EP0699228B1 - Detergent liquide a base d'un tensioactif non ionique a haut pouvoir moussant - Google Patents

Detergent liquide a base d'un tensioactif non ionique a haut pouvoir moussant Download PDF

Info

Publication number
EP0699228B1
EP0699228B1 EP94915886A EP94915886A EP0699228B1 EP 0699228 B1 EP0699228 B1 EP 0699228B1 EP 94915886 A EP94915886 A EP 94915886A EP 94915886 A EP94915886 A EP 94915886A EP 0699228 B1 EP0699228 B1 EP 0699228B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
liquid detergent
weight
amide
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94915886A
Other languages
German (de)
English (en)
Other versions
EP0699228A1 (fr
Inventor
Rita Erilli
Stephen T. Repinec, Jr.
Gilbert S. Gomes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of EP0699228A1 publication Critical patent/EP0699228A1/fr
Application granted granted Critical
Publication of EP0699228B1 publication Critical patent/EP0699228B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0094High foaming compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/126Acylisethionates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • the present invention relates to novel light duty liquid detergent compositions with high foaming properties. containing a nonionic surfactant as the major active ingredient supplemented with lesser amounts of a specific group of anionic surfactants and even smaller amounts of a Zwitterionic betaine surfactant and an amine oxide in an aqueous medium.
  • Nonionic surfactants are in general chemically inert and stable toward pH change and are therefore well suited for mixing and formulation with other materials. The superior performance of nonionic surfactants on the removal of oily soil is well recognized. Nonionic surfactants are also known to be mild to human skin. However. as a class, nonionic surfactants are known to be low or moderate foamers. Consequently, for detergents which require copious and stable foam, the application of nonionic surfactants is limited. There have been substantial interest and efforts to develop a high foaming detergent with nonionic surfactants as the major ingredient. Yet, little has been achieved.
  • 4,329,335 also discloses a shampoo containing a betaine surfactant as the major ingredient and minor amounts of a nonionic surfactant and of a fatty acid mono- or di-ethanolamide.
  • U.S. Patent No. 4,259,204 discloses a shampoo comprising 0.8-20% by weight of an anionic phosphoric acid ester and one additional surfactant which may be either anionic, amphoteric, or nonionic.
  • U.S. Patent No. 4.329.334 discloses an anionic-amphoteric based shampoo containing a major amount of anionic surfactant and lesser amounts of a betaine and nonionic surfactants.
  • U.S. Patent No. 3.935.129 discloses a liquid cleaning composition based on the alkali metal silicate content and containing five basic ingredients, namely, urea, glycerin. triethanolamine. an anionic detergent and a nonionic detergent.
  • the silicate content determines the amount of anionic and/or nonionic detergent in the liquid cleaning composition.
  • the foaming property of these detergent compositions is not discussed therein.
  • U.S. Patent No. 4.129.515 discloses a heavy duty liquid detergent for laundering fabrics comprising a mixture of substantially equal amounts of anionic and nonionic surfactants alkanolamines and magnesium salts. and. optionally, zwitterionic surfactants as suds modifiers.
  • U.S. Patent No. 4,224,195 discloses an aqueous detergent composition for laundering socks or stockings comprising a specific group of nonionic detergents. namely. an ethylene oxide of a secondary alcohol, a specific group of anionic detergents, namely, a sulfuric ester salt of an ethylene oxide adduct of a secondary alcohol, and an amphoteric surfactant which may be a betaine. wherein either the anionic or nonionic surfactant may be the major ingredient.
  • the specific class of anionics utilized in this patent is the very same group of anionic detergents expressly excluded in present invention in order to eliminate the alkanol ethoxylate sulfation process and the potential dioxane toxicity problem. Furthermore. this patent finds heavily foaming detergents undesirable for the purpose of washing socks.
  • the prior art also discloses detergent compositions containing all nonionic surfactants as shown in U.S. Patent Nos. 4.154.706 and 4.329.336 wherein the shampoo compositions contain a plurality of particular nonionic surfactants in order to effect desirable foaming and detersive properties despite the fact that nonionic surfactants are usually deficient in such properties.
