a reserve of liquid product to said enclosure 1; so that the hydrodynamic disturbances resulting from this contribution are as low as possible, we opt, according to an advantageous characteristic of the invention, for a central position of the mouth of said supply channel 9 with respect to the two inlet 7 and outlet 8 channels of the enclosure 1.
  • an equilibrium channel 10 has also been arranged, placed vertically at a central position corresponding for example to that of the feed channel 9, and into which the covering liquid product is introduced over a height, the measurement of which enables the isostatic pressure of the galvanizing bath to be known with precision; in addition, the free surface of the liquid column of the bath located in the equilibrium channel 10 is normally in contact with a protective gas, the pressure of which can, if necessary, be modified by conventional compression means.
  • the entire galvanizing installation is preferably maintained under a controlled, neutral or slightly reducing atmosphere, for metallurgical reasons which are moreover perfectly known to those skilled in the art.
  • the transition zone 11 between the central zone of the enclosure 1 and its outlet channel 7 is a converging nozzle, which makes it possible to limit the risks of turbulence of the liquid product flowing at this level from said enclosure 1.
  • the problem arises first of all in dimensioning the polyphase inductor winding 6 for the outlet so that a seal can exist at the outlet orifice 3 of the enclosure 1, then in dimensioning the all the other parameters of the installation to obtain the desired wiping.
  • the sealing problem requires knowing, as defined above, the total hydrodynamic pressure exerted up to the equilibrium meniscus (or free surface) of the covering liquid in the outlet channel 8 of the enclosure 1; knowledge of the total pressure then makes it possible to calculate the Lorenz volume force which is necessary to maintain the free surface of the covering liquid at a certain level of the outlet channel 8 of said enclosure 1, according to the principles set out above.
  • the transverse dimensions of the enclosure 1 are normally small compared to the transverse dimension of the metallurgical product 4 to be treated, it is necessary to treat the liquid flow in the enclosure 1 as an axisymmetric quilt flow, establishing itself in the annular space between the product 4 and the internal walls of said enclosure 1.
  • the similarity rules applicable in the matter thus show that this annular flow is similar to the flow of the same liquid between two flat plates four times apart the value of the annular space (which will be shown later), one of the two plates moving exactly at the speed of the metallurgical product 4 which passes through the galvanizing enclosure 1.
  • these two partial drive pressures are calculated from similar quilt flows taking into account the length of the central zone of the enclosure 1, the length of the outlet channel 8 on which the zinc penetrates. , as well as pressure losses per unit of length in said central zone and, respectively, in said outlet channel 8 of enclosure 1.
  • the choice of the length of the enclosure conditions the behavior of the liquid flow in the vicinity of the metallurgical product 4: laminar, slightly turbulent or turbulent.
  • the calculation consists in choosing a length of enclosure 1 a priori, which is checked a posteriori that it is less than the length of the critical quilt in the enclosure 1.
  • the length to be taken into account is , in fact, the half length L c of the enclosure, taken here equal to 25 centimeters.
  • the pressure drop per unit length is conventionally related to the friction force per unit area.
  • this relationship is expressed simply as a function of the hydraulic diameter of the annular space comprised between the metallurgical product 4 and the internal walls of said enclosure 1, of the volume density of the liquid of overlap, of the square of the flow velocity and of a pressure drop coefficient, itself proportional to an overall friction coefficient depending on the roughness of the surfaces and the Reynolds number characterizing the flow, c ' that is to say, finally, of the wall law in the vicinity of the metallurgical product 4.
  • the galvanizing enclosure 1 is almost everywhere cylindrical and has a substantially constant diameter T c which, in the numerical examples developed below, will be taken to be 40 millimeters.
  • the diameter of the metallurgical product 4 is, for its part, taken equal to 10 millimeters, which gives an annular space e c equal to 15 millimeters, and a hydraulic diameter D He of 60 millimeters in the central zone of the enclosure 1.
  • This partial pressure P i is equal to the length L i of zinc in channel 8 multiplied by the coefficient of pressure drop in the flow in said channel 8.
  • the hydraulic Reynolds number R ei is calculated as a function of the hydraulic diameter D Hi of the annular conduit between the metallurgical product 4 and the walls of the outlet channel 8, the diameter T f of which is equal to 16 millimeters, this which gives an annular space e i equal to 3 millimeters and, therefore, D Hi equal to 12 millimeters. Under these conditions, R ei is worth approximately 24,000.
  • the magnetic pressure P m is equal to the product of the electrical conductivity of zinc at the temperature considered, the square of the effective induction B eff , the length L i on which the field acts and a coefficient V m taking into account the geometry of inductor 6. If we choose a polar half-step equal to 7 centimeters and an excitation frequency of 50 Hz - these two values providing the speed of axial displacement of the sliding magnetic field, also called drift speed -, l 'effective induction B eff being chosen to be equal to 0.07 Teslas, there is the magnetic pressure gradient necessary to maintain the zinc bubble in the galvanizing enclosure 1, ie 87,000 N / m 3 .
  • This model takes into account, by a complex formula that can be found on the reference mentioned above: the surface tension of the liquid (here zinc molten at 450 ° C), its turbulent dynamic viscosity (itself proportional to the coefficient of friction global C Fi ), the speed V b of the product 4 and the intensity of the volume forces developed in the zinc, which we have just calculated for the sealing problem.
  • This effective magnetic wiping length is defined as the residual length of the outlet channel 8, located behind the equilibrium meniscus of the galvanizing bath, and on which the magnetic field transverse sliding is always likely to act.
  • the possibilities of adjusting the thickness at this level are however reduced since all the characteristics of the enclosure 1 and of the inductor 6 are already fixed.
  • the calculation of the thinning of the liquid film up to the downstream end of the outlet channel 8 can be carried out by calculating the "free surface” flow of the liquid film on the surface of the rough metallurgical product 4. In fact , we see that this thinning remains negligible in most cases.
  • a generally correct practical approximation therefore consists, in the calculation of wiping, of only taking into account the thickness of the liquid film given by the Landau and Levitch model.
  • the dimensioning of a galavanization enclosure 1 and of its output inductor 6 depends first of all on the dimensions and the possible roughness of the metallurgical products 4 to be coated with the chosen molten metallic material.
  • the geometry of the inductor 6 is then established so that, near the surface of the products 4, the magnetic field created is transverse and sliding. We then seek, for a wide range of running speed V b of the products 4 through the enclosure 1, the frequency, the pole pitch and the intensity of the effective induction B eff which should be taken to balance the pressures under the first half of the inductor 6.
  • an additional dimensioning rule consists in taking an air gap such that the ratio of the polar half-step to said air gap is not greater than 3; this defines a so-called “housing" coefficient between the effective induction B eff and the induction B 0 created by the inductor winding 6, which is then given by a Byot and Savard law corresponding to the geometry of the coils of the inductor 6.
  • the Landau and Levitch model to calculate the thickness deposited on metallurgical products 4 corresponding to each of the speeds V b chosen. It is also possible to refer, on the same graph, the length L i over which the coating liquid penetrates into the outlet channel 8 of the enclosure 1. Such a graph, corresponding to the example treated above, is given on Figure 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Cookers (AREA)
  • Casings For Electric Apparatus (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

