EP0704249B1 - Device for distributing pulverulent solids on the surface of a substrate for coating this substrate - Google Patents

Device for distributing pulverulent solids on the surface of a substrate for coating this substrate Download PDF

Info

Publication number
EP0704249B1
EP0704249B1 EP95402160A EP95402160A EP0704249B1 EP 0704249 B1 EP0704249 B1 EP 0704249B1 EP 95402160 A EP95402160 A EP 95402160A EP 95402160 A EP95402160 A EP 95402160A EP 0704249 B1 EP0704249 B1 EP 0704249B1
Authority
EP
European Patent Office
Prior art keywords
powder
gas
flow rate
nozzle
pneumatic means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95402160A
Other languages
German (de)
French (fr)
Other versions
EP0704249A1 (en
Inventor
Jean-François Oudard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Vitrage SA
Original Assignee
Saint Gobain Vitrage SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Vitrage SA filed Critical Saint Gobain Vitrage SA
Publication of EP0704249A1 publication Critical patent/EP0704249A1/en
Application granted granted Critical
Publication of EP0704249B1 publication Critical patent/EP0704249B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/04Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for sequential operation or multiple outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1477Arrangements for supplying particulate material means for supplying to several spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state

Definitions

  • the present invention relates to a device for distributing pulverulent solids on the surface of a substrate, especially glass, in order to coat it with thin layers likely to give it optical, thermal or electrical properties.
  • This device allows in particular to deposit these thin layers by a technique so-called powder pyrolysis consisting in spraying said pulverulent solids (generally organo-metallic compounds), suspended in a gas, towards a substrate heated to a high temperature, so that they decompose (usually in the form metal oxide) on contact.
  • the substrate can take the form of a glass ribbon continuous said float, leaving the glass float enclosure, the device then comprising usually a nozzle having a cavity which passes right through it and which ends in a distribution slot above the ribbon and transversely to its axis of scrolling, the nozzle being equipped with suitable powder supply means.
  • the float glass ribbon to be covered usually has a width of at least 2 meters, in particular of the order of three to four meters. So it's on this width, which is considerable, that the nozzles have to distribute the gas / powder suspension in the most homogeneous possible to ensure, at least transversely to the axis of travel of the tape, a certain consistency in the quality and / or thickness of the coating deposited. Many studies have already been carried out, aiming either at the design of the nozzle itself, or its powder supply mode, to best guarantee this homogeneity.
  • patent EP-B-0 130 919 has developed an efficient distribution means allowing a fairly uniform subdivision of a vein of powder in suspension conveyed in a single supply duct in a plurality of powder veins conveyed in as many secondary conduits coming to feed the nozzle over its entire width by through feeders called injectors into which they open. he however, it is difficult to guarantee that each of the veins has a perfect identity with all the others, in terms of flow rate of powder transported, and that all of the veins will be able to “melt” into a perfectly homogeneous powder flow at the level from the nozzle distribution slot.
  • Patent EP-B-0 392 902 then proposed a device making it possible to modify automatically the relative positions of the injectors arranged in line at the inlet of the nozzle, removing or moving the injectors concerned as soon as a variation is detected of local thickness in the coating deposited “downstream” from the nozzle.
  • This solution gives interesting results, but is not yet fully optimal, firstly because it may seem a little complicated to implement, then and above all because it tries to compensate for any disparities in flow from the secondary veins without correcting them truly.
  • the object of the invention is therefore to further improve the operating mode of the powder distribution devices of this type, and in particular to optimize the homogeneity of the flow of the powder-gas suspension in the nozzle without sacrificing too much simplicity of implementation, in order to obtain quality coatings, particularly in terms of thickness consistency.
  • the subject of the invention is a device for distributing powdered solid in suspension in a gas, in order to deposit a coating, in particular by pyrolysis, on a moving substrate, in particular of the float glass ribbon type.
  • This device includes on the one hand, a dispensing nozzle whose walls define a cavity which ends in a longitudinal distribution slot. It also includes a main duct powder feed provided with a distribution means. A plurality of conduits secondary powder supply connected to this main conduit using the means of distribution allows the nozzle cavity to be supplied with powder over its entire length.
  • at least part of the secondary conduits is equipped with at least one means pneumatic capable of modulating the flow rate of the powder-gas suspension that each of the conduits secondary concerned is intended to convey.
  • each of the conduits is equipped of such pneumatic means.
  • This solution has two major advantages: on the one hand, being able to modulate the flow in each of the conduits will make it possible to truly correct and directly any differences in flow between the gas-powder mixture streams that they carry into the nozzle, and thus ensure a very even distribution in the powder supply at the nozzle, over the entire length of its cavity. Else on the other hand, use a pneumatic and non-mechanical means to operate these modulations debit is very advantageous.
  • a mechanical means of the valve type operates on the principle of partial obturation of the duct, obturation which, in the case of a flow of powder, causes untimely local accumulations of powder, clogging or engorgement which can cause sudden and uncontrolled high loss of load in flow.
  • a pneumatic means allows to modulate a mixing flow powder-gas in a fine and controlled manner and can be adjusted with very short response times short, with appropriate adjustment means, which can be manual or automated.
  • These means if chosen automated, can advantageously be part of a regulation loop, under control of a control unit connected to at least one means of measuring quality or thickness on the coating deposited on the substrate, using the dispensing nozzle. If it is a float glass ribbon, the regulation in the powder flow rates from secondary conduits can be carried out continuously, adjusting very quickly the flow of the appropriate secondary conduit (s) using their means tires as soon as a change in transverse thickness in the coating is detected deposited on the tape just downstream of the nozzle.
  • pneumatic means can be presented simply in the form of auxiliary supply conduits opening into the secondary conduits, supplied auxiliaries which are advantageously provided with a manual regulation means or automated gas flow or pressure, using for example valves. Insofar where they only carry gas, this type of mechanical adjustment means does not problem.
  • These feeds thus introduce into the flow of the powder-gas mixture secondary conduits a jet of gas whose characteristics are controlled in order to create there a controlled pressure drop then allowing the flow to be more or less reduced when this is necessary. Thanks to an appropriate distribution means, the quantity of powder which is no longer carried by the conduit due to this induced reduction in flow will be able to distribute homogeneously on all the other secondary conduits.
  • These secondary conduits can advantageously include pipes, preferably flexible, connected by means of distribution of the main supply duct, pipes whose ends opening out at the entrance to the nozzle cavity are constituted by rigid supply members called “injectors”, and preferably metallic.
  • the means for supplying auxiliary gases can then lead into the secondary conduits at any point, either at the level of these (flexible) pipes, downstream means for distributing the main duct, either near or in the nozzle, in particular at the pipe-injector junction or at the injector itself. It is this latter configuration which is more favorable, because the rigid injector allows Easy and safe "connection" of the auxiliary gas supply.
  • a preferred embodiment of the invention thus consists of a device for distribution, where each of the secondary conduits intended to carry the suspensions powder-gas is fitted at its end with an injector, the injectors being regularly arranged in line in the inlet opening of the nozzle cavity over its entire length and all having an auxiliary gas supply with variable flow.
  • the cavity of the nozzle is also provided with means for injecting pressurized gas to drive the powder-gas suspension emitted by the injectors in the cavity, means for injecting preferably arranged symmetrically on either side of the injector line. So, the powder supply of the nozzle is doubly optimized.
  • the invention also relates to the method for implementing the device. previously described, and in particular the various ways of controlling and regulating pneumatic means equipping the secondary conduits.
  • these pneumatic means are in the form of auxiliary gas inlets opening into the conduits, can thus adjust each of the auxiliary gas jet flow rates separately for each of them, and this in a range of flow rates which can range for example between 0 and 100% of a predetermined flow value.
  • These jets of gas must indeed have an action of "Braking" of the flow of powder in the duct, in order to create a pressure drop there and not a depression which would cause an acceleration of the flow. Debits, speeds and directions of injection of these jets of auxiliary gas compared to those of the flow of powder-gas mixture must therefore be carefully selected.
  • a first possibility is to operate "all or nothing". If no disparity local duct flow rates, resulting in a local variation in thickness of the coating, is detected, the flow rate of these auxiliary gas jets is zero. If a disparity appears, locally causing excess thickness in the coating, the means pneumatic of the secondary duct (s) involved intervenes to deliver a jet of auxiliary gas of suitable flow rate which cannot exceed a certain value, in order to decrease the powder flow rate of the duct (s) sufficiently to eliminate this excess thickness.
  • a second possibility is to permanently operate all of the pneumatic means, which all emit, when no disparity is detected, a jet of auxiliary gas of given flow. They therefore all exert a certain “braking” effect. permanent on the powder-gas mixture flows in the conduits, which can be compensate if necessary by adapting the flow rate of powder-gas mixture in the main supply duct. It is thus possible to regulate the flow rate of the gas jets auxiliary around this given flow value.
  • This operating mode is more flexible and leaves more room for maneuver, since we can also correct local coating thicknesses (by increasing the gas jet emission rate suitable auxiliary) than local decreases in thickness of said coating (in this time decreasing the emission rate of the appropriate auxiliary gas jet).
  • the flow value around which regulates the flow rate of each of the auxiliary gas jets is approximately 20 to 60% of the average gas flow rate of the powder-gas suspension carried by each of the conduits secondary.
  • a value of around 50% is chosen, with regulation of the flow rate of each of the auxiliary gas jets of ⁇ 50% around this value.
  • the device and method for implementing the latter can be advantageously used in view of depositing coatings based on metal oxide, by pyrolysis on a strip of hot float glass, in particular coatings of doped oxides of SnO 2 type: F, for example from a powder of dibutyltin difluoride (DBTF) or of the ITO type from powder of indium formate and tin dibutyloxide.
  • DBTF dibutyltin difluoride
  • ITO indium formate and tin dibutyloxide.
  • the installation as shown as a whole in FIG. 1 makes it possible to distribute regularly powdery solids of all kinds on various substrates, especially large dimensions.
  • it is used to distribute a powder of organo-metallic compounds on a ribbon 1 of float glass hot out of the floating bath enclosure, ribbon running on a bed of rollers 2 according to a given axis at a uniform speed.
  • the powder thus brought into contact with the glass surface hot decomposes there to leave a coating based on metal oxide (s).
  • the nozzle 24 of the installation shown in FIG. 2 is likewise a optimization of that described in patent EP-0 374 023.
  • the following is to describe more particularly the characteristics relating specifically to the invention. For more of information concerning the operation of the installation in general and of the nozzle in particular, one will therefore advantageously relate to these two patents, as well as to other previously cited patents.
  • the installation according to FIG. 1 therefore represents a hopper 3 for storing powder 4 to be dispensed, a mixer 5 in which the powder-gas mixture is produced, generally of air in order to constitute a suspension as homogeneous as possible of the powder in the gas using an air inlet 25 and a worm screw 26 supplied with powder by the hopper 3.
  • a main intake duct 6 conveys the powder-gas suspension at the outlet of the mixer 5, a distribution means 7 subdividing the single stream of powder-gas suspension brought through line 6 into a plurality of secondary veins as uniform as possible, a plurality of flexible secondary conduits 8 conveying these up to the dispensing nozzle 24.
  • This nozzle is arranged transversely to the axis of travel of the glass ribbon 2 and defines a transverse cavity whose length corresponds to the width tape to be coated.
  • the secondary conduits 8 open into metal injectors 9 arranged in line at the entrance of this cavity.
  • a partition 16 forming a spacer, provided with a gas passage means for example using porous materials and through orifices 17.
  • the chambers 18 located in the upper part of the nozzle open into the cavity 11 through slots 19 near the injectors 9, so as to inject the gas under pressure substantially parallel to the walls 12, slots limited by lips 20, of suitable configuration.
  • each of the injectors 9 consists schematically of a hollow metal cylinder into which each of the secondary conduits 8 of waterproof way.
  • These injectors further include an air type gas inlet under form of an auxiliary conduit 22 coming into it, preferably with a configuration such between injector 9 and line 22 that the jet of powder-gas mixture in the injector and the gas jet that can emit the conduit 22 in the injector 9 make an angle between them a between 5 and 90 °, preferably around 30 °. It is indeed preferable that this angle remains below 90 ° to avoid any risk of traces of powder seeping into the conduit 22, traces which can in particular disrupt the proper functioning of the means of flow adjustment that equip it.
  • Each auxiliary conduit 22 is supplied by a source of suitable gas not shown.
  • each of the conduits 22 can modulate the gas jet flow conveyed by each of the conduits 22 in the powder-gas flow of each of the injectors, individually, using regulation loop.
  • Each of the conduits connected to a source of gas, in particular air, external to the nozzle is provided with a flow control means of the solenoid valve type.
  • This means of adjustment (for example of the flow meter type associated with a magnetic valve) is controlled by a control unit according to the thickness variations detected in downstream of the nozzle on the coating 23.
  • This detection can be carried out continuously or by time interval given using one or more thickness measurement means of the type reflectometers (a reflectometer mounted mobile above the glass ribbon in order to "Sweep" the width of the coating, ie several reflectometers arranged in line above ribbon.
  • the mode of operation of the nozzle 24 is explained with the aid of an implementation example, consisting in depositing a layer of SnO 2 : F 200 nm thick from a tin dibutyldifluoride powder. (DBTF).
  • the mass flow rate of DBTF powder conveyed in the main supply conduit 6 is between 3 and 10 kg / hour / linear meter of nozzle.
  • the volume flow rate of the gas in which it is suspended is between 3 and 80 m 3 / hour / linear meter of nozzle.
  • the flow of pressurized gas injected through the slots 19 into the cavity is between 200 and 500 m 3 / h / linear meter of nozzle.
  • each secondary duct would carry a gaseous vein whose mass flow rates D.B.T.F. and gas volume would be exactly equal to the ratio of those of the suspension conveyed in the main supply duct on the number of ducts secondary.
  • differences in flow can appear between the jets of powder-gas mixture from each of the injectors 9, deviations leading to extra thicknesses or on the contrary local decreases in the thickness of coating deposited compared to the average thickness of 200 nm sought.
  • These transverse variations in thickness of the coating are detrimental to its quality, because they can, in particular, cause optical defects, of the iridescent type, unattractive.
  • a powder-gas flow from the secondary conduit 8 is continuously passing through each of the injectors 9, presenting a gas flow rate of approximately 2 m 3 / h and a gas jet emitted by the auxiliary conduit 22 d ' a given gas volume flow rate, in particular around 1 m 3 / h.
  • the control unit controls the valve of the line (s) 22 of the injectors 9 concerned to reduce the flow rate of the auxiliary gas jet .
  • the flow rate of each of the auxiliary gas jets can vary between for example 0.5 and 1.5 m 3 / h.
  • the control unit (or the operator) can use charts giving direct correspondences between variation in thickness in the coating and variation in flow rate in conduits 22, without even having to measure precisely the flow rates of powder passing in the conduits 8 then the injectors 9.
  • any irregularity in the thickness of the coating can thus be quickly corrected, remotely, manually, automatically or semi-automatically.
  • the regulation flow rate of the powder-gas suspension coming from each of the conduits secondary 8 is carried out by the auxiliary gas jet of each of the conduits 22, without any clogged or clogged secondary duct problem or detrimental impact on the supply of the other secondary conduits.
  • the powder flow in the secondary duct 8 adhoc is reduced to rectify an excess thickness in the coating, the “excess powder” not delivered by the conduit of which we reduced the flow will be distributed regularly on all the other conduits at the level means of distribution.
  • the mode of supply of powder uses the pneumatic means of the invention to improve uniformity in the thickness of the coating deposited. But we could just as well, without leaving the framework of the invention, use these pneumatic means to create, this time so voluntary and controlled, gradients in the thickness of the coating deposited, at all less transversely to the axis of travel of the substrate, if this proved useful or advantageous to manufacture coatings having such characteristics.

