EP0704085B1 - Process and device for producing two- or three-dimensional images in gaseous media - Google Patents

Process and device for producing two- or three-dimensional images in gaseous media Download PDF

Info

Publication number
EP0704085B1
EP0704085B1 EP94920440A EP94920440A EP0704085B1 EP 0704085 B1 EP0704085 B1 EP 0704085B1 EP 94920440 A EP94920440 A EP 94920440A EP 94920440 A EP94920440 A EP 94920440A EP 0704085 B1 EP0704085 B1 EP 0704085B1
Authority
EP
European Patent Office
Prior art keywords
laser
image
process according
beams
laser beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94920440A
Other languages
German (de)
French (fr)
Other versions
EP0704085A1 (en
Inventor
Klaus Gustav Wende
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0704085A1 publication Critical patent/EP0704085A1/en
Application granted granted Critical
Publication of EP0704085B1 publication Critical patent/EP0704085B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/16Advertising or display means not otherwise provided for using special optical effects involving the use of mirrors

Definitions

  • the invention relates to a method and a device for generating two- or three-dimensional images in gaseous media, in particular in the earth's atmosphere.
  • DE-A-41 28 949 discloses a method for the spatial representation of images, in which a medium is used in which particles of a luminescent substance are distributed. Two bundles of rays are superimposed in the medium in such a way that the luminescent particles are activated at their intersections and brought to light emission.
  • the invention is based on the fact that nitrogen and oxygen molecules can be ionized in very large electrical fields (field ionization) and that when an electron is recombined or recaptured, energy is released which is then visible to the molecule in question as light radiation (flash of light) Spectral range is given. If such lighting phenomena are caused at given points, for example a two-dimensional or three-dimensional matrix, a two- or three-dimensional image can be produced. A point of light that is repeated at approx. 25 Hz appears to the viewer as standing. The human eye has a resolution of about 1 minute of arc. At a distance of 100 m from the image to be generated, a line can therefore be drawn if the light points generated are approximately 3 cm apart.
  • the light spots are generated by bundling one or more laser beams, which preferably emit outside or at the edge of the visible spectral range, at the intended location where the light spot is to appear.
  • Corresponding device is shown in FIG. 1.
  • One or more lasers (1) generate laser beams or beam pulses (2), the beam cross section of which is initially in one optical device (2) is fanned out or defocused, for example by means of a mirror or a lens. From the expansion mirror (3), the laser beam falls onto a focusing mirror (4), which focuses the received laser light and focuses it at a distance of 10-100 m in a narrow area, in which the field strength then becomes so high that the atmospheric therein Gases, primarily nitrogen and oxygen, are ionized.
  • the ionization is immediately followed by the laser pulse.
  • a CO 2 laser or a YAG laser is used.
  • Such a laser emits in the infrared spectral range, so that the observers cannot see the laser beam, but only the effect caused by it, ie the light flash (9) or the image composed of such light flashes (9).
  • the expansion mirror (3) shown in Fig. 1 can also be used for beam deflection, so that - analogous to the deflection of an electron beam in a black and white television picture - the focal point of the laser beam pulses scans a predetermined point matrix and at those matrix points in the Image should appear bright, flashes of light (9) generated.
  • the focusing mirrors have a diameter of 30 to 50 cm, for example.
  • Both mirrors, preferably the entire beam deflection system (3) and the laser (1), are mounted on a very heavy plate (5) in order to avoid beam deflections that could occur due to ground vibrations.
  • a very heavy plate (5) for example, air-bearing granite slabs with a weight of around 4 tons can be used to mount the mirrors.
  • mountable steel structures are conceivable.
  • the two laser beams shown in FIG. 1 do not necessarily have to be in phase at the focusing point be. The only thing that matters is that enough molecules of the atmospheric air are ionized. However, if phase correctness is achieved, an increase in the field strength at the focusing point is to be expected, so that the light yield increases.
  • the optical device (3) with which the laser beam is deflected so that its focal point scans the rows and columns of the intended image, can be equipped with piezo elements. These piezo elements move the deflection mirror and thus achieve beam deflection. So-called scanners are also possible, e.g. rotating mirrors with electrical coil arrangements, as well as so-called Bragg reflectors.
  • the spatial depth, i.e. the third dimension can be achieved by changing the focal length of the optical device (zoom).
  • the laser beam is sent to individual parallel amplifiers in each case after preamplification via a mirror system.
  • the 10 individual laser beams are directed onto the common focus lens via separate deflection systems and focused at the intended pixels, for example, at a distance of about 100 m from the focus lenses. Since the repetition frequency of the laser pulses can be 5 kHz, 50,000 light points per second can be generated with this system. This is sufficient, for example, to produce a neon sign floating in free space.
  • the components of the deflection device are shown schematically in FIG. 2.
  • the entire control is synchronized to the laser beam source (1).
  • electrical signals are derived from the laser pulses with a trigger pulse generator (8), which are used in the computer control (6) for triggering the deflection device.
  • the position data available in a storage unit are called up in the computer control (6) and processed into signals which are fed to the optical device (3), which then independently sets the positioning units for the deflection mirrors.
  • the next position data is provided by the storage unit during the setting time. After the time available for the entire process, which is less than 200 ms, the setting of the positioning units (7) is completed and the next light pulse is emitted by the synchronization source, which now generates the first image and at the same time acts as a trigger for the setting of the next positioning process.
  • a phototransistor can be used in the trigger pulse generator, the input signal of which is converted into a digital signal in an AD converter.
  • a standard office computer with a RAM memory capacity of more than 40MB can be used as the storage unit, for example.
  • the required position data for the pixels to be generated are stored in this memory.
  • One byte contains the information for a positioning unit.
  • the ready data are transmitted to the positioning units (7) on the basis of the trigger signal. After the data has been transferred, the edge position data are provided.
  • Each positioning unit (7) consists of a separate electrical control and a mechanical part.
  • the mechanical part can consist of a rotary magnet, for example, which is set to the 16 possible positions by fixed resistors.
  • a servomotor stepper motor