  • La présente invention concerne un procédé de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnétique de produits métallurgiques galvanisés, notamment utilisable dans le cadre d'un procédé de galvanisation en continu.
  • On sait, par les résultats classiques de l'hydrodynamique, que les forces d'inertie (pesanteur principalement) et les forces de frottement (viscosité, influence de la nature de la paroi) gouvernent totalement l'évolution de l'écoulement d'un liquide de revêtement au voisinage de la surface d'un produit métallurgique à recouvrir.
  • Or, dans des conditions de réactivité données que l'on négligera par la suite pour ce qui concerne l'objet de l'invention, l'évolution de l'écoulement dans la zone proche dudit produit conditionne grandement l'épaisseur finalement déposée sur ce dernier.
  • A cet égard, l'établissement d'un écoulement laminaire paraît a priori souhaitable en ce sens qu'il permet, dans l'approximation usuelle de la couche limite, de relier par des lois simples et connues les grandeurs physiques caractéristiques de l'écoulement, à savoir le profil des vitesses par rapport à la surface du produit métallurgique, lui-même entraîné à une vitesse constante, la viscosité dynamique du liquide de recouvrement, sa densité et la tension superficielle entre ledit produit métallurgique et ledit liquide (paramètres de mouillabilité). L'épaisseur déposée est alors conditionnée par celle du film liquide qui est drainé par le produit métallurgique lorsqu'on le tire hors du bain liquide, une approximation utilisable étant, dans ce cas, celle établie par Landau et Levitch dans un article référencé Acta Physicochimica URSS Vol 17, n°1-2, 1942 : "Dragging of a liquid by a moving plate".
  • Or, dans ce cas laminaire idéal, l'épaisseur obtenue est souvent trop importante pour les applications de galvanisation souhaitées ; c'est pourquoi on a imaginé diverses formes d'essuyage, c'est-à-dire de réduction de l'épaisseur déposée et, principalement, on a proposé des techniques d'essuyage pneumatique (action de lames d'air formant une contre-pression sur la surface libre du produit métallurgique émergeant du bain liquide), des techniques d'essuyage mécanique (action de rouleaux venant "lécher" le produit métallurgique au moyen de tampons en amiante) et, enfin, des techniques d'essuyage magnétique, la présente invention relevant de cette dernière catégorie.
  • Il existe à ce jour un nombre très important de dispositifs antérieurs d'essuyage magnétique. Cette dernière technique préconise d'utiliser la force de Lorenz qui peut être développée dans le liquide de recouvrement par un champ magnétique, statique ou alternatif, fixe ou glissant, du fait de la présence des courants électriques induits dans ledit liquide (évidemment conducteur lorsqu'il s'agit de zinc, de cuivre ou d'aluminium) par le déplacement relatif dudit liquide et dudit champ. Dans tous les cas qui seront discutés par la suite, la force de Lorenz est censée s'opposer aux forces d'inertie et de viscosité agissant sur l'écoulement, pour autant bien sur qu'elle soit suffisamment intense pour modifier le profil des vitesses à proximité de la surface du produit métallurgique. On comprend donc qu'il soit a priori possible d'agir par un champ magnétique sur l'épaisseur de la couche limite, que ce soit d'ailleurs :
    • dans le bain liquide de recouvrement, avant la sortie du produit métallurgique, l'action du champ venant contrebalancer directement les forces d'inertie, en se soustrayant principalement à la pesanteur,
    • hors du bain, l'action du champ se faisant sentir uniquement sur le film liquide entraîné,
    • ou encore par combinaison de ces deux effets.
  • A cet égard, les techniques connues sous les noms respectifs des sociétés les ayant développées, à savoir ASEA, ARBED, AUSTRALIAN WIRE et LYSAGHT, montrent des exemples de réalisation couvrant à peu près l'ensemble des techniques mises en oeuvre à ce jour. Par exemple, dans le brevet FR-2 412 109 au nom de AUSTRALIAN WIRE IND PROPRIETARY, il est préconisé d'employer un champ électromagnétique monophasé fixe, c'est-à-dire non glissant, dont on fait varier soit l'intensité soit la fréquence pour régler l'épaisseur déposée. Dans le brevet FR-2 410 247 au nom de JOHN LYSAGHT AUSTRALIA LIMITED, un dispositif analogue est montré mais les géométries sont différentes de celles utilisées dans le brevet précédent avec, en outre, des fréquences de pulsation du champ magnétique préférentiellement établies autour de 30 kHz. Dans la technique antérieure ARBED, décrite dans le brevet BE-882 069, il est envisagé entre autre d'utiliser un champ électromagnétique glissant agissant sur l'excédent de métal liquide entraîné par une tôle sortant d'un bain de galvanisation. Enfin, dans le brevet DE-2 023 900 (au nom de ASEA), l'ensemble de possibilités d'essuyage hors du bain de galvanisation est montré (champ alternatif fixe longitudinal, transversal ou champ glissant).
  • Or, les inventeurs se sont aperçus que cette action du champ magnétique n'est sensible, et donc efficacement contrôlable, que dans la mesure où les phénomènes purement hydrodynamiques ne viennent pas masquer les effets d'origine magnétique recherchés. Il est facile de voir que ce point n'est jamais abordé dans aucune des techniques d'essuyage magnétique antérieures et qu'il semble bien, par conséquent, que le problème posé en l'espèce soit tout à fait nouveau.
  • En particulier, dans tous les brevets antérieurs relatifs à l'essuyage magnétique, les produits métallurgiques à recouvrir traversent verticalement un bain de galvanisation dont la surface libre est horizontale ; il n'existe donc, dans ce cas, aucune possibilité pour le liquide de recouvrement de fuir hors de l'enceinte de galvanisation. Cependant, les contraintes nouvelles de l'industrie du traitement des surfaces conduisent à rechercher des solutions d'essuyage magnétique pour une installation de galvanisation en continu telle que décrite dans le brevet FR-2 647 814 au nom de FRANCE GALVA LORRAINE, qui est disposée à l'horizontale ; d'autres réalisations du même genre sont également connues, notamment par les brevets GB-A-777 213 et US-A-2 834 692. On rappelle que, dans ce type d'installations, l'enceinte de galvanisation présente des orifices d'entrée et de sortie alignés sur le défilement des produits à traiter, le niveau supérieur du bain liquide de recouvrement étant situé au-dessus desdits orifices ; de ce fait, il est nécessaire de prévoir des dispositifs d'étanchéité chargés de compenser la pression hydrostatique qui tend, sinon, à faire s'écouler ledit liquide au dehors de l'enceinte. A cet égard, on peut penser qu'une induction magnétique continue ou alternative, d'un type généralement employé pour l'essuyage magnétique, peut, par un mécanisme physique identique, contribuer à retenir au moins partiellement le liquide dans l'enceinte.
  • Or, dans la mesure où un champ alternatif fixe ne développe, par principe, aucune force de nature rotationnelle dans le liquide de recouvrement (à l'inverse d'un champ glissant), une force de Lorenz suffisamment intense pour compenser les forces d'inerties du bain de galvanisation ne peut être générée, avec ce type de champ, que pour une fréquence très élevée et/ou un champ magnétique intense ; ce qui conduit, dans le premier cas, à une épaisseur de peau (profondeur de pénétration du champ dans le liquide conducteur) trop faible pour espérer retenir ledit liquide de recouvrement au voisinage du produit métallurgique et, dans le second cas, à un surdimensionnement coûteux de l'installation. Par conséquent, l'utilisation d'un dispositif d'essuyage magnétique à champ alternatif fixe comme moyen d'étanchéité d'une enceinte de galvanisation horizontale est quasiment exclue.
  • D'un autre côté, on s'est aperçu que les seuls produits métallurgiques pouvant être traités avec les installations d'essuyage magnétique antérieurs sont systématiquement lisses. Or, dans la pratique, les inventeurs ont remis en évidence le rôle substantiel joué par la rugosité de la surface des produits traités, notamment dans le cas d'une non-validité de l'approximation généralement implicitement admise de la laminarité de l'écoulement du liquide de recouvrement au voisinage de ladite surface. A cet égard, dans l'hypothèse où des phénomènes de turbulence hydrodynamique apparaissent, on sait que la rugosité des produits traités intervient d'autant plus que le liquide de recouvrement se situe dans un espace confiné - ce qui est toujours le cas au milieu de l'entrefer ou de l'enroulement d'un système électromagnétique créant l'induction nécessaire au développement d'une force de Lorenz notable dans ledit liquide -.