Description

La présente invention concerne un dispositif de distribution de solides pulvérulents à la surface d'un substrat, notamment en verre, afin de le revêtir de couches minces susceptibles de lui conférer des propriétés optiques, thermiques ou électriques.The present invention relates to a device for distributing pulverulent solids on the surface of a substrate, especially glass, in order to coat it with thin layers likely to give it optical, thermal or electrical properties.

Ce dispositif permet notamment de déposer ces couches minces par une technique dite de pyrolyse de poudre consistant à projeter lesdits solides pulvérulents (en général des composés organo-métalliques), en suspension dans un gaz, en direction d'un substrat chauffé à haute température, de manière à ce qu'ils se décomposent (en général sous forme d'oxyde métallique) à son contact. Le substrat peut prendre la forme d'un ruban de verre continu dit float, au sortir de l'enceinte de flottage du verre, le dispositif comprenant alors usuellement une buse comportant une cavité qui la traverse de part en part et qui se termine en une fente de distribution au-dessus du ruban et transversalement à son axe de défilement, la buse étant équipée de moyens d'alimentation en poudre appropriés.This device allows in particular to deposit these thin layers by a technique so-called powder pyrolysis consisting in spraying said pulverulent solids (generally organo-metallic compounds), suspended in a gas, towards a substrate heated to a high temperature, so that they decompose (usually in the form metal oxide) on contact. The substrate can take the form of a glass ribbon continuous said float, leaving the glass float enclosure, the device then comprising usually a nozzle having a cavity which passes right through it and which ends in a distribution slot above the ribbon and transversely to its axis of scrolling, the nozzle being equipped with suitable powder supply means.