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

The invention pertains to a process for producing free-floating luminous letters or two- or three-dimensional images. To do this, laser beams whose emission frequency lies preferably outside the visible spectral range are focussed on places where the bright image points are to be produced, thereby generating in the atmosphere light flashes caused, for example, by field ionization of the air molecules and subsequent recombination. The focal point of the laser beams is progressively shifted in lines and columns, thereby composing from individual light flashes an image that is repeated so as to produce a stationary image with an image frequency above 16 Hz.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Erzeugen von zwei- oder dreidimensionalen Bildern in gasförmigen Medien, insbesondere in der Erdatmosphäre.The invention relates to a method and a device for generating two- or three-dimensional images in gaseous media, in particular in the earth's atmosphere.

Im Stand der Technik werden im Rahmen von sog. "Lasershows" mit Hilfe von Lasern, die mit sichtbarem Licht arbeiten, über den Köpfen der Zuschauer sog. "schwebende" Bilder am Nachthimmel erzeugt. Diese Bilder brauchen jedoch eine Projektionsfläche, die in den meisten Fällen eine dünne Gaze ist, die man am dunklen Nachthimmel nicht sehen kann und die teilweise durchscheinend ist. In anderen Fällen wird zur Bilderstellung Nebel oder Rauch verwendet, wobei an den Nebeltröpfchen oder den Rauchteilchen das Laserlicht reflektiert oder gestreut wird, so daß die Beobachter ein Bild sehen können. Werden zur Bilderzeugung Nebel oder Rauchwolken benötigt, so ist dies einmal von sich aus störend und zum anderen kann der Betrachter aufgrund unvermeidbaren Streulichtes durch Luftfeuchtigkeit oder Staub jeweils den bzw. die Laserstrahlen sehen, mit denen dann an der Interferenz- bzw. der Fokussierungsstelle der Laserstrahlen das Bild erzeugt wird. Der Betrachter hat also niemals das Gefühl, daß ein selbstleuchtendes Bild frei im Raum erscheint.In the state of the art, so-called "laser shows" with the help of lasers that work with visible light create "floating" images in the night sky above the heads of the viewers. However, these images need a projection surface, which in most cases is a thin gauze that cannot be seen in the dark night sky and which is partially translucent. In other cases, fog or smoke is used to create the image, with the laser light being reflected or scattered on the fog droplets or smoke particles so that the observer can see an image. If fog or clouds of smoke are required for image generation, this is bothersome on the one hand and, on the other hand, the viewer can see the laser beam (s) with the inevitable scattered light from atmospheric moisture or dust, with which the laser beam then interferes or focuses the image is created. So the viewer never has the feeling that a self-illuminating image appears freely in the room.

