EP0707357A1 - Système à antennes source multiples intégrées au convertisseur de fréquence à faible bruit - Google Patents

Système à antennes source multiples intégrées au convertisseur de fréquence à faible bruit Download PDF

Info

Publication number
EP0707357A1
EP0707357A1 EP95402265A EP95402265A EP0707357A1 EP 0707357 A1 EP0707357 A1 EP 0707357A1 EP 95402265 A EP95402265 A EP 95402265A EP 95402265 A EP95402265 A EP 95402265A EP 0707357 A1 EP0707357 A1 EP 0707357A1
Authority
EP
European Patent Office
Prior art keywords
antennas
satellites
frequency converter
lens
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95402265A
Other languages
German (de)
English (en)
Other versions
EP0707357B1 (fr
Inventor
1-M. Ali Thomson Multimedia Louzir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vantiva SA
Original Assignee
Wang Pierre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Pierre filed Critical Wang Pierre
Publication of EP0707357A1 publication Critical patent/EP0707357A1/fr
Application granted granted Critical
Publication of EP0707357B1 publication Critical patent/EP0707357B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas

Definitions

  • the invention relates to a reception device comprising a low noise frequency converter integrating several source antennas ("Feeds" in English terminology).
  • the invention is particularly applicable in the reception of signals transmitted by several satellites.
  • the reception of signals transmitted by geostationary satellites is conventionally done using a parabola which concentrates the received beam at its focal point.
  • a source antenna is then placed as a waveguide in an appropriate manner with respect to the parabola to couple the received signal to one or more probes which transmit it to a low noise frequency converter.
  • the latter performs the conversion of the signal to an intermediate frequency, the converted signal being able to be processed by satellite demodulator and / or the receiver decoder.
  • paraboloid reflectors whose role is to improve the convergence of beams coming from several more or less close satellites.
  • the reflectors are then designed so as to present a substantially parabolic surface to each beam.
  • the subject of the invention is a device for receiving signals transmitted by N (N> 1) satellites comprising means for focusing the beams corresponding to said signals characterized in that it comprises several source antennas, said antennas being printed source antennas produced on a single substrate.
  • the arrangement of said antennas on said substrate is determined by the location of the focal points of said beams.
  • the positioning of the antennas on the substrate is determined by the arrangement of the best available focal points for each beam.
  • it will suffice to correctly position these reception means with reference to a single satellite. Positioning for the other satellites is then performed automatically.
  • the focusing means comprise an electromagnetic lens, for example a Luneburg type lens (semi-sphere lens).
  • Such a lens makes it possible to obtain optimum convergence of all the beams, unlike a parabola which has only a true focal point.
  • the means for focusing the beams comprise a parabolic reflector.
  • a parabola can be considered sufficient to focus the different beams adequately.
  • the Luneburg type lens is more suitable.
  • the focusing means being a parabolic reflector
  • a first antenna is placed at the focal point of the reflector, the other antennas being placed on one side or the other with respect to the first antenna.
  • the antennas are slot antennas.
  • the antennas are annular slot antennas.
  • This antenna shape is particularly suitable for receiving orthogonally polarized waves having linear or circular polarizations.
  • said device comprises at least one frequency converter produced on the same substrate as said antennas.
  • the device comprises multiplexing means which multiplex the signals received by the antennas to a frequency converter.
  • said frequency converter is produced on the same substrate as the antennas.
  • Figure 1 explains the position of the optimal convergence points at the level of a parabolic reflector when the latter reflects the beams from two satellites angularly distant by an angle ⁇ .
  • a parabola 1 of diameter ⁇ has a focal point F1. It is assumed that the parabola is oriented so that, ideally, a satellite S1 is on the axis of the parabola and that the wave plane of this beam is perpendicular to this axis.
  • the reflected beam converges in F1, located on the axis of the parabola.
  • a second satellite S2 emits a second beam whose wave plane is inclined by the angle ⁇ relative to the axis of the parabola.
  • the optimum point of convergence is on a line inclined by the angle - ⁇ relative to the axis.
  • FIG. 2 explains the position of the focal points when using a Luneburg type lens.
  • the lens 2 has the shape of a sphere, which makes it possible to represent the object points and the corresponding image points on one side and the other of said sphere.
  • the practical implementation will use a half-sphere on a reflective plane.
  • the Luneburg lens has a radius R.
  • the focal points are located approximately 1.5xR from the center of the lens.
  • a focal point is located on the right parallel to the beam which illuminates the lens and passes through the center of it.
