EP0713446A1 - Laminate with u.v. cured polymer coating and method for making - Google Patents
Laminate with u.v. cured polymer coating and method for makingInfo
- Publication number
- EP0713446A1 EP0713446A1 EP95923031A EP95923031A EP0713446A1 EP 0713446 A1 EP0713446 A1 EP 0713446A1 EP 95923031 A EP95923031 A EP 95923031A EP 95923031 A EP95923031 A EP 95923031A EP 0713446 A1 EP0713446 A1 EP 0713446A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resin
- layer
- ultraviolet radiation
- heat reactive
- resin system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000000576 coating method Methods 0.000 title claims abstract description 62
- 239000011248 coating agent Substances 0.000 title claims abstract description 54
- 229920000642 polymer Polymers 0.000 title claims description 31
- 229920005989 resin Polymers 0.000 claims abstract description 81
- 239000011347 resin Substances 0.000 claims abstract description 81
- 239000000178 monomer Substances 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 54
- 230000005855 radiation Effects 0.000 claims abstract description 41
- 239000007787 solid Substances 0.000 claims abstract description 31
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 26
- 229920006223 adhesive resin Polymers 0.000 claims abstract description 25
- 239000004840 adhesive resin Substances 0.000 claims abstract description 23
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 21
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 230000001939 inductive effect Effects 0.000 claims abstract description 10
- 239000004634 thermosetting polymer Substances 0.000 claims abstract description 6
- 238000003475 lamination Methods 0.000 claims description 90
- 239000010410 layer Substances 0.000 claims description 41
- 229910052782 aluminium Inorganic materials 0.000 claims description 23
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 229910000831 Steel Inorganic materials 0.000 claims description 13
- 239000010959 steel Substances 0.000 claims description 13
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 10
- 239000004593 Epoxy Substances 0.000 claims description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 10
- 239000011247 coating layer Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 5
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 5
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000005300 metallic glass Substances 0.000 claims description 3
- 238000001723 curing Methods 0.000 description 14
- 229910000976 Electrical steel Inorganic materials 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000003822 epoxy resin Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- -1 aryl ethyl acrylate Chemical compound 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 239000004823 Reactive adhesive Substances 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000011146 organic particle Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- FWWXYLGCHHIKNY-UHFFFAOYSA-N 2-ethoxyethyl prop-2-enoate Chemical compound CCOCCOC(=O)C=C FWWXYLGCHHIKNY-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N [3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000004848 alkoxyethyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229940096522 trimethylolpropane triacrylate Drugs 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
- B32B37/1207—Heat-activated adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/02—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2310/00—Treatment by energy or chemical effects
- B32B2310/08—Treatment by energy or chemical effects by wave energy or particle radiation
- B32B2310/0806—Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
- B32B2310/0831—Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
Definitions
- TITLE LAMINATE WITH U. V. CURED POLYMER COATING AND METHOD FOR MAKING
- the present invention relates to laminations and to methods for their making.
- the present invention relates to laminations having polymer coatings and to methods for their making.
- the present invention relates to metal laminate structures formed from such laminations for electromagnetic devices such as motors, transformers and ballasts, having ultraviolet cured polymer coatings and to methods for their making.
- Thin gauge electrical steel sheets or amorphous metal sheets for electrical applications reduce magnetically induced eddy currents by reducing the cross- sectional area through which those currents may flow.
- the core losses in electrical transformers used by electrical utility companies represent a significant loss of energy generated, even though electrical transformers are highly efficient.
- the electrical steel sheets are continuously formed into blanks having the shape of a core, a predetermined number of the blanked sections are laminated together, and the edges of the resultant laminate core are fixed by welding.
- the insulating film is, therefore, required to exhibit not only an insulative property but also a number of other necessary properties, such as blanking capability, adhesion, lamination welding, heat resistance, and resistance against oil. It must also provide a high space factor.
- one method discloses employing phosphate or chromate as components for forming an insulating coating. While the coating formed has good heat resistance and weldability, the blanking and adhesion properties are not satisfactory.
- 4919078 aims to satisfy both the blanking property and the weldability requirements and proposes to form on an electrical steel sheet an insulating film having a surface roughness of H max of 2 mu or more by utilizing a dispersion of organic particles in the treating resin.
- this method suffers from a difficulty in achieving a good organic particle dispersion which affect the manufacture of the film and the adhesion of the film to the steel sheet.