  • U.S. Patent No. 4.013.787 discloses a piperazine based polymer in conditioning and shampoo compositions which may contain all nonionic surfactant or all anionic surfactant.
  • U.S. Patent No. 4,450,091 discloses high viscosity shampoo compositions containing a blend of an amphoteric betaine surfactant, a polyoxybutylenepolyoxyethylene nonionic detergent. an anionic surfactant. a fatty acid alkanolamide and a polyoxyalkylene glycol fatty ester. But. none of the exemplified compositions contains an active ingredient mixture wherein the nonionic detergent is present in major proportion. probably due to the low foaming properties of the polyoxybutylene polyoxyethylene nonionic detergent.
  • U.S. Patent No. 4.595,526 describes a composition comprising a nonionic surfactant, a betaine surfactant. an anionic surfactant and a C 12 -C 14 fatty acid monethanolamide foam stabilizer.
  • a high foaming, nonionic based. liquid detergent composition containing a nonionic surfactant as a major active ingredient and minor amounts of a supplementary high foaming anionic sulfate or sulfonate surfactant excluding ethoxylated alcohol ether sulfates.
  • a supplementary foaming zwitterionic surfactant selected from betaine type surfactants, an amine oxide. an alkyl monoalkanol amide. an alkyl dialkanol amide and wherein the nonionic ingredient constitutes more than 50% of the total surfactant content.
  • a high foaming liquid detergent can be formulated with a nonionic surfactant as the major active ingredient which has desirable cleaning properties, mildness to the human skin and avoids the dioxane toxicity problem associated with the sulfation process of manufacturing anionic ethoxylated alcohol ether sulfates.
  • one object of the invention is to provide novel, high foaming, nonionic based. light duty liquid detergent compositions containing a nonionic surfactant at a concentration of at least 50% of the total surfactant content.
  • Another object of this invention is to provide novel, nonionic based. liquid detergent compositions containing a major amount of nonionic surfactant supplemented with lesser amounts of an anionic surfactant, a zwitterionic betaine surfactant. an alkyl monoalkanol amide. an alkyl dialkanol amide, and an amine oxide.
  • Still another object of this invention is to provide a novel. nonionic based. liquid detergent with desirable high foaming and cleaning properties which is mild to the human skin.
  • a further object of this invention is to provide a novel, nonionic based liquid detergent containing a supplemental anionic surfactant excluding the ethoxylated alkyl ether sulfates which eliminates the alkanol ethoxylate sulfation process and the potential dioxane toxicity problem.
  • high foaming, nonionic based. light duty liquid detergent of this invention comprises an alkyl monoalkanol amide and an alkyl dialkanol amide in combination with four essential surfactants a water soluble.
  • ethoxylated, nonionic surfactant as the major active ingredient in an amount exceeding 50% by weight of the total surfactant content: a supplemental amount of a foaming anionic surfactant selected from the group consisting of water soluble organic sulfates and organic sulfonates, excluding the ethoxylated alkyl ether sulfates; a lesser amount of a foaming water soluble, zwitterionic surfactant selected from the class of betaines dissolved in an aqueous vehicle and an amine oxide, wherein the composition does not contain any polyoxyalkylene glycol fatty ester.
  • a foaming anionic surfactant selected from the group consisting of water soluble organic sulfates and organic sulfonates, excluding the ethoxylated alkyl ether sulfates
  • a lesser amount of a foaming water soluble, zwitterionic surfactant selected from the class of betaines dissolved in an aqueous vehicle and an
  • the present invention relates to a high foaming, nonionic based, liquid detergent containing more than 50% by weight of the total surfactant content of a nonionic surfactant selected from the group consisting of water soluble primary aliphatic alcohol ethoxylates secondary aliphatic alcohol ethoxylates, alkyl phenol ethoxylates and alcohol ethylene oxide propylene oxide condensates; and supplementary amounts of an anionic surfactant selected from the group consisting of water soluble salts of C 8 -C 18 alkyl sulfates, C 8 -C 16 alkyl benzene sulfonates, C 10 -C 20 paraffin sulfonates, alpha C 10 -C 24 olefin sulfonates, C 8 -C 18 alkyl sulfoacetates, C 8 -C 18 alkyl sulfosuccinate esters, C 8 -C 18 acyl isethionates and C