  • a Luneburg lens has its focal points at the surface of the lens.
  • An approximation used here makes it possible to move these focal points towards 1.5 times the radius. The separation between the focal points is thus improved.
  • Three satellites S3, S4, S5 are angularly distant from ⁇ 1 and ⁇ 2 respectively. These three satellites correspond respectively to focal points F3, F4 and F5. If we consider the angles ⁇ 1 and ⁇ 2 as small (less than 5 ° for example), the linear distances d34 and d45 separating respectively F3 from F4 and F4 from F5 are substantially equal to 1.5R ⁇ 1 and 1.5R ⁇ 2 in meters, where ⁇ 1 and ⁇ 2 are given in radians.
  • the linear distances are approximately 2.4 cm.
  • the distance between the focal points and the center of the lens is not to scale with respect to the radius R of this same lens.
  • FIG. 3 An exemplary embodiment of the device according to the invention is illustrated in FIG. 3.
  • the illustrated example relates to a device for receiving signals from three satellites, for example the satellites S3, S4 and S5 in FIG. 2.
  • L he skilled in the art will adapt the invention to other scenarios, such as that of FIG. 1.
  • the device comprises a dielectric substrate 17 which supports three antennas with annular slots 3a, 3b, 3c etched directly on the substrate. These antennas are excited by microstrip lines 4a to 4f in a manner described later. The centers of the slits are positioned on the substrate so that the distances which separate them are equal to the distances which separate the focal points F3, F4 and F5.
  • a radio frequency amplifier 11 amplifies one of the signals from the microstrip lines. This signal is transmitted to a mixer 12, receiving one of the frequencies F1 or F2 from appropriate oscillators. The signal at the output of the mixer is amplified by an amplifier for intermediate frequencies 13, before being transmitted, for example by coaxial cable (not illustrated) to an indoor unit (demodulator, decoder, TV receiver).
  • Figure 4 illustrates a section of Figure 3 through the center of the annular slot 3a. This figure illustrates a variant embodiment, certain elements of which are not shown in FIG. 3.
  • the side 5 of the dielectric substrate is covered with a metal layer in which a ring 6 is engraved.
  • the resonant modes of the slot are occur at frequencies for which the circumference of the slit is equal to an integer multiple of the guided wavelength.
  • the metal layer is connected to earth.
  • the substrate is oriented so as to present the annular slots to the reflector.
  • the side 7 of the substrate comprises the means for exciting the slot.
  • the microstrip line 4b is visible.
  • This microstrip line enters at a right angle into the enclosure formed by the annular slot 6, of a depth which is of the order of a quarter of the guided wavelength. Penetration at right angles corresponds to maximum coupling.
  • the dimensions of the microstrip lines are optimized so as to have a large bandwidth around the operating frequency. They have in particular a narrowing (not illustrated) before entering the enclosure formed by the annular slot.
  • a base 8 is arranged on the face 7 of the substrate.
  • the function of this base which is not illustrated in FIG. 3, is to allow obtaining a wave belly at the level of the annular slot.
  • the base is formed by a conductive cavity connected to the metal plane of the face 5 by means of a conductive line 9.
  • An orifice 10 allows the microstrip line 4b to penetrate inside the base 8 while being electrically isolated from it.
  • the depth H of the base is equal to approximately a quarter of the guided wavelength.
  • the thickness of the substrate and of the metal planes has been exaggerated in FIG. 4, so as to better bring out the characteristics described.
  • each annular slot is provided with two microstrip lines arranged at right angles, thus allowing the reception of waves linearly polarized horizontally and vertically.
  • Multiplexing means (represented schematically by switches 18 to 21 and by dotted lines indicating the possible connections) allow the selection of one of these signals for transmission to the amplifier 11.
  • These multiplexing means are, for example, blocking amplifiers whose passing or blocking state is controlled by a DC voltage.
  • a hybrid coupler is interposed between each annular slot and the multiplexing means.
  • the coupler 14 is illustrated in FIG. 5. This hybrid coupler is supplied via the two microstrip lines 4a and 4b. The length of each side of the coupler is about a quarter of the wavelength of the guided wave.
  • the ends of the two microstrip lines are curved inside the enclosure of the annular slot to avoid unwanted coupling between the guided components.
  • the total radiated field corresponds to the sum of these two fields.
  • the reflector used in conjunction with the invention is a paraboloid reflector intended to improve the focusing of the different beams.
  • the slot antennas can have other shapes than annular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

L'invention concerne un dispositif de réception de signaux transmis par N satellites, ledit dispositif comprenant des moyens de focalisation des faisceaux correspondant auxdits signaux. Le dispositif comprend plusieurs antennes source, lesdites antennes source étant des antennes imprimées réalisées sur un seul substrat. Application à la réception de signaux transmis par satellite. <IMAGE>