On peut ainsi obtenir, en continu, des couches minces présentant en règle générale une adhérence élevée au substrat et une qualité ainsi qu'une durabilité satisfaisantes.It is thus possible to obtain, continuously, thin layers generally having high adhesion to the substrate and satisfactory quality and durability.

Cependant, le ruban de verre float à recouvrir (ou tout autre substrat de grandes dimensions que l'on chercherait à recouvrir) présente usuellement une largeur d'au moins 2 mètres, notamment de l'ordre de trois à quatre mètres. C'est donc sur cette largeur, qui est considérable, que les buses ont à répartir la suspension gaz/poudre de la manière la plus homogène possible pour assurer, au moins transversalement à l'axe de défilement du ruban, une certaine constance dans la qualité et/ou l'épaisseur du revêtement déposé. Beaucoup d'études ont déjà été effectuées, visant soit la conception même de la buse, soit son mode d'alimentation en poudre, pour garantir au mieux cette homogénéité. However, the float glass ribbon to be covered (or any other substrate of large dimensions that one would seek to cover) usually has a width of at least 2 meters, in particular of the order of three to four meters. So it's on this width, which is considerable, that the nozzles have to distribute the gas / powder suspension in the most homogeneous possible to ensure, at least transversely to the axis of travel of the tape, a certain consistency in the quality and / or thickness of the coating deposited. Many studies have already been carried out, aiming either at the design of the nozzle itself, or its powder supply mode, to best guarantee this homogeneity.

Ainsi, le brevet EP-B-0 130 919 a mis au point un moyen de répartition efficace permettant de subdiviser de manière assez uniforme une veine de poudre en suspension véhiculée dans un conduit d'amenée unique en une pluralité de veines de poudre véhiculées dans autant de conduits secondaires venant alimenter la buse sur toute sa largeur par l'intermédiaire d'organes d'alimentation appelés injecteurs dans lesquels ils débouchent. Il est cependant difficile de garantir que chacune des veines présente une parfaite identité avec toutes les autres, en terme de débit de poudre transportée, et que l'ensemble des veines va pouvoir se « fondre » en un courant de poudre parfaitement homogène au niveau de la fente de distribution de la buse.Thus, patent EP-B-0 130 919 has developed an efficient distribution means allowing a fairly uniform subdivision of a vein of powder in suspension conveyed in a single supply duct in a plurality of powder veins conveyed in as many secondary conduits coming to feed the nozzle over its entire width by through feeders called injectors into which they open. he however, it is difficult to guarantee that each of the veins has a perfect identity with all the others, in terms of flow rate of powder transported, and that all of the veins will be able to “melt” into a perfectly homogeneous powder flow at the level from the nozzle distribution slot.

C'est pourquoi les brevets EP-B-0 125 153 et EP-B-0 374 023 ont proposé de compléter ce mode d'alimentation en prévoyant chacun des moyens d'amenée de gaz sous pression dans la cavité visant à faciliter, homogénéiser l'écoulement de la suspension poudre-gaz issue des injecteurs au travers de la buse, sans parvenir encore à supprimer tout risque d'irrégularité d'épaisseur dans la couche déposée et à « corriger » véritablement les éventuelles légères disparités entre les différentes veines de gaz arrivant dans les injecteurs.This is why patents EP-B-0 125 153 and EP-B-0 374 023 have proposed complete this mode of supply by providing each means of supplying gas under pressure in the cavity to facilitate, homogenize the flow of the suspension powder-gas from the injectors through the nozzle, without yet managing to remove all risk of irregularity in thickness in the deposited layer and to truly "correct" the possible slight disparities between the different gas streams arriving in the injectors.

Le brevet EP-B-0 392 902 a alors proposé un dispositif permettant de modifier automatiquement les positions relatives des injecteurs disposés en ligne à l'entrée de la buse, en écartant ou rapprochant les injecteurs concernés dès qu'est détectée une variation d'épaisseur locale dans le revêtement déposé en « aval » de la buse. Cette solution donne des résultats intéressants, mais n'est pas encore totalement optimale, d'abord parce qu'elle peut paraítre un peu compliquée à mettre en oeuvre, ensuite et surtout parce qu'elle tente de compenser les éventuelles disparités de débit des veines secondaires sans les corriger véritablement.Patent EP-B-0 392 902 then proposed a device making it possible to modify automatically the relative positions of the injectors arranged in line at the inlet of the nozzle, removing or moving the injectors concerned as soon as a variation is detected of local thickness in the coating deposited “downstream” from the nozzle. This solution gives interesting results, but is not yet fully optimal, firstly because it may seem a little complicated to implement, then and above all because it tries to compensate for any disparities in flow from the secondary veins without correcting them truly.

L'invention a alors pour but d'améliorer encore le mode de fonctionnement des dispositifs de distribution de poudre de ce type, et notamment de parvenir à optimiser l'homogénéité de l'écoulement de la suspension poudre-gaz dans la buse sans trop sacrifier à la simplicité de mise en oeuvre, afin d'obtenir des revêtements de qualité, particulièrement en terme de régularité d'épaisseur.The object of the invention is therefore to further improve the operating mode of the powder distribution devices of this type, and in particular to optimize the homogeneity of the flow of the powder-gas suspension in the nozzle without sacrificing too much simplicity of implementation, in order to obtain quality coatings, particularly in terms of thickness consistency.

L'invention a pour objet un dispositif de distribution de solide pulvérulent en suspension dans un gaz, en vue de déposer un revêtement, notamment par pyrolyse, sur un substrat en défilement, notamment du type ruban de verre float. Ce dispositif comprend d'une part une buse de distribution dont les parois définissent une cavité qui se termine par une fente de distribution longitudinale. Il comprend d'autre part un conduit principal d'amenée de poudre muni d'un moyen de répartition . Une pluralité de conduits secondaires d'amenée de poudre connectés à ce conduit principal à l'aide des moyens de répartition permet d'alimenter en poudre la cavité de la buse sur toute sa longueur. Selon l'invention, au moins une partie des conduits secondaires est équipée d'au moins un moyen pneumatique apte à moduler le débit de la suspension poudre-gaz que chacun des conduits secondaires concerné est destiné à véhiculer. De préférence, chacun des conduits est équipé d'un tel moyen pneumatique. Cette solution présente deux intérêts majeurs : d'une part, pouvoir moduler le débit dans chacun des conduits va permettre de corriger véritablement et directement les éventuelles disparités de débit entre les veines de mélange gaz-poudre qu'ils transportent jusque dans la buse, et ainsi d'assurer une répartition très régulière dans l'alimentation en poudre au niveau de la buse, sur toute la longueur de sa cavité. D'autre part, avoir recours à un moyen pneumatique et non mécanique pour opérer ces modulations de débit est très avantageux. En effet, un moyen mécanique du type vanne fonctionne sur le principe d'une obturation partielle du conduit, obturation qui, dans le cas d'un écoulement de poudre, provoque des accumulations locales intempestives de poudre, des colmatages ou engorgements pouvant provoquer de manière soudaine et incontrôlée de fortes pertes de charge dans l'écoulement.The subject of the invention is a device for distributing powdered solid in suspension in a gas, in order to deposit a coating, in particular by pyrolysis, on a moving substrate, in particular of the float glass ribbon type. This device includes on the one hand, a dispensing nozzle whose walls define a cavity which ends in a longitudinal distribution slot. It also includes a main duct powder feed provided with a distribution means. A plurality of conduits secondary powder supply connected to this main conduit using the means of distribution allows the nozzle cavity to be supplied with powder over its entire length. According to the invention, at least part of the secondary conduits is equipped with at least one means pneumatic capable of modulating the flow rate of the powder-gas suspension that each of the conduits secondary concerned is intended to convey. Preferably, each of the conduits is equipped of such pneumatic means. This solution has two major advantages: on the one hand, being able to modulate the flow in each of the conduits will make it possible to truly correct and directly any differences in flow between the gas-powder mixture streams that they carry into the nozzle, and thus ensure a very even distribution in the powder supply at the nozzle, over the entire length of its cavity. Else on the other hand, use a pneumatic and non-mechanical means to operate these modulations debit is very advantageous. Indeed, a mechanical means of the valve type operates on the principle of partial obturation of the duct, obturation which, in the case of a flow of powder, causes untimely local accumulations of powder, clogging or engorgement which can cause sudden and uncontrolled high loss of load in flow.