- Japanese Examined Patent Publication No. 5521111 proposes a technique which addresses the problems of the particle dispersion by utilizing either phosphate or chromate in the treating liquid.
- U.S. Patent No. 4,705,578, issued November 10, 1987 discloses a method of constructing laminations of an amorphous alloy suitable for use in a magnetic core for static electrical inductive apparatus.
- the laminate formed will have an improved space factor and reduced core losses.
- the method generally consists of pressure annealing the metal laminations together without the use of polymer between the laminations.
- the group of laminations may be edge bonded with a U.V. curable resin, as long as the resin is not allowed to penetrate the space between the laminations, to aid handling and to prevent the brittle laminations from shedding flakes.
- U.S. Patent No. 5,018,267 issued May 28, 1991 to Schoen discloses a method for forming a laminate in which a thin layer of oil is applied to a facing of at least one of a plurality of adjacent sheets and a wax is applied along the longitudinal edges of a facing surface of at least one of the sheets.
- the sheets are combined into a laminate by being passed between a pair of rollers which apply sufficient pressure to remove excess oil from between the facing surfaces and to spread the wax thereby forming a continuous seal along the longitudinal edges of the laminate.
- a method of making a laminate stack having utility in electrical inductive apparatus comprises coating at least one side of a metal substrate with a solventless liquid resin system comprising an ultraviolet ("UV") radiation curable acrylic and vinyl monomer and a heat reactive thermoset adhesive resin.
- the liquid coating on the coated metal substrate is then exposed to ultraviolet radiation to cure the UV radiation curable monomer portion of the resin system forming the liquid cotaing into a tacky solid layer to form a lamination.
- the laminations so formed can be assembled into components for use in applications such as electric power transformers, ignition coils, generators, chokes, reactors, solenoids ballasts, motors and electronics, in which prior art laminates have been utilized.
- the assembled laminate structures are exposed to heat to cure the heat reactive thermoset adhesive resin and adhere the structure together.
- FIG. 1 is a block diagram of one embodiment of the process of the present invention.
- FIG. 2 is a graph of the wave length distribution for a D-bulb, showing wavelength versus relative intensity.
- step (A) is the cutting step in which a metal substrate is cut to the desired shape for the application in which it will be utilized, generally from a roll of steel or other suitable material.
- step (B) the metal is annealed at proper annealing temperatures by methods well known to those in the annealing art.
- step (C) a coating of a solventless liquid resin system comprising an ultraviolet radiation curable acrylic or vinyl monomer and a heat reactive thermoset adhesive resin is applied to at least one side of the metal substrate.
- step (D) the resin system is exposed in step (D) to ultraviolet radiation to cure the ultraviolet radiation curable monomer portion of the resin system and form the coating into a solid tacky layer to form a lamination.
- step (E) one or more of the formed laminations are assembled into an assembly or subassembly to be utilized in applications such as electric power transformers, ignition coils, generators, chokes, reactors, solenoids ballasts, motors and electronics, in which prior art laminates have been utilized.
- step (E) one or more of the formed laminations are assembled into an assembly or subassembly to be utilized in applications such as electric power transformers, ignition coils, generators, chokes, reactors, solenoids ballasts, motors and electronics, in which prior art laminates have been utilized.
- the polymer system is exposed to heat to cure the heat reactive thermoset adhesive resin portion of the resin system and adhere the assembly together.
- the substrate utilized in the lamination of the present invention may comprise any material that is suitable for use in electrical inductive apparatus.
- the substrate will comprise steel or an amorphous alloy.
- the substrate will comprise low silicon content steel comprising in the range of about 1 to about 1.5 percent silicon.
- Suitable commercially available types of steel include Type VI motor lamination steel available from LTV Steel Company, and HPS Z3 motor lamination steel available from Kawasaki Steel Company.
- the substrate When a lamination made according to the present invention is to be incorporated into, for example, a coil, the substrate will comprises a conductive material such as bare aluminum, anodized aluminum or copper.
- the thickness of the substrate utilized in the present invention will depend upon the application for which the lamination will be utilized. Typical thicknesses of the lamination substrate are in the range of about 0.005 inches to about 0.05 inches. Preferably, the thickness of the lamination substrate will be in the range of about 0.008 inches to about 0.025 inches.
- the aluminum substrate utilized may first be anodized utilizing phosphoric or sulfuric acid prior to coating to improve dielectric properties.