  • On a enfin observé, en rapport avec la remarque qui précède, que les dimensions transversales et la longueur de l'enceinte de confinement du bain de galvanisation n'étaient pas sans importance du point de vue hydrodynamique. De même, la zone de transition entre le fourreau et le dispositif d'étanchéité et/ou le dispositif d'essuyage magnétique, ainsi que les dimensions transversales et la longueur du canal de sortie autour duquel on crée une induction magnétique chargée de l'étanchéité et/ou de l'essuyage magnétique, jouent un rôle en fait prédominant sur la qualité et l'épaisseur de la couche déposée ; certaines des conditions obtenues sont mêmes contradictoires avec les tendances antérieurement mises en oeuvre dans le cas de la galvanisation de produits lisses.
  • A partir de ces différents constats, la présente invention vise donc :
    • à mettre en évidence le problème nouveau de la réalisation d'un dispositif combiné d'étanchéité et d'essuyage magnétique horizontal, lié à des choix technologiques récents,
    • à proposer diverses solutions pratiques sur le dimensionnement correct dudit dispositif d'essuyage magnétique, en fonction notamment de la géométrie des produits traités, ces solutions étant d'ailleurs également applicables aux installations de galvanisation verticales,
    • à permettre la prévision de l'épaisseur déposée sur des produits substantiellement rugueux (par exemple des fers à béton), ce qui s'avérait impossible jusqu'à présent.
  • A cet effet, la présente invention concerne tout d'abord un procédé de dimensionnement d'une enceinte de galvanisation pourvue d'au moins un dispositif d'étanchéité et/ou d'essuyage du côté d'où ressortent les produits métallurgiques ayant traversé un bain liquide de recouvrement contenu dans ladite enceinte, ledit dispositif étant préférentiellement un élément inducteur agencé à cet effet autour d'un canal de sortie de l'enceinte pour produire un champ électromagnétique transverse, alternatif et glissant, au niveau de la surface desdits produits, caractérisé en ce qu'il consiste à calculer ou à vérifier, à partir principalement : des dimensions transversales de ladite enceinte, de sa longueur axiale, de la section transversale desdits produits, de leur vitesse, de la viscosité dynamique dudit liquide de recouvrement, de sa pression dans l'enceinte, des dimensions transversales du canal de sortie de l'enceinte, de la vitesse de déplacement du champ électromagnétique glissant et de son intensité dans ledit liquide, et enfin d'un paramètre représentatif de la rugosité éventuelle des produits métallurgiques, les conditions pour lesquelles les longueurs de Couette associées respectivement à l'écoulement du liquide de recouvrement dans l'enceinte et dans son canal de sortie restent inférieures aux valeurs critiques au-delà desquelles lesdits écoulements deviennent nettement turbulents.
  • On rappelle qu'un écoulement de Couette est celui qui caractérise un fluide incompressible et visqueux, conducteur ou non, situé entre deux plaques parallèles supposées infinies dont l'une est mise en mouvement parallèlement à elle-même ; l'objet du calcul hydrodynamique de Couette est d'établir les paramètres régissant le profil des vitesses de l'écoulement entre les deux plaques, des complications pouvant intervenir en fonction de la rugosité des surfaces en contact avec le fluide ; on parle d'un écoulement en cisaillement.
  • Les principes de similitude utilisés en mécanique des fluides classique, pour résoudre de manière adimensionnelle des problèmes d'écoulement complexe, montrent que le modèle de Couette est applicable au problème de l'écoulement axisymétrique d'un liquide mis en mouvement dans un espace annulaire dont le noyau se déplace à une vitesse supposée constante. Par conséquent, ce modèle est applicable :
    • d'une part, au calcul du profil des vitesses de l'écoulement du liquide de recouvrement qui est situé entre les parois longitudinales de l'enceinte de galvanisation cylindrique et le produit métallurgique circulant axialement au travers de cette dernière et,
    • d'autre part, au calcul du profil des vitesses de l'écoulement du liquide de recouvrement qui est situé entre les parois du canal de sortie de l'enceinte et ledit produit.
  • Selon l'invention, on s'est aperçu que ces deux écoulements (bien sur continus) conditionnent fortement l'épaisseur de la couche limite, laminaire ou turbulente, qu'il convient de prendre en compte pour calculer l'épaisseur du film liquide entraîné par le produit métallurgique lorsqu'il émerge, à la verticale ou à l'horizontale, hors de la surface libre du bain liquide contenu dans l'enceinte de galvanisation.
  • D'une manière générale, l'épaisseur de la couche limite laminaire ou turbulente de l'écoulement à l'entrée du canal de sortie de l'enceinte de galvanisation doit être maintenue en dessous d'une valeur limite au delà de laquelle il n'est plus possible de contrôler son augmentation. Cet effet résulte directement de ce que, conformément aux résultats établis par la théorie de la magnétohydrodynamique, les champs magnétiques s'amortissent beaucoup plus vite que la vorticité dans les liquides conducteurs ; comme la vorticité, dénommée également vecteur tourbillon, est directement représentative de la turbulence de l'écoulement, on comprend qu'il faille limiter son influence au niveau des zones du liquide de recouvrement où l'on désire faire agir la ou les forces magnétiques de Lorenz. Ainsi, dans le cas favorable où les longueurs de Couette de l'écoulement dans l'enceinte et son canal de sortie sont connues et maîtrisées, le dimensionnement du dispositif d'étanchéité et/ou d'essuyage de l'enceinte de galvanisation peut s'exprimer par l'intermédiaire des nombres sans dimension usuels en magnétohydrodynamique, à savoir le nombre de Reynolds magnétique, le paramètre d'interaction, le nombre de Hartmann ainsi que deux paramètres liés à la géométrie du champ magnétique alternatif glissant qui est choisi pour créer la ou les forces magnétiques de Lorenz à l'intérieur de l'écoulement.
  • A cet égard, la solution posée par l'invention va tout d'abord dans le sens d'une réduction de la longueur de l'enceinte de galvanisation qui, en fonction de ses dimensions transverses et de la vitesse du produit, doit rester inférieure à la longueur de Couette hydrodynamique de l'écoulement. Cette règle n'est d'ailleurs pas contradictoire avec les conditions notamment posées dans le brevet FR-2 323 772 au nom de José DELOT ; dans ce dernier brevet, il est en effet mis en évidence que l'usage d'une enceinte de galvanisation courte et de faible volume est suffisante pour obtenir une réaction métallurgique correcte entre le produit à traiter et le liquide de recouvrement, pour autant que le produit à galvaniser ait été décapé, chauffé et maintenu sous atmosphère contrôlée au moins en amont de l'enceinte de galvanisation.
  • D'un autre côté, puisque le dimensionnement correct de l'enceinte de galvanisation et de son canal de sortie permet essentiellement d'inhiber les conditions d'apparition de la turbulence, l'écoulement dans la zone de sortie du bain de galvanisation est proche de l'écoulement normalement laminaire qui existe au niveau de la sortie des produits traités dans les installations de galvanisation verticales ; ce qui signifie simplement que la force de Lorenz volumique, développée dans le bain liquide par le champ alternatif glissant, joue, en fait, un rôle analogue à la pesanteur. Cette "hypothèse gravitaire" des forces magnétiques de Lorenz, développées dans le bain de galvanisation par l'élément inducteur agencé à cet effet autour du canal de sortie de l'enceinte de galvanisation, permet de considérer que la forme du ménisque formé entre la surface libre du bain et le produit métallurgique qui en est extrait conditionne presque totalement l'épaisseur du revêtement déposé sur ledit produit. Par conséquent, dans les conditions strictes posées par l'invention, cette épaisseur sera donnée par une formule tout à fait analogue à celle utilisée dans le modèle hydrodynamique de Landau et Levitch, dont on a cité plus haut les références.