Un moyen pneumatique, au contraire, permet de moduler un débit de mélange poudre-gaz de manière fine et contrôlée et peut être réglé avec des temps de réponse très brefs, avec des moyens de réglage appropriés, qui peuvent être manuels ou automatisés. Ces moyens, si on les choisit automatisés, peuvent faire avantageusement partie d'une boucle de régulation, sous commande d'une unité de contrôle connectée à au moins un moyen de mesure de qualité ou d'épaisseur sur le revêtement déposé sur le substrat, à l'aide de la buse de distribution. S'il s'agit d'un ruban de verre float, la régulation dans les débits de poudre des conduits secondaires peut être effectuée en continu, en ajustant très rapidement le débit du ou des conduits secondaires appropriés à l'aide de leurs moyens pneumatiques dès qu'est détectée une variation d'épaisseur transversale dans le revêtement déposé sur le ruban juste en aval de la buse. En se servant par exemple d'abaques préétablies indiquant la correspondance entre une variation d'épaisseur locale donnée et une variation de réglage du moyen pneumatique adéquat du conduit secondaire concerné pour la rectifier, on n'a alors même pas besoin de mesurer précisément les débits de mélange poudre-gaz des conduits et leurs éventuels écarts, on peut effectuer seulement une corrélation entre les variations d'épaisseur qui sont la conséquence de ces écarts et les réglages des moyens pneumatiques à effectuer.A pneumatic means, on the contrary, allows to modulate a mixing flow powder-gas in a fine and controlled manner and can be adjusted with very short response times short, with appropriate adjustment means, which can be manual or automated. These means, if chosen automated, can advantageously be part of a regulation loop, under control of a control unit connected to at least one means of measuring quality or thickness on the coating deposited on the substrate, using the dispensing nozzle. If it is a float glass ribbon, the regulation in the powder flow rates from secondary conduits can be carried out continuously, adjusting very quickly the flow of the appropriate secondary conduit (s) using their means tires as soon as a change in transverse thickness in the coating is detected deposited on the tape just downstream of the nozzle. Using, for example, preset charts indicating the correspondence between a given local thickness variation and a adjustment variation of the appropriate pneumatic means of the secondary duct concerned for rectify it, so we don't even need to measure the mixing rates precisely powder-gas of the conduits and their possible deviations, one can only carry out a correlation between the variations in thickness which are the consequence of these differences and the pneumatic means to be adjusted.

Ces moyens pneumatiques peuvent se présenter simplement sous la forme de conduits d'amenée auxiliaires débouchant dans les conduits secondaires, amenées auxiliaires que l'on munit avantageusement d'un moyen de régulation manuel ou automatisé de débit ou pression de gaz, utilisant par exemple des vannes. Dans la mesure où elles ne véhiculent que du gaz, ce type de moyen de réglage mécanique n'entraíne aucun problème. Ces amenées introduisent ainsi dans l'écoulement du mélange poudre-gaz des conduits secondaires un jet de gaz dont les caractéristiques sont maítrisées afin d'y créer une perte de charge contrôlée permettant alors d'en diminuer plus ou moins le débit quand cela est nécessaire. Grâce à un moyen de répartition approprié, la quantité de poudre qui n'est plus véhiculée par le conduit du fait de cette diminution provoquée de débit va pouvoir se répartir homogènement sur tous les autres conduits secondaires.These pneumatic means can be presented simply in the form of auxiliary supply conduits opening into the secondary conduits, supplied auxiliaries which are advantageously provided with a manual regulation means or automated gas flow or pressure, using for example valves. Insofar where they only carry gas, this type of mechanical adjustment means does not problem. These feeds thus introduce into the flow of the powder-gas mixture secondary conduits a jet of gas whose characteristics are controlled in order to create there a controlled pressure drop then allowing the flow to be more or less reduced when this is necessary. Thanks to an appropriate distribution means, the quantity of powder which is no longer carried by the conduit due to this induced reduction in flow will be able to distribute homogeneously on all the other secondary conduits.

Ces conduits secondaires peuvent avantageusement comporter des canalisations, de préférence souples, connectées au moyen de répartition du conduit d'amenée principal, canalisations dont les extrémités débouchant à l'entrée de la cavité de la buse sont constituées par des organes d'alimentation appelés « injecteurs » rigides, et de préférence métalliques. Les moyens d'amenée de gaz auxiliaires peuvent alors déboucher dans les conduits secondaires en tout point, soit au niveau de ces canalisations (souples), en « aval » du moyen de répartition du conduit principal, soit à proximité ou dans la buse, notamment au niveau de la jonction canalisation-injecteur ou au niveau de l'injecteur lui-même. C'est cette dernière configuration qui est plus favorable, car l'injecteur, rigide, permet un « branchement » facile et sûr de l'amenée de gaz auxiliaire.These secondary conduits can advantageously include pipes, preferably flexible, connected by means of distribution of the main supply duct, pipes whose ends opening out at the entrance to the nozzle cavity are constituted by rigid supply members called “injectors”, and preferably metallic. The means for supplying auxiliary gases can then lead into the secondary conduits at any point, either at the level of these (flexible) pipes, downstream means for distributing the main duct, either near or in the nozzle, in particular at the pipe-injector junction or at the injector itself. It is this latter configuration which is more favorable, because the rigid injector allows Easy and safe "connection" of the auxiliary gas supply.

Un mode de réalisation préféré de l'invention consiste ainsi en un dispositif de distribution, où chacun des conduits secondaires destinés à véhiculer les suspensions poudre-gaz est muni à son extrémité d'un injecteur, les injecteurs étant régulièrement disposés en ligne dans l'orifice d'entrée de la cavité de la buse sur toute sa longueur et étant tous munis d'une arrivée de gaz auxiliaire à débit variable. En outre, la cavité de la buse est également munie de moyens d'injection de gaz sous pression pour entraíner la suspension poudre-gaz émise par les injecteurs dans la cavité, moyens d'injection de préférence disposés symétriquement de part et d'autre de la ligne d'injecteurs. Ainsi, l'alimentation en poudre de la buse se trouve doublement optimisée. On la corrige d'abord « à la source », grâce aux moyens pneumatiques de l'invention permettant de supprimer ou à tout le moins d'atténuer très significativement toutes les disparités de débit entre les jets de mélange poudre-gaz émis dans la buse par les injecteurs. On l'homogénéise ensuite, dans la buse, grâce à des gaz sous pression qui vont permettre de « transformer » la pluralité de jets de mélange individualisés s'écoulant dans la buse en un « rideau » de poudre uniforme en sortie de la fente transversale.A preferred embodiment of the invention thus consists of a device for distribution, where each of the secondary conduits intended to carry the suspensions powder-gas is fitted at its end with an injector, the injectors being regularly arranged in line in the inlet opening of the nozzle cavity over its entire length and all having an auxiliary gas supply with variable flow. In addition, the cavity of the nozzle is also provided with means for injecting pressurized gas to drive the powder-gas suspension emitted by the injectors in the cavity, means for injecting preferably arranged symmetrically on either side of the injector line. So, the powder supply of the nozzle is doubly optimized. We fix it first "At the source", thanks to the pneumatic means of the invention making it possible to eliminate or at the very least attenuate very significantly all the disparities in flow between the jets of powder-gas mixture emitted into the nozzle by the injectors. We then homogenize it, in the nozzle, thanks to pressurized gases which will “transform” the plurality of individualized mixing jets flowing in the nozzle in a "curtain" of uniform powder at the outlet of the transverse slot.

L'invention a également pour objet le procédé de mise en oeuvre du dispositif précédemment décrit, et notamment les diverses manières de contrôler et réguler les moyens pneumatiques équipant les conduits secondaires. Quand ces moyens pneumatiques se présentent sous la forme d'arrivées de gaz auxiliaires débouchant dans les conduits, on peut ainsi régler chacun des débits de jets de gaz auxiliaire séparément pour chacun d'entre eux, et ceci dans une gamme de débit pouvant aller par exemple entre 0 et 100% d'une valeur de débit prédéterminée. Il faut en effet que ces jets de gaz aient une action de « freinage » de l'écoulement de poudre dans le conduit, afin d'y créer une perte de charge et non une dépression qui provoquerait une accélération de l'écoulement. Les débits, vitesses et directions d'injection de ces jets de gaz auxiliaire par rapport à ceux de l'écoulement de mélange poudre-gaz doivent donc être soigneusement sélectionnés.The invention also relates to the method for implementing the device. previously described, and in particular the various ways of controlling and regulating pneumatic means equipping the secondary conduits. When these pneumatic means are in the form of auxiliary gas inlets opening into the conduits, can thus adjust each of the auxiliary gas jet flow rates separately for each of them, and this in a range of flow rates which can range for example between 0 and 100% of a predetermined flow value. These jets of gas must indeed have an action of "Braking" of the flow of powder in the duct, in order to create a pressure drop there and not a depression which would cause an acceleration of the flow. Debits, speeds and directions of injection of these jets of auxiliary gas compared to those of the flow of powder-gas mixture must therefore be carefully selected.