Aus der DE-A-41 28 949 ist ein Verfahren zur räumlichen Darstellung von Bildern bekannt, bei dem ein Medium verwendet wird, in dem Teilchen einer lumineszenzfähigen Substanz verteilt sind. Zwei Strahlenbündel werden in dem Medium so überlagert, daß an ihren Schnittpunkten die lumineszenzfähigen Teilchen aktiviert und zur Lichtemission gebracht werden.DE-A-41 28 949 discloses a method for the spatial representation of images, in which a medium is used in which particles of a luminescent substance are distributed. Two bundles of rays are superimposed in the medium in such a way that the luminescent particles are activated at their intersections and brought to light emission.

Aus der JP-A-418 0084 ist ein ähnliches Verfahren bekannt, bei dem Laserstrahlen verschiedener Wellenlängen so überlagert werden, daß an ihren Schnittpunkten die Moleküle des Mediums optisch auf ein metastabiles Energieniveau gepumpt werden. Bei der Rückkehr in den Grundzustand wird von den Molekülen Licht emittiert, so daß durch rasterartiges Verschieben der Strahlenschnittpunkte eine Folge von Leuchtpunkten erzeugt wird, die insgesamt ein räumliches Bild darstellen.From JP-A-418 0084 a similar method is known in which laser beams of different wavelengths are so are superimposed that the molecules of the medium are optically pumped to a metastable energy level at their intersections. On returning to the basic state, light is emitted by the molecules, so that a sequence of luminous dots is generated by raster-like shifting of the beam intersection points, which overall represent a spatial image.

Bei einem aus der US-A-4 870 485 bekannten Gerät zum Erzeugen dreidimensionaler Bilder werden Teilchen von Phosphoren in einer Flüssigkeit dispergiert, die sich innerhalb einer Kammer befindet, oder solche Phosphor-Teilchen werden in einem transparenten Kunststoffkörper, einem Gel oder einem Gas suspendiert. Laserstrahlen, die über Spiegel abgelenkt werden, werden computergesteuert so durch das Medium geführt, daß an den Kreuzungspunkten eine Anregung der Phosphore stattfindet und sich so ein Bildpunkt ergibt.In a three-dimensional image forming apparatus known from US-A-4,870,485, particles of phosphorus are dispersed in a liquid which is within a chamber, or such phosphorus particles are suspended in a transparent plastic body, a gel or a gas . Laser beams, which are deflected by mirrors, are guided through the medium in a computer-controlled manner in such a way that the phosphors are excited at the points of intersection, resulting in an image point.

Diese Verfahren haben den Nachteil, daß zur Bilderzeugung ein räumlich abgeschlossenes Medium verwendet werden muß, in dem eine optisch pumpbare Substanz dispergiert ist, die im sichtbaren Spektralbereich liegende Lumineszenzstrahlung liefert. Atmosphärische Luft enthält solche Substanzen nicht, so daß die Anwendung dieser Verfahren auf abgeschlossene Glasbehälter beschränkt ist.These methods have the disadvantage that a spatially closed medium must be used for image formation, in which an optically pumpable substance is dispersed which provides luminescence radiation lying in the visible spectral range. Atmospheric air does not contain such substances, so that the use of these methods is restricted to sealed glass containers.

Dementsprechend ist es Aufgabe der Erfindung, Maßnahmen anzugeben, mit denen insbesondere in der Atmosphäre leuchtende Bilder erzeugt werden können, ohne daß dazu Projektionsflächen oder andere Hilfsmittel wie Nebel oder Rauch oder Medien mit optisch pumpbaren Substanzen eingesetzt werden müssen.Accordingly, it is an object of the invention to provide measures with which, in particular, luminous images can be generated in the atmosphere without the need for projection surfaces or other aids such as fog or smoke or media with optically pumpable substances.

Diese Aufgabe wird mit einem Verfahren gelöst, das die im Patentanspruch 1 aufgeführten Merkmale aufweist.This object is achieved with a method which has the features listed in claim 1.

Weitere, vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens und eine zu seiner Durchführung geeignete Vorrichtung sind in den Unteransprüchen angegeben.Further advantageous refinements of the method according to the invention and a device suitable for carrying it out are specified in the subclaims.