  • On observera également que, si le ménisque est maintenu suffisamment près de l'entrée du canal de sortie de l'enceinte - ce qui est souhaitable si on veut rester en-deçà de la longueur de Couette correspondant à cette partie de l'enceinte - et que la zone de l'élément inducteur où est généré le champ magnétique glissant est relativement longue, il est encore possible d'agir efficacement sur la réduction de l'épaisseur du film liquide se formant au niveau dudit ménisque. A cet égard, on rappelle que, par principe, les forces d'inertie dues à la pression isostatique du bain liquide dans l'enceinte de galvanisation et à l'effet d'entraînement du produit métallurgique se trouvent compensées dès la sortie du ménisque ; par conséquent, derrière ledit ménisque, les forces volumiques de Lorenz agissent seules sur le film liquide adhérant au produit métallurgique et tendent à amincir ledit film, constituant ainsi un "véritable" essuyage magnétique (c'est-à-dire débarrassé de toute considération relative à l'étanchéité). L'essuyage magnétique dans le canal de sortie de l'enceinte, du moins en aval du ménisque, est donc similaire à l'étude connue de l'amincissement d'un écoulement liquide barotrope dit "à surface libre" (barotrope car l'hypothèse gravitaire demeure valable).
  • Enfin, selon une caractéristique particulièrement avantageuse du procédé de dimensionnement conforme à l'invention, on sait tenir compte de la rugosité du produit métallurgique traité sur la nature de l'écoulement et, donc, sur l'épaisseur de revêtement déposée en sortie de l'enceinte de galvanisation. Préférentiellement, le modèle retenu pour ce faire est celui de Karman-Nikuradzé. Ce modèle, largement éprouvé dans le domaine de l'hydrodynamique, permet de connaître, notamment par le biais d'abaques, le coefficient de frottement à prendre en compte suivant la rugosité du produit et le nombre de Reynolds hydraulique de l'écoulement. Plus généralement, la prise en compte de ce que les hydrodynamiciens appellent la "loi de paroi" (qui dépend proportionnellement à la perte de charge) est essentielle à la connaissance fine de l'écoulement même, d'ailleurs, dans le cas de produits métallurgiques lisses puisque, ainsi qu'on le constatera par la suite, la loi de paroi influence d'une manière considérable sur le comportement de l'écoulement au voisinage immédiat du produit métallurgique à revêtir.
  • D'autres caractéristiques et avantages de la présente invention ressortiront encore de la description qui va suivre d'un exemple de dimensionnement d'une enceinte de galvanisation horizontale, pourvue d'un canal de sortie autour duquel est aménagé un élément inducteur créant un champ alternatif glissant de direction axiale, cette enceinte étant plus particulièrement destinée au traitement de fils lisses ou rugueux tels que des fers à béton, cet exemple non limitatif de l'invention étant illustré sur le dessin annexé sur lequel :
    • la figure 1 est une vue en coupe longitudinale de l'enceinte, de son canal de sortie, de l'élément inducteur, du fil traité,
    • la figure 2 est un graphe donnant, d'une part, l'épaisseur de zinc déposée sur un fer à béton de rugosité et de diamètre donnés en fonction de sa vitesse de défilement au travers de l'enceinte de galvanisation et, d'autre part, la longueur sur laquelle pénètre le zinc fondu à l'intérieur du canal de sortie de ladite enceinte.
  • L'enceinte de galvanisation 1 représentée sur la figure annexée comporte deux orifices d'entrée 2 et de sortie 3 alignés sur le passage d'un produit métallurgique 4 à galvaniser ; ce produit 4 est, dans l'exemple choisi, un fil en acier lisse ou un fer à béton, présentant donc des crantages répartis plus ou moins régulièrement le long de sa surface. L'enceinte 1 est disposée à l'horizontale, en aval d'un ensemble de dispositifs de décapage et de chauffage, par exemple par induction, et en aval d'un dispositif de refroissement, par exemple à l'eau, ces différentes unités classiques de post- et de pré-traitement n'étant pas illustrées sur les dessins afin de ne pas obscurcir la représentation des moyens de galvanisation et d'essuyage dont il est ici question.
  • L'enceinte de galvanisation 1 est destinée à contenir un bain liquide d'un produit de revêtement, préférentiellement un alliage métallique fondu tel que zinc, cuivre, aluminium et leurs alliages habituels (le bain pouvant donc également contenir de faibles proportions de plomb, etc...). Etant disposée à l'horizontale, les orifices d'entrée 2 et de sortie 3 de l'enceinte 1 doivent être pourvus de moyens d'étanchéité interdisant au bain liquide de fuire par lesdits orifices 2, 3 ; dans le cas ici décrit de produits métallurgiques 4 substantiellement cylindriques, on choisit d'employer des enroulements inducteurs polyphasés 5, 6, qui sont respectivement disposés autour des canaux d'entrée 7 et de sortie 8 de l'enceinte 1 pour générer, à la manière de moteurs linéaires synchrones, une contre-pression magnétique sur le produit liquide conducteur ayant tendance à s'écouler par inertie au travers desdits canaux d'entrée 7 et de sortie 8 ; les dimensions transversales de ces derniers canaux 7, 8 sont calculés en fonction du diamètre du produit métallurgique 4, de sa perméabilité magnétique relative (de l'ordre de 20 pour l'acier) et de l'intensité du champ magnétique glissant engendré par la circulation d'un courant électrique dans les bobines des inducteurs 5, 6 pour que, dans l'espace annulaire longitudinal séparant le produit 4 et les parois internes des canaux 7, 8, les lignes du champ magnétique soient subtantiellement transverses au déplacement axial dudit produit 4. Dans le cas du traitement de produits cylindriques à section non circulaires, tels que plats, bandes et autres profilés, on s'efforcera également de créer un champ magnétique transverse glissant au niveau de l'espace annulaire correspondant à la géométrie en question, ce qui est toujours possible à l'aide de feuilletages ou de peignes magnétiques conformant le champ magnétique de la manière souhaitée. En outre, comme on se contentera normalement de produire un champ magnétique glissant de fréquence peu élevée, typiquement inférieure à quelques centaines de herz et préférentiellement égale à 50 herz, les pertes magnétiques occasionnées, par exemple dans les feuilletages magnétiques, demeureront faibles.
  • Etant donné que le processus de galvanisation nécessite un apport permanent de produit liquide de revêtement dans l'enceinte 1, compensant au fur et à mesure celui qui se dépose sur les produits métallurgiques 4 défilant au travers elle, un canal d'alimentation 9, ici vertical, relie une réserve de produit liquide à ladite enceinte 1 ; afin que les perturbations hydrodynamiques résultant de cet apport soient le plus faibles possibles, on opte, selon une caractéristique avantageuse de l'invention, pour une position centrale de l'embouchure dudit canal d'alimentation 9 par rapport aux deux canaux d'entrée 7 et de sortie 8 de l'enceinte 1. Sur l'enceinte de galavanisation 1, on a également aménagé un canal d'équilibre 10, placé verticalement à une position centrale correspondant par exemple à celle du canal d'alimentation 9, et dans lequel le produit liquide de recouvrement s'introduit sur une hauteur dont la mesure permet de connaître avec précision la pression isostatique du bain de galvanisation ; en outre, la surface libre de la colonne liquide du bain se trouvant dans le canal d'équilibre 10 est normalement en contact avec un gaz protecteur dont la pression peut, le cas échéant, être modifiée par des moyens de compression conventionnels. A cet égard, l'ensemble de l'installation de galvanisation est préférentiellement maintenue sous une atmosphère contrôlée, neutre ou légèrement réductrice, pour des raisons métallurgiques par ailleurs parfaitement connues de l'homme de l'art.