Description

  • L'invention concerne un dispositif de réception comprenant un convertisseur de fréquence à faible bruit intégrant plusieurs antennes source ("Feeds" en terminologie anglaise). L'invention s'applique notamment dans la réception de signaux transmis par plusieurs satellites.
  • La réception de signaux transmis par satellites géostationnaires, par exemple des satellites relayant des émissions de télévision, se fait classiquement à l'aide d'une parabole qui concentre le faisceau reçu en son point focal. On place alors une antenne source en guide d'onde de façon appropriée par rapport à la parabole pour coupler le signal reçu à une ou plusieurs sondes qui le transmettent à un convertisseur de fréquence à faible bruit. Ce dernier effectue la conversion du signal en fréquence intermédiaire, le signal converti pouvant être traité par démodulateur satellite et/ou le décodeur du récepteur.
  • Dans le cas où l'on désire viser plusieurs satellites géostationnaires proches, plusieurs solutions sont actuellement utilisées. La solution la plus évidente, à défaut d'être la plus économique, est d'utiliser autant de paraboles qu'il y a de satellites. Une autre solution, adaptée à la réception des signaux émis par deux satellites proches, consiste à utiliser une seule parabole, mais avec deux antennes source en guides d'ondes et deux convertisseurs de fréquence. La parabole pointe alors soit l'un des satellites, soit une position intermédiaire entre les deux. Les faisceaux issus des deux satellites et réfléchis par la parabole convergent alors en deux points distincts. Etant donné que dans ce cas, au moins un des signaux n'est pas focalisé de manière optimale, il en résulte une réception dégradée. De plus, si les satellites sont proches, les points de convergence des faisceaux sont également proches, cette proximité étant d'autant plus grande que la parabole est petite. Apparaît alors le problème de positionner côte à côte des guides d'onde, dont les dimensions sont difficilement modifiables. Certains produits du marché procèdent à une fusion des extrémités des guides d'onde, ce qui dégrade encore plus la qualité de la réception en augmentant le couplage entre les faisceaux. La présence de plusieurs convertisseurs de fréquence grève d'autre part le prix du produit.
  • Il existe également des réflecteurs "paraboloïdes" dont le rôle est d'améliorer la convergence de faisceaux en provenance de plusieurs satellites plus ou moins proches. Les réflecteurs sont alors conçus de manière à présenter à chaque faisceau une surface sensiblement parabolique.
  • La situation dans laquelle un certain nombre de satellites sont angulairement très proches est une situation qui est loin d'être exceptionnelle et qui deviendra de plus en plus fréquente au fur et à mesure de l'encombrement de l'orbite géostationnaire. Un exemple de "bouquet" de satellites en Europe est l'ensemble de satellites Eutelsat.
  • L'invention a pour objet un dispositif de réception de signaux transmis par N (N > 1) satellites comprenant des moyens de focalisation des faisceaux correspondant auxdits signaux caractérisé en ce qu'il comprend plusieurs antennes source, lesdites antennes étant des antennes source imprimées réalisées sur un seul substrat.
  • L'utilisation de plusieurs antennes à fente imprimées sur un substrat permet de s'affranchir des problèmes liés à l'utilisation de guides d'onde.
  • Selon un mode de réalisation particulier, la disposition desdites antennes sur ledit substrat est déterminée par la localisation des points de focalisation desdits faisceaux.
  • De plus, le positionnement des antennes sur le substrat est déterminé par la disposition des meilleurs points de focalisation disponibles pour chaque faisceau. Lors de l'installation de la parabole et des antennes, il suffira de positionner correctement ces moyens de réception en se référant à un seul satellite. Le positionnement pour les autres satellites est alors réalisé automatiquement.
  • Selon un mode de réalisation particulier, les moyens de focalisation comprennent une lentille électromagnétique, par exemple une lentille de type Luneburg (lentille en demi-sphère).
  • Une telle lentille permet d'obtenir une convergence optimale de tous les faisceaux, contrairement à une parabole qui ne possède qu'un véritable point focal.
  • Selon un autre mode de réalisation particulier, les moyens de focalisation des faisceaux comprennent un réflecteur parabolique. Pour des satellites relativement proches, une parabole peut être considérée comme suffisante pour focaliser les différents faisceaux de manière adéquate. Pour des éloignements angulaires plus grands, la lentille de type Luneburg est plus adaptée.
  • Selon un mode de réalisation particulier, les moyens de focalisation étant un réflecteur parabolique, une première antenne est placée au point focal du réflecteur, les autres antennes étant placées d'un côté ou de l'autre par rapport à la première antenne.
  • Selon un mode de réalisation particulier, les antennes sont des antennes à fente.
  • Selon un mode de réalisation particulier, les antennes sont des antennes à fente annulaire.
  • Cette forme d'antenne est particulièrement adaptée à la réception d'ondes polarisées orthogonalement ayant des polarisations linéaires ou circulaires.