Une première possibilité est de fonctionner en « tout ou rien ». Si aucune disparité locale des débits des conduits, se traduisant par une variation locale d'épaisseur du revêtement, est détectée, le débit de ces jets de gaz auxiliaire est nul. Si une disparité apparaít, provoquant localement des surépaisseurs dans le revêtement, le moyen pneumatique du ou des conduits secondaires impliqués intervient pour délivrer un jet de gaz auxiliaire de débit adapté ne pouvant dépasser une certaine valeur, afin de diminuer suffisamment le débit de poudre du ou des conduits pour supprimer cette surépaisseur.A first possibility is to operate "all or nothing". If no disparity local duct flow rates, resulting in a local variation in thickness of the coating, is detected, the flow rate of these auxiliary gas jets is zero. If a disparity appears, locally causing excess thickness in the coating, the means pneumatic of the secondary duct (s) involved intervenes to deliver a jet of auxiliary gas of suitable flow rate which cannot exceed a certain value, in order to decrease the powder flow rate of the duct (s) sufficiently to eliminate this excess thickness.

Une seconde possibilité est de faire fonctionner en permanence l'ensemble des moyens pneumatiques, qui émettent tous, quand aucune disparité n'est détectée, un jet de gaz auxiliaire de débit donné. Ils exercent donc tous un certain effet de « freinage » permanent sur les écoulements de mélange poudre-gaz dans les conduits, que l'on peut compenser si besoin en adaptant en conséquence le débit de mélange poudre-gaz dans le conduit d'amenée principal. On peut ainsi effectuer la régulation du débit des jets de gaz auxiliaire autour de cette valeur de débit donnée. Ce mode de fonctionnement est plus souple et laisse plus de marge de manoeuvre, puisque l'on peut aussi bien rectifier des surépaisseurs locales de revêtement (en augmentant le débit d'émission du jet de gaz auxiliaire approprié) que des diminutions locales d'épaisseur dudit revêtement (en diminuant cette fois le débit d'émission du jet de gaz auxiliaire approprié).A second possibility is to permanently operate all of the pneumatic means, which all emit, when no disparity is detected, a jet of auxiliary gas of given flow. They therefore all exert a certain “braking” effect. permanent on the powder-gas mixture flows in the conduits, which can be compensate if necessary by adapting the flow rate of powder-gas mixture in the main supply duct. It is thus possible to regulate the flow rate of the gas jets auxiliary around this given flow value. This operating mode is more flexible and leaves more room for maneuver, since we can also correct local coating thicknesses (by increasing the gas jet emission rate suitable auxiliary) than local decreases in thickness of said coating (in this time decreasing the emission rate of the appropriate auxiliary gas jet).

Dans ce mode de fonctionnement, il est avantageux que la valeur de débit autour de laquelle on régule le débit de chacun des jets de gaz auxiliaire soit d'environ 20 à 60% du débit de gaz moyen de la suspension poudre-gaz véhiculée par chacun des conduits secondaires. De préférence, on choisit une valeur d'environ 50%, avec une régulation du débit de chacun des jets de gaz auxiliaire de ± 50% autour de cette valeur. On entend par débit « moyen », leur débit théorique, si aucune disparité de débit entre conduits ne pouvait exister.In this operating mode, it is advantageous that the flow value around which regulates the flow rate of each of the auxiliary gas jets is approximately 20 to 60% of the average gas flow rate of the powder-gas suspension carried by each of the conduits secondary. Preferably, a value of around 50% is chosen, with regulation of the flow rate of each of the auxiliary gas jets of ± 50% around this value. We hear by "average" flow, their theoretical flow, if no disparity of flow between conduits could to exist.

Comme précédemment mentionné, le plus simple et le plus efficace est de réguler ces débits de jet de gaz auxiliaire non en fonction des écarts évalués quantitativement entre les débits des conduits secondaires, ce qui serait délicat à faire, mais directement en fonction des variations d'épaisseur détectées dans le revêtement « en aval » de la buse de distribution. On corrige ainsi les écarts de débit indirectement.As previously mentioned, the simplest and most effective is to regulate these auxiliary gas jet flow rates not as a function of the quantitatively evaluated differences between the flow rates of the secondary conduits, which would be difficult to do, but directly in as a function of the thickness variations detected in the coating “downstream” from the nozzle distribution. This corrects the flow differences indirectly.

Le dispositif et procédé de mise en oeuvre de ce dernier peuvent être avantageusement utilisés en vu de déposer des revêtements à base d'oxyde métallique, par pyrolyse sur un ruban de verre float chaud, notamment des revêtements d'oxydes dopés du type SnO2:F, par exemple à partir d'une poudre de difluorure de dibutylétain (D.B.T.F.) ou du type ITO à partir de poudre de formiate d'indium et de dibutyloxyde d'étain.The device and method for implementing the latter can be advantageously used in view of depositing coatings based on metal oxide, by pyrolysis on a strip of hot float glass, in particular coatings of doped oxides of SnO 2 type: F, for example from a powder of dibutyltin difluoride (DBTF) or of the ITO type from powder of indium formate and tin dibutyloxide.

Les détails et caractéristiques avantageuses du dispositif de distribution selon l'invention vont maintenant ressortir d'un mode de réalisation non limitatif illustré à l'aide des figures suivantes :

  • figure 1 : une vue schématique d'ensemble d'une installation de dépôt d'un revêtement par pyrolyse de poudre sur un substrat,
  • figure 2 : une vue en coupe transversale de la buse de distribution de l'installation selon la figure 1.
The details and advantageous characteristics of the dispensing device according to the invention will now emerge from a nonlimiting embodiment illustrated with the aid of the following figures:
  • FIG. 1: an overall schematic view of an installation for depositing a coating by powder pyrolysis on a substrate,
  • FIG. 2: a cross-sectional view of the dispensing nozzle of the installation according to FIG. 1.

L'installation telle que montrée dans son ensemble en figure 1 permet de distribuer de manière régulière des solides pulvérulents de toutes natures sur des substrats divers, notamment de grandes dimensions. Dans le cadre de cet exemple non limitatif, on l'utilise pour distribuer une poudre de composés organo-métalliques sur un ruban 1 de verre float chaud au sortir de l'enceinte du bain flottage, ruban défilant sur un lit de rouleaux 2 selon un axe donné à une vitesse uniforme. La poudre mis ainsi au contact de la surface du verre chaud s'y décompose pour laisser un revêtement à base d'oxyde(s) métallique(s).The installation as shown as a whole in FIG. 1 makes it possible to distribute regularly powdery solids of all kinds on various substrates, especially large dimensions. In the context of this nonlimiting example, it is used to distribute a powder of organo-metallic compounds on a ribbon 1 of float glass hot out of the floating bath enclosure, ribbon running on a bed of rollers 2 according to a given axis at a uniform speed. The powder thus brought into contact with the glass surface hot decomposes there to leave a coating based on metal oxide (s).

Cette installation est une optimisation de celle décrite dans le brevet européen EP-B-0 130 919 précité dans la mesure où elle comporte en plus les moyens pneumatiques 22 spécifiques de la présente invention.This installation is an optimization of that described in the European patent EP-B-0 130 919 cited above insofar as it additionally includes pneumatic means 22 specific to the present invention.

La buse 24 de l'installation représentée en figure 2 est de la même manière une optimisation de celle décrite dans le brevet EP-0 374 023. On s'attache ci-après à décrire plus particulièrement les caractéristiques ayant spécifiquement trait à l'invention. Pour plus de renseignements concernant le fonctionnement de l'installation en général et de la buse en particulier, on se rapportera donc avantageusement à ces deux brevets, ainsi qu'aux autres brevets précédemment cités.The nozzle 24 of the installation shown in FIG. 2 is likewise a optimization of that described in patent EP-0 374 023. The following is to describe more particularly the characteristics relating specifically to the invention. For more of information concerning the operation of the installation in general and of the nozzle in particular, one will therefore advantageously relate to these two patents, as well as to other previously cited patents.