- the resulting dielectric strength is greater than the sum of the dielectric strengths of the individual coatings.
- the solventless liquid resin system of the present invention may be applied to the substrate by any suitable method.
- Methods suitable for use in the present invention for applying the liquid resin system to the substrate include dipping, diffusion-bonding, roll- coating, coextrusion and spraying.
- the liquid resin system is roll-coated onto the substrate to form a uniform coating on at least one side of the substrate.
- the substrate is cut to the desired dimensions, annealed and blued, it is then transported toward a coating station to be coated.
- the substrate will pass through a pair of coating rollers of controlled clearance at which point the substrate may be coated on one or both sides. Because hundreds of laminations will be stacked in a transformer core, thickness deviations could be multiplied hundreds of times, it is important that a uniform coating be applied.
- the thickness of the polymer layer on the substrate will depend upon the application for which the lamination will be utilized. Generally, when utilized in transformer cores, the thickness of the polymer layer will be in the range of about 0.0001 inches to about 0.0005 inches. For most applications, the thickness of the polymer layer will preferably be in the range of about 0.0002 inches to about 0.0003 inches. For conductor strips, the thickness is preferably about 0.0004 inches.
- the thickness of the layer is generally controlled by controlling the viscosity of the liquid polymer being applied, which is generally controlled by adjusting the temperature of the liquid polymer being applied. Typical viscosities for the ultraviolet radiation curable polymer applied to the substrate will generally be in the range of about 1 cp. to about 20,000 cp.
- the polymer application viscosity will be in the range of about 2,000 cp. to about 7,000 cp.
- a commercially available roll-coating machine suitable for use in the present invention includes the Differential Direct Roll Coater Model #344-44 or #344-56 manufactured by Black Brothers Company (Mendota, Illinois) .
- the ultraviolet radiation curable polymer coating is exposed to ultraviolet radiation such that the polymer coating is either fully cured to a hard cure stage or cured until the liquid coating is a solid film with just a little tack (B-stage) .
- Tack or tackiness is generally the property of being sticky or adhesive.
- Fully cured coatings would lack any appreciable amount of residual adhesive and generally would not be suitable for bonding applications.
- B-stage cured coatings generally have an appreciable amount of residual adhesive and generally are suitable for bonding applications.
- Laminations with fully cured coatings utilized in an application requiring bonding will need a second B-Stage coating applied over the fully cured coating to provide for adhesion, or must be mechanically joined together with, for example, clamps.
- the advantage of using two coatings is that problems caused by coating defects such as pin holes is greatly reduced as 2 pin holds in each layer would have to be aligned to cause a short between substrates.
- An advantage of using the B-staged coating, whether as a first or second layer, is that coils can be wound from such double coated substates without the addition of paper interlayer insulation or tape.
- Duct spacers can be applied as needed by simply applying the duct spacer to the tacky surface where it will be held firmly in place without tape.
- the degree of curing of the polymer layer is controlled by adjusting among other factors, the intensity of the ultraviolet radiation, the range of wavelengths and wavelength distribution of the ultraviolet radiation, the distance between the source of the ultraviolet radiation and the polymer coating and the residence time that the polymer is exposed to the light.
- residence times are generally in the range of about 0.001 seconds to about 15 minutes.
- the intensity of the ultraviolet radiation is generally in the range of about 600 W/in of bulb length.
- the wavelength of the ultraviolet radiation generally ranges from about 200 nm to about 500 n .
- a suitable commercially available ultraviolet radiation curing system includes the EPIQ 6000 available from Fusion UV Curing systems.
- the EPIQ 6000 D-Bulb spectrum shown in FIG. 2 is suitable for use in the present invention.
- the polymer utilized in the present invention is generally a heat reactive adhesive resin, containing a monomer and an ultraviolet radiation photoinitiator.
- Suitable examples of such polymers include those disclosed in U.S. Patent No. 4,239,077, issued December 16, 1980 to Dixon et al. and herein incorporated by reference.
- thermosetting base adhesive resin particularly applicable is an epoxy resin (glycidylpolyether of a dihydric phenol) as disclosed by Dixon et al. More particularly, the resin suitable for use in this invention is a solventless epoxy/phenolic type of resin.