  • Selon un mode de réalisation particulier, ledit dispositif comprend au moins un convertisseur de fréquence réalisé sur le même substrat que lesdites antennes.
  • Selon un mode de réalisation particulier, le dispositif comprend des moyens de multiplexage qui multiplexent les signaux reçus par les antennes vers un convertisseur de fréquence.
  • Ainsi, un seul convertisseur de fréquence est nécessaire. Il en résulte un gain de place et de composants très important.
  • Selon un mode de réalisation particulier, ledit convertisseur de fréquence est réalisé sur le même substrat que les antennes.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à travers la description de deux modes de réalisation particuliers non limitatifs et illustrés par les figures jointes, parmi lesquelles:
    • la figure 1 représente schématiquement les points de convergence au niveau d'un réflecteur parabolique pour des faisceaux issus de deux satellites angulairement proches,
    • la figure 2 représente schématiquement les points focaux au niveau d'une lentille de type Luneburg pour des faisceaux issus de trois satellites,
    • la figure 3 représente schématiquement un exemple de réalisation de dispositif conforme à l'invention pour la réception dans le cadre de la configuration de la figure 2,
    • la figure 4 représente une variante de réalisation reprenant une coupe de la figure 3,
    • la figure 5 représente schématiquement un coupleur hybride utilisé pour le couplage d'ondes polarisées circulairement.
  • La figure 1 explicite la position des point de convergence optimaux au niveau d'un réflecteur parabolique lorsque ce dernier reflète les faisceaux issus de deux satellites éloignés angulairement d'un angle θ . Une parabole 1 de diamètre Ø possède un point focal F1. On suppose que la parabole est orientée de façon à ce qu'idéalement, un satellite S1 se trouve sur l'axe de la parabole et que le plan d'onde de ce faisceau est perpendiculaire à cet axe. Le faisceau reflété converge en F1, situé sur l'axe de la parabole.
  • Un second satellite S2 émet un second faisceau dont le plan d'onde est incliné de l'angle θ par rapport à l'axe de la parabole. Le point de convergence optimum se trouve sur une droite inclinée de l'angle -θ par rapport à l'axe.
  • La figure 2 explicite la position des points focaux dans le cas d'utilisation d'une lentille de type Luneburg. Pour la clarté de la représentation, la lentille 2 a la forme d'une sphère, ce qui permet de représenter les points objet et les points images correspondants d'un côté et de l'autre de ladite sphère. L'implémentation pratique fera appel à une demi-sphère sur un plan réflecteur.
  • La lentille de type Luneburg a un rayon R. Les points focaux se situent à environ 1,5xR du centre de la lentille. Un point focal est situé sur la droite parallèle au faisceau qui illumine la lentille et passant par le centre de celle-ci. Comme cela a été mentionné précédemment, l'avantage de la lentille par rapport à la parabole est de présenter autant de points focaux qu'il y a de sources de signal. Il n'y a pas de défocalisation étant donné la symétrie sphérique de la lentille.
  • En toute rigueur, une lentille de Luneburg a ses points focaux au niveau de la surface de la lentille. Une approximation utilisée ici permet de déplacer ces points focaux vers 1.5 fois le rayon. La séparation entre les points focaux est ainsi améliorée.
  • Trois satellites S3, S4, S5 sont éloignés angulairement respectivement de θ1 et θ2. A ces trois satellites correspondent respectivement des points focaux F3, F4 et F5. Si l'on considère les angles θ1 et θ2 comme petits (inférieurs à 5° par exemple), les distances linéaires d34 et d45 séparant respectivement F3 de F4 et F4 de F5 sont sensiblement égales à 1,5Rθ1 et 1,5Rθ2 en mètres, où θ1 et θ2 sont donnés en radians.
  • Pour une lentille de 30 centimètres de rayon et des angles de 3°, les distances linéaires sont égales à environ 2.4 centimètres.
  • Pour des raisons de clarté de la figure 2, la distance entre les points focaux et le centre de la lentille n'est pas à l'échelle par rapport au rayon R de cette même lentille.
  • Un exemple de réalisation du dispositif conforme à l'invention est illustré à la figure 3. L'exemple illustré concerne un dispositif de réception de signaux en provenance de trois satellites, par exemple les satellites S3, S4 et S5 de la figure 2. L'homme du métier adaptera l'invention à d'autres cas de figure, tel que celui de la figure 1.
  • Le dispositif comprend un substrat diélectrique 17 qui supporte trois antennes à fentes annulaires 3a, 3b, 3c gravées à même le substrat. Ces antennes sont excitées par des lignes à micro ruban 4a à 4f d'une manière décrite ultérieurement. Les centres des fentes sont positionnés sur le substrat de manière à ce que les distances qui les séparent soient égales aux distances qui séparent les points focaux F3, F4 et F5.
  • Un amplificateur pour fréquences radio 11 amplifie un des signaux en provenance des lignes micro-ruban. Ce signal est transmis à un mélangeur 12, recevant une des fréquences F1 ou F2 à partir d'oscillateurs appropriés. Le signal en sortie du mélangeur est amplifié par un amplificateur pour fréquences intermédiaires 13, avant d'être transmis, par exemple par câble coaxial (non illustré) à une unité intérieure (démodulateur, décodeur, récepteur TV).