  • D'un autre côté, ainsi qu'on la déjà dit plus haut dans la description, la zone de transition 11 entre la zone centrale de l'enceinte 1 et son canal de sortie 7 est une tuyère convergente, ce qui permet de limiter les risques de turbulence du produit liquide s'écoulant à ce niveau de ladite enceinte 1.
  • Selon la présente invention, le problème se pose tout d'abord de dimensionner l'enroulement inducteur polyphasé 6 de sortie pour qu'une étanchéité puisse exister au niveau de l'orifice de sortie 3 de l'enceinte 1, puis de dimensionner l'ensemble des autres paramètres de l'installation permettant d'obtenir l'essuyage souhaité. On abordera maintenant successivement ces deux aspects de l'invention.
  • 1. Problème de l'étanchéité
  • Le problème de l'étanchéité nécessite de connaître, ainsi qu'on l'a défini plus haut, la pression hydrodynamique totale s'exerçant jusqu'au ménisque d'équilibre (ou surface libre) du liquide de recouvrement dans le canal de sortie 8 de l'enceinte 1 ; la connaissance de la pression totale permet ensuite de calculer la force volumique de Lorenz qui est nécessaire au maintien de la surface libre du liquide de recouvrement à un certain niveau du canal de sortie 8 de ladite enceinte 1, selon les principes énoncés plus haut.
  • Comme les dimensions transversales de l'enceinte 1 sont normalement peu importantes par rapport à la dimension transversale du produit métallurgique 4 à traiter, il est nécessaire de traiter l'écoulement liquide dans l'enceinte 1 comme un écoulement de Couette axisymétrique, s'établissant dans l'espace annulaire compris entre le produit 4 et les parois internes de ladite enceinte 1. Les règles de similitude applicables en la matière montrent ainsi que cet écoulement annulaire est similaire à l'écoulement du même liquide entre deux plaques planes distantes de quatre fois la valeur de l'espace annulaire (ce qui sera montré par la suite), l'une des deux plaques se déplaçant exactement à la vitesse du produit métallurgique 4 qui traverse l'enceinte de galvanisation 1.
  • Bien entendu, un calcul de Couette analogue doit aussi être effectué pour connaître les conditions physiques de l'écoulement dans la partie du canal de sortie 8 de l'enceinte 1 où s'introduit le liquide de recouvrement.
  • 1.1 Calcul de la pression totale à compenser pour étancher l'enceinte
  • Cette dernière est la somme des pressions partielles suivantes :
    • la pression partielle isostatique Piso dans la partie centrale de l'enceinte 1, dont la valeur est simplement donnée par le calcul classique d'Archimède, à savoir par le produit de la densité volumique du liquide (zinc fondu), de l'accélération de la pesanteur et de la hauteur de liquide comprise entre les parois de l'enceinte 1 et le produit 4 ; pour une colonne de zinc fondu à 450 °C, et une hauteur de zinc de 2 centimètres, cette première pression partielle vaut 1350 Pa (ou 135 mbars dans les unités usuelles). On notera que la pression d'alimentation de l'enceinte 1, au travers du canal d'alimentation 9, équilibre par contre totalement la contribution due à la hauteur de zinc dans le canal d'équilibre 10.
    • la pression partielle due au dispositif d'étanchéité amont, c'est-à-dire à l'enroulement inducteur polyphasé 5 aménagé autour du canal d'entrée 7 de l'enceinte de galvanisation 1 ; cette pression sera supposée venir juste équilibrer les forces d'inertie à l'orifice d'entrée 2, ce qui est vrai dans tous les cas puisque cette pression aval contribue, de fait, à la hauteur de la colonne du liquide de recouvrement dans le canal d'équilibre 10.
    • la pression partielle Pc qui résulte de l'entraînement du liquide de recouvrement par le produit métallurgique 4 défilant dans la zone centrale de l'enceinte 1.
    • la pression partielle Pi qui résulte de l'entraînement du liquide de recouvrement par le produit métallurgique 4 défilant au travers du canal de sortie de l'enceinte 1.
  • Suivant l'invention, ces deux pressions partielles d'entraînement se calculent à partir des écoulements de Couette similaires en tenant compte de la longueur de la zone centrale de l'enceinte 1, de la longueur du canal de sortie 8 sur laquelle pénètre le zinc, ainsi que des pertes de charge par unité de longueur dans ladite zone centrale et, respectivement, dans ledit canal de sortie 8 de l'enceinte 1.
  • a) longueur de l'enceinte de galvanisation 1 à prendre en compte
  • Le choix de la longueur de l'enceinte conditionne le comportement de l'écoulement liquide au voisinage du produit métallurgique 4 : laminaire, faiblement turbulent ou turbulent. Le calcul consiste à choisir une longueur d'enceinte 1 a priori, dont on vérifie a posteriori qu'elle est inférieure à la longueur de Couette critique dans l'enceinte 1. Suivant la géométrie de l'enceinte 1 représentée sur le dessin, qui est symétrique par rapport à la zone d'alimentation centrale, la longueur à prendre en compte est, en fait, la demie longueur Lc de l'enceinte, prise ici égale à 25 centimètres.
  • b) perte de charge par unité de longueur dans la zone centrale de l'enceinte
  • La perte de charge par unité de longueur est classiquement reliée à la force de frottement par unité de surface. Dans le cas axisymétrique de l'enceinte de galvanisation 1 considérée, cette relation s'exprime simplement en fonction du diamètre hydraulique de l'espace annulaire compris entre le produit métallurgique 4 et les parois internes de ladite enceinte 1, de la densité volumique du liquide de recouvrement, du carré de la vitesse de l'écoulement et d'un coefficient de perte de charge, lui-même proportionnel à un coefficient de frottement global dépendant de la rugosité des surfaces et du nombre de Reynolds caractérisant l'écoulement, c'est-à-dire, finalement, de la loi de paroi au voisinage du produit métallurgique 4.
  • b1) diamètre hydraulique à prendre en compte
  • Une analyse purement hydrodynamique du profil de vitesse d'un écoulement de Couette turbulent entre deux plaques planes permet de se rendre compte assez facilement que le diamètre hydraulique à prendre en compte pour un canal annulaire est égal à quatre fois l'espace annulaire. On remarquera que l'on se place d'office dans le cas d'un écoulement supposé turbulent car un calcul approché du nombre de Reynolds hydraulique au voisinage du produit métallurgique 4, lequel se déplace à assez grande vitesse (à savoir Vb = 1 m/s), montre que le régime de l'écoulement est sûrement turbulent.
  • Typiquement, l'enceinte de galvanisation 1 est presque partout cylindrique et présente un diamètre Tc sensiblement constant qui, dans l'exemples chiffré développé par la suite, sera pris égal à 40 millimètres.
  • Le diamètre du produit métallurgique 4 est, quant à lui, pris égal à 10 millimètres, ce qui donne un espace annulaire ec égal à 15 millimètres, et un diamètre hydraulique DHe de 60 millimètres dans la zone centrale de l'enceinte 1.
  • b2) loi de paroi
  • Dans le cas d'un conduit annulaire de rugosité donnée, où s'établit un écoulement dont on connaît le nombre de Reynolds, on sait que le coefficient de perte de charge est proportionnel à un coefficient de frottement global CF que l'on peut obtenir à l'aide des formules ou des abaques de Karman-Nikuradzé ; ces formules sont également valables pour les parois pleinement lisses.
    • le nombre de Reynolds hydraulique Rec est calculé en fonction du diamètre hydraulique DHc, de la vitesse Vb (qui est un maximum pour la vitesse moyenne de l'écoulement) et de la viscosité cinématique du zinc à la température considérée (de l'ordre de 450°). On trouve Rec = 120 000, ce qui signifie que l'écoulement est bien légèrement turbulent.
    • la rugosité uniforme équivalente de la paroi du produit métallurgique 4 est prise égale à 0,35 millimètres, pour un fer à béton de diamètre égal à 10 millimètres.
    • les abaques de Karman-Nikuradzé fournissent alors un coefficient de frottement global CFc = 0,0083, ce qui permet de calculer le coefficient de perte de charge dans la zone centrale de l'enceinte 1.
    c) pression partielle d'entraînement dans la zone centrale de l'enceinte
  • Cette pression partielle Pc est égale à la demie longueur Lc de l'enceinte multipliée par le coefficient de perte de charge calculé précédemment. On trouve Pc = 190 Pa (ou 19 millibars).
  • d) pression partielle d'entraînement dans la partie du canal de sortie 8 de l'enceinte 1 où pénètre le zinc
