EP0698207A1 - Electrochemical sensor to determine the oxygen concentration in gaz mixtures - Google Patents

Electrochemical sensor to determine the oxygen concentration in gaz mixtures

Info

Publication number
EP0698207A1
EP0698207A1 EP95910419A EP95910419A EP0698207A1 EP 0698207 A1 EP0698207 A1 EP 0698207A1 EP 95910419 A EP95910419 A EP 95910419A EP 95910419 A EP95910419 A EP 95910419A EP 0698207 A1 EP0698207 A1 EP 0698207A1
Authority
EP
European Patent Office
Prior art keywords
measuring electrode
bismuth
sensor according
oxygen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95910419A
Other languages
German (de)
French (fr)
Inventor
Karl-Hermann Friese
Hans-Martin Wiedenmann
Frank Stanglmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0698207A1 publication Critical patent/EP0698207A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Definitions

  • Electrochemical sensor for determining the oxygen concentration in gas mixtures
  • the invention is based on an electrochemical sensor for determining the oxygen concentration in gas mixtures according to the preamble of the main claim.
  • the EMF is measured at the electrodes, a large voltage being generated when the lambda value of the gas mixture is less than the stoichiometric ratio. This is a for the electrode exposed to the sample gas
  • the functionality of catalysts in exhaust gas detoxification systems of internal combustion engines can be monitored by measuring the oxygen contained in the exhaust gas downstream of the catalytic converter in the direction of flow of the exhaust gas. If the catalytic converter is not functional, the oxygen in the exhaust gas remains downstream of the catalytic converter incompletely implemented and there are unreacted oxidizable and reducible fuel components in the exhaust gas.
  • the incomplete implementation means that the residual oxygen in the exhaust gas is significantly higher than the thermodynamic equilibrium.
  • the sensor according to the invention should respond to such increased residual oxygen, for example. It must therefore be ensured that the changes in the oxygen partial pressure can be detected at the three-phase boundary of the measuring electrode.
  • the oxygen is converted by the catalytic converter, so that the thermodynamic equilibrium pressure is at least approximately downstream of the catalytic converter, which reduces the potential difference at the measuring electrode and leads to a lambda jump similar to a conventional lambda probe.
  • the lambda jump shifts to higher lambda values.
  • a disadvantage of this sensor is that there is no potential difference when the lambda values ⁇ 1 (rich exhaust gas) are adjusted. In this lambda range, the sensor is therefore not suitable for monitoring a catalytic converter.
  • the sensor according to the invention with the characterizing features of the main claim has the advantage that the oxygen in non-equilibrium gas mixtures can be measured with the cross-sensitivity to oxidizable gas components largely being switched off.
  • the sensor is particularly suitable for monitoring the degree of conversion of catalysts in exhaust gas detoxification systems of internal combustion engines with exhaust gases regulated to lambda values ⁇ 1. Conclusions about the aging of the catalyst can be drawn from the degree of conversion of the catalyst.
  • Platinum-bismuth measuring electrode uses the properties of bismuth, which has a strong tendency to adsorb oxygen, whereby the oxygen can also be dissociatively adsorbed.
  • bismuth hinders adsorption of other gas components, such as CO, in favor of good oxygen adsorption.
  • the catalysis of the oxidation of CO and HC which occur in exhaust gases from internal combustion engines, is hindered or completely suppressed, so that a mixed potential is formed at the measuring electrode.
  • the measuring electrode designed in this way essentially reacts to oxygen and in this respect represents a non-equilibrium electrode or mixed potential electrode
  • Catalysis of the platinum-inhibiting effect of the bismuth was found within a range with a bismuth content of 1 to 50 mol% based on the total amount of platinum and bismuth.
  • Particularly favorable properties with regard to the formation of mixed potential and reaction times could be determined with a bismuth content of ' 5 to 20 mol% based on the total amount of bismuth and platinum.
  • FIG. 1 shows a cross section through a sensor according to a first exemplary embodiment
  • FIG. 2 shows a cross section through a sensor according to a second exemplary embodiment, the sensor having two electrodes exposed to the gas mixture
  • FIG. 3 shows a characteristic curve of the sensor according to FIG. 2.
  • the sensor according to Figure 1 consists of a
  • Solid ion electrolyte 10 conducting oxygen ions for example made of Zr0 2 stabilized with Y2O3, on which a first measuring electrode 11 exposed to the gas mixture with a porous protective layer 12 lying thereon is applied.
  • the protective layer 12 consists, for example, of Al2O3.
  • a reference channel 14 is provided in the solid electrolyte 10, in which a reference electrode 15 is positioned facing the measuring electrode 11.
  • a heating device 17 embedded in an electrical insulation 16 is also integrated in the solid electrolyte 10. The heating device 17 is designed as a resistance heater.
  • the measuring electrode 11 is a porous platinum cermet electrode which is printed on the solid electrolyte 10, for example by means of screen printing.
  • the reference electrode 15 is also a platinum cermet electrode, which, for example, likewise, is laminated onto a corresponding solid electrolyte film before the solid electrolyte 10 is laminated together was applied by screen printing.
  • the sensor according to FIG. 1 with the platinum cermet electrodes 11, 15 and the heating device 17 is sintered at approximately 1400 ° C. after printing on the corresponding solid electrolyte films and laminating them together.
  • a bismuth-containing paste is applied to the measuring electrode 11, for example by brushing on.
  • the sensor is then heated with the Wismu layer applied to the measuring electrode 11 at a temperature of, for example, 800 to 900 ° C. in an oxygen atmosphere.
  • the heating temperature of the bismuth layer make sure that the bismuth does not evaporate before it combines with the platinum or a stable oxide on the
  • the protective layer 12 is applied, for example, by means of plasma spraying.
  • the sensor described in FIG. 1 is expanded by a second measuring electrode 21 exposed to the gas mixture, the second measuring electrode 21 also being covered with a porous protective layer 22.
  • the second measuring electrode 22 is an electrode which catalyzes the equilibrium setting of the gas mixture.
  • An electrode material that achieves such an effect is, for example, platinum or a platinum alloy with rodium or palladium.
  • the oxygen partial pressure is set to the thermodynamic equilibrium pressure by oxidation.
  • FIG. 3 show a measurement signal U1 of the catalytically inactive measurement electrode 11 and a measurement signal U2 of the catalytically active measurement electrode 21 measured in the flow direction of the exhaust gas downstream of a catalyst (not shown).
  • the EMF of the catalytically inactive measuring electrode 11 was also recorded, which is shown as measuring signal U1 '.
  • the measurement signal Ul 'recorded upstream of the catalytic converter characterizes the characteristic curve of a catalytic converter with an efficiency of 0%, ie it indicates a total catalytic converter failure. Because of the oxygen dissociating at the catalytically inactive measuring electrode 11, there is a small potential difference between the reference electrode 15 and the measuring electrode 11.
  • the oxygen partial pressure is always vanishingly small, regardless of the state of the catalyst used for the afterburning.
  • the oxygen partial pressure corresponds to the thermodynamic equilibrium pressure, because the electrode material of the measuring electrode 21 ensures an at least approximately complete conversion of the oxidizable components with the oxygen.
  • the oxygen partial pressure in the exhaust gas increases. None changes at the three-phase boundary of the catalytically active measuring electrode 21 because the electrode material continues to ensure that the oxidizable constituents are at least approximately completely converted before the gas reaches the three-phase boundary.
  • the oxygen partial pressure depends on the catalytic activity of the catalyst. If the catalytic converter is fully effective, the exhaust gas is at least approximately in the equilibrium state downstream of the catalytic converter. Accordingly, no or very little oxygen can be dissociated from the material of the measuring electrode 11, as a result of which a large potential difference arises at the measuring electrode 11. In this case, the measurement signal U 1 of the catalytically inactive measurement electrode 11 takes approximately the course of the
  • Measurement signal U2 of the catalytically active measuring electrode 21 As the degree of conversion of the catalyst decreases, the oxygen partial pressure in the exhaust gas rises, so that the potential difference decreases at the three-phase limit of the catalytically inactive electrode 11.
  • the dashed curve shown shows the course of the measurement signal U 1 with an efficiency of the catalyst of approximately 90%.
  • the sensor according to the invention is therefore suitable for monitoring the functionality of catalysts which are used in exhaust systems of internal combustion engines which are regulated to a rich exhaust gas (lambda ⁇ 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

The proposal is for an electrochemical sensor for determining the oxygen concentration in gas mixtures. The sensor has a solid oxygen-ion-conducting electrolyte (10) having a measuring electrode (11) which does not catalyse the equilibrium setting of the gas mixture and is exposed to the gas mixture. The measuring electrode contains platinum and bismuth. These materials ensure that the free oxygen contained in the gas mixture is preferentially adsorbed without reacting with the other gas components like CO and HC.

Description

Elektrochemischer Sensor zur Bestimmung der Sauerstoffkonzentration in GasgemischenElectrochemical sensor for determining the oxygen concentration in gas mixtures
Stand der TechnikState of the art
Die Erfindung geht aus von einem elektrochemischen Sensor zur Bestimmung der Sauerstoffkonzentration in Gasgemischen nach der Gattung des Hauptanspruchs .The invention is based on an electrochemical sensor for determining the oxygen concentration in gas mixtures according to the preamble of the main claim.
Bei den bekannten elektrochemischen Sensoren zur Bestimmung der Sauerstoffkonzentration wird die EMK an den Elektroden gemessen, wobei eine große Spannung erzeugt wird, wenn der Lambda- ert des Gasgemisches kleiner als das stöchiometrische Verhältnis ist. Dabei wird für die dem Meßgas ausgesetzte Elektrode ein dieIn the known electrochemical sensors for determining the oxygen concentration, the EMF is measured at the electrodes, a large voltage being generated when the lambda value of the gas mixture is less than the stoichiometric ratio. This is a for the electrode exposed to the sample gas
Gleichgewichtseinstellung des Gasgemisches katalysierendes Material, beispielsweise Platin verwendet. Die katalysierenden Eigenschaft des Platins bewirken, daß der im Gasgemisch vorkommende freie Sauerstoff sich mit den oxidierbaren Bestandteilen des Gasgemisches verbindet, wodurch der Sensor auch empfindlich gegenüber den oxidierbaren Gaskomponenten wird. Die Querempfindlichkeit von elektrochemischen Sensoren ist jedoch bei bestimmten Anwendungsfällen störend.Equilibrium of the gas mixture catalyzing material, such as platinum used. The catalyzing property of the platinum causes the free oxygen occurring in the gas mixture to combine with the oxidizable components of the gas mixture, which also makes the sensor sensitive to the oxidizable gas components. The cross sensitivity of electrochemical sensors is, however, disruptive in certain applications.
Beispielsweise kann die Funktionsfähigkeit von Katalysatoren in Abgasentgiftungsanlagen von Brennkraftmaschinen dadurch überwacht werden, daß der in Strömungsriehtung des Abgases stromab vom Katalysator im Abgas enthaltene Sauerstoff gemessen wird. Ist der Katalysator nicht funktionsfähig, so bleibt der Sauerstoff im Abgas stromab vom Katalysator unvollständig umgesetzt und es befinden sich noch nicht umgesetzte oxidierbare und reduzierbare Treibstoffanteile im Abgas. Die unvollständige Umsetzung bedeutet, daß der Restsauerstoff im Abgas wesentlich höher ist als es dem thermodynamisehen Gleichgewicht entspricht. Auf einen solchen erhöhten Restsauerstoff soll beispielsweise der erfindungsgemäße Sensor ansprechen. Es muß also dafür gesorgt werden, daß an der Dreiphasengrenze der Meßelektrode die Änderungen des Sauerstoffpartialdrucks erfaßt werden können. Dazu ist aus der DE-OS 23 04 464 bekannt, eine die Gleichgewichtseinstellung des Gasgemisches nicht katalysierende Elektrode aus Gold oder Silber herzustellen. Diese Elektrodenmaterialien bewirken, daß an der Elektrode zwischen dem Sauerstoff und den oxidierbaren bzw. reduzierbaren Gaskomponenten eine Konkurrenzreaktion stattfindet. Dadurch wird selbst bei eingeregelten hohen Lambda- erten der im Abgas mitgeführte freie Sauerstoff durch die Konkurrenzreaktion mit beispielsweise CO weitgehend umgesetzt, so daß nur wenig Sauerstoff die Dreiphasengrenze der Meßelektrode erreicht, wodurch ein annähernd gleichbleibend hohes positives Potential von niedrigen bis zu hohen Lambda-Werten erhalten bleibt. Bei einem intaktem Katalysator wird der Sauerstoff vom Katalysator umgesetzt, so daß stromab vom Katalysator zumindest annähern der thermodynamische Gleichgewichtsdruck vorliegt, wodurch sich die Potentaldifferenz an der Meßelektrode verringert und es zu einem Lamda-Sprung ähnlich einer konventionellen Lambda-Sonde kommt. Mit abnehmendem Konvertierungsgrad des Katalysators verschiebt sich der Lambda-Sprung zu höheren Lambda-Werten. Nachteilig bei diesem Sensor ist, daß bei eingeregelten Lambda-Werten < 1 (fettes Abgas) keine Potentialdifferenz auftritt. In diesem Lambda-Bereich ist der Sensor somit zur Überwachung eines Katalysators nicht geeignet. Vorteile der ErfindungFor example, the functionality of catalysts in exhaust gas detoxification systems of internal combustion engines can be monitored by measuring the oxygen contained in the exhaust gas downstream of the catalytic converter in the direction of flow of the exhaust gas. If the catalytic converter is not functional, the oxygen in the exhaust gas remains downstream of the catalytic converter incompletely implemented and there are unreacted oxidizable and reducible fuel components in the exhaust gas. The incomplete implementation means that the residual oxygen in the exhaust gas is significantly higher than the thermodynamic equilibrium. The sensor according to the invention should respond to such increased residual oxygen, for example. It must therefore be ensured that the changes in the oxygen partial pressure can be detected at the three-phase boundary of the measuring electrode. For this purpose, it is known from DE-OS 23 04 464 to produce an electrode made of gold or silver that does not catalyze the equilibrium of the gas mixture. These electrode materials cause a competitive reaction to take place at the electrode between the oxygen and the oxidizable or reducible gas components. As a result, even with regulated high lambda values, the free oxygen carried in the exhaust gas is largely converted by the competition reaction with, for example, CO, so that only a little oxygen reaches the three-phase limit of the measuring electrode, as a result of which an approximately constant high positive potential from low to high lambda values preserved. In the case of an intact catalytic converter, the oxygen is converted by the catalytic converter, so that the thermodynamic equilibrium pressure is at least approximately downstream of the catalytic converter, which reduces the potential difference at the measuring electrode and leads to a lambda jump similar to a conventional lambda probe. As the degree of conversion of the catalytic converter decreases, the lambda jump shifts to higher lambda values. A disadvantage of this sensor is that there is no potential difference when the lambda values <1 (rich exhaust gas) are adjusted. In this lambda range, the sensor is therefore not suitable for monitoring a catalytic converter. Advantages of the invention
Der erfindungsgemäße Sensor mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß der Sauerstoff in Nichtgleichgewichtsgasgemiεchen unter weitestgehender Ausschaltung der Querempfindlichkeit gegenüber oxidierbaren Gaskomponenten meßbar ist. Besonders geeignet ist der Sensor zur Überwachung des Konvertierungsgrades von Katalysatoren in Abgasentgiftungsanlagen von Brennkraftmaschinen bei auf Lambda-Werte < 1 eingeregelten Abgasen. Über den Konvertierungsgrad des Katalysators lassen sich Rückschlüsse auf die Katalysatoralterung ziehen.The sensor according to the invention with the characterizing features of the main claim has the advantage that the oxygen in non-equilibrium gas mixtures can be measured with the cross-sensitivity to oxidizable gas components largely being switched off. The sensor is particularly suitable for monitoring the degree of conversion of catalysts in exhaust gas detoxification systems of internal combustion engines with exhaust gases regulated to lambda values <1. Conclusions about the aging of the catalyst can be drawn from the degree of conversion of the catalyst.
Mit den in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des erfindungsgemäßen Sensors möglich. DieWith the measures listed in the subclaims, advantageous developments and improvements of the sensor according to the invention are possible. The
Platin-Wismut-Meßelektrode nutzt die Eigenschaften des Wismut, das eine starke Neigung zur Sauerstoffadsorption hat, wobei der Sauerstoff auch dissoziativ adsorbiert werden kann. In Kombination mit Platin behindert Wismut eine Adsorption anderer Gaskomponenten, wie beispielsweise CO zugunsten einer guten Sauerstoffadsorption. Dadurch wird die Katalyse der Oxidation von CO und HC, die in Abgasen von Verbrennungsmotoren vorkommen, behindert oder völlig unterdrückt, so daß sich an der Meßelektrode ein Mischpotential ausbildet. Die derart ausgebildete Meßelektrode reagiert im wesentlichen auf Sauerstoff und stellt insofern eine Nichtgleichgewichtselektrode beziehungsweise Mischpotentialelektrode dar. Die diePlatinum-bismuth measuring electrode uses the properties of bismuth, which has a strong tendency to adsorb oxygen, whereby the oxygen can also be dissociatively adsorbed. In combination with platinum, bismuth hinders adsorption of other gas components, such as CO, in favor of good oxygen adsorption. As a result, the catalysis of the oxidation of CO and HC, which occur in exhaust gases from internal combustion engines, is hindered or completely suppressed, so that a mixed potential is formed at the measuring electrode. The measuring electrode designed in this way essentially reacts to oxygen and in this respect represents a non-equilibrium electrode or mixed potential electrode
Katalyse des Platin inhibierende Wirkung des Wismut konnte innerhalb eines Bereiches mit einem Wismut-Anteil von 1 bis 50 mol% bezogen auf die Gesamtmenge von Platin und Wismut festgestellt werden. Besonders günstige Eigenschaften hinsichtlich der Mischpotentialbildung und Reaktionszeiten konnte bei einem Wismut-Anteil von '5 bis 20 mol% bezogen auf die Gesamtmenge von Wismut und Platin ermittelt werden.Catalysis of the platinum-inhibiting effect of the bismuth was found within a range with a bismuth content of 1 to 50 mol% based on the total amount of platinum and bismuth. Particularly favorable properties with regard to the formation of mixed potential and reaction times could be determined with a bismuth content of ' 5 to 20 mol% based on the total amount of bismuth and platinum.
Zeichnungdrawing
Zwei Ausführungεbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Querschnitt durch einen Sensor nach einem ersten Ausfuhrungsbeispiel, Figur 2 einen Querschnitt durch einen Sensor nach einem zweiten Ausfuhrungsbeispiel, wobei der Sensor über zwei dem Gasgemisch ausgesetzte Elektroden verfügt und Figur 3 eine Kennlinie des Sensors gemäß Figur 2.Two exemplary embodiments of the invention are shown in the drawing and explained in more detail in the description below. 1 shows a cross section through a sensor according to a first exemplary embodiment, FIG. 2 shows a cross section through a sensor according to a second exemplary embodiment, the sensor having two electrodes exposed to the gas mixture, and FIG. 3 shows a characteristic curve of the sensor according to FIG. 2.
Ausführungsbeispieleembodiments
Der Sensor gemäß Figur 1 besteht aus einemThe sensor according to Figure 1 consists of a
Sauerstoffionenleitenden Festelektrolyt 10, beispielsweise aus mit Y2O3 stabilisiertem Zr02, auf dem eine dem Gasgemisch ausgesetzte erste Meßelektrode 11 mit einer darüber liegende porösen Schutzschicht 12 aufgebracht ist. Die Schutzschicht 12 besteht beispielsweise aus AI2O3. Im Festelektrolyt 10 ist ein Referenzkanal 14 vorgesehen, in dem der Meßelektrode 11 zugewandt eine Referenzelektrode 15 positioniert ist. Im Festelektrolyt 10 ist ferner eine in eine elektrische Isolation 16 eingebettete Heizeinrichtung 17 integriert. Die Heizeinrichtung 17 ist als Widerstandsheizung ausgeführt.Solid ion electrolyte 10 conducting oxygen ions, for example made of Zr0 2 stabilized with Y2O3, on which a first measuring electrode 11 exposed to the gas mixture with a porous protective layer 12 lying thereon is applied. The protective layer 12 consists, for example, of Al2O3. A reference channel 14 is provided in the solid electrolyte 10, in which a reference electrode 15 is positioned facing the measuring electrode 11. A heating device 17 embedded in an electrical insulation 16 is also integrated in the solid electrolyte 10. The heating device 17 is designed as a resistance heater.
Die Meßelektrode 11 ist eine poröse Platin-Cermet Elektrode, die beispielsweise mittels Siebdruck auf den Festelektrolyt 10 aufgedruckt ist. Die Referenzelektrode 15 ist ebenfalls eine Platin-Cermet-Elektrode, welche vor dem Zusammenlaminieren des Festelektrolyten 10 auf eine entsprechende Festelektrolytfolie, beispielsweise ebenfalls im Siebdruckverfahren aufgebracht wurde. Der gemäß Figur 1 vorliegende Sensor mit den Platin-Cermet-Elektroden 11, 15 und der Heizeinrichtung 17 wird nach dem Bedrucken der entsprechenden Festelektrolytfolien und dem Zusammenlaminieren bei ca. 1400°C gesintert.The measuring electrode 11 is a porous platinum cermet electrode which is printed on the solid electrolyte 10, for example by means of screen printing. The reference electrode 15 is also a platinum cermet electrode, which, for example, likewise, is laminated onto a corresponding solid electrolyte film before the solid electrolyte 10 is laminated together was applied by screen printing. The sensor according to FIG. 1 with the platinum cermet electrodes 11, 15 and the heating device 17 is sintered at approximately 1400 ° C. after printing on the corresponding solid electrolyte films and laminating them together.
Nach dem Sintern wird auf die Meßelektrode 11 eine wismuthaltige Paste, beispielsweise mittels Aufpinseln aufgetragen. Danach wird der Sensor mit der auf der Meßelektrode 11 aufgetragenen Wismu -Schicht bei einer Temperatur von beispielsweise 800 bis 900°C in einer Sauerstof atmosphäre erhitzt. Bei der Wahl der Aufheiztemperatur der Wismut-Schicht ist darauf zu achten, daß das Wismut nicht verdampft, bevor es sich mit den Platin verbindet beziehungsweise ein stabiles Oxid auf derAfter sintering, a bismuth-containing paste is applied to the measuring electrode 11, for example by brushing on. The sensor is then heated with the Wismu layer applied to the measuring electrode 11 at a temperature of, for example, 800 to 900 ° C. in an oxygen atmosphere. When choosing the heating temperature of the bismuth layer, make sure that the bismuth does not evaporate before it combines with the platinum or a stable oxide on the
Oberfläche bildet. Nach dem Aufbringen der Wismut-Schicht bzw. nach dem Herstellen einer Wismut-Platin-Verbindung in der Meßelektrode 11 wird die Schutzschicht 12 beispielsweise mittels Plasmaspritzen aufgebracht.Surface forms. After the bismuth layer has been applied or a bismuth-platinum compound has been produced in the measuring electrode 11, the protective layer 12 is applied, for example, by means of plasma spraying.
Bei dem in Figur 2 dargestellten Sensor ist der in Figur 1 beschriebene Sensor durch eine zweite dem Gasgemisch ausgesetzte Meßelektrode 21 erweitert, wobei die zweite Meßelektrode 21 ebenfalls mit einer porösen Schutzschicht 22 bedeckt ist. Bei der zweiten Meßelektrode 22 handelt es sich im Gegensatz zur ersten Meßelektrode 11 um eine die Gleichgewichtseinstellung des Gasgemisches katalysierende Elektrode. Ein eine derartige Wirkung erzielendes Elektrodenmaterial ist beispielsweise Platin oder eine Platinlegierung mit Rodium oder Palladium. An der zweiten Meßelektrode 22 wird der Sauerstoffpartialdruck durch Oxidation auf den thermodynamisehen Gleichgewichtsdruck eingestellt. Die in Figur 3 dargestellten Kennlinien des Sensors gemäß Figur 2 zeigen ein Meßsignal Ul der katalytisch inaktiven Meßelektrode 11 und ein Meßsignal U2 der katalytisch aktiven Meßelektrode 21 gemessen in Strömungsrichtung des Abgases stromab von einem nicht dargestellten- Katalysator. Mit einem in Strömungsrichtung des Abgases stromauf vom Katalysator angeordneten Sensor wurde ebenfalls die EMK der katalytisch inaktiven Meßelektrode 11 aufgenommen, welche als Meßsignal Ul ' dargestellt ist. Das stromauf vom Katalysator aufgenommene Meßsignal Ul ' charakterisiert die Kennlinie eines Katalysators mit einem Wirkungsgrad von 0%, d.h., es zeigt einen totalen Katalysatorausfall an. Aufgrund des an der katalytisch inaktiven Meßelektrode 11 dissoziierenden Sauerstoffs liegt zwischen Referenzelektrode 15 und Meßelektrode 11 ein geringer Potentialunterschied vor.In the sensor shown in FIG. 2, the sensor described in FIG. 1 is expanded by a second measuring electrode 21 exposed to the gas mixture, the second measuring electrode 21 also being covered with a porous protective layer 22. In contrast to the first measuring electrode 11, the second measuring electrode 22 is an electrode which catalyzes the equilibrium setting of the gas mixture. An electrode material that achieves such an effect is, for example, platinum or a platinum alloy with rodium or palladium. At the second measuring electrode 22, the oxygen partial pressure is set to the thermodynamic equilibrium pressure by oxidation. The characteristic curves of the sensor according to FIG. 2 shown in FIG. 3 show a measurement signal U1 of the catalytically inactive measurement electrode 11 and a measurement signal U2 of the catalytically active measurement electrode 21 measured in the flow direction of the exhaust gas downstream of a catalyst (not shown). With a sensor arranged upstream of the catalytic converter in the flow direction of the exhaust gas, the EMF of the catalytically inactive measuring electrode 11 was also recorded, which is shown as measuring signal U1 '. The measurement signal Ul 'recorded upstream of the catalytic converter characterizes the characteristic curve of a catalytic converter with an efficiency of 0%, ie it indicates a total catalytic converter failure. Because of the oxygen dissociating at the catalytically inactive measuring electrode 11, there is a small potential difference between the reference electrode 15 and the measuring electrode 11.
Das an der katalytisch aktiven Meßelektrode 21 aufgenommene Meßsignal U2 hat einen Lambda-Sprung in Gleichgewichtszustand bei Lambda = 1. An der katalytisch aktiven Meßelektrode 21 ist der Sauerstoffpartialdruck unabhängig vom Zustand des für die Nachverbrennung verwendeten Katalysators immer verschwindend klein. Der Sauerstoffpartialdruck entspricht hierbei dem thermodynamisehen Gleichgewichtsdruck, weil das Elektrodenmaterial der Meßelektrode 21 eine zumindest annähernd vollständige Umsetzung der oxidierbaren Bestandteile mit dem Sauerstoff gewährleistet.The measuring signal U2 recorded at the catalytically active measuring electrode 21 has a lambda jump in the equilibrium state at lambda = 1. At the catalytically active measuring electrode 21, the oxygen partial pressure is always vanishingly small, regardless of the state of the catalyst used for the afterburning. The oxygen partial pressure corresponds to the thermodynamic equilibrium pressure, because the electrode material of the measuring electrode 21 ensures an at least approximately complete conversion of the oxidizable components with the oxygen.
Ist der Katalysator nicht mehr wirksam, so steigt der Sauerstoffpartialdruck im Abgas an. An der Dreiphasengrenze der katalytisch aktiven Meßelektrode 21 ändert sich dabei nichts, weil das Elektrodenmaterial weiterhin für eine zumindest annähernd vollständige Umsetzung der oxidierbaren Bestandteile sorgt, bevor das Gas an die Dreiphasengrenze gelangt. An der katalytisch inaktiven Meßelektrode 11 hingegen hängt der Sauerstoffpartialdruck von der katalytischen Aktivität des Katalysators ab. Ist der Katalysator voll wirksam, so befindet sich das Abgas stromab vom Katalysator zumindest annähernd im Gleichgewichtszustand. Vom Material der Meßelektrode 11 kann demzufolge auch kein oder nur sehr wenig Sauerstoff dissoziiert werden, wodurch sich eine große Potentialdifferenz an der Meßelektrode 11 einstellt. In diesem Fall nimmt das Meßsignals Ul der katalytisch inaktiven Meßelektrode 11 annähernd den Verlauf desIf the catalytic converter is no longer effective, the oxygen partial pressure in the exhaust gas increases. Nothing changes at the three-phase boundary of the catalytically active measuring electrode 21 because the electrode material continues to ensure that the oxidizable constituents are at least approximately completely converted before the gas reaches the three-phase boundary. On the catalytically inactive measuring electrode 11 on the other hand, the oxygen partial pressure depends on the catalytic activity of the catalyst. If the catalytic converter is fully effective, the exhaust gas is at least approximately in the equilibrium state downstream of the catalytic converter. Accordingly, no or very little oxygen can be dissociated from the material of the measuring electrode 11, as a result of which a large potential difference arises at the measuring electrode 11. In this case, the measurement signal U 1 of the catalytically inactive measurement electrode 11