  • percent of the total surfactant content is critical to the high foaming and desirable cleansing properties of present liquid detergent and the retention of the mildness to the skin property.
  • the total amount of surfactants may constitute 17.5%-51%. preferably 20%-40%, most preferably 25%-35%, by weight of the liquid composition.
  • Excluded from the instant compounds are polyoxyalkylene glycol fatty esters, abrasives, polymeric thickeners, clay thickeners, silica, abrasive, clays, alkali metal carbonates or more than 3 wt. % of a fatty acid or its salt thereof.
  • the nonionic surfactant which constitutes the major ingredient in present liquid detergent is present in amounts of 10%-30%. preferably 13%-25%. most preferably 16%-22%, by weight of the composition and provides superior performance in the removal of oily soil and mildness to human skin.
  • the water soluble nonionic surfactants utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates. Secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols. such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI).
  • the nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups.
  • any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
  • the nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with about 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
  • a higher alcohol e.g., an alkanol containing 8
  • Neodol ethoxylates which are higher aliphatic, primary alcohols containing about 9-15 carbon atoms, such as C 9 -C 11 alkanol condensed with 8 moles of ethylene oxide (Neodol 91-8), C 12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C 12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25-12) and C 14-15 alkanol condensed with 13 moles ethylene oxide (Neodol 45-13).
  • Neodol ethoxylates such as C 9 -C 11 alkanol condensed with 8 moles of ethylene oxide (Neodol 91-8), C 12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C 12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25-12) and C 14
  • Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of 8-15 and give good/W emulsification, whereas ethoxamers with HLB values below 8 contain less than 5 ethyleneoxy groups and tend to be poor emulsifiers and poor detergents.
  • HLB hydrophobic lipophilic balance
  • Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide.
  • Examples of commercially available nonionic detergents of the foregoing type are C 11 -C 15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9) or 12 EO (Tergitol 15-S-12) marketed by Union Carbide.
  • nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide.
  • alkyl phenol ethoxylates include nonyl condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and diisoctylphenol condensed with 15 moles of EO per mole of phenol.
  • nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
  • nonionic detergents are the water-soluble condensation products of a C 8 -C 20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from 2.5:1 to 4:1, preferably 2.8:1-3.3:1, with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or propanol group) being from 60-85%, preferably 70-80%, by weight.
  • Such detergents are commercially available from BASF-Wyandotte and a particularly preferred detergent is a C 10 -C 16 alkanol condensate with ethylene oxide and propylene oxide, the weight ratio of ethylene oxide to propylene oxide being 3:1 and the total alkoxy content being 75% by weight.
  • Suitable water-soluble nonionic detergents which are less preferred are marketed under the trade name "Pluronics.”
  • the compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
  • the molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4000 and preferably 200 to 2,500.
  • the addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole so as to make the surfactant water-soluble.
  • the molecular weight of the block polymers varies from 1,000 to 15,000 and the polyethylene oxide content may comprise 20% to 80% by weight.
  • these surfactants will be in liquid form and satisfactory surfactants are available as grades L62 and L64.
  • the anionic surfactant which is an essential ingredient of present liquid detergent composition, constitutes 1% to 10%, preferably 2%-9%, most preferably 3%-8%, by weight thereof and provides good foaming properties. However, preferably reduced amounts are utilized in order to enhance the mildness of the skin property desired in the inventive compositions, and thus, the weight ratio of nonionic detergent to anionic should exceed about 3:1.