- Epoxy resins are well known in the art. They are generally the reaction products of bisphenol A and epichlorohydrin, and are usually used in conjunction with acid anhydride, amine, amide, or organo metallic heat reactive curing agents.
- the epoxy resin may be modified by addition of additives such as epoxy esters of diabasic acids and imidazoles, to improve flexibility, cure and bonding to the supporting substrate.
- the resin system may also contain pigments for coloring.
- thermoset base resins are polyester resins polyurethane resins and polyacrylic resins.
- the resin used must, of course, be compatible with transformer oil if the lamination is to be used in transformers.
- catalysts and curing agents useful therewith reference can be made to Brydson, Plastic Materials. 1966, herein incorporated by reference.
- a wide variety of heat reactive catalysts and curing agents, such as metal oxides, peroxides, azo compounds, acid anhydrides, organo-metallics such as organotin or organo-boron compounds, and the like, known to be effective with the particular base resin, can be used in this invention.
- Effective amounts of such catalysts or curing agents will be between about 0.5 wt.% to about 20 wt.% based on the weight of the thermoset resin.
- the amount of curing agent will range between about 5 wt.% to about 20 wt.% based on epoxy weight.
- the term "heat reactive adhesive resin” is meant to include the particular resin along with a suitable curing agent or catalyst which will allow heat curing.
- the epoxy or other base resin remains substantially unreacted until final heat curing.
- the "B"-stage gelation is caused by polymerization or cross-linking of an acrylic or vinyl reactive diluent, by action of the photoinitiator in response to ultraviolet (UV) radiation.
- UV radiation ultraviolet
- the B-stage as described herein is not the traditional B-stage, but rather for the resin system the monomer is substantially C-staged and the heat reactive resin is substantially A-staged.
- the ratios of the monomer and the heat reactive resin are such that upon curing the monomer to the C-stage, the resin system on the whole becomes a solid film with tack, thus simulating what is normally a B-stage condition.
- the resin system of this invention must contain from about 10 parts to about 80 parts, preferably 20 to 35 parts by weight of an acrylic or vinyl monomer per 100 parts base heat reactive thermoset adhesive resin, such as epoxy.
- Useful acrylic monomers are simple acrylates, or multifunction (di-, tri- or tetra-) acrylates.
- Useful simple acrylic monomers include 2-ethyl hexyl acrylate; 2-hydroxy ethyl acrylate, and the like; alkoxy ethyl acrylate monomers, such as 2-methoxy ethyl acrylate; 2- ethoxy ethyl acrylate, and the like; and aryl ethyl acrylate monomers, such as 2-phenoxy ethyl acrylate.
- Useful multifunctional acrylic monomers include hexanediol diacrylate; neopentyl glycol diacrylate; tetra ethylene glycol diacrylate; trimethylol propane tri- acrylate; pentaerythritol tri-acrylate, pentaerythritol tetracrylate and the like.
- Useful vinyl monomers include styrene, vinyl toluene, vinyl pyrrolidone; vinyl acetate; divinyl benzene, and the like. Under 10 parts acrylic or vinyl per 200 parts base resin results in poor solubility of the base resin so that the viscosity of the resin system is unacceptably high.
- the monomers are substantially or fully cured and the heat reactive thermosets are uncured.
- Typical ultraviolet radiation sensitive photoinitiators well known in the art, would include, for example, benzophenone; diethoxyacetophenone, benzoin methyl ether, benzoin ethyl ether;, benzoin isopropyl ether; benzoin isobutyl ether; diethoxy- xanthanone; chlorothio-xanthanone; azo-bis- isobutyronitrile; N-methyl diethanolaminebenzophenone, mixtures thereof, and the like.
- the photoinitiators are used in the amount effective to cause polymerization crosslinking of the monomers.
- This effective amount is between 0.25 wt.% to about 7.5 wt.% abased on the weight of total acrylic and vinyl monomer in the resin system.
- Use of under about 0.25 wt.% will result in minimal gelation, with subsequent flow during adhesive curing.
- Use of over about 7.5 wt.% will result in reaction between the initiator itself, causing a self-quenching effect with little monomer linking.
- An example of polymer material suitable for use in • the present invention includes an epoxy resin, LS-4492- 4H, from The P.D. George Company (St Louis, Missouri) .
- the laminations made according to the process of the present invention may be utilized in various types of applications such as electric power transformers, ignition coils, generators, chokes, reactors, solenoids ballasts, motors and electronics, in which prior art laminates have been utilized.