Es zeigen:

Fig. 1
den schematischen Aufbau einer erfindungsgemäßen Vorrichtung mit zwei Laserstrahl-Ablenksystemen
Fig. 2
in einem Blockschaltbild die gesamte Anordnung
Show it:
Fig. 1
the schematic structure of a device according to the invention with two laser beam deflection systems
Fig. 2
the entire arrangement in a block diagram

Die Erfindung geht davon aus, daß Stickstoff- und Sauerstoffmoleküle in sehr großen elektrischen Feldern ionisiert werden können (Feldionisation), und daß bei Rekombination bzw. bei Wiedereinfang eines Elektrons Energie frei wird, die von dem betreffenden Molekül dann als Lichtstrahlung (Lichtblitz) im sichtbaren Spektralbereich abgegeben wird. Werden solche Leuchterscheinungen an vor gegebenen Punkten, beispielsweise einer zweidimensionalen oder dreidimensionalen Matrix hervorgerufen, so kann ein zwei- bzw. dreidimensionales Bild hergestellt werden. Ein Lichtpunkt, der mit ca. 25 Hz wiederholt wird, erscheint dem Betrachter als stehend. Das menschliche Auge hat eine Auflösung von etwa 1 Bogenminute. Bei einer Entfernung von 100 m von dem zu erzeugenden Bild kann also eine Linie gezeichnet werden, wenn die erzeugten Lichtpunkte etwa 3cm auseinander liegen.The invention is based on the fact that nitrogen and oxygen molecules can be ionized in very large electrical fields (field ionization) and that when an electron is recombined or recaptured, energy is released which is then visible to the molecule in question as light radiation (flash of light) Spectral range is given. If such lighting phenomena are caused at given points, for example a two-dimensional or three-dimensional matrix, a two- or three-dimensional image can be produced. A point of light that is repeated at approx. 25 Hz appears to the viewer as standing. The human eye has a resolution of about 1 minute of arc. At a distance of 100 m from the image to be generated, a line can therefore be drawn if the light points generated are approximately 3 cm apart.

Gemäß der Erfindung werden die Lichtpunkte dadurch erzeugt, daß ein oder mehrere Laserstrahlen, die vorzugsweise außerhalb oder am Rande des sichtbaren Spektralbereiches emittieren, an dem jeweils vorgesehenen Ort, wo der Lichtpunkt erscheinen soll, gebündelt werden. Entsprechende Vorrichtung ist in der Fig. 1 dargestellt. Durch einen oder mehrere Laser (1) werden Laser-Strahlen oder Strahlimpulse (2) erzeugt, deren Strahlquerschnitt zunächst in einer optischen Einrichtung (2) z.B. mittels eines Spiegels oder einer Linse aufgefächert bzw. defokussiert wird. Von dem Aufweitungsspiegel (3) fällt das Laserstrahlenbündel auf einen Fokussierungsspiegel (4), der das empfangene Laserlicht bündelt und in einer Entfernung von 10 -100 m in einem schmalen Raumbereich fokussiert, in dem dann die Feldstärke so hoch wird, daß die darin befindlichen atmosphärischen Gase, vornehmlich also Stickstoff und Sauerstoff, ionisiert werden. Der Ionisation folgt wegen der hohen Rekombinationswahrscheinlichkeit unmittelbar der Laserimpuls nach. Bei der in Fig. 1 dargestellten Anordnung wird beispielsweise ein CO2-Laser oder auch ein YAG-Laser eingesetzt. Ein solcher Laser emittiert im infraroten Spektralbereich, so daß die Beobachter den Laserstrahl nicht sehen können, sondern nur den von ihm hervorgerufenen Effekt, also den Lichtblitz (9) bzw. das aus solchen Lichtblitzen (9) zusammengesetzte Bild.According to the invention, the light spots are generated by bundling one or more laser beams, which preferably emit outside or at the edge of the visible spectral range, at the intended location where the light spot is to appear. Corresponding device is shown in FIG. 1. One or more lasers (1) generate laser beams or beam pulses (2), the beam cross section of which is initially in one optical device (2) is fanned out or defocused, for example by means of a mirror or a lens. From the expansion mirror (3), the laser beam falls onto a focusing mirror (4), which focuses the received laser light and focuses it at a distance of 10-100 m in a narrow area, in which the field strength then becomes so high that the atmospheric therein Gases, primarily nitrogen and oxygen, are ionized. Because of the high probability of recombination, the ionization is immediately followed by the laser pulse. In the arrangement shown in FIG. 1, for example, a CO 2 laser or a YAG laser is used. Such a laser emits in the infrared spectral range, so that the observers cannot see the laser beam, but only the effect caused by it, ie the light flash (9) or the image composed of such light flashes (9).