  • the particular group of anionic surfactants utilized excludes the C 8 -C 18 alkyl polyethenoxy ether sulfate surfactants in order to avoid the dioxane toxicity associated with the process of sulfation of ethoxylated alcohols. Thus, the ethoxylated alcohol ether sulfates are expressly excluded from the specific group of anionic surfactants utilized.
  • the anionic surfactants which may be used in the nonionic based liquid detergent of this invention are water soluble such as triethanolamine and include the sodium, potassium, ammonium and ethanolammonium salts of C 8 -C 18 alkyl sulfates such as lauryl sulfate and myristyl sulfates; linear C 8 -C 16 alkyl benzene sulfonates; C 10 -C 20 paraffin sulfonates; alpha olefin sulfonates containing about 10-24 carbon atoms; C 8 -C 18 alkyl sulfoacetates; C 8 -C 18 alkyl sulfosuccinate esters; C 8 -C 18 acyl isethionates; and C 8 -C 18 acyl taurates.
  • C 8 -C 18 alkyl sulfates such as lauryl sulfate and myristyl sulfates
  • Preferred anionic surfactants are the water soluble C 12 -C 16 alkyl sulfates, the C 10 -C 15 alkylbenzene sulfonates, the C 13 -C 17 paraffin sulfonates and the alpha C 12 -C 18 olefin sulfonates.
  • the water-soluble zwitterionic surfactant which is also an essential ingredient of present liquid detergent composition, constitutes 0.5-10%, preferably 2%-9%. most preferably 7%-8%, by weight and provides good foaming properties and mildness to the present nonionic based liquid detergent.
  • the zwitterionic surfactant is a water soluble betaine having the general formula: wherein R 1 is an alkyl group having 10 to 20 carbon atoms, preferably 12 to 16 carbon atoms, or the amido radical: wherein R is an alkyl group having 9 to 19 carbon atoms and a is the integer 1 to 4; R 2 and R 3 are each alkyl groups having 1 to 3 carbons and preferably 1 carbon; R 4 is an alkylene or hydroxyalkylene group having from 1 to 4 carbon atoms and, optionally, one hydroxyl group.
  • Typical alkyldimethyl betaines include decyl dimethyl betaine or 2-(N-decyl-N, N-dimethyl-ammonia) acetate, coco dimethyl betaine or 2-(N-coco N. N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, lauryl diemethyl betaine, cetyl dimethyl betaine and stearyl dimethyl betaine.
  • the amidobetaines similarly include cocoamidoethylbetaine and cocoamidopropyl betaine.
  • a preferred betaine is coco (C 8 -C 18 ) amidopropyl dimethyl betaine.
  • Amine oxide semi-polar nonionic surfactants comprise compounds and mixtures of compounds having the formula wherein R 1 is an alkyl. 2-hydroxyalkyl, 3-hydroxyalkyl, or 3-alkoxy-2-hydroxypropyl radical in which the alkyl and alkoxy, respectively, contain from 8 to 18 carbon atoms.
  • R 2 and R 3 are each methyl, ethyl, propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, or 3-hydroxypropyl, and n is from 0 to 10.
  • Particularly preferred are amine oxides of the formula: wherein R 1 is a C 12-16 alkyl and R 2 and R 3 are methyl or ethyl.
  • the concentration of the amine oxide in the instant compositions is 1.0 to 5 wt. %, more preferably 2 to 4 wt. % and most preferably 2.5 to 3.5 wt. %.
  • the instant composition contains a mixture of a C 12-14 alkyl monoalkanol amide such as lauryl monoalkanol amide and a C 12-14 alkyl dialkanol amide such as lauryl diethanol amide or coco diethanol amide, wherein the concentration of the monoalkanol amide is 1 to 3 wt. % and the concentration of the dialkanol amide is 1 to 3 wt. %.
  • a C 12-14 alkyl monoalkanol amide such as lauryl monoalkanol amide
  • a C 12-14 alkyl dialkanol amide such as lauryl diethanol amide or coco diethanol amide
  • This particular combination of C 12-14 alkyl monoalkanol amide, C 12-14 alkyl dialkanol amide, anionic surfactant, amine oxide and betaine surfactant provides a detergent system which coacts with the nonionic surfactant to product a liquid detergent composition with desirable foaming, foam stability, detersive properties and mildness to human skin.
  • the resultant homogeneous liquid detergent exhibits the same or better foam performance, both as to initial foam volume and stability of foam in the presence of soils, and cleaning efficacy as an anionic based light duty liquid detergent (LDLD) as shown in the following Examples.
  • LDLD light duty liquid detergent
  • the nonionic surfactant, the anionic surfactant, the betaine surfactant, the C 12-14 alkyl monoalkanol amide, the C 12-14 alkyl dialkanol amide and the amine oxide are solubilized in the water.
  • water soluble hydrotropic salts include sodium, potassium, ammonium and mono-, di- and triethanolammonium salts.