- various designs and methods have been utilized to form transformer core assemblies as shown in U.S. Patent Nos. 4,827,237 to Blackburn, 4,594,295 to Waasner et al. and 4,480,377 to House et al., all herein incorporated by reference.
- laminations of the present invention may be utilized according to the various designs and methods disclosed and described in U.S.
- Hayes et al. discloses a transformer core and a method for assembling the transformer core utilizing a plurality of multi-leg laminations and a plurality of generally I-shaped laminations.
- Two types of generally E-shaped laminations are utilized in the construction of the core assembly, type "All laminations which are formed from one or more type "All generally E-shaped steel core members and type "B" laminations which are formed from one or more type "B" generally E-shaped steel core members.
- the width of each lamination is determined by the width and number of steel core members comprising the lamination.
- Both type A and type B laminations have two legs extending approximately the same distance and an outer third leg extending a distance substantially greater than the distance extended by the other two legs, providing an extending outer leg portion on both laminations. Additionally, the base of type A laminations includes notched segments and indentations from the outer periphery of the base which cooperate with shims during the assembly process.
- the transformer core of Hayes et al. is assembled by alternately positioning type B and type A laminations such that the extending outer leg portions of all type A laminations are on one side and the extending outer leg portions for all type B laminations are on the opposite side.
- These laminations are stacked on a pair of stacking shims which are received in the notches and indentations of the type A laminations and provide for alternate variations in the height of the middle leg of each type A lamination as compared with the middle leg of each type B lamination. That variation in height of the middle legs is equal to the depth of the notches or indentations, since the dimensions of the type A and type B laminations are otherwise substantially equal.
- type A and type B laminations provides spacing for the plurality of generally I-shaped laminations having the same width as the type A and B laminations, spaces are provided between outer leg port ions of adjacent type A or type B laminations on each side.
- the channels are provided as a result of the recessed association of the type A laminations caused by the notches. This facilitates both ready and stable insertion of the I-shaped laminations, each of which is received between the extending outer leg portions of the E-shaped laminations, is supported on the middle legs and extends to the opposite extending outer leg portions.
- I-shaped laminations are positioned at the top of the transformer core after the coils have been positioned, without requiring any "fishing" of the laminations through the coils, facilitates secure and ready assembly of the transformer core.
- Alternate I-shaped laminations are received within the channels formed by the middle legs. This also facilitates insertion of the other I-shaped laminations that are readily received in the spaces between the laminations that are received within the channels. in the bonding application, the B-staged coated laminations are assembled into the device and then heated to active the adhesives.
- a pressure resistant material includes inorganic C or C 5 type coatings or a blue (Fe 3 0_ ⁇ ) type coating that may be provided during the annealing process.
- Example 1 A 15 KVA three phase transformer core was made using the following sequence of operations: laminations as described in U.S. application Serial No. 07/614,812 were punched from bare nominally .018 inch thick Type VI motor laminations steel supplied by LTV Steel Company. These were annealed at about 1500°F and blued and then given a 0.0002 - .0003 inch thick coating of P.D. George Company LS-4492-4H liquid U.V. curable resin by roll coating. This resin was then B staged with ultraviolet radiation in a conveyorized U.V. curing chamber. The conveyor speed was adjusted to provide just enough residence time to convert the liquid resin to a dry adherent film.
- the coated E and I laminations were then stacked into an E subassembly and a corresponding I subassembly and cured at 160°F for 8 hours.
- the two subasse blies were welded together with the I lamination subassembly laying across the finger members of the E lamination subassembly.
- the upper core clamps normally used to clamp the laminations together were able to be omitted.
- a 75 KVA three phase transformer was made using the following sequence of operations: laminations as described in U.S. application Serial No. 07/614,812 were punched from bare .018 inch thick HPS Z3 motor lamination steel manufactured by Kawasaki Steel Company. These were annealed and blued and then given a 0.0002 - 0.0003 inch thick coating of P D George Company LS-4492-4H liquid UV curable resin by roll coating. This resin was then B staged using ultraviolet radiation in a conveyorized UV curing chamber. The conveyor belt speed was adjusted to provide just enough residence time to convert the liquid resin to an adherent solid coating film.
- the coated E and I laminations were then stacked into an E subassembly and a corresponding I subassembly and clamped.