Die in der Fig. 1 dargestellten Aufweitungsspiegel (3) können zugleich auch zur Strahlablenkung eingesetzt werden, so daß - analog zur Ablenkung eines Elektronenstrahls in einem schwarz-weiß-Fernsehbild - der Fokussierungspunkt der Laserstrahlimpulse eine vorgegebene Punktmatrix abtastet und an denjenigen Matrixpunkten, die im Bild hell erscheinen sollen, Lichtblitze (9) erzeugt. Die Fokussierungsspiegel haben beispielsweise einen Durchmesser von 30 bis 50cm. Beide Spiegel, vorzugsweise das gesamte Strahlablenksystem (3) und der Laser (1), sind auf einer sehr schweren Platte (5) montiert, um Strahlablenkungen zu vermeiden, die aufgrund von Boden-Erschütterungen auftreten könnten. Beispielsweise können für die Montage der Spiegel luftgelagerte Granitplatten mit einem Gewicht von etwa 4 Tonnen eingesetzt werden. Als Alternative sind montierbare Stahlkonstruktionen denkbar.The expansion mirror (3) shown in Fig. 1 can also be used for beam deflection, so that - analogous to the deflection of an electron beam in a black and white television picture - the focal point of the laser beam pulses scans a predetermined point matrix and at those matrix points in the Image should appear bright, flashes of light (9) generated. The focusing mirrors have a diameter of 30 to 50 cm, for example. Both mirrors, preferably the entire beam deflection system (3) and the laser (1), are mounted on a very heavy plate (5) in order to avoid beam deflections that could occur due to ground vibrations. For example, air-bearing granite slabs with a weight of around 4 tons can be used to mount the mirrors. As an alternative, mountable steel structures are conceivable.

Die beiden in Fig. 1 dargestellten Laserstrahlenbündel müssen im Fokussierungspunkt nicht unbedingt phasengleich sein. Es kommt nur darauf an, daß genügend viele Moleküle der atmosphärischen Luft ionisiert werden. Wird jedoch Phasenrichtigkeit erreicht, so ist eine Erhöhung der Feldstärke an dem Fokussierungspunkt zu erwarten, so daß die Lichtausbeute ansteigt.The two laser beams shown in FIG. 1 do not necessarily have to be in phase at the focusing point be. The only thing that matters is that enough molecules of the atmospheric air are ionized. However, if phase correctness is achieved, an increase in the field strength at the focusing point is to be expected, so that the light yield increases.

Die optische Einrichtung (3), mit der die Laserstrahlbündel so abgelenkt werden, daß ihr Fokussierungspunkt die Zeilen und Spalten des vorgesehenen Bildes abscannt, kann mit Piezoelementen ausgerüstet sein. Diese Piezoelemente bewegen den Ablenkspiegel und erreichen damit die Strahlablenkung. Möglich sind auch sog. Scanner, z.B. drehende Spiegel mit elektrischen Spulenanordnungen, ebenso auch sog. Bragg-Reflektoren. Die räumliche Tiefe, d.h. die dritte Dimension, kann dadurch erzielt werden, daß die Brennweite der optischen Einrichtung verändert wird (Zoom).The optical device (3), with which the laser beam is deflected so that its focal point scans the rows and columns of the intended image, can be equipped with piezo elements. These piezo elements move the deflection mirror and thus achieve beam deflection. So-called scanners are also possible, e.g. rotating mirrors with electrical coil arrangements, as well as so-called Bragg reflectors. The spatial depth, i.e. the third dimension can be achieved by changing the focal length of the optical device (zoom).

In einer alternativen Ausführungsform wird der Laserstrahl nach einer Vorverstärkung über ein Spiegelsystem an jeweils einzelne parallele Verstärker geschickt. Nach einer erneuten, beispielsweise 10-fachen Verstärkung, die eine 10 MW Impuls-Spitzenleistung ergibt, werden die 10 einzelnen Laserstrahlen über getrennte Ablenksysteme auf die gemeinsame Fokuslinse gelenkt und an den vorgesehenen Bildpunkten beispielsweise in etwa 100 m Entfernung von den Fokuslinsen fokussiert. Da die Wiederholungsfrequenz der Laserimpulse 5 kHz betragen kann, lassen sich mit diesem System 50.000 Lichtpunkte pro Sekunde erzeugen. Dies genügt beispielsweise für die Herstellung einer im freien Raum schwebenden Leuchtschriftanzeige.In an alternative embodiment, the laser beam is sent to individual parallel amplifiers in each case after preamplification via a mirror system. After renewed amplification, for example 10 times, which results in a 10 MW peak power, the 10 individual laser beams are directed onto the common focus lens via separate deflection systems and focused at the intended pixels, for example, at a distance of about 100 m from the focus lenses. Since the repetition frequency of the laser pulses can be 5 kHz, 50,000 light points per second can be generated with this system. This is sufficient, for example, to produce a neon sign floating in free space.