  • Cette pression partielle Pi est égale à la longueur Li de zinc dans le canal 8 multipliée par le coefficient de perte de charge de l'écoulement dans ledit canal 8.
  • Le principe du calcul de ce dernier coefficient est identique à ce qui a été détaillé précédemment pour le calcul du coefficient de perte de charge dans la zone centrale de l'enceinte 1, seules différant les valeurs numériques à prendre en compte.
  • A cet égard, le nombre de Reynolds hydraulique Rei est calculé en fonction du diamètre hydraulique DHi du conduit annulaire compris entre le produit métallurgique 4 et les parois du canal de sortie 8, dont le diamètre Tf est égal à 16 millimètres, ce qui donne un espace annulaire ei égal à 3 millimètres et, donc, DHi égal à 12 millimètres. Dans ces conditions, Rei vaut environ 24 000.
  • La rugosité uniforme équivalente de la paroi du produit métallurgique 4 étant bien sûr toujours identique, les abaques de Karman-Nikuradzé fournissent un coefficient de frottement global CFc = 0,0146.
  • Comme on ne connaît pas a priori la longueur Li, on calcule tout d'abord le gradient de la pression d'entraînement dans le canal de sortie 8, qui est égal à 12 900 Pa/m, puis on écrit l'équilibre des pressions au niveau du ménisque de sortie du bain de galvanisation.
  • 1.2. Calcul de la force de Lorenz nécessaire au maintien de la bulle de zinc dans l'enceinte de galvanisation 1
  • La somme des pressions calculées précédemment, à savoir (Piso + Pc + Pi), doit être équilibrée par la pression magnétique volumique Pm engendrée dans le zinc par le champ glissant transverse créé au niveau de l'enroulement inducteur polyphasé 6 de sortie de l'enceinte 1.
  • On sait que la pression magnétique Pm est égale au produit de la conductibilité électrique du zinc à la température considérée, du carré de l'induction efficace Beff, de la longueur Li sur laquelle agit le champ et d'un coefficient Vm tenant compte de la géométrie de l'inducteur 6. Si on choisit un demi-pas polaire égal à 7 centimètres et une fréquence d'excitation de 50 Hz - ces deux valeurs fournissant la vitesse de déplacement axial du champ magnétique glissant, encore appelée vitesse de dérive -, l'induction efficace Beff étant choisie égale à 0,07 Teslas, on trouve le gradient de pression magnétique nécessaire au maintien de la bulle de zinc dans l'enceinte de galvanisation 1, soit 87 000 N/m3.
  • On est alors capable de calculer la valeur de la longueur Li et de vérifier qu'elle reste inférieure à la longueur de Couette. On trouve ici Li = 2,1 centimètres, ce qui signifie que le zinc pénètre très peu dans le canal de sortie 8, puisque la longueur de l'enroulement inducteur 6, donnée par le demi-pas polaire, est égale à 28 centimètres.
  • De manière générale, on "s'arrangera" toujours pour que le liquide de recouvrement ne pénètre pas, dans le canal de sortie 8, au-delà de la moitié de la longueur de l'enroulement inducteur 6, cette condition pouvant être simplement remplie :
    • soit en réglant la fréquence d'excitation du courant alternatif créant l'induction efficace Beff,
    • soit en réglant l'intensité dudit courant alternatif.
    2. Problème de l'essuyage
  • L'épaisseur déposée sur le produit métallurgique 4 se calcule normalement en deux étapes, à savoir :
    • dans la zone du canal de sortie 8 où pénètre le zinc (soit sur la longueur Li), la force volumique d'origine magnétique Vm est comparable à une force d'origine gravitaire ; on peut ainsi admettre que les résultats du modèle de Landau et Levitch, développé pour connaître l'épaisseur entraînée par une plaque plane extraite à la verticale d'un bain liquide horizontale, sont applicables dans cette zone du canal de sortie 8.
    • dans la partie du canal de sortie 8 située derrière le ménisque d'équilibre du bain liquide, le champ magnétique transverse glissant agit sur le film liquide pour l'amincir, l'épaisseur du film au niveau dudit ménisque étant égale à celle prévue par le calcul précédent de Landau et Levitch.
    2.1. Epaisseur du film liquide donnée par le modèle de Landau Levitch
  • Ce modèle tient compte, par une formule complexe pouvant être retrouvée sur la référence mentionnée plus haut : de la tension superficielle du liquide (ici le zinc fondu à 450°C), de sa viscosité dynamique turbulente (elle-même proportionnelle au coefficient de frottement global CFi), de la vitesse Vb du produit 4 et de l'intensité des forces volumiques développées dans le zinc, que l'on vient juste de calculer pour le problème de l'étanchéité.
  • En calculant l'épaisseur donnée par ce modèle, on constate qu'elle varie inversement à la racine carrée de l'intensité des forces volumiques d'origine magnétique ; ce résultat bien sûr attendu signifie que l'on peut assez sensiblement modifier l'épaisseur en question, en augmentant ou en diminuant l'intensité des forces volumiques, ceci en jouant principalement sur l'intensité de l'induction magnétique efficace Beff. Ce réglage, qui modifie la position du ménisque dans le canal de sortie 8, est possible dans une plage de valeurs de Beff où, selon le critère indiqué plus haut, le liquide de recouvrement ne pénètre pas, dans le canal de sortie 8, au-delà de la moitié de la longueur de l'enroulement inducteur 6. Ce critère recouvre à peu près celui selon lequel Li n'excède pas la longueur de Couette de l'écoulement situé dans le canal de sortie 8 de l'enceinte de galvanisation 1, c'est-à-dire que ledit écoulement demeure faiblement turbulent ; si l'un de ces critères n'est plus observé, la turbulence rend totalement inadéquat le modèle de Landau et Levitch.
  • 2.2. Longueur d'essuyage magnétique effective
  • Cette longueur d'essauyage magnétique effective est définie comme la longueur résiduelle du canal de sortie 8, située derrière le ménisque d'équilibre du bain de galvanisation, et sur laquelle le champ magnétique transverse glissant est toujours susceptible d'agir.
  • Les possibilités de réglage de l'épaisseur à ce niveau sont cependant réduites puisque toutes les caractéristiques de l'enceinte 1 et de l'inducteur 6 sont déjà fixées. Le calcul de l'amincissement du film liquide jusqu'à l'extrémité aval du canal de sortie 8 peut être effectué par le calcul de l'écoulement à "surface libre" du film liquide sur la surface du produit métallurgique rugueux 4. En fait, on s'aperçoit que cet amincissement reste négligeable dans la plupart des cas.
  • Une approximation pratique généralement correcte consiste donc, dans le calcul de l'essuyage, à ne tenir compte que de l'épaisseur du film liquide donnée par le modèle de Landau et Levitch.
  • 3. Généralisation
  • Le dimensionnement d'une enceinte de galavanisation 1 et de son inducteur 6 de sortie dépend d'abord des dimensions et de la rugosité éventuelle des produits métallurgiques 4 à revêtir du matériau métallique fondu choisi. On établit alors la géométrie de l'inducteur 6 pour que, à proximité de la surface des produits 4, le champ magnétique crée soit transverse et glissant. On cherche ensuite, pour une large gamme de vitesse de défilement Vb des produits 4 au travers de l'enceinte 1, la fréquence, le pas polaire et l'intensité de l'induction efficace Beff qu'il convient de prendre pour équilibrer les pressions sous la première moitié de l'inducteur 6. Pour que les fuites magnétiques ne soient pas trop importantes, une règle de dimensionnement supplémentaire consiste à prendre un entrefer tel que le rapport du demi-pas polaire sur ledit entrefer ne soit pas supérieur à 3 ; ceci définit un coefficient dit "de carter" entre l'induction efficace Beff et l'induction B0 créée par l'enroulement inducteur 6, laquelle est alors donnée par une loi de Byot et Savard correspondant à la géométrie des bobines de l'inducteur 6. On applique enfin le modèle de Landau et Levitch pour calculer l'épaisseur déposée sur les produits métallurgiques 4 correspondant à chacune des vitesses Vb choisies. On peut également reporter, sur le même graphe, la longueur Li sur laquelle le liquide de revêtement pénètre dans le canal de sortie 8 de l'enceinte 1. Un tel graphe, correspondant à l'exemple traité ci-dessus, est donné sur la figure 2.
  • La plupart des résultats précédents demeurent valables dans le cas d'une installation de galvanisation verticale.