L'installation selon la figure 1 représente donc une trémie 3 de stockage de poudre 4 à distribuer, un mélangeur 5 dans lequel est réalisé le mélange poudre-gaz, en général de l'air en vue de constituer une suspension aussi homogène que possible de la poudre dans le gaz à l'aide d'une arrivée d'air 25 et d'une vis sans fin 26 alimentée en poudre par la trémie 3. Un conduit principal d'admission 6 achemine la suspension poudre-gaz à la sortie du mélangeur 5, un moyen de répartition 7 subdivisant la veine unique de suspension poudre-gaz amenée par le conduit 6 en une pluralité de veines secondaires aussi uniformes que possible, une pluralité de conduits secondaires 8 souples véhiculant celles-ci jusqu'à la buse de distribution 24. Cette buse est disposée transversalement à l'axe de défilement du ruban de verre 2 et définit une cavité transversale dont la longueur correspond à la largeur du ruban à revêtir. Les conduits secondaires 8 débouchent dans des injecteurs métalliques 9 disposés en ligne à l'entrée de cette cavité.The installation according to FIG. 1 therefore represents a hopper 3 for storing powder 4 to be dispensed, a mixer 5 in which the powder-gas mixture is produced, generally of air in order to constitute a suspension as homogeneous as possible of the powder in the gas using an air inlet 25 and a worm screw 26 supplied with powder by the hopper 3. A main intake duct 6 conveys the powder-gas suspension at the outlet of the mixer 5, a distribution means 7 subdividing the single stream of powder-gas suspension brought through line 6 into a plurality of secondary veins as uniform as possible, a plurality of flexible secondary conduits 8 conveying these up to the dispensing nozzle 24. This nozzle is arranged transversely to the axis of travel of the glass ribbon 2 and defines a transverse cavity whose length corresponds to the width tape to be coated. The secondary conduits 8 open into metal injectors 9 arranged in line at the entrance of this cavity.

Si on se reporte à la figure 2, on voit effectivement l'un de ces injecteurs 9 venant projeter une veine de mélange gaz-poudre à l'entrée 10 de la cavité 11 définie par les parois 12 intérieures de la buse, parois planes et légèrement convergentes jusqu'à la fente de distribution 13 située à quelques millimètres de la surface du ruban de verre 1. Des moyens d'injection de gaz sous pression sont par ailleurs prévus de part et d'autre de la ligne des injecteurs 9, afin de faciliter la répartition en « rideau » de poudre et l'entraínement des jets de suspension poudre-gaz issus des injecteurs 9. Ces moyens sont formés par une série de chambres 14 situées symétriquement dans le corps de buse et reliées par une rampe 15 à une source de gaz, de l'air en général. Ces chambres sont reliées entre elles par une cloison 16 formant entretoise, munie d'un moyen de passage du gaz par exemple à l'aide de matériaux poreux et par des orifices 17. Les chambres 18 situées en partie supérieure de la buse débouchent dans la cavité 11 par des fentes 19 à proximité des injecteurs 9, de manière à injecter le gaz sous pression sensiblement parallèlement aux parois 12, fentes limitées par des lèvres 20, de configuration appropriée.If we refer to Figure 2, we actually see one of these injectors 9 coming project a gas-powder mixture stream at the inlet 10 of the cavity 11 defined by the walls 12 interior of the nozzle, flat walls and slightly convergent to the slot of distribution 13 located a few millimeters from the surface of the glass ribbon 1. Means pressure gas injection pipes are also provided on either side of the line of injectors 9, in order to facilitate the “curtain” distribution of powder and the training of the jets of powder-gas suspension from the injectors 9. These means are formed by a series of chambers 14 located symmetrically in the nozzle body and connected by a ramp 15 to a source of gas, air in general. These rooms are interconnected by a partition 16 forming a spacer, provided with a gas passage means for example using porous materials and through orifices 17. The chambers 18 located in the upper part of the nozzle open into the cavity 11 through slots 19 near the injectors 9, so as to inject the gas under pressure substantially parallel to the walls 12, slots limited by lips 20, of suitable configuration.

Selon l'invention, chacun des injecteurs 9 est constitué schématiquement d'un cylindre métallique creux dans lequel débouche chacun des conduits secondaires 8 de manière étanche. Ces injecteurs comprennent en outre une arrivée de gaz du type air sous forme d'un conduit auxiliaire 22 venant y déboucher, avec de préférence une configuration telle entre injecteur 9 et conduit 22 que le jet de mélange poudre-gaz dans l'injecteur et le jet de gaz que peut émettre le conduit 22 dans l'injecteur 9 fassent entre eux un angle a compris entre 5 et 90°, de préférence d'environ 30°. Il est en effet préférable que cet angle reste inférieur à 90° afin d'éviter tout risque de voir des traces de poudre s'infiltrer dans le conduit 22, traces pouvant notamment perturber le bon fonctionnement des moyens de réglage de débit qui l'équipent. Chaque conduit auxiliaire 22 est alimenté par une source de gaz appropriée non représentée.According to the invention, each of the injectors 9 consists schematically of a hollow metal cylinder into which each of the secondary conduits 8 of waterproof way. These injectors further include an air type gas inlet under form of an auxiliary conduit 22 coming into it, preferably with a configuration such between injector 9 and line 22 that the jet of powder-gas mixture in the injector and the gas jet that can emit the conduit 22 in the injector 9 make an angle between them a between 5 and 90 °, preferably around 30 °. It is indeed preferable that this angle remains below 90 ° to avoid any risk of traces of powder seeping into the conduit 22, traces which can in particular disrupt the proper functioning of the means of flow adjustment that equip it. Each auxiliary conduit 22 is supplied by a source of suitable gas not shown.

On peut moduler le débit de jet de gaz véhiculé par chacun des conduits 22 dans l'écoulement poudre-gaz de chacun des injecteurs, de manière individualisée, à l'aide de boucle de régulation. Chacun des conduit relié à une source de gaz, notamment de l'air, extérieure à la buse, est munie d'un moyen de réglage de débit du type électrovanne. Ce moyen de réglage, (par exemple du type débit-mètre associé à une vanne magnétique) est commandé par une unité de contrôle en fonction des variations d'épaisseur détectées en aval de la buse sur le revêtement 23. Cette détection peut être réalisée en continu ou par intervalle de temps donné à l'aide d'un ou plusieurs moyens de mesure d'épaisseur du type réflectomètres (soit un réflectomètre monté mobile au-dessus du ruban de verre afin de « balayer » la largeur du revêtement, soit plusieurs réflectomètres disposés en ligne au-dessus du ruban. We can modulate the gas jet flow conveyed by each of the conduits 22 in the powder-gas flow of each of the injectors, individually, using regulation loop. Each of the conduits connected to a source of gas, in particular air, external to the nozzle, is provided with a flow control means of the solenoid valve type. This means of adjustment (for example of the flow meter type associated with a magnetic valve) is controlled by a control unit according to the thickness variations detected in downstream of the nozzle on the coating 23. This detection can be carried out continuously or by time interval given using one or more thickness measurement means of the type reflectometers (a reflectometer mounted mobile above the glass ribbon in order to "Sweep" the width of the coating, ie several reflectometers arranged in line above ribbon.

Le mode de fonctionnement de la buse 24 est explicité à l'aide d'un exemple de mise en oeuvre, consistant à déposer une couche de SnO2:F de 200 nm d'épaisseur à partir d'une poudre de dibutyldifluorure d'étain (D.B.T.F.). Le débit massique de poudre de D.B.T.F. véhiculée dans le conduit principal d'amenée 6 est compris entre 3 et 10 kg/heure/mètre linéaire de buse. Le débit volumique du gaz dans lequel elle est en suspension est compris entre 3 et 80 m3/heure/mètre linéaire de buse. Le débit de gaz sous pression injecté par les fentes 19 dans la cavité est compris entre 200 et 500 m3/h/mètre linéaire de buse.The mode of operation of the nozzle 24 is explained with the aid of an implementation example, consisting in depositing a layer of SnO 2 : F 200 nm thick from a tin dibutyldifluoride powder. (DBTF). The mass flow rate of DBTF powder conveyed in the main supply conduit 6 is between 3 and 10 kg / hour / linear meter of nozzle. The volume flow rate of the gas in which it is suspended is between 3 and 80 m 3 / hour / linear meter of nozzle. The flow of pressurized gas injected through the slots 19 into the cavity is between 200 and 500 m 3 / h / linear meter of nozzle.