  • La figure 4 illustre une coupe de la figure 3, à travers le centre de la fente annulaire 3a. Cette figure illustre une variante de réalisation dont certain éléments ne figurent pas sur la figure 3. Le côte 5 du substrat diéletrique est recouvert d'une couche métallique dans laquelle est gravée un anneau 6. En première approximation, les modes résonants de la fente se produisent à des fréquences pour lesquelles la circonférence de la fente est égale à un multiple entier de la longueur d'onde guidée.
  • La couche métallique est reliée à la terre. Selon un mode de réalisation particulier, le substrat est orienté de façon à présenter les fentes annulaires au réflecteur.
  • Le côté 7 du substrat comporte les moyens d'excitation de la fente. Sur la figure 4, la ligne à micro-ruban 4b est visible. Cette ligne à micro-ruban pénètre à angle droit dans l'enceinte formée par la fente annulaire 6, d'une profondeur qui est de l'ordre du quart de la longueur d'onde guidée. La pénétration à angle droit correspond à un couplage maximal. Les dimensions des lignes micro-ruban sont optimisées de façon à présenter une large bande passante autour de la fréquence de fonctionnement. Elles présentent notamment un rétrecissement (non illustré) avant de pénetrer dans l'enceinte formée par la fente annulaire.
  • Selon un mode de réalisation particulier, un culot 8 est disposé sur la face 7 du substrat. La fonction de ce culot, qui n'est pas illustré sur la figure 3, est de permettre l'obtention d'un ventre d'onde au niveau de la fente annulaire. Le culot est formé par une cavité conductrice reliée au plan métallique de la face 5 par l'intermédiaire d'une ligne conductrice 9. Un orifice 10 permet à la ligne micro-ruban 4b de pénétrer à l'intérieur du culot 8 tout en étant électriquement isolé par rapport à celui-ci. La profondeur H du culot est égale à environ le quart de la longueur d'onde guidée. L'épaisseur du substrat et des plans métalliques a été exagérée sur la figure 4, de façon à mieux faire ressortir les caractéristiques décrites.
  • Selon le présent exemple de réalisation et en revenant à la figure 3, chaque fente annulaire est pourvue de deux lignes micro-ruban disposées à angle droit, permettant ainsi la réception d'ondes polarisées linéairement de façon horizontale et verticale. On dispose ainsi de six signaux, disponibles respectivement à l'extrémité de chaque ligne micro-ruban 4a à 4f. Des moyens de multiplexage (représentés de manière schématique par des interrupteurs 18 à 21 et par des pointillés indiquant les connexions possibles) permettent la sélection d'un de ces signaux pour transmission à l'amplificateur 11. Ces moyens de multiplexage sont par exemple des amplificateurs-bloqueurs dont l'état passant ou bloquant est commandé par une tension continue.
  • Pour une plus grande clarté des schémas, le culot 8 ne figure pas sur la figure 3.
  • Pour la réception d'ondes polarisées circulairement dans le sens trigonométrique ou dans le sens contraire, on intercale un coupleur hybride entre chaque fente annulaire et les moyens de multiplexage. Le coupleur 14 est illustré à la figure 5. Ce coupleur hybride est alimenté par l'intermédiaire des deux lignes à micro-ruban 4a et 4b. La longueur de chacun des côtés du coupleur est d'envrion le quart de la longueur d'onde de l'onde guidée.
  • On notera que les extrémités des deux lignes micro-ruban sont recourbées à l'intérieur de l'enceinte de la fente annulaire pour éviter un couplage indésirable entre les composantes guidées.
  • Soit (o, i
    Figure imgb0001
    , j
    Figure imgb0002
    ) un repère orthonormé, o étant le centre de la fente annulaire 3a, i
    Figure imgb0003
    et j
    Figure imgb0004
    étant des vecteurs respectivement parallèles aux segments des lignes micro-ruban 4a et 4b pénétrant perpendiculairement dans l'enceinte formée par la fente.
  • Un signal V=Acos(ωt) présent au port 16 engendre, au niveau des ports reliés aux lignes 4a et 4b, des signaux respectivement de la forme: Vx = A 2 cos ω t + ϕ
    Figure imgb0005
    Vy = A 2 cos(ω t + ϕ- π 2 )
    Figure imgb0006
  • Les tensions Vx et Vy donnent naissance par couplage à la fente à des champs de la forme: E x A 2 cos ω t + ϕ i
    Figure imgb0007
    E y A 2 sin ω t + ϕ j
    Figure imgb0008
  • Le champ total rayonné correspond à la somme de ces deux champs. On peut vérifier que le vecteur somme tourne dans le sens trigonométrique et que l'extrémité de ce vecteur décrit un cercle.
  • Par réciprocité, une onde à polarisation circulaire gauche couplée à la fente 3a donnera naissance à une tension V=Acos(ωt) au port 16.
  • Selon un mode de réalisation particulier, le réflecteur utilisé en conjonction avec l'invention est un réflecteur paraboloïde destiné à améliorer la focalisation des différents faisceaux.
  • Enfin, suivant le type d'onde et de polarisation à recevoir, les antennes à fente peuvent avoir d'autres formes qu'annulaires.
  • L'homme du métier pourra facilement adapter l'invention aux différentes configurations pouvant se présenter.