- the E and I subassembly laminations were then heated to about 150°C for about eight hours. Coils were installed on the "legs" of the E and the I laminate subassemblies and welded in place to complete the magnetic circuits.
- Three sets of aluminum substrate samples of approximate 9"x9" dimensions are used in this example: a bare untreated aluminum (21 mil substrate) ; regular sulfuric acid anodized aluminum (32 mil aluminum alloy 5005 substrate available from Lorin Industries with an approximate thickness of 60 microinches) ; and high density phosphoric acid anodized aluminum (32 mil aluminum alloy 5005 substrate available from Lorin Industries with an approximate thickness of two microinches) .
- the three different coated substrates exhibited no detectable dielectric strength.
- the above results exhibit a synergistic effect between the anodizing and the coating. Applying the resin to the anodized aluminum surface allows the full dielectric strength of the aluminum oxide surface layer to be realized. Any cracks or defects in the anodized aluminum are repaired by the application of the resin coating.
- a transformer coil was constructed as follows. An aluminum strip substrate was coated on both sides with a novolak epoxy resin available from P.D. George as LS4939- 3 which is then cured to the C-stage using ultraviolet light. A second coating having both a heat curable resin component and a UV curable acrylate ester component, available from P.D. George as LS4492-14, is applied to one side of the substrate. This second coating is then exposed to ultraviolet light to C-stage the UV curable component while the heat curable component remains in the A-stage, resulting in a solid tacky "B-stage” coating. The aluminum strip is then formed into a coil and baked in an oven to thermoset the heat curable component in the second coating.
- the formed coil consisted of 10 turns of 10 inch wide aluminum strip 21 mils thick, with a mean coil diameter of 10 inches.
- the coil was assembled into a core with an insulated copper wire coil of 24 turns. With the 24 turn coil acting as the primary, up to 60 volts was applied and the aluminum strip secondary responded with a 44 volt potential.
- Aluminum strip samples of approximate 9"x9"x0.021" dimensions were coated on both sides with a a novolak epoxy resin available from P.D. George as LS4939-3 which is then cured to the C-stage using ultraviolet light.
- the samples were then placed in an over to fully cure the second coating layer.
- the resulting lamination consisted of a 21 mil aluminum substrate with a first coating layer 4.5 mils thick on both sides, with an additional second layer 6.0 mils thick on one side.
- the average dielectric breakdown was 1.7 KV/mil with a variance of 0.8 KV/mil.
- the results when compared to Table II of Example 3 indicate that the nominal dielectric strength does not increase or decrease with increased layers.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/257,069 US5558735A (en) | 1991-12-27 | 1994-06-09 | Method for making laminate with U. V. cured polymer coating |
US257069 | 1994-06-09 | ||
PCT/US1995/007416 WO1995033622A1 (en) | 1994-06-09 | 1995-06-09 | Laminate with u.v. cured polymer coating and method for making |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0713446A1 true EP0713446A1 (en) | 1996-05-29 |
EP0713446B1 EP0713446B1 (en) | 2002-09-11 |
Family
ID=22974752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95923031A Expired - Lifetime EP0713446B1 (en) | 1994-06-09 | 1995-06-09 | Laminate with u.v. cured polymer coating and method for making |
Country Status (5)
Country | Link |
---|---|
US (1) | US5558735A (en) |
EP (1) | EP0713446B1 (en) |
CA (1) | CA2168849A1 (en) |
DE (1) | DE69528135T2 (en) |
WO (1) | WO1995033622A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6712952B1 (en) | 1998-06-05 | 2004-03-30 | Cambridge Univ. Technical Services, Ltd. | Removal of substances from metal and semi-metal compounds |
EP3363028A1 (en) * | 2015-10-13 | 2018-08-22 | ABB Schweiz AG | Magnetic shunt assembly for magnetic shielding of a power device |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5951806A (en) * | 1995-11-30 | 1999-09-14 | Kitano Engineering Co., Ltd. | Method of manufacturing a storage disc |