In der Fig. 2 sind schematisch die Komponenten der Ablenkvorrichtung dargestellt. Die gesamte Steuerung wird auf die Laserstrahlenquelle (1) synchronisiert. Dazu werden aus den Laserimpulsen mit einem Triggerimpulsgenerator (8) elektrische Signale abgeleitet, die in der Computersteuerung (6) für die Triggerung der Ablenkvorrichtung verwertet werden.The components of the deflection device are shown schematically in FIG. 2. The entire control is synchronized to the laser beam source (1). For this purpose, electrical signals are derived from the laser pulses with a trigger pulse generator (8), which are used in the computer control (6) for triggering the deflection device.

Auf den Triggerimpuls werden in der Computersteuerung (6) die in einer Speichereinheit bereitliegenden Positionsdaten abgerufen und zu Signalen verarbeitet, die der optischen Einrichtung (3) zuugeführt werden, die danach eigenständig die Positioniereinheiten für die Ablenkspiegel einstellt. Während der Einstellzeit werden die nächsten Positionsdaten von der Speichereinheit bereitgestellt. Nach Ablauf der für den gesamten Vorgang verfügbaren Zeit, die weniger als 200 ms beträgt, ist die Einstellung der Positioniereinheiten (7) abgeschlossen, und von der Synchronisierungsquelle der nächste Lichtimpuls abgegeben, der nun das erste Bild generiert und gleichzeitig als Triggerung für die Einstellung des nächsten Positioniervorgangs dient.On the trigger pulse, the position data available in a storage unit are called up in the computer control (6) and processed into signals which are fed to the optical device (3), which then independently sets the positioning units for the deflection mirrors. The next position data is provided by the storage unit during the setting time. After the time available for the entire process, which is less than 200 ms, the setting of the positioning units (7) is completed and the next light pulse is emitted by the synchronization source, which now generates the first image and at the same time acts as a trigger for the setting of the next positioning process.

Für die Gewinnung eines Triggerimpulses aus dem Laserstrahl impuls kann in dem Triggerimpulsgenerator ein Fototransistors eingesetzt werden, dessen Asgangssignal in einem AD-Wandler in ein digitales Signal umgeformt wird.To obtain a trigger pulse from the laser beam pulse, a phototransistor can be used in the trigger pulse generator, the input signal of which is converted into a digital signal in an AD converter.

Als Speichereinheit kann beispielsweise ein Standard-Bürocomputer mit einer RAM-Speicherkapazität von mehr als 40MB verwendet werden. In diesem Speicher sind die benötigten Positionsdaten für die zu erzeugenden Bildpunkte abgelegt. Ein Byte enthält dabei die Information für eine Positioniereinheit. Zur Speicherung der X- und Y-Koordinaten des Bildes werden beispielsweise bei 16 möglichen Positionen jeweils 4 Bit benötigt. Aufgrund des Triggersignals werden die bereitliegenden Daten an die Positioniereinheiten (7) übertragen. Nach der Übertragung der Daten werden die Randpositionsdaten bereitgestellt.A standard office computer with a RAM memory capacity of more than 40MB can be used as the storage unit, for example. The required position data for the pixels to be generated are stored in this memory. One byte contains the information for a positioning unit. To store the X and Y coordinates of the image, 4 bits are required, for example, with 16 possible positions. The ready data are transmitted to the positioning units (7) on the basis of the trigger signal. After the data has been transferred, the edge position data are provided.

Jede Positioniereinheit (7) besteht aus einer separaten elektrischen Steuerung und einem mechanischen Teil. Der mechanische Teil kann beispielsweise aus einem Drehmagneten bestehen, der durch Festwiderstände auf die 16 möglichen Positionen eingestellt wird. Alternativ zu kann aber auch ein Stellmotor (Schrittmotor) eingesetzt werden.Each positioning unit (7) consists of a separate electrical control and a mechanical part. The mechanical part can consist of a rotary magnet, for example, which is set to the 16 possible positions by fixed resistors. As an alternative, a servomotor (stepper motor) can also be used.