Si le moyen de répartition 7 et la conception des conduits 6 et 8 étaient parfaits, chaque conduit secondaire véhiculerait une veine gazeuse dont les débits massiques en D.B.T.F. et volumique en gaz seraient exactement égaux au rapport de ceux de la suspension véhiculée dans le conduit principal d'amenée sur le nombre de conduits secondaires. Or il s'avère que des écarts de débit peuvent apparaítre entre les jets de mélange poudre-gaz issus de chacun des injecteurs 9, écarts conduisant à des surépaisseurs ou au contraire des diminutions locales de l'épaisseur de revêtement déposé par rapport à l'épaisseur moyenne de 200 nm recherchée. Ces variations transversales dans l'épaisseur du revêtement sont préjudiciables à sa qualité, car elles peuvent, notamment, engendrer des défauts optiques, du type irisations, peu esthétiques.If the distribution means 7 and the design of the conduits 6 and 8 were perfect, each secondary duct would carry a gaseous vein whose mass flow rates D.B.T.F. and gas volume would be exactly equal to the ratio of those of the suspension conveyed in the main supply duct on the number of ducts secondary. However it turns out that differences in flow can appear between the jets of powder-gas mixture from each of the injectors 9, deviations leading to extra thicknesses or on the contrary local decreases in the thickness of coating deposited compared to the average thickness of 200 nm sought. These transverse variations in thickness of the coating are detrimental to its quality, because they can, in particular, cause optical defects, of the iridescent type, unattractive.

En fonctionnement normal, en l'absence de détection par le ou les réflectomètres d'une variation locale d'épaisseur de revêtement dépassant un seuil de tolérance donné, par exemple pas plus de 3% d'écart par rapport à l'épaisseur moyenne voulue de 200 nm, passe en permanence par chacun des injecteurs 9 un écoulement poudre-gaz provenant du conduit secondaire 8, présentant un débit volumique de gaz d'environ 2 m3/h et un jet de gaz émis par le conduit auxiliaire 22 d'un débit volumique en gaz donné, notamment d'environ 1 m3/h.In normal operation, in the absence of detection by the reflectometer (s) of a local variation in coating thickness exceeding a given tolerance threshold, for example not more than 3% deviation from the desired average thickness of 200 nm, a powder-gas flow from the secondary conduit 8 is continuously passing through each of the injectors 9, presenting a gas flow rate of approximately 2 m 3 / h and a gas jet emitted by the auxiliary conduit 22 d ' a given gas volume flow rate, in particular around 1 m 3 / h.

Dès qu'un réflectomètre détecte une diminution locale d'épaisseur franchissant le seuil de 3% prédéfini, l'unité de contrôle commande la vanne du (des) conduit(s) 22 des injecteurs 9 concernés pour diminuer le débit du jet de gaz auxiliaire. Dans le cas où il s'agit d'une surépaisseur, il faudra alors au contraire augmenter ce débit. Ainsi, en partant d'une valeur moyenne de 1 m3/h, le débit de chacun des jets de gaz auxiliaire peut varier entre par exemple 0,5 et 1,5 m3/h. Plus le débit de jet de gaz auxiliaire augmente et plus il va diminuer celui de l'écoulement poudre-gaz, et donc diminuer localement l'épaisseur du revêtement déposé. L'unité de contrôle (ou l'opérateur) peut se servir d'abaques donnant les correspondances directes entre variation d'épaisseur dans le revêtement et variation de débit dans les conduits 22, sans même avoir à mesurer précisément les débits de poudre qui passent dans les conduits 8 puis les injecteurs 9.As soon as a reflectometer detects a local reduction in thickness crossing the predefined threshold of 3%, the control unit controls the valve of the line (s) 22 of the injectors 9 concerned to reduce the flow rate of the auxiliary gas jet . In the case where it is an additional thickness, it will then on the contrary be necessary to increase this flow rate. Thus, starting from an average value of 1 m 3 / h, the flow rate of each of the auxiliary gas jets can vary between for example 0.5 and 1.5 m 3 / h. The more the auxiliary gas jet flow increases, the more it will decrease that of the powder-gas flow, and therefore locally decrease the thickness of the coating deposited. The control unit (or the operator) can use charts giving direct correspondences between variation in thickness in the coating and variation in flow rate in conduits 22, without even having to measure precisely the flow rates of powder passing in the conduits 8 then the injectors 9.

A noter qu'il est important que ces jets de gaz auxiliaire, au vu des débits envisagés et des diamètres des conduits 22, conservent une vitesse suffisamment peu élevée par rapport à celle de l'écoulement poudre-gaz dans les injecteurs 9 pour éviter de créer une aspiration qui viendrait brutalement l'entraíner au lieu d'en moduler le débit.Note that it is important that these auxiliary gas jets, in view of the envisaged flow rates and diameters of the conduits 22, maintain a sufficiently low speed by compared to that of the powder-gas flow in the injectors 9 to avoid creating a aspiration which would brutally drive it instead of modulating the flow.

Toute irrégularité dans l'épaisseur du revêtement peut ainsi être rapidement corrigée, à distance, de manière manuelle, automatisée ou semi-automatisée. La régulation de débit de l'écoulement de la suspension poudre-gaz provenant de chacun des conduits secondaires 8 s'effectue par le jet de gaz auxiliaire de chacun des conduits 22, sans aucun problème d'engorgement ou colmatage du conduit secondaire ni d'incidence préjudiciable sur l'alimentation des autres conduits secondaires. Ainsi, si, grâce au réglage du jet de gaz auxiliaire on diminue le débit de poudre dans le conduit secondaire 8 adhoc pour rectifier une surépaisseur dans le revêtement, « l'excès de poudre » non délivré par le conduit dont on a diminué le débit va se répartir régulièrement sur tous les autres conduits au niveau du moyen de répartition.Any irregularity in the thickness of the coating can thus be quickly corrected, remotely, manually, automatically or semi-automatically. The regulation flow rate of the powder-gas suspension coming from each of the conduits secondary 8 is carried out by the auxiliary gas jet of each of the conduits 22, without any clogged or clogged secondary duct problem or detrimental impact on the supply of the other secondary conduits. Thus, if, thanks to the adjustment of the gas jet auxiliary the powder flow in the secondary duct 8 adhoc is reduced to rectify an excess thickness in the coating, the “excess powder” not delivered by the conduit of which we reduced the flow will be distributed regularly on all the other conduits at the level means of distribution.

Par ailleurs, il ressort de la description précédente que le mode d'alimentation en poudre utilise les moyens pneumatiques de l'invention en vue d'améliorer l'uniformité dans l'épaisseur du revêtement déposé. Mais on pourrait tout aussi bien, sans sortir du cadre de l'invention, utiliser ces moyens pneumatiques pour créer, cette fois de manière volontaire et contrôlée, des gradients dans l'épaisseur du revêtement déposé, à tout le moins transversalement à l'axe de défilement du substrat, si cela s'avérait utile ou avantageux de fabriquer des revêtements présentant de telles caractéristiques.Furthermore, it appears from the preceding description that the mode of supply of powder uses the pneumatic means of the invention to improve uniformity in the thickness of the coating deposited. But we could just as well, without leaving the framework of the invention, use these pneumatic means to create, this time so voluntary and controlled, gradients in the thickness of the coating deposited, at all less transversely to the axis of travel of the substrate, if this proved useful or advantageous to manufacture coatings having such characteristics.

Claims (13)