BE1009892A3 (en) * | 1995-12-19 | 1997-10-07 | Couttenier Andre | Method for manufacturing a laminate and equipment for making use of this method |
WO1997022473A1 (en) * | 1995-12-19 | 1997-06-26 | Couttenier Andre | Method for making a laminate and device for the application of this method |
US6543976B1 (en) | 1996-05-03 | 2003-04-08 | Senco Products, Inc. | Fastening device |
US6971829B2 (en) * | 1996-05-03 | 2005-12-06 | Senco Products, Inc | Fastening device |
DE19706851A1 (en) * | 1997-02-21 | 1998-09-03 | Bosch Gmbh Robert | Runner and method of making a runner |
US6488993B2 (en) | 1997-07-02 | 2002-12-03 | William V Madigan | Process for applying a coating to sheet metal |
US6074595A (en) * | 1998-10-16 | 2000-06-13 | Codeline Corporation | Method of making pressure vessels |
GB2349590A (en) * | 1999-05-05 | 2000-11-08 | Rexam Custom Ltd | Adhesive coated conductive foil |
US6368530B1 (en) | 1999-12-16 | 2002-04-09 | Square D Company | Method of forming cooling ducts in cast resin coils |
AU2001262207A1 (en) * | 2000-04-03 | 2001-10-15 | Abb Ab | A magnetic product |
JP4617553B2 (en) * | 2000-09-25 | 2011-01-26 | ヤマハ株式会社 | Piano support |
JP3846342B2 (en) * | 2002-03-22 | 2006-11-15 | Jsr株式会社 | Curable composition, cured product thereof and laminate |
DE112009004598B4 (en) | 2009-03-26 | 2023-02-23 | Vacuumschmelze Gmbh & Co. Kg | PROCESS FOR THE SOLID JOINING OF PACK LAMINATIONS TO A SOFT MAGNETIC SHEET METAL PACK |
JP5941787B2 (en) * | 2012-08-09 | 2016-06-29 | 日立オートモティブシステムズ株式会社 | Power module and method for manufacturing power module |
JP5977392B2 (en) * | 2014-03-26 | 2016-08-24 | Jx金属株式会社 | Laminate made of resin plate carrier and metal layer |
AT516197A1 (en) * | 2014-09-05 | 2016-03-15 | Voestalpine Stahl Gmbh | Coil and method of making a coil-wound electrical steel laminate |
US9657904B1 (en) * | 2014-11-14 | 2017-05-23 | Amazon Technologies, Inc. | Photobleaching displays to mitigate color gradients |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3222234A (en) * | 1962-12-26 | 1965-12-07 | Gen Electric | Method for bonding parts of an electrical motor |
US4105118A (en) * | 1976-06-10 | 1978-08-08 | Eastman Kodak Company | Laminates useful as packaging materials and container having alkaline fluid means |
US4239077A (en) * | 1978-12-01 | 1980-12-16 | Westinghouse Electric Corp. | Method of making heat curable adhesive coated insulation for transformers |
US4412048A (en) * | 1981-09-11 | 1983-10-25 | Westinghouse Electric Corp. | Solventless UV dryable B-stageable epoxy adhesive |
CA1194637A (en) * | 1982-04-26 | 1985-10-01 | Charles R. Morgan | Uv and thermally curable, thermoplastic-containing compositions |
US4605465A (en) * | 1982-04-26 | 1986-08-12 | W. R. Grace & Co. | UV and thermally curable, thermoplastic-containing compositions |
US4481258A (en) * | 1982-10-07 | 1984-11-06 | Westinghouse Electric Corp. | UV Curable composition and coil coatings |
JPS60144124A (en) * | 1983-12-29 | 1985-07-30 | Pioneer Electronic Corp | Flat air core motor coil |
US4648929A (en) * | 1985-02-07 | 1987-03-10 | Westinghouse Electric Corp. | Magnetic core and methods of consolidating same |
JPS61191247A (en) * | 1985-02-19 | 1986-08-25 | Toshiba Corp | Manufacture of coil |
US4892764A (en) * | 1985-11-26 | 1990-01-09 | Loctite Corporation | Fiber/resin composites, and method of making the same |
JPS62189709A (en) * | 1986-02-16 | 1987-08-19 | Optic Daiichi Denko Co Ltd | Manufacture of coil |
US4705578A (en) * | 1986-04-16 | 1987-11-10 | Westinghouse Electric Corp. | Method of constructing a magnetic core |
KR910000998B1 (en) * | 1986-09-12 | 1991-02-19 | 마쯔시다덴기산교 가부시기가이샤 | Method of mounting electronic component |
JPS63249624A (en) * | 1987-04-07 | 1988-10-17 | Nkk Corp | Production equipment of continuous laminated metal material |
JP2877854B2 (en) * | 1989-10-03 | 1999-04-05 | 三菱化学株式会社 | Method for forming cured resin layer having antistatic surface |
JPH0574624A (en) * | 1991-09-13 | 1993-03-26 | Matsushita Electric Ind Co Ltd | Coil |