Claims (8)

  1. Procédé de dimensionnement d'une enceinte de galvanisation pourvue d'au moins un dispositif d'étanchéité et/ou d'essuyage du côté d'où ressortent les produits métallurgiques ayant traversé un bain liquide de recouvrement contenu dans ladite enceinte, ledit dispositif étant préférentiellement un élément inducteur agencé à cet effet autour d'un canal de sortie de l'enceinte pour produire un champ électromagnétique transverse, alternatif et glissant, au niveau de la surface desdits produits, caractérisé en ce qu'il consiste à calculer ou à vérifier, à partir principalement : des dimensions transversales de ladite enceinte, de sa longueur axiale, de la section transversale desdits produits, de leur vitesse, de la viscosité dynamique dudit liquide de recouvrement, de sa pression dans l'enceinte, des dimensions transversales du canal de sortie de l'enceinte, de la vitesse de déplacement du champ électromagnétique glissant et de son intensité dans ledit liquide, et enfin d'un paramètre représentatif de la rugosité éventuelle des produits métallurgiques, les conditions pour lesquelles les longueurs de Couette associées respectivement à l'écoulement du liquide de recouvrement dans l'enceinte et dans son canal de sortie restent inférieures aux valeurs critiques au-delà desquelles lesdits écoulements deviennent nettement turbulents.
  2. Procédé de dimensionnement d'une enceinte de galvanisation selon la revendication précédente, caractérisé en ce que l'épaisseur de la couche limite laminaire ou turbulente de l'écoulement à l'entrée du canal de sortie de l'enceinte de galvanisation est maintenue en dessous d'une valeur limite au delà de laquelle il n'est plus possible de contrôler son augmentation.
  3. Procédé de dimensionnement d'une enceinte de galvanisation selon la revendication précédente, caractérisé en ce que l'épaisseur déposée sur les produits métallurgiques traités est donnée, en fonction de leur vitesse de défilement dans l'enceinte de galvanisation, par une formule analogue à celle utilisée dans le modèle hydrodynamique de Landau et Levitch.
  4. Procédé de dimensionnement d'une enceinte de galvanisation selon l'une quelconque des revendications précédentes, caractérisé en ce que la rugosité éventuelle des produits métallurgiques traités est prise en compte, pour le calcul de l'épaisseur déposée, au travers de la loi de paroi de l'écoulement au voisinage immédiat du produit métallurgique à revêtir.
  5. Procédé de dimensionnement d'une enceinte de galvanisation selon la revendication précédente, caractérisé en ce que la loi de paroi à prendre en compte est celle connue sous le nom de Karmann-Nikuradzé.
  6. Procédé de dimensionnement d'une enceinte de galvanisation selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans le cas où l'on emploie un élément inducteur du type d'un enroulement polyphasé (6), on règle l'intensité du courant alternatif créant l'induction efficace Beff pour que le liquide de recouvrement ne pénètre pas au-delà de la moitié de la longueur de l'enroulement inducteur (6) qui est agencé autour du canal de sortie (8) de l'enceinte de galvanisation (1).
  7. Procédé de dimensionnement d'une enceinte de galvanisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que, dans le cas où l'on emploie un élément inducteur du type d'un enroulement polyphasé (6), on règle la fréquence d'excitation du courant alternatif créant l'induction efficace Beff pour que le liquide de recouvrement ne pénètre pas au-delà de la moitié de la longueur de l'enroulement inducteur (6) qui est agencé autour du canal de sortie (8) de l'enceinte de galvanisation (1).
  8. Procédé de dimensionnement d'une enceinte de galvanisation selon la revendication précédente, caractérisé en ce que l'entrefer de l'enroulement inducteur polyphasé (6) est choisi tel que le rapport du demi-pas polaire sur ledit entrefer n'est pas supérieur à 3.
EP94922281A 1993-01-20 1994-07-20 Procede de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnetique de produits metallurgiques galvanises Expired - Lifetime EP0720663B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9300524A FR2700555B1 (fr) 1993-01-20 1993-01-20 Procédé de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnétique de produits métallurgiques galvanisés.
PCT/FR1994/000907 WO1996002684A1 (fr) 1993-01-20 1994-07-20 Procede de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnetique de produits metallurgiques galvanises
CN94193846A CN1070931C (zh) 1993-01-20 1994-07-20 确定镀槽尺寸的方法