Claims (9)

  1. A process for producing two- or three-dimensional self-luminous images in gaseous media, in particular in earth atmosphere, in which the respective image is built up by means of a series of light flashes caused at the image points intended for the image built-up in the gaseous medium through ionization of the atmospheric gas molecules by means of focusing one or several laser beams (2) whose frequency lies outside the visible spectral range.
  2. A process according to claim 1,
    characterized in that
    the image points are generated by scanning the laser beam focal point along the lines, the columns and possibly the rows of a two- or three-dimensional image point matrix.
  3. A process according to claim 1 or 2,
    characterized in that
    after leaving the laser (1) the individual laser beams (2) are firstly diverged in an optical device (2) and subsequently focused at the respective, intended image point (9) by means of a focusing mirror.
  4. A process according to claim 3,
    characterized in that
    the optical device (3) simultaneously effects the deflection of the laser beams (2) required for scanning the image.
  5. A process according to any one of claims 1 to 4,
    characterized in that
    for producing three-dimensional images the focal plane of the laser beams (2) is progressively displaced.
  6. A process according to any one of claims 1 to 5,
    characterized in that
    a laser (1) is used whose pulse repetition frequency is over 500 Hz, in particular approx. 5 kHz.
  7. A process according to any one of claims 1 to 6,
    characterized in that
    the output beams of a laser (1) are supplied to a number of laser amplifiers operating in parallel via a system of mirrors, and that said output beams of said laser amplifiers are each guided to a common focusing lens via built-in defocusing and deflection systems.
  8. A device for carrying out the process according to any one of claims 1 to 7,
    characterized by
    one or several lasers (1) on which the frequency of the emitted light lies outside the visible spectral range,
    an optical device (3) for deflecting the bundle of beams emitted by the laser(s) in accordance with the coordinates of the light spots to be produced, and by
    one or several focusing mirrors (4) for focusing the laser beams at the intended light spots.
  9. A device according to claim 8,
    characterized by
    a trigger pulse generator (8) generating triggering signals from the beam pulses emitted by the laser (1),
    a computer control producing a control signal for a positioning device (7), by means of which the optical device (3) is adjusted, from the coordinate data of the light spot to be produced in response to a trigger pulse.
EP94920440A 1993-06-14 1994-06-09 Process and device for producing two- or three-dimensional images in gaseous media Expired - Lifetime EP0704085B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4319680A DE4319680A1 (en) 1993-06-14 1993-06-14 Method and device for generating two- or three-dimensional images in gaseous media
DE4319680 1993-06-14
PCT/EP1994/001888 WO1994029837A1 (en) 1993-06-14 1994-06-09 Process and device for producing two- or three-dimensional images in gaseous media

Publications (2)

Publication Number Publication Date
EP0704085A1 EP0704085A1 (en) 1996-04-03
EP0704085B1 true EP0704085B1 (en) 1997-03-26

Family

ID=6490315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94920440A Expired - Lifetime EP0704085B1 (en) 1993-06-14 1994-06-09 Process and device for producing two- or three-dimensional images in gaseous media

Country Status (4)

Country Link
US (1) US5871267A (en)
EP (1) EP0704085B1 (en)
DE (2) DE4319680A1 (en)
WO (1) WO1994029837A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19837425A1 (en) * 1998-08-18 2000-03-02 Andre Srowig Device for volumetric reproduction of a three-dimensional image in an autostereoscopic display by means of pulsed plasma generation in a natural atmosphere by means of a single focused laser beam
DE10127549A1 (en) * 2001-06-01 2002-12-05 Opto System Gmbh Variation of radiation behavior in planar, light-guiding transparent body for e.g. lighting or information display, is achieved by varying refractive index locally
JP3650811B2 (en) * 2002-02-13 2005-05-25 株式会社トプコン Aerial visible image forming device
EA009998B1 (en) * 2003-03-20 2008-06-30 Антон Анатольевич Дремлюга Method and device for generating spatial images
US20060255020A1 (en) * 2005-05-16 2006-11-16 Igor Troitski Method for production of laser-induced images inside liquids
US7710643B2 (en) * 2007-01-31 2010-05-04 Alion Science And Technology Corporation Apparatus for and method of delivering visual image into air
DE102012014364B3 (en) * 2012-07-20 2013-11-28 Audi Ag Display device for displaying information in motor vehicle, has display modules to represent display content, which is two-dimensional and to display display content by volume, and laser projectors to produce respective laser beams
ES2614228B2 (en) * 2016-09-13 2018-01-09 Defensya Ingeniería Internacional, S.L. DEVICE FOR THE CREATION OF LIGHT SIGNALING IN THE AREA SURROUNDING ONE OR MORE VEHICLES
JP2019117227A (en) * 2017-12-26 2019-07-18 トヨタ自動車株式会社 On-vehicle device and vehicle system
KR102651053B1 (en) * 2020-01-16 2024-03-25 안후이 이스피드 테크놀로지 컴퍼니 리미티드 air ionization display device
CN111208193A (en) * 2020-01-16 2020-05-29 安徽省东超科技有限公司 Air ionization display device
DE102020124649A1 (en) 2020-09-22 2022-03-24 Bayerische Motoren Werke Aktiengesellschaft METHOD AND DEVICE FOR GENERATION OF A VOLUME GRAPH