Claims (10)

  1. Dispositif de réception de signaux transmis par N (N > 1) satellites (S1, S2, S3, S4, S5) comprenant des moyens de focalisation (1, 2) des faisceaux correspondant auxdits signaux caractérisé en ce qu'il comprend plusieurs antennes source, lesdites antennes source étant des antennes imprimées (3a, 3b, 3c) réalisées sur un seul substrat (17).
  2. Dispositif selon la revendication 1, caractérisé en ce que la disposition desdites antennes (3a, 3b, 3c) sur ledit substrat (17) est déterminée par la localisation des points de focalisation (F1, F2, F3, F4, F5) desdites faisceaux.
  3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens de focalisation comprennent une lentille électromagnétique (2).
  4. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens de focalisation des faisceaux comprennent un réflecteur parabolique (1).
  5. Dispositif selon la revendication 4, caractérisé en ce qu'une première antenne source est placée au point focal (F1) dudit réflecteur, les autres antennes étant placées d'un côté ou de l'autre par rapport à ladite première antenne.
  6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les antennes sont des antennes à fente (3a, 3b, 3c).
  7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les antennes sont des antennes à fente annulaire (3a, 3b, 3c).
  8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le dispositif comprend des moyens de multiplexage (18, 19, 20, 21) qui multiplexent les signaux reçus par les antennes (3a, 3b, 3c) vers un convertisseur de fréquence (11, 12, 13, f1, f2).
  9. Dispositif selon la revendication 8, caractérisé en ce que ledit convertisseur de fréquence (11, 12, 13, f1, f2) est réalisé sur le même substrat (17) que les antennes (3a, 3b, 3c).
  10. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que ledit dispositif comprend au moins un convertisseur de fréquence (11, 12, 13, f1, f2) réalisé sur le même substrat (17) que lesdites antennes (3a, 3b, 3c).
EP95402265A 1994-10-10 1995-10-09 Système à antennes source multiples intégrées au convertisseur de fréquence à faible bruit Expired - Lifetime EP0707357B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9412082 1994-10-10
FR9412082A FR2725561B1 (fr) 1994-10-10 1994-10-10 Systeme a antennes sources multiples integrees au convertisseur de frequence a faible bruit

Publications (2)

Publication Number Publication Date
EP0707357A1 true EP0707357A1 (fr) 1996-04-17
EP0707357B1 EP0707357B1 (fr) 2003-01-02

Family

ID=9467725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402265A Expired - Lifetime EP0707357B1 (fr) 1994-10-10 1995-10-09 Système à antennes source multiples intégrées au convertisseur de fréquence à faible bruit

Country Status (6)

Country Link
US (1) US6798386B1 (fr)
EP (1) EP0707357B1 (fr)
JP (1) JPH08242119A (fr)
CN (1) CN1127943A (fr)
DE (1) DE69529261T2 (fr)
FR (1) FR2725561B1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818848A2 (fr) * 1996-07-12 1998-01-14 Daimler-Benz Aktiengesellschaft Antenne réceptrice active
WO1998008270A1 (fr) * 1996-08-18 1998-02-26 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Antenne a reflecteur multifocale
US5881254A (en) * 1996-06-28 1999-03-09 Lsi Logic Corporation Inter-bus bridge circuit with integrated memory port
EP0957535A1 (fr) * 1998-05-15 1999-11-17 Société Européenne des Satellites Antenne microruban à couplage électromagnétique
EP0978898A1 (fr) * 1998-08-04 2000-02-09 Agence Spatiale Europeenne Antenne de réception à réflecteur excentré à balayage par la tête de réception, notamment pour la réception de plusieurs satellites de télévision et son procédé de mise en oeuvre
WO2002007261A1 (fr) * 2000-07-13 2002-01-24 Thomson Licensing S.A. Antenne planaire multibandes
FR2828584A1 (fr) * 2001-08-10 2003-02-14 Thomson Licensing Sa Dispositif pour la reception et/ou l'emission de signaux a diversite de rayonnement
EP1329988A1 (fr) * 1996-11-15 2003-07-23 Yagi Antenna Co., Ltd. Source primaire pour antenne à multifaisceaux