Publications (2)

Publication Number Publication Date
EP0720663A1 EP0720663A1 (fr) 1996-07-10
EP0720663B1 true EP0720663B1 (fr) 1997-06-11

Family

ID=33162522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94922281A Expired - Lifetime EP0720663B1 (fr) 1993-01-20 1994-07-20 Procede de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnetique de produits metallurgiques galvanises

Country Status (12)

Country Link
EP (1) EP0720663B1 (fr)
JP (1) JPH09507531A (fr)
CN (1) CN1070931C (fr)
AT (1) ATE154399T1 (fr)
AU (1) AU693106B2 (fr)
BR (1) BR9407692A (fr)
DE (1) DE69403810T2 (fr)
ES (1) ES2105736T3 (fr)
FR (1) FR2700555B1 (fr)
PL (1) PL186566B1 (fr)
RU (1) RU2119971C1 (fr)
WO (1) WO1996002684A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761935B2 (en) 2000-03-28 2004-07-13 Delot Process Method and device for the producing a metallic coating on an object emerging from a bath of molten metal
US8628470B1 (en) 1997-03-13 2014-01-14 Clinical Decision Support, Llc Disease management system and method including medication therapy self-management

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700555B1 (fr) * 1993-01-20 1995-03-31 Delot Process Sa Procédé de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnétique de produits métallurgiques galvanisés.
DE4344939C1 (de) * 1993-12-23 1995-02-09 Mannesmann Ag Verfahren zum prozeßgerechten Regeln einer Anlage zum Beschichten von bandförmigem Gut
IN191638B (fr) * 1994-07-28 2003-12-06 Bhp Steel Jla Pty Ltd
US6106620A (en) * 1995-07-26 2000-08-22 Bhp Steel (Jla) Pty Ltd. Electro-magnetic plugging means for hot dip coating pot
DE19535854C2 (de) * 1995-09-18 1997-12-11 Mannesmann Ag Verfahren zur Bandstabilisierung in einer Anlage zum Beschichten von bandförmigem Gut
DE10210430A1 (de) * 2002-03-09 2003-09-18 Sms Demag Ag Vorrichtung zur Schmelztauchbeschichtung von Metallsträngen
RU2237743C2 (ru) * 2002-09-26 2004-10-10 Закрытое акционерное общество "Межотраслевое юридическое агентство "Юрпромконсалтинг" Способ обработки поверхности протяженного изделия, линия и устройство для его осуществления
US11149337B1 (en) 2017-04-18 2021-10-19 Western Technologies, Inc. Continuous galvanizing apparatus and process
US11242590B2 (en) 2017-04-18 2022-02-08 Western Technologies, Inc. Continuous galvanizing apparatus for multiple rods
CN111676490B (zh) * 2020-05-22 2021-07-13 西北矿冶研究院 一种优化锌电积工艺的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129981B2 (fr) * 1973-07-17 1976-08-28
FR2647814B1 (fr) * 1989-06-02 1994-07-08 Galva Lorraine Enceinte utilisable pour recouvrir d'un revetement a base de metal ou d'alliage metallique des objets de forme allongee defilant a travers elle
DZ1422A1 (fr) * 1989-06-09 2004-09-13 Galva Lorraine Procédé, enciente et installation pour le revêtement continu/intermittent d'objets par passage desdits objets à travers une masse liquide d'un produitde revêtement.
DE4208578A1 (de) * 1992-03-13 1993-09-16 Mannesmann Ag Verfahren zum beschichten der oberflaeche von strangfoermigem gut
FR2700555B1 (fr) * 1993-01-20 1995-03-31 Delot Process Sa Procédé de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnétique de produits métallurgiques galvanisés.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8628470B1 (en) 1997-03-13 2014-01-14 Clinical Decision Support, Llc Disease management system and method including medication therapy self-management
US6761935B2 (en) 2000-03-28 2004-07-13 Delot Process Method and device for the producing a metallic coating on an object emerging from a bath of molten metal

Also Published As

Publication number Publication date
RU2119971C1 (ru) 1998-10-10
EP0720663A1 (fr) 1996-07-10
AU7346394A (en) 1996-02-16
AU693106B2 (en) 1998-06-25
PL186566B1 (pl) 2004-01-30
FR2700555A1 (fr) 1994-07-22
WO1996002684A1 (fr) 1996-02-01
CN1133618A (zh) 1996-10-16
PL313517A1 (en) 1996-07-08
CN1070931C (zh) 2001-09-12
BR9407692A (pt) 1997-02-04
DE69403810T2 (de) 1998-01-29
JPH09507531A (ja) 1997-07-29
ES2105736T3 (es) 1997-10-16
ATE154399T1 (de) 1997-06-15
FR2700555B1 (fr) 1995-03-31
DE69403810D1 (de) 1997-07-17

Similar Documents

Publication Publication Date Title
EP0720663B1 (fr) Procede de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnetique de produits metallurgiques galvanises
CA1107577A (fr) Procede pour revetir a grande vitesse un element filiforme d'une matiere thermofusible appaareil pour la mise en oeuvre de ce procede, ainsi qu element filiforme revetu selon ce procede
EP2198070B1 (fr) Générateur de vapeur industriel pour le dépôt d'un revêtement d'alliage sur une bande métallique
FR2945823A1 (fr) Procede et dispositif d'enduction metallique par voie liquide de fibres en materiau ceramique
EP2129810A1 (fr) Procédé de revêtement d'un substrat et installation de dépôt sous vide d'alliage métallique
FR2522342A1 (fr) Procede de formation d'un revetement de metal sur une fibre et fibre correspondante
EP0023472A1 (fr) Procédé de revêtement en continu d'un substrat métallique sur une partie au moins d'au moins l'une de ses faces et dispositif pour la mise en oeuvre de ce procédé
CA2062720C (fr) Procede, enceinte et installation pour le revetement continu/intermittent d'objets par passage desdits objets a travers une masse liquide d'un produit de revetement
EP0293417A1 (fr) Fibre optique revetue d'un manchon metallique.
FR3014449A1 (fr) Appareil et procede de chauffage par induction pour section de recuit apres galvanisation.
WO2001011101A1 (fr) Procede et dispositif de realisation en continu d'un revetement de surface metallique sur une tole en defilement
EP2350333A1 (fr) Méthode et dispositif d'essorage de métal liquide de revêtement en sortie d'un bac de revêtement métallique au trempé
CA2172134A1 (fr) Procede de dimensionnement d'une enceinte de galvanisation pourvue d'un dispositif d'essuyage magnetique de produits metallurgiques galvanises
FR2807070A1 (fr) Procede et dispositif pour realiser un revetement metallique sur un objet sortant d'un bain de metal fondu
EP0251912A1 (fr) Procédé d'enduction métallique étanche d'une fibre optique , et dispositif mettant en oeuvre ce procédé
EP0126696B1 (fr) Procédé de fabrication en continu d'une bande d'acier survieillie portant un revêtement de Zn ou d'alliage Zn-Al
WO2014025007A1 (fr) Électrode filaire utilisable dans une électroérosion à fil
EP0193422A1 (fr) Procédé de traitement de profils conducteurs, notamment métalliques installation pour sa mise en oeuvre
EP0215031B1 (fr) Procede pour former selectivement au moins une bande de revetement d'un metal ou alliage sur un substrat d'un autre metal
FR2471421A1 (fr) Procede de revetement en continu de toles metalliques
EP4010503B1 (fr) Réservoir mobile pour bain de liquide d'échange thermique et installation comprenant un tel réservoir
GB1576933A (en) Process and apparatus for coating metallic wires
EP0828864A1 (fr) Procede et dispositif pour revetir une bande metallique d'un metal ou d'un alliage a plus bas point de fusion ou de liquide que celui du materiau constituant la bande
FR2679803A1 (fr) Procede permettant d'ameliorer l'etat de surface et la regularite d'epaisseur d'une bande mince metallique coulee sur une roue.
EP1386016A1 (fr) Procede et dispositif pour le revetement d'une bande metallique au trempe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB IE IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960916

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19970611

REF Corresponds to:

Ref document number: 154399

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69403810

Country of ref document: DE

Date of ref document: 19970717

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970911

Ref country code: PT

Effective date: 19970911

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105736

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS KIEHL SAVOYE & CRONIN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020717

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLS Nl: assignments of ep-patents

Owner name: SNTN-DEVELOPPEMENT S.A.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20050713

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050726

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060720

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060720

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120720

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120712

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120720

Year of fee payment: 19

Ref country code: IT

Payment date: 20120731

Year of fee payment: 19

Ref country code: BE

Payment date: 20120720

Year of fee payment: 19

Ref country code: ES

Payment date: 20120726

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120719

Year of fee payment: 19

BERE Be: lapsed

Owner name: S.A. *SNTN-DEVELOPPEMENT

Effective date: 20130731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69403810

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720