  • the aqueous medium is primarily water, preferably said solubilizing agents are included in order to control the viscosity of the liquid composition and to control low temperature cloud clear properties. Usually, it is desirable to maintain clarity to a temperature in the range of 5°C to 10°C.
  • the proportion of solubilizer generally will be from 1%-15%, preferably 2%-12%, most preferably 2%-8%, by weight of the detergent composition with the proportion of ethanol, when present, being 5% of weight or less in order to provide a composition having a flash point above 46°C.
  • the solubilizing ingredient will be a mixture of ethanol and either sodium xylene sulfonate or sodium cumene sulfonate or a mixture of said sulfonates or ethanol and urea.
  • Inorganic salts such as sodium sulfate, magnesium sulfate, sodium chloride and sodium citrate can be added at concentrations of 0.5 to 4.0 wt.
  • solubilizing agents such as perfumes, sodium bisulfite, ETDA, isoethanoeic acid and proteins such as lexine protein.
  • solubilizing ingredients also facilitate the manufacture of the inventive compositions because they tend to inhibit gel formation.
  • various coloring agents and perfumes such as the Uvinuls, which are products of GAF Corporation; sequestering agents such as ethylene diamine tetraacetates; magnesium sulfate heptahydrate; pearlescing agents and opacifiers; pH modifiers; etc.
  • the proportion of such adjuvant materials. in total will normally not exceed 15% of weight of the detergent composition, and the percentages of most of such individual components will be a maximum of 5% by weight and preferably less than 2% by weight.
  • Sodium formate can be included in the formula as a perservative at a concentration of 0.1 to 4.0%.
  • Sodium bisulfite can be used as a color stabilizer at a concentration of 0.01 to 0.2 wt. %
  • nonionic based light duty liquid detergents such as dishwashing liquids are readily made by simple mixing methods from readily available components which, on storage, do not adversely affect the entire composition.
  • the nonionic surfactant be mixed with the solubilizing ingredients, e.g., ethanol and. if present. prior to the addition of the water to prevent possible gelation.
  • the nonionic based surfactant system is prepared by sequentially adding with agitation the anionic surfactant, the betaine surfactant, the amine oxide, the C 12-14 alkyl monoalkanol amide and the C 12-14 alkyl dialkanol amide to the aqueous solution of the non-ionic surfactant which has been previously mixed with a solubilizing agent such as ethyl alcohol and/or sodium xylene sulfonate to assist in solubilizing said surfactants, and then adding with agitation the formula amount of water to form an aqueous solution of the nonionic based surfactant system.
  • a solubilizing agent such as ethyl alcohol and/or sodium xylene sulfonate
  • the viscosities are adjustable by changing the total percentage of active ingredients. Usually, no thickening agent is added, but thickeners may be added if higher viscosity liquids are desired. In all such cases the product made will be pourable from a relatively narrow mouth bottle (1.5 cm. diameter) or opening, and the viscosity of the detergent formulation will not be so low as to be like water.
  • the viscosity of the detergent desirably will be at least 100 centipoises (cps) at room temperature, but may be up to 1,000 centipoises as measured with a Brookfield Viscometer using a number 3 spindle rotating at 12 rpm. Its viscosity may approximate those of commercially acceptable detergents now on the market.
  • the detergent viscosity and the detergent itself remain stable on storage for lengthy periods of time, without color changes or settling out of any insoluble materials.
  • the pH of this formation is substantially neutral to skin, e.g., 4.5 to 8 and preferably 5.0 to 5.0.
  • the foam quality and detersive property is equal to or better than standard light duty liquid detergents while using a nonionic surfactant as the primary surfactant and minimal amounts of anionic surfactant, thereby achieving a mild, non-irritating liquid detergent.
  • Example 1 of U. S. Patent 4,495,526 (designated L) and Formula A of Example 1 of this application were compared in a Hand Dish Wash Test.
  • the test was run with Olive Oil, Beef Tallow and Butter in a ratio of equal amounts.
  • the results show that Formula A of Example 1 gave better results than the standard Formula L (Example 1 of U.S. Patent 4.495.526).
  • the test was run blind with each trial consisting of two runs of each product and the test was done in hard water (300 ppm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Claims (9)