  1. Device for the distribution of pulverulent solid suspended in a gas for the deposition of a coating (23), particularly by pyrolysis, on a moving substrate, more particularly a float glass ribbon (1), said device comprising a distributing nozzle (24), whose walls (12) define a cavity (11) terminated by a longitudinal distribution slot (13), and a system for supplying powder to said nozzle having a main, powder supply pipe (6) equipped with an apportioning means (7) and a plurality of secondary, powder supply pipes (8) connected to said main pipe with the aid of said apportioning means and making it possible to supply powder to the cavity (11) over the entire length thereof, characterized in that at least part of the secondary pipes (8) is equipped with at least one pneumatic means (22) able to modulate the powder-gas suspension flow rate to be transported by each of the secondary pipes in question.
  2. Device according to claim 1, characterized in that the pneumatic means is able to produce a pressure drop controlled by manual or automated regulating means of said pneumatic means.
  3. Device according to claim 2, characterized in that the regulating means of the pneumatic means form part of a regulating loop, under the control of a control unit connected to at least one means for measuring the quality or thickness of the coating deposited on the substrate.
  4. Device according to one of the preceding claims, characterized in that the pneumatic means equipping the secondary pipes (8) has at least one auxiliary gas supply pipe (22) issuing into each of said pipes.
  5. Device according to claim 4, characterized in that each auxiliary gas supply pipe (22) is equipped with a means for regulating the gas flow rate or pressure.
  6. Device according to one of the preceding claims, characterized in that the secondary pipes (8) incorporate preferably flexible ducts, whose ends issuing at the intake of the cavity of the nozzle are constituted by rigid injectors (9), particularly metallic injectors.
  7. Device according to claim 6, characterized in that the pneumatic means incorporate auxiliary gas inlets (22) issuing into the secondary pipes (8) at any point of the duct or at the level of the duct-injector junction or at the level of the injector (9).
  8. Device according to one of the preceding claims, characterized in that each of the secondary pipes (8) for transporting the powder-gas suspension is equipped at its end with an injector (9), the injectors of the pipes being regularly arranged in line in the intake orifice of the nozzle cavity (11) over the entire length thereof and all are provided with an auxiliary gas intake (22) having a variable gas flow rate and in that the cavity (11) of the nozzle (24) is also equipped with pressurized gas injection means (19) for transporting the powder-gas suspension discharged by the injectors (9), the injection means preferably being arranged symmetrically on either side of the line of injectors.
  9. Process for using the device according to one of the preceding claims, characterized in that the pneumatic means introduce a gas jet into each of the secondary pipes (8) and in that the flow rate of each of the jets is regulated separately and said rate can assume any value between 0 and 100% of a given flow rate.
  10. Process according to claim 9, characterized in that the pneumatic means permanently discharge a gas jet, whereof the flow rate is regulated around a given flow rate value.
  11. Process according to claim 10, characterized in that the flow rate value around which the flow rate of each of the gas jets discharged by the pneumatic means is regulated is approximately 20 to 60%, particularly 50% of the mean gas flow rate of the powder-air suspension transported by each secondary pipe (8).
  12. Process according to one of the claims 9 to 11, characterized in that the flow rate value for each of the jets discharged by the pneumatic means is regulated as a function of thickness variations detected in the coating (23) deposited downstream of the distributing nozzle (24).
  13. Use of the device according to one of the claims 1 to 8 or the process according to one of the claims 9 to 12 for depositing metal oxide coatings (23) by pyrolysis on a hot float glass ribbon (1), particularly doped oxide coatings of the SnO2:F type, based on dibutyl tin difluoride powder, or of the ITO type based on tin dibutyl oxide and indium formate powder.
EP95402160A 1994-09-27 1995-09-27 Device for distributing pulverulent solids on the surface of a substrate for coating this substrate Expired - Lifetime EP0704249B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9411504A FR2724853B1 (en) 1994-09-27 1994-09-27 DEVICE FOR DISPENSING POWDERY SOLIDS ON THE SURFACE OF A SUBSTRATE FOR LAYING A COATING
FR9411504 1994-09-27

Publications (2)

Publication Number Publication Date
EP0704249A1 EP0704249A1 (en) 1996-04-03
EP0704249B1 true EP0704249B1 (en) 2000-01-26

Family

ID=9467305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402160A Expired - Lifetime EP0704249B1 (en) 1994-09-27 1995-09-27 Device for distributing pulverulent solids on the surface of a substrate for coating this substrate

Country Status (7)

Country Link
US (1) US5795388A (en)
EP (1) EP0704249B1 (en)
JP (1) JPH08169728A (en)
DE (1) DE69514743T2 (en)
ES (1) ES2144111T3 (en)
FR (1) FR2724853B1 (en)
PT (1) PT704249E (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045015B2 (en) 1998-09-30 2006-05-16 Optomec Design Company Apparatuses and method for maskless mesoscale material deposition
US6811744B2 (en) * 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
US20060003095A1 (en) * 1999-07-07 2006-01-05 Optomec Design Company Greater angle and overhanging materials deposition
US7674671B2 (en) 2004-12-13 2010-03-09 Optomec Design Company Aerodynamic jetting of aerosolized fluids for fabrication of passive structures
US7938341B2 (en) 2004-12-13 2011-05-10 Optomec Design Company Miniature aerosol jet and aerosol jet array
FI121336B (en) * 2006-03-27 2010-10-15 Beneq Oy Hydrophobic glass surface
US7879394B1 (en) 2006-06-02 2011-02-01 Optomec, Inc. Deep deposition head
TWI482662B (en) 2007-08-30 2015-05-01 Optomec Inc Mechanically integrated and closely coupled print head and mist source
EP3256308B1 (en) 2015-02-10 2022-12-21 Optomec, Inc. Fabrication of three-dimensional structures by in-flight curing of aerosols
US10632746B2 (en) 2017-11-13 2020-04-28 Optomec, Inc. Shuttering of aerosol streams
CN111795553B (en) * 2020-07-07 2022-03-29 广西大学 Anti-pollution dehydration auxiliary device and application method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH640157A5 (en) * 1981-04-01 1983-12-30 Castolin Sa DEVICE FOR DISPENSING POWDERED MATERIALS FOR A THERMAL SPRAYING SYSTEM.
DK160745C (en) 1983-03-14 1991-09-30 Saint Gobain Vitrage METHOD OF DISTRIBUTING A DISTRIBUTION OF A POWDER-SHAPED MATERIAL ON A SUBSTRATE
FR2548556B1 (en) * 1983-07-04 1985-10-18 Saint Gobain Vitrage DEVICE FOR DISPENSING POWDERY PRODUCTS SUSPENDED IN A GAS
FR2640164B1 (en) 1988-12-14 1991-02-01 Saint Gobain Vitrage DEVICE FOR DISPENSING A POWDER SOLID SUSPENDED IN A GAS ON A SUBSTRATE THAT IS MOVING
FR2645773B1 (en) 1989-04-12 1991-08-30 Saint Gobain Vitrage METHOD FOR MODIFYING THE POSITIONS RELATING TO A PLURALITY OF ALIGNED ORGANS AND DEVICE FOR CARRYING OUT SAID METHOD
DE19502741C2 (en) * 1995-01-18 1997-04-03 Alexander Ghantus Device for generating a current from a powder-gas mixture

Also Published As

Publication number Publication date
ES2144111T3 (en) 2000-06-01
US5795388A (en) 1998-08-18
DE69514743T2 (en) 2000-07-27
DE69514743D1 (en) 2000-03-02
JPH08169728A (en) 1996-07-02
EP0704249A1 (en) 1996-04-03
PT704249E (en) 2000-07-31
FR2724853A1 (en) 1996-03-29
FR2724853B1 (en) 1996-12-20

Similar Documents

Publication Publication Date Title
EP0704249B1 (en) Device for distributing pulverulent solids on the surface of a substrate for coating this substrate
EP0499524B1 (en) Asymmetrical gas feeding nozzle for coating a glass ribbon by pyrolysis of a gas mixture
CA2681329C (en) Method for coating a substrate and metal alloy vacuum deposition facility
EP0060221B1 (en) Method for coating a substrate with an inorganic oxide and apparatus therefor
EP0818245A1 (en) Triboelectric spray gun, installation for spraying coating products and method for controlling such a gun
CA1139932A (en) Device for evenly distributing a powdered substance through a slit, and uses for said device
EP0383093A2 (en) Method for the pneumatic and dosed injection of pulverised material into a vessel, subjected to a variable pressure
EP1001848B1 (en) Method and device for continuous coating of at least one metal strip with a fluid cross-linkable polymer film
EP0130919A1 (en) Device for distributing powders suspended in a gas
EP0708062B1 (en) Pyrolytic coating technique of gaseous precursor compositions
FR2816726A1 (en) Surface treatment installation has regulator to adjust flow rate of gas drawn out of chamber, so as to maintain zero pressure difference between interior and exterior of chamber
EP2212620B1 (en) Combustion method and system
EP0612566B1 (en) Device for distributing powdery solids onto a substrate in order to coat it
FR2661929A1 (en) Device for manufacturing an intermediate layer in a road covering on the ground
FR2551365A1 (en) DEVICE FOR OILING CONTINUOUS STRIP TOLES
EP1140375A1 (en) Method and device for continuously coating at least a metal strip with a crosslinkable polymer fluid film
EP0374023B1 (en) Device for coating a moving substrate with a powdery solid material
EP1178018B1 (en) Process and apparatus for manufacturing an optical fibre preform
EP0499523A1 (en) Nozzle with raised downstream toe for deposition of a coating on a sheet of glass by pyrolysis of a gas mixture
EP0954619A1 (en) Method and device for producing a coating on a substrate
FR2591002A1 (en) FLOW CONTROL DEVICE FOR A CURRENT OF FINE PARTICLES
FR2515558A1 (en) APPARATUS AND METHOD FOR DISPENSING AN ABRASIVE IN A GAS STREAM
EP1070014A1 (en) Device for conveying objects by blowing and element defining at least said device blowing chamber
FR2558850A1 (en) Process and device for coating a long product by spraying with a liquid coating material
EP1386016B1 (en) Method and device for dip coating a metal strip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT LU PT

17P Request for examination filed

Effective date: 19960913

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990420

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT LU PT

REF Corresponds to:

Ref document number: 69514743

Country of ref document: DE

Date of ref document: 20000302

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000322

ITF It: translation for a ep patent filed

Owner name: RACHELI & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2144111

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010810

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010817

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20010828

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010905

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010917

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011017

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020927

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

BERE Be: lapsed

Owner name: *SAINT-GOBAIN VITRAGE

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050927