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833764B1 (fr) * 2001-12-19 2004-01-30 Thomson Licensing Sa Dispositif pour la reception et/ou l'emission de signaux electromagnetiques polarises circulairement
JP4013814B2 (ja) * 2003-04-07 2007-11-28 株式会社村田製作所 アンテナ構造およびそれを備えた通信機
FR2858468A1 (fr) * 2003-07-30 2005-02-04 Thomson Licensing Sa Antenne planaire a diversite de rayonnement
US6967619B2 (en) * 2004-01-08 2005-11-22 Kvh Industries, Inc. Low noise block
FR2866987A1 (fr) * 2004-03-01 2005-09-02 Thomson Licensing Sa Antenne planaire multibandes
US7109938B2 (en) * 2004-10-29 2006-09-19 Motorola, Inc. Tapered slot feed for an automotive radar antenna
DE102006015338A1 (de) * 2006-04-03 2007-10-11 Vega Grieshaber Kg Hohlleiterübergang zur Erzeugung zirkular polarisierter Wellen
DE502007003856D1 (de) * 2006-04-03 2010-07-01 Grieshaber Vega Kg Hohlleiterübergang zur erzeugung zirkulär polarisierter wellen
JP7113384B2 (ja) * 2017-07-06 2022-08-05 パナソニックIpマネジメント株式会社 アンテナおよび車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3605195A1 (de) * 1986-02-19 1987-08-20 Licentia Gmbh Antenne mit parabolreflektor
EP0516981A1 (fr) * 1991-05-02 1992-12-09 Sumitomo Electric Industries, Limited Dispositif récepteur
US5202700A (en) * 1988-11-03 1993-04-13 Westinghouse Electric Corp. Array fed reflector antenna for transmitting & receiving multiple beams
GB2266190A (en) * 1992-04-09 1993-10-20 Brian William Ewan Dish level dual LNB to single cable source switch.
WO1994019842A1 (fr) * 1993-02-28 1994-09-01 Thomson Consumer Electronics S.A. Systeme d'antenne

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195301A (en) * 1977-08-01 1980-03-25 Motorola, Inc. Disc antenna feed for parabolic reflector
CA1258707A (fr) 1984-12-26 1989-08-22 Tomozo Ohta Systeme d'antenne
GB2238430B (en) * 1985-10-02 1991-10-16 British Aerospace Microwave and millimetric waveband receivers
US5402138A (en) * 1991-05-30 1995-03-28 Conifer Corporation Integrated MMDS/MDS antenna and dual band down converter
FR2719948B1 (fr) 1994-05-10 1996-07-19 Dassault Electronique Antenne multi-faisceaux pour la réception de micro-ondes émanant de plusieurs satellites.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3605195A1 (de) * 1986-02-19 1987-08-20 Licentia Gmbh Antenne mit parabolreflektor
US5202700A (en) * 1988-11-03 1993-04-13 Westinghouse Electric Corp. Array fed reflector antenna for transmitting & receiving multiple beams
EP0516981A1 (fr) * 1991-05-02 1992-12-09 Sumitomo Electric Industries, Limited Dispositif récepteur
GB2266190A (en) * 1992-04-09 1993-10-20 Brian William Ewan Dish level dual LNB to single cable source switch.
WO1994019842A1 (fr) * 1993-02-28 1994-09-01 Thomson Consumer Electronics S.A. Systeme d'antenne

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881254A (en) * 1996-06-28 1999-03-09 Lsi Logic Corporation Inter-bus bridge circuit with integrated memory port
US5983306A (en) * 1996-06-28 1999-11-09 Lsi Logic Corporation PCI bridge with upstream memory prefetch and buffered memory write disable address ranges
EP0818848A2 (fr) * 1996-07-12 1998-01-14 Daimler-Benz Aktiengesellschaft Antenne réceptrice active
EP0818848A3 (fr) * 1996-07-12 2000-01-12 DaimlerChrysler AG Antenne réceptrice active
WO1998008270A1 (fr) * 1996-08-18 1998-02-26 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Antenne a reflecteur multifocale
EP1329988A1 (fr) * 1996-11-15 2003-07-23 Yagi Antenna Co., Ltd. Source primaire pour antenne à multifaisceaux
US6864850B2 (en) 1996-11-15 2005-03-08 Yagi Antenna Co., Ltd. Multibeam antenna
EP1329987A1 (fr) * 1996-11-15 2003-07-23 Yagi Antenna Co., Ltd. Convertisseur hyperfréquences pour antennes à multifaisceaux
EP0957535A1 (fr) * 1998-05-15 1999-11-17 Société Européenne des Satellites Antenne microruban à couplage électromagnétique
FR2782193A1 (fr) * 1998-08-04 2000-02-11 Agence Spatiale Europeenne Antenne de reception a reflecteur excentre a balayage par la tete de reception,notamment pour la reception de plusieurs satellites de television et son procede de mise en oeuvre
EP0978898A1 (fr) * 1998-08-04 2000-02-09 Agence Spatiale Europeenne Antenne de réception à réflecteur excentré à balayage par la tête de réception, notamment pour la réception de plusieurs satellites de télévision et son procédé de mise en oeuvre
WO2002007261A1 (fr) * 2000-07-13 2002-01-24 Thomson Licensing S.A. Antenne planaire multibandes
US6914574B2 (en) 2000-07-13 2005-07-05 Thomson Licensing S.A. Multiband planar antenna
CN100358183C (zh) * 2000-07-13 2007-12-26 汤姆森许可贸易公司 多频段平面天线
FR2828584A1 (fr) * 2001-08-10 2003-02-14 Thomson Licensing Sa Dispositif pour la reception et/ou l'emission de signaux a diversite de rayonnement
EP1289055A1 (fr) * 2001-08-10 2003-03-05 Thomson Licensing, Inc. Dispositif pour la réception et/ou l'émission de signaux à diversité de rayonnement
US6891510B2 (en) 2001-08-10 2005-05-10 Thomson Licensing S.A. Device for receiving and/or emitting signals with radiation diversity