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914655A (en) * 1973-06-28 1975-10-21 Ibm High brightness ion source
DE3805053A1 (en) * 1988-02-18 1989-08-31 Heinrich Prof Dr Ing Reents Method and the corresponding devices for guiding a laser beam by means of a flexible mirror surface
US4870485A (en) * 1988-09-23 1989-09-26 Fmc Corporation Three dimensional image generating apparatus having a phosphor chamber
DE4027471C2 (en) * 1990-08-30 1994-10-13 Drescher Ruediger Device for the spatial representation of images
JPH04180084A (en) * 1990-11-15 1992-06-26 Hiroshi Daimon Image displaying device
DE4128949C2 (en) * 1991-08-31 1994-02-03 Drescher Ruediger Device for the spatial representation of images
JP3174607B2 (en) * 1992-02-10 2001-06-11 株式会社日立製作所 3D display device
US5450147A (en) * 1992-09-28 1995-09-12 The Boeing Company Method for controlling projection of optical layup template utilizing cooperative targets
JP2729021B2 (en) * 1993-10-13 1998-03-18 株式会社日立製作所 Method and apparatus for drawing an image by superimposing on starry sky with laser

Also Published As

Publication number Publication date
DE59402243D1 (en) 1997-04-30
DE4319680A1 (en) 1994-12-15
WO1994029837A1 (en) 1994-12-22
EP0704085A1 (en) 1996-04-03
US5871267A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
EP0704085B1 (en) Process and device for producing two- or three-dimensional images in gaseous media
DE60102597T2 (en) HIGH-PERFORMANCE LASER AND ITS APPLICATION FOR GENERATING LIGHT IN EXTREME UV RANGE
WO2000011513A1 (en) Device for the volumetric reproduction of a three-dimensional image by pulsed plasma generation in a natural atmosphere, using a focused laser beam
US3546375A (en) Three-dimensional terrain mapping system
DE2116288A1 (en) cathode ray tube
EP0370009B1 (en) Master control facility
DE102021108339A1 (en) LIGHT FIELD DISPLAY, METHOD, COMPUTER PROGRAM AND APPARATUS FOR CALIBRATION OF SUCH LIGHT FIELD DISPLAY
JPS61500381A (en) Acousto-optic character generator and method
DE1762400A1 (en) Method and device for the optical display of messages transmitted by electrical signals
US3181026A (en) Character generating tube
DE4128949C2 (en) Device for the spatial representation of images
DE1278118B (en) Method and arrangement for distance measurement with a pulse laser as transmitter
DE102018115785A1 (en) Display unit and method for three-dimensional rendering of an object
DE19544068A1 (en) Video image projection system onto screen
DE19814205C1 (en) Visualization method for surface characteristics of micro object e.g. for microelectronics, micro chemistry, micro optics or micro mechanics
DE29518766U1 (en) Video projection system
DE10047695C2 (en) Device and method for generating pixel groups in space
Momiuchi et al. Screenless Aerial 3D Display
AT160667B (en) Arrangement for converting a sound image into a visible image.
DE102016119819B3 (en) Apparatus and method for the optical measurement of three-dimensional surfaces
DE29515897U1 (en) Imaging device
DE1622522C3 (en) Device for influencing the direction of propagation of the amplitude maximum of optical waves
Freeman Negative ions point the way forward in multiphoton ionization
DE1236214B (en) Device for continuous large-scale projection of situation images
DE1622522A1 (en) DEVICE FOR INFLUENCING THE REPRODUCTION DIRECTION OF THE AMPLITUDE MAXIMUM OF WAVES IN THE OPTICAL AREA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19960503

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59402243

Country of ref document: DE

Date of ref document: 19970430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970623

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000616

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000619

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030829

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050609