  1. Détergent liquide pour lavage délicat à pouvoir moussant élevé à base de tensio-actif non ionique comprenant approximativement, en poids :
    (a) 10 à 30% d'un tensio-actif non ionique hydrosoluble choisi dans le groupe constitué des produits de condensation d'alcanol primaire et secondaire en C8-C18 avec 5 à 30 moles d'oxyde d'éthylène, des produits de condensation d'alkylphénol en C8-C18 avec 5 à 30 moles d'oxyde d'éthylène, des produits de condensation d'alcanol en C8-C20 avec un mélange d'oxyde d'éthylène et d'oxyde de propylène présentant un rapport en poids de l'oxyde d'éthylène à l'oxyde de propylène compris entre 2,5:1 et 4:1 et une teneur totale en oxyde d'alkylène de 60 à 85 % en poids, et, des produits de condensation de 2 à 30 moles d'oxyde d'éthylène avec des mono- et triesters du sorbitanne avec des acides alcanoïques en C10-C20 présentant un équilibre hydrophile/lipophile de 8 à 15 ;
    (b) 1 à 10% d'un détergent anionique hydrosoluble choisi dans le groupe constitué des alkyles en C8-C18-sulfates, des alkyles en C8-C16-benzène-sulfonates, des paraffines en C10-C20-sulfonates, des alpha oléfines en C10-C24-sulfonates, des alkyles en C8-C18-sulfosuccinates, des acyles en C8-C18-iséthionates et des acyles en C8-C18-taurates ; et
    (c) 0,5% à 10% d'une bétaïne hydrosoluble ;
    (d) 1 à 3% d'un alkyle en C12-C14-monoalcanol-amide ;
    (e) 1 à 3% d'un alkyle en C12-C14-dialcanolamide ;
    (f) 1 à 5% d'un oxyde d'amine hydrosoluble ; et
    (g) le reste d'eau en tant que milieu aqueux dans lequel sont dissous ledit tensio-actif non ionique, ledit tensio-actif anionique, ladite bétaïne, ledit alkyle en C12-C14-monoalcanol-amide, ledit alkyle en C12-C14-dialcanol-amide et ledit oxyde d'amine, la somme de B, C, D, E et F représentant 15 à 48% en poids de la composition, ledit tensio-actif non ionique excédant de 50% en poids la quantité totale de tensio-actif.
  2. Composition détergente liquide selon la revendication 1 comprenant en outre 1 à 15% en poids d'un agent de solubilisation qui est constitué de sels hydrosolubles d'hydrotropes de type (benzène substitué par C1-C3-sulfonates et de leurs mélanges).
  3. Composition détergente liquide selon la revendication 2 dans laquelle ledit tensio-actif non ionique est le produit de condensation d'un alcanol primaire en C8-C18 avec 5 à 30 moles d'oxyde d'éthylène.
  4. Composition détergente liquide selon la revendication 3 dans laquelle ledit détergent anionique est choisi dans le groupe constitué des alkyles en C12-C16-sulfates, des alkyles en C10-C15-benzène-sulfonates, des paraffines en C13-C17-sulfonates et des alpha oléfines en C12-C18-sulfonates.
  5. Composition détergente liquide selon la revendication 1 dans laquelle ledit tensio-actif non ionique est présent à raison de 16 à 22% en poids, ledit détergent anionique est présent à raison de 2 à 9% en poids et ladite bétaïne est présente à raison de 2 à 9% en poids.
  6. Composition détergente liquide selon la revendication 5 dans laquelle ledit détergent anionique est un alkyle en C12-C16-sulfates.
  7. Composition détergente liquide selon la revendication 1 comprenant en outre un agent conservateur.
  8. Composition détergente liquide selon la revendication 1 comprenant en outre un stabilisant de la couleur.
  9. Composition détergente liquide selon la revendication 1 dans laquelle l'alkyle en C12-C14 monoalcanol-amide est un alkyle en C12-C14-monoéthanol-amide et ledit alkyle en C12-C14-diéthanol-amide est un alkyle en C12-C14-diéthanol-amide.
EP94915886A 1993-05-03 1994-05-03 Detergent liquide a base d'un tensioactif non ionique a haut pouvoir moussant Expired - Lifetime EP0699228B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US5608693A 1993-05-03 1993-05-03
US56086 1993-05-03
US19392994A 1994-02-09 1994-02-09
US193929 1994-02-09
PCT/US1994/004551 WO1994025554A1 (fr) 1993-05-03 1994-05-03 Detergent liquide a base d'un tensioactif non ionique a haut pouvoir moussant