DE4224932A1 (en) * | 1992-07-28 | 1993-01-21 | Siemens Ag | METHOD FOR ALLOCATING THE SWITCHING RESOURCES OF A COMMUNICATION SYSTEM FOR DIALING AND FIXED CONNECTIONS |
JPH06185807A (en) * | 1992-12-15 | 1994-07-08 | Kyocera Corp | Warm water device |
JPH0745419A (en) * | 1993-07-30 | 1995-02-14 | Sony Chem Corp | Tapless coil |
-
1994
- 1994-06-09 US US08/257,069 patent/US5558735A/en not_active Expired - Fee Related
-
1995
- 1995-06-09 CA CA002168849A patent/CA2168849A1/en not_active Abandoned
- 1995-06-09 EP EP95923031A patent/EP0713446B1/en not_active Expired - Lifetime
- 1995-06-09 WO PCT/US1995/007416 patent/WO1995033622A1/en active IP Right Grant
- 1995-06-09 DE DE69528135T patent/DE69528135T2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9533622A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6712952B1 (en) | 1998-06-05 | 2004-03-30 | Cambridge Univ. Technical Services, Ltd. | Removal of substances from metal and semi-metal compounds |
EP3363028A1 (en) * | 2015-10-13 | 2018-08-22 | ABB Schweiz AG | Magnetic shunt assembly for magnetic shielding of a power device |
EP3363028B1 (en) * | 2015-10-13 | 2021-12-01 | ABB Power Grids Switzerland AG | Tank comprising a magnetic shunt assembly for magnetic shielding of a power device |
Also Published As
Publication number | Publication date |
---|---|
EP0713446B1 (en) | 2002-09-11 |
CA2168849A1 (en) | 1995-12-14 |
DE69528135T2 (en) | 2003-06-05 |
US5558735A (en) | 1996-09-24 |
WO1995033622A1 (en) | 1995-12-14 |
DE69528135D1 (en) | 2002-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5558735A (en) | Method for making laminate with U. V. cured polymer coating | |
US11742129B2 (en) | Adhesively-laminated core, manufacturing method thereof, and electric motor | |
JP2004111509A (en) | Laminated iron core having excellent iron loss characteristic and its manufacturing method | |
JP4345480B2 (en) | Manufacturing apparatus and manufacturing method of laminated iron core | |
CN113196617A (en) | Laminated core, method for manufacturing same, and rotating electrical machine | |
JPS6113870B2 (en) | ||
US2372074A (en) | Bonded laminated magnetic material | |
KR102109279B1 (en) | A manufacturing method of stacked core for transformer with excellent no-load loss | |
CA1158145A (en) | Electrical steel lamination | |
KR100756329B1 (en) | Laminate of magnetic base material and method for production thereof | |
JP3607804B2 (en) | Laminated iron core manufacturing method | |
JP5372312B2 (en) | Magnetic article using magnetic metal ribbon coated with insulator | |
US20050042451A1 (en) | Magnet wire for motors coupled to speed variators of improved resistance to voltage peaks and manufacturing process of the same | |
US20200118707A1 (en) | Electrically insulated electric conductor strip, in particular for electric motors and transformers | |
KR101967987B1 (en) | Core for transformer and method for manufacturing the same | |
US20240282502A1 (en) | Iron core of transformer, and manufacturing method therefor | |
US20230238163A1 (en) | Electrical steel lamination stacks with magnetic insulator coating for electrical apparatus cores | |
JP2510243B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and weldability | |
WO2023073203A1 (en) | Magnetic core | |
KR100302672B1 (en) | Multi-layer laminated electrical tape | |
JPH0684655A (en) | High frequency wound core and high frequency induction electric appliance employing wound core | |
JPS63170030A (en) | Manufacture of high-durability magnetic material laminate | |
JPH09192602A (en) | Formation of insulating film of magnetic steel sheet | |
Zimmerman | Magnet Coil Fabrication | |
JP2005129767A (en) | Magnetic base material and laminate and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960308 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19981104 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69528135 Country of ref document: DE Date of ref document: 20021017 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030609 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040227 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |