EP0698957B1 - Electromechanischer Wandler mit zwei Rotoren - Google Patents

Electromechanischer Wandler mit zwei Rotoren Download PDF

Info

Publication number
EP0698957B1
EP0698957B1 EP19950112758 EP95112758A EP0698957B1 EP 0698957 B1 EP0698957 B1 EP 0698957B1 EP 19950112758 EP19950112758 EP 19950112758 EP 95112758 A EP95112758 A EP 95112758A EP 0698957 B1 EP0698957 B1 EP 0698957B1
Authority
EP
European Patent Office
Prior art keywords
stator
magnetic
permanent magnet
rotor
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19950112758
Other languages
English (en)
French (fr)
Other versions
EP0698957A1 (de
Inventor
Daho Taghezout
Yves Guérin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA SA Manufacture Horlogere Suisse
Ebauchesfabrik ETA AG
Original Assignee
Ebauchesfabrik ETA AG
Eta SA Fabriques dEbauches
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9410546A external-priority patent/FR2724271B1/fr
Application filed by Ebauchesfabrik ETA AG, Eta SA Fabriques dEbauches filed Critical Ebauchesfabrik ETA AG
Publication of EP0698957A1 publication Critical patent/EP0698957A1/de
Application granted granted Critical
Publication of EP0698957B1 publication Critical patent/EP0698957B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C13/00Driving mechanisms for clocks by master-clocks
    • G04C13/08Slave-clocks actuated intermittently
    • G04C13/10Slave-clocks actuated intermittently by electromechanical step advancing mechanisms
    • G04C13/11Slave-clocks actuated intermittently by electromechanical step advancing mechanisms with rotating armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • the present invention relates to a transducer electromechanical comprising two rotors, in particular one clock-type motor.
  • the object of the present invention is to provide a electromechanical transducer, in particular of the watchmaking type, comprising two rotors which can be, so relatively easy, independently controlled one of the other in the two possible directions of rotation.
  • This electromechanical transducer is characterized by what each of the first and second stator holes is defined by a first stator pole, a second stator pole and a third stator pole, said first and second stator poles defining partially the first stator hole being connected magnetically by first means of flow guidance magnetic, the first and second stator poles partially defining the second stator hole being magnetically connected by second means of magnetic flux guidance.
  • the first and second means for guiding the magnetic flux are respectively associated with first and second feeding means magnetic, the two third stator poles being magnetically connected to a first end of an arm stator whose second end is connected magnetically to said first and second means of guiding the magnetic flux, said stator arm being associated with third magnetic supply means.
  • the permanent magnet of each of the two rotors is bipolar with radial magnetization defining a magnetic axis of this permanent magnet, the permanent magnets of the first and second rotors being positioned respectively inside the first and second stator holes.
  • the electromechanical transducer is further arranged to so that when one of the permanent magnets is in a of its two aforementioned minimum energy positions, the direction of the magnetic axis of this permanent magnet is aligned with the second stator pole defining partially the stator hole in which this magnet permanent is housed.
  • the first, second and third means magnetic feeders are formed respectively by first, second and third coils.
  • This control method is characterized in that it is intended to train in rotate the first rotor, while leaving the second rotor in one of its two minimum energy positions, in a first direction of rotation, only the supply of the first supply means magnetic with alternating current polarity supply to these first means of supply magnetic and, in a second direction of rotation, feeding the third means of feeding magnetic, with alternating current polarity of power supplied to these third means magnetic power supply, together with the power supply second magnetic supply means so that the magnetic flux, resulting from the feeding of these second and third magnetic supply means and acting on the second rotor, has a direction of global propagation, within the volume defined by the permanent magnet of this second rotor, substantially parallel to the direction of the magnetic axis of this magnet permanent when the latter is positioned in one of its two minimum energy positions.
  • transducer electromechanical including two rotors which can be ordered independently of each other in both possible direction of rotation using only three magnetic feed means, in particular three coils.
  • the electromechanical transducer 1 includes a stator 2 defining a first hole stator 4 and a second stator hole 6. More particularly each of these first and second holes stator 4 and 6 is defined by a first pole stator 8a, 8b, a second stator pole 10a, 10b and a third stator pole 12a, 12b.
  • the electromechanical transducer 1 also includes a first rotor 14 and a second rotor 15 passing through the first stator hole 4 and the second respectively stator hole 6.
  • Each of these first and second rotors 14 and 15 includes a permanent magnet 18a, 18b located inside the respective stator hole 4, 6, the permanent magnets 18a and 18b thus being coupled magnetically to the stator 2.
  • the three stator poles 8a, 10a and 12a are magnetically isolated from each other by areas of high magnetic reluctance forming isthmus 20a, 20b and 20c. Similarly, the three stator poles 8b, 10b and 12b are magnetically isolated from each other by areas high magnetic reluctance forming isthmus 22a, 22b and 22c.
  • the first and third stator poles 8a and 12a, 8b and 12b respectively, define an angle at the center rotor 14, respectively 15, of about 135 °.
  • the second stator pole 10a, respectively 10b defines an angle at the center of the rotor 14, respectively 15, about 90 °.
  • each of the stator poles 8a, 8b, 10a, 10b, 12a and 12b define an angle at the center of 120 °.
  • stator poles defining stator holes 4 and 6 defines a axial symmetry in the stator plane for each of the two regions respectively surrounding the holes stator 4 and 6, the axis of this axial symmetry being designated by the reference 24a, respectively 24b.
  • the permanent magnets 18a and 18b are bipolar to radial magnetization and thus each have an axis magnetic 26a, 26b (shown in Figures 2 to 9). Therefore and given the axial symmetry mentioned above, each of these permanent magnets 18a and 18b has two minimum energy positions when the transducer is not supplied with current.
  • the axes magnetic 26a and 26b of these two permanent magnets 18a and 18b have respectively parallel directions to the axes of symmetry 24a and 24b when each of the magnets permanent 18a and 18b is in one of its two minimum energy positions.
  • the first stator pole 8a and the second pole stator 10a are magnetically connected to each other by means 28 for guiding the magnetic flux.
  • the first stator pole 8b and the second pole stator 10b are magnetically connected to each other by means 30 for guiding the magnetic flux.
  • the means 28 and 30 for guiding the magnetic flux form respectively a first magnetic circuit and a second magnetic transducer circuit electromechanical.
  • the means 28 and 30 for guiding the magnetic flux respectively comprise a core 32 and a core 34 around which are respectively wound a first coil 36 and a second coil 38.
  • the third poles 12a and 12b are magnetically connected to a first end 40 of a stator arm 42 of low reluctance magnetic.
  • the second end 44 of this stator arm 42 is magnetically connected to the first means 28 of guidance of the magnetic flux and also on the second means 30 for guiding the magnetic flux.
  • the arm stator 42 has a core 46 around which is wound a coil 48.
  • each of the two stator holes 4 and 6 two positioning notches 50a and 50b diametrically opposite to each other relative to the axis of symmetry 24a, respectively 24b. These positioning notches 50a and 50b are used to generate a positioning torque of the permanent magnet 18a, respectively 18b.
  • the magnetic axis 26a, 26b of the permanent magnet 18a, 18b is aligned with the second stator pole 10a, 10b when the rotor 14, 15 is in one of its two minimum energy positions.
  • a notch 52a has also been provided, 52b on the edge of the stator hole 4, 6.
  • This notch serves to balance the forces of attraction exerted on the permanent magnet 18a, 18b by the stator poles 8a, 10a and 12a, respectively 8b, 10b and 12b.
  • a notch is not essential to good electromechanical transducer operation according to the invention.
  • FIGS 2 to 9 are schematic representations of the transducer Figure 1 electromechanical of stator 2 is shown in projection in a single and same plane, while the transducer stator 1 of Figure 1 on two parallel planes to allow the fixing of cores 32, 34 and 46 respectively carrying the coils 36, 38 and 48 to the rest of the stator.
  • the control method according to the invention makes it possible to independently control each of the two rotors 14 and 15 of the electromechanical transducer 1 (Figure 1) in the two possible directions of rotation.
  • Figures 2 to 9 only the permanent magnets 18a and 18b belonging respectively to the two rotors 14 and 15.
  • the magnetic axis 26a of the bipolar permanent magnet 18a is represented by a first arrow and the magnetic axis 26b of the bipolar permanent magnet 18b is represented by a second arrow.
  • the direction of global propagation of the flow magnetic 60 in the volume defined by the permanent magnet 18a corresponds substantially to the direction shown on Figure 2 by arrow 62.
  • the magnetic flux 60 passing through the permanent magnet 18a then generates a moment by force on this permanent magnet 18a so as to drive it in rotation to its second position minimum energy.
  • the direction of global propagation of the flow magnetic 64 crossing the volume defined by the magnet permanent 18a is represented in figure 3 by the arrow 66.
  • the magnetic flux 64 passing through the permanent magnet 18a generates a moment of force on this permanent magnet 18a used to rotate the rotor 14 of the second minimum energy position shown in Figure 3 at the first minimum energy position shown on the figure 2.
  • the rotor 14 can be rotated in 180 ° steps in a negative direction of rotation, without causing rotation of the rotor 15.
  • FIGS. 2 to 9 only the propagations in the main magnetic circuits of a any magnetic flux, generated by one of the three coils 36, 38 and 48, are shown using lines drawn and arrows indicating the direction of propagation of this magnetic flux.
  • the electromechanical transducer according to the invention having a symmetry, it follows that the training in rotation of the rotor 15 in a positive direction is carried out analogous to the rotational drive of the rotor 14 in a negative sense, which is depicted in the Figures 4 and 5.
  • the rotor 15 To drive the rotor 15 from its first position minimum energy in which it is represented on the figure 4 at its second minimum energy position in which it is represented in figure 5, it is provided to supply the coil 38 with a current power supply having a first polarity so as to generate a magnetic flux 68 in the core 34 of this coil 38.
  • This magnetic flux 68 enters the volume defined by the permanent magnet 18b by the first pole stator 8b and spring from this volume apart substantially equal by the second and third stator poles 10b and 12b.
  • the global direction of magnetic flux 68 crossing the permanent magnet 18b is represented by the arrow 70.
  • Magnetic fluxes 68 and 72 passing through the magnet permanent 18b alternately generate a moment of force causing the rotor 15 to rotate in 180 ° steps.
  • the magnetic flux 76 generated by the coil 48 and leaving the core 46 through the first end 40 of the arm stator 42 (figure 1) separates substantially apart equal in two magnetic fluxes 76a and 76b propagating respectively towards the third stator pole 12a and the third stator pole 12b. So the magnet permanent 18a of rotor 14 is crossed by a flux magnetic 76a entering through the third stator pole 12a and leaving, in substantially equal parts, by the first and second stator poles 8a and 10a.
  • the overall direction of the magnetic flux 76a passing through the permanent magnet 18a is represented by the arrow 78. It follows from this overall direction 78 of the flow magnetic passing through the permanent magnet 18a a moment of force driving the rotor 14 in rotation from its first minimum energy position until its second minimum energy position.
  • the invention of supplying the coil 38 with a current the polarity of which is chosen so that the direction of magnetic flux 80, generated by this coil 38 in core 34, has a direction of propagation in the first stator pole 8b opposite to the direction of the magnetic flux 76b propagating in this first stator pole 8b.
  • the potential magnetic generated by the coil 38 is advantageously equal to half the magnetic potential generated by the coil 48 so that the coil 38 exerts on the rotor 15 a torque opposite to that generated by the coil 48.
  • a current command it will be noted that there is proportionality between the magnetic potential and the electric current.
  • the coil 48 is supplied by a supply current having a second polarity opposite to said first polarity.
  • the coil 48 generates a flux in the core 46 magnetic 82.
  • This magnetic flux 82 leaves the polar arm 42 by its second end 44 ( Figure 1) in se dividing, in roughly equal parts, into two streams magnetic 82a and 82b.
  • the magnetic flux 82a enters the defined volume by the permanent magnet 18a of the rotor 14 by the first and second stator poles 8a and 10a to exit this volume by the third stator pole 12a.
  • the direction of the magnetic flux 82a passing through the permanent magnet 18a is then represented by arrow 84.
  • the magnetic flux 82a passing through the permanent magnet 18a generates a moment force used to rotate the rotor 14 of its second minimum energy position at its first position minimum energy.
  • the coil 48 is supplied with a current having a first polarity to generate a flux in the core 46 magnetic 76 described above, which is divided into two magnetic fluxes 76a and 76b.
  • the magnetic flux 76b enters the volume defined by the permanent magnet 18b by the third stator pole 12b to emerge from this volume by the first and second stator poles 8b and 10b.
  • the overall direction of the magnetic flux passing through the permanent magnet 18b is represented in FIG. 8 by arrow 88.
  • the magnetic flux passing through the magnet permanent 18b generates a moment of force used to rotate the rotor 15 in the negative direction its first minimum energy position in which it is shown in Figure 8 at its second position minimum energy in which it is represented on the figure 9.
  • the invention To neutralize the magnetic flux 76a acting on the permanent magnet 18a of the rotor 14, it is provided according to the invention of supplying the coil 36 so as to generate in the core 32 a magnetic flux 90.
  • the direction of magnetic flux 90 propagating in the core 32 has the opposite direction to the magnetic flux 76a propagating in this core 32.
  • the potential magnetic coil 36 is chosen so that the intensity of the magnetic flux 90 passing through the magnet permanent 18a is substantially equal to the intensity of the flow magnetic 76a also passing through this permanent magnet 18a.
  • the overall direction of the magnetic flux resulting from magnetic fluxes 76a and 90 and passing through the magnet permanent 18a is substantially parallel to the direction of the magnetic axis 26a when the rotor 14 is in one of its two minimum energy positions. Therefore, this rotor 14 is not rotated.
  • the rotor 15 To rotate in the negative direction the rotor 15 from its second minimum energy position at its first minimum energy position it is expected to feed the coil 48 in such a way that it generates in the core 46 a magnetic flux 82 which is divided into two magnetic fluxes 82a and 82b as described previously.
  • the magnetic flux 82b entering the volume defined by the permanent magnet 18b by the first and second stator poles 8b and 10b and leaving this volume by the third stator pole 12b, present at inside said volume a direction of propagation global represented by arrow 92.
  • the magnetic flux 82b passing through the permanent magnet 18b generates a moment force rotating the rotor 15 of its second minimum energy position at its first position minimum energy.
  • the present invention therefore allows to train in rotate two rotors independently and within two directions of rotation possible using a transducer electromechanical including a single stator and only three coils. Note that it is also possible to rotate the two rotors 14 simultaneously and 15 by an appropriate command within the reach of man of career.
  • This second embodiment differs from the first embodiment in that the permanent magnet 18b of the second rotor 15 is located in a stator hole 106, defined by a first stator pole 108, a second stator pole 110 and a third stator pole 112, and in that the stator hole 6 of the first mode of realization is not planned in this second mode of production.
  • the three stator poles 108, 110 and 112 are magnetically isolated from each other by areas of high magnetic reluctance forming isthmus 122a, 122b and 122c.
  • the first stator pole 108 and the second pole stator 110 are magnetically connected to each other by means 124 for guiding the magnetic flux comprising the core 34 around which the coil is wound 38.
  • the third magnetic pole 112 is connected magnetically at the second end 44 of the arm stator 42, while the first end 40 of this stator arm 42 is magnetically connected to the means 124 for guiding the magnetic flux.
  • this second embodiment presents a advantage with regard to the power consumption of the transducer in case it is used as two-piece direct needles direct drive motor of watchmaking. This results from the fact that the rotor 14 and the rotor 15 can be driven in the conventional direction clockwise (negative or reverse direction of trigonometric) respectively only by means of the coil 36 and coil 38 in supply.
  • each of the rotors 14 and 15 of the first embodiment and second embodiment of realization can be ordered in various ways to the scope of the skilled person, especially with the three coils 36, 38 and 48 in supply.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Claims (5)

  1. Elektromechanischer Wandler, umfassend:
    einen ein erstes Statorloch (4) und ein zweites Statorloch (6; 106) begrenzenden Stator,
    einen ersten Rotor (14) und einen zweiten Rotor (15), die das erste bzw. zweite Statorloch durchsetzen, welcher erste und zweite Rotor jeweils einen mit dem Stator magnetische gekoppelten Permanentmagneten (18a, 18b) umfassen, welcher elektromechanische Wandler dadurch gekennzeichnet ist, daß jedes der ersten und zweiten Statorlöcher von einem ersten Statorpol (8a, 8b; 108), einem zweiten Statorpol (10a, 10b, 110) und einem dritten Statorpol (12a, 12b, 112) begrenzt ist, welche ersten und zweiten teilweise das erste Statorloch begrenzenden Statorpole magnetisch über erste Magnetflußführungsmittel (28) verbunden sind, welche ersten und zweiten teilweise das zweite Statorloch begrenzenden Statorpole magnetisch über zweite Magnetflußführungsmittel (30; 124) verbunden sind, welche ersten bzw. zweiten Magnetflußführungsmittel ersten bzw. zweiten Magnetspeisemitteln (36, 38) zugeordnet sind, welcher elektromechanische Wandler ferner einen Statorarm (42) niedriger magnetischer Reluktanz mit einem ersten Ende (40) und einem zweiten Ende (44) umfaßt, welcher Statorarm dritten Magnetspeisemitteln (48) zugeordnet ist, welcher dritte teilweise das erste Statorloch (4) begrenzende Statorpol (12a) magnetisch mit dem ersten Ende des Statorarms verbunden ist und welche ersten Magnetflußführungsmittel (28) magnetisch mit dem zweiten Ende dieses Statorarms verbunden sind, welcher dritte teilweise das zweite Statorloch (6, 106) begrenzende Statorpol (12b; 112)) magnetisch mit dem ersten oder zweiten Ende des Statorarms verbunden ist und welche zweiten Magnetflußführungsmittel (30; 124) magnetisch mit dem anderen Ende dieses Statorarms verbunden sind.
  2. Elektromechanischer Wandler nach Anspruch 1, dadurch gekennzeichnet, daß der Permanentmagnet (18a, 18b) jedes der ersten und zweiten Rotoren (14, 15) bipolar radial unter Definition einer magnetischen Achse (26a, 26b) dieses Permanentmagneten magnetisiert ist, welche Permanentmagneten des ersten und zweiten Rotors im Innern des ersten bzw. zweiten Statorlochs (4, 6; 106) positioniert sind, und daß am Rand jedes ersten und zweiten Statorlochs Positionierausschnitte (50a, 50b) vorgesehen sind, die für den Permanentmagneten jedes der ersten und zweiten Rotoren zwei um 180° versetzte Positionen minimaler Energie definieren.
  3. Elektromechanischer Wandler nach Anspruch 2, dadurch gekennzeichnet, daß die ersten,. zweiten und dritten Magnetspeisemittel (36, 38, 48) von einer ersten Spule (36), einer zweiten Spule (38) bzw. einer dritten Spule (48) gebildet sind, welche ersten und zweiten Magnetflußführungsmittel (28, 30; 124) einen ersten Magnetkern (32) bzw. einen zweiten Magnetkern (34) umfassen, um die die erste bzw. zweite Spule gewickelt sind, welcher Statorarm (42) einen dritten Magnetkern (46) umfaßt, um den die dritte Spule gewickelt ist.
  4. Elektromechanischer Wandler nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß dann, wenn der Permanentmagnet (18a, 18b) eines der ersten und zweiten Rotoren in einer seiner beiden Positionen minimaler Energie ist, die Richtung der magnetischen Achse (26a, 26b) dieses Permanentmagneten im wesentlichen auf den zweiten Statorpol (10a, 10b; 110) ausgerichtet ist, der teilweise das erste oder zweite Statorloch (4, 6; 106) begrenzt, in welchem sich dieser Permanentmagnet befindet.
  5. Verfahren zum Steuern eines elektromechanischen Wandlers nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß für den Drehantrieb des ersten Rotors (14), unter Belassung des zweiten Rotors (15) in einer seiner beiden Positionen minimaler Energie, in einem ersten Drehsinn ausschließlich die Speisung der ersten Magnetspeisemittel (36) mit Strom alternierender Polarität, der diesen ersten Magnetspeisemitteln zugeführt wird, vorgesehen ist, und in einem zweiten Drehsinn die Speisung der dritten Magnetspeisemittel mit Strom alternierender Polarität, der diesen dritten Magnetspeisemitteln zugeführt wird, zusammen mit der Speisung der zweiten Magnetspeisemittel derart vorgesehen ist, daß der durch die Speisung dieser zweiten und dritten Magnetspeisemittel hervorgerufene Magnetfluß im Innern des von dem Permanentmagneten (18b) des zweiten Rotors begrenzten Volumens eine globale Ausbreitungsrichtung im wesentlichen parallel zu der Richtung der magnetischen Achse (26b) dieses Permanentmagneten hat, wenn dieser letztere in einer seiner beiden Positionen minimaler Energie ist.
EP19950112758 1994-08-26 1995-08-14 Electromechanischer Wandler mit zwei Rotoren Expired - Lifetime EP0698957B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH261894 1994-08-26
CH2618/94 1994-08-26
FR9410546A FR2724271B1 (fr) 1994-09-02 1994-09-02 Transducteur electromecanique comportant deux rotors
FR9410546 1994-09-02

Publications (2)

Publication Number Publication Date
EP0698957A1 EP0698957A1 (de) 1996-02-28
EP0698957B1 true EP0698957B1 (de) 1998-01-07

Family

ID=25690957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950112758 Expired - Lifetime EP0698957B1 (de) 1994-08-26 1995-08-14 Electromechanischer Wandler mit zwei Rotoren

Country Status (3)

Country Link
EP (1) EP0698957B1 (de)
DE (1) DE69501373T2 (de)
HK (1) HK1008762A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734962B1 (fr) * 1995-05-29 1997-08-01 Ebauchesfabrik Eta Ag Moteur birotor multipolaire
FR2743216B1 (fr) * 1995-12-28 1998-02-06 Ebauchesfabrik Eta Ag Transducteur electromecanique multirotor
FR2752496B1 (fr) * 1996-08-14 1998-10-23 Ebauchesfabrik Eta Ag Transducteur electromecanique comportant deux rotors a aimants permanents
CH690882A5 (fr) * 1996-12-04 2001-02-15 Ebauchesfabrik Eta Ag Transducteur électromécanique biphasé et dispositif électromécanique comprenant au moins un tel transducteur.
DE69626831T2 (de) * 1996-12-04 2004-03-04 ETA SA Mfg. Horlogere Suisse Zweiphasen elektromechanischer Wandler und elektromechanischer Einrichtung mit wenigstens einem solchen Wandler
NL1009735C2 (nl) * 1998-07-24 2000-01-25 Iku Holding Montfoort Bv Stappenmotorcombinatie en spiegel voor een voertuig, voorzien van een dergelijke stappenmotorcombinatie.
CN105194883A (zh) * 2015-09-17 2015-12-30 惠州市东阳塑胶模型有限公司 一种用于航模飞行器的电机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH647382GA3 (de) * 1982-04-21 1985-01-31
CH653521GA3 (de) * 1983-09-16 1986-01-15
CH661835GA3 (de) * 1985-09-11 1987-08-31
CH677997B5 (de) * 1989-04-21 1992-01-31 Ebauchesfabrik Eta Ag

Also Published As

Publication number Publication date
DE69501373T2 (de) 1998-07-30
EP0698957A1 (de) 1996-02-28
HK1008762A1 (en) 1999-05-14
DE69501373D1 (de) 1998-02-12

Similar Documents

Publication Publication Date Title
EP1521142B1 (de) Uhr mit einem mechanischen Uhrwerk, das mit einem elektronischen Regulator gekoppelt ist
EP0341582B1 (de) Steurerungsverfahren eines Zweirichtungsschrittmotors und nach diesem Verfahren gesteuerter Zweirichtungsschrittmotor
EP0746084B1 (de) Mehrpoliger Zweiläufermotor
EP0698957B1 (de) Electromechanischer Wandler mit zwei Rotoren
FR2461392A1 (fr) Moteur electromagnetique a deux sens de rotation
JP3633684B2 (ja) 2つのロータを有する電気機械変換器
EP1099990A1 (de) Generator für Zeitmessgerät
EP0547534B1 (de) Elektromagnetischer Wandler mit einem vielpoligen Dauermagnet
EP0132633B1 (de) Elektromagnetischer Schrittmotor
CH620062A5 (de)
EP0824289B1 (de) Elektromechanischer Wandler mit zwei permanentmagnetischen Rotoren
EP0751445A1 (de) Elekrischer Generator für Uhrwerk
EP0085648A1 (de) Schrittmotor mit zwei Drehrichtungen, insbesondere für elektronische Uhrwerke, und Motoreinheit, die einen solchen enthält
EP0026002B1 (de) Zweipoliger einphasiger Schrittmotor mit zwei Drehrichtungen
FR2724271A1 (fr) Transducteur electromecanique comportant deux rotors
EP0782242B1 (de) Elektromechanischer Wandler mit mehreren Rotoren und Steuerverfahren dafür
FR2464516A2 (fr) Perfectionnements apportes aux montres-bracelets electroniques
EP0039649A1 (de) Elektrischer Gleichstrommotor
WO2004066476A1 (fr) Actionneur rotatif bistable monophase hybride
EP0790540B1 (de) Elektromagnetischer Transdukter mit multipolaren Permanentmagneten
EP0042884A1 (de) Magnetmotor mit elektromagnetischer Erregung
WO2024115606A1 (fr) Moteur diphasé à encombrement réduit
EP0845850B1 (de) Elektromagnetischer Motor mit zwei koaxialen Rotoren
EP1544693A1 (de) 1-Phase Schrittmotor für eine Uhrwerksfunktion
EP1243986B1 (de) Uhrwerk mit Spannungsgenerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19960318

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69501373

Country of ref document: DE

Date of ref document: 19980212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980327

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000731

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040728

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090907

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69501373

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301