Publications (2)

Publication Number Publication Date
EP0699228A1 EP0699228A1 (fr) 1996-03-06
EP0699228B1 true EP0699228B1 (fr) 1996-12-04

Family

ID=26734957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94915886A Expired - Lifetime EP0699228B1 (fr) 1993-05-03 1994-05-03 Detergent liquide a base d'un tensioactif non ionique a haut pouvoir moussant

Country Status (6)

Country Link
EP (1) EP0699228B1 (fr)
AT (1) ATE145934T1 (fr)
AU (1) AU6774094A (fr)
DE (1) DE69401066T2 (fr)
DK (1) DK0699228T3 (fr)
WO (1) WO1994025554A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303637B (en) * 1995-07-21 1999-04-21 Cussons Int Ltd Personal cleaning composition
MX341184B (es) 2010-10-25 2016-08-09 Stepan Co Detergentes liquidos de trabajo ligero basados en composiciones derivadas de la metatesis de aceite natural.
US9347111B2 (en) * 2012-11-06 2016-05-24 Lixivia, Inc. Making mineral salts from various sources

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329334A (en) * 1980-11-10 1982-05-11 Colgate-Palmolive Company Anionic-amphoteric based antimicrobial shampoo
US4450091A (en) * 1983-03-31 1984-05-22 Basf Wyandotte Corporation High foaming liquid shampoo composition
GB8411110D0 (en) * 1984-05-01 1984-06-06 Beecham Group Plc Detergent formulations
US4595526A (en) * 1984-09-28 1986-06-17 Colgate-Palmolive Company High foaming nonionic surfacant based liquid detergent
JPH01292098A (ja) * 1988-05-19 1989-11-24 Kao Corp 液体洗浄剤組成物
CA2002095C (fr) * 1988-11-03 1998-06-02 Ralph S. Itoku Gel nettoyant a haut degre de viscosite et methode de fabrication connexe
NZ247673A (en) * 1992-06-03 1994-10-26 Colgate Palmolive Co High foaming aqueous liquid detergent containing non-ionic surfactant supplemented by anionic and betaine surfactants

Also Published As

Publication number Publication date
DE69401066T2 (de) 1997-07-03
DK0699228T3 (da) 1997-06-02
DE69401066D1 (de) 1997-01-16
EP0699228A1 (fr) 1996-03-06
WO1994025554A1 (fr) 1994-11-10
AU6774094A (en) 1994-11-21
ATE145934T1 (de) 1996-12-15

Similar Documents

Publication Publication Date Title
US4595526A (en) High foaming nonionic surfacant based liquid detergent
EP0573341B1 (fr) Composition détergente liquide à base de surfactant non ionique très moussant
US5866529A (en) High foaming nonionic surfactant base liquid detergent comprising gelatin beads
US20060264349A1 (en) Antibacterial light duty liquid cleaning composition
EP0633309A1 (fr) Composition détergente liquide à base de surfactant non ionique très moussant
US5565421A (en) Gelled light duty liquid detergent containing anionic surfactants and hydroxypropyl methyl cellulose polymer
US5385696A (en) High foaming nonionic surfactant based liquid detergent
EP1220882A1 (fr) Solution homogenes d'un agent de surface de sulfonate d'olefine alpha
EP0573329B1 (fr) Composition détergente liquide à base de surfactant non ionique très moussant
US5284603A (en) Gelled detergent composition having improved skin sensitivity
EP0633308B1 (fr) Composition détergente liquide à base de surfactant non ionique très moussant
EP0892841B1 (fr) Compositions liquides pour travaux courants
US5629279A (en) High foaming nonionic surfactant based liquid detergent
US5922662A (en) High foaming nonionic surfactant based liquid detergent
US5610127A (en) High foaming nonionic surfactant based liquid detergent
US5780411A (en) High foaming nonionic surfactant based liquid detergent
US5856292A (en) Light duty liquid cleaning compositions
US6242411B1 (en) Grease cutting light duty liquid detergent comprising lauryol ethylene diamine triacetate
US5985813A (en) Liquid cleaning compositions based on cationic surfactant, nonionic surfactant and nonionic polymer
US5756441A (en) High foaming nonionic surfactant based liquid detergent
EP0699228B1 (fr) Detergent liquide a base d'un tensioactif non ionique a haut pouvoir moussant
EP0638638B1 (fr) Composition détergente liquide à base de surfactant non ionique très moussant
US5789370A (en) High foaming nonionic surfactant based liquid detergent
US5869439A (en) High foaming nonionic surfactant based liquid detergent
WO1998005743A1 (fr) Detergent liquide fabrique a partir d'un surfactif non ionique tres moussant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960401

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COLGATE-PALMOLIVE COMPANY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961204

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19961204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961204

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961204

Ref country code: AT

Effective date: 19961204

REF Corresponds to:

Ref document number: 145934

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69401066

Country of ref document: DE

Date of ref document: 19970116

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 70900

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970304

Ref country code: PT

Effective date: 19970304

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970503

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980528

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030617

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030804

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040503

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

BERE Be: lapsed

Owner name: *COLGATE-PALMOLIVE CY

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060131