Also Published As

Publication number Publication date
US6798386B1 (en) 2004-09-28
JPH08242119A (ja) 1996-09-17
FR2725561A1 (fr) 1996-04-12
FR2725561B1 (fr) 1996-11-08
CN1127943A (zh) 1996-07-31
DE69529261D1 (de) 2003-02-06
EP0707357B1 (fr) 2003-01-02
DE69529261T2 (de) 2003-09-04

Similar Documents

Publication Publication Date Title
EP0707357B1 (fr) Système à antennes source multiples intégrées au convertisseur de fréquence à faible bruit
WO1999035711A1 (fr) Emetteur/recepteur d&#39;ondes electromagnetiques
EP1568104B1 (fr) Antenne multi-faisceaux a materiau bip
FR2810163A1 (fr) Perfectionnement aux antennes-sources d&#39;emission/reception d&#39;ondes electromagnetiques
EP0012055A1 (fr) Source primaire monopulse imprimée et antenne comportant une telle source
FR2713404A1 (fr) Antenne orientale avec conservation des axes de polarisation.
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
FR2678437A1 (fr) Antenne mixte pour reception de signaux emis simultanement par satellite et par stations terrestres, notamment pour la reception de signaux de radiodiffusion sonore numerique.
FR2685131A1 (fr) Antenne de reception a reflecteur fixe pour plusieurs faisceaux de satellite.
US20020118140A1 (en) Antenna system
EP0274693B1 (fr) Antenne de télécommunications à réflecteur
EP3457489B1 (fr) Joint tournant pour une antenne rotative et antenne rotative comportant un tel joint
FR2777700A1 (fr) Agencement de convertisseur de frequences pour antennes parabolique
EP0072316B1 (fr) Antenne à balayage électronique à accès multiples et radar comportant une telle antenne
EP0032081B1 (fr) Antenne à faisceau orientable pour satellite de télécommunications
EP0020196B1 (fr) Antenne réseau hyperfréquence du type disque avec son dispositif d&#39;alimentation, et application aux radars d&#39;écartométrie
EP0638956B1 (fr) Antenne active à balayage électronique en azimut et en élévation, en particulier pour l&#39;imagerie hyperfréquence par satellite
CA2228640A1 (fr) Antenne resonnante pour l&#39;emission ou la reception d&#39;ondes polarisees
FR2685979A1 (fr) Systeme d&#39;antenne.
EP3155689B1 (fr) Antenne plate de telecommunication par satellite
EP0061965B1 (fr) Antenne à dispositif de transposition de la direction de la polarisation linéaire
EP3902059A1 (fr) Antenne directive large bande à émission longitudinale
FR2802381A1 (fr) Source rayonnante pour antenne d&#39;emission et de reception destinee a etre installee a bord d&#39;un satellite
EP3155690B1 (fr) Antenne plate de telecommunication par satellite
EP3506426B1 (fr) Dispositif de pointage de faisceau pour systeme antennaire, systeme antennaire et plateforme associes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19960701

17Q First examination report despatched

Effective date: 19990429

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON MULTIMEDIA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: 20030102:NOT ENGLISH

REF Corresponds to:

Ref document number: 69529261

Country of ref document: DE

Date of ref document: 20030206

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030213

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69529261

Country of ref document: DE

Representative=s name: MANFRED ROSSMANITH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 69529261

Country of ref document: DE

Effective date: 20111021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69529261

Country of ref document: DE

Representative=s name: ROSSMANITH, MANFRED, DIPL.-PHYS. DR.RER.NAT., DE

Effective date: 20120111

Ref country code: DE

Ref legal event code: R081

Ref document number: 69529261

Country of ref document: DE

Owner name: THOMSON LICENSING, FR

Free format text: FORMER OWNER: THOMSON MULTIMEDIA, BOULOGNE, FR

Effective date: 20120111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121119

Year of fee payment: 18

Ref country code: DE

Payment date: 20121019

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121026

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20131011

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131016

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131009

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69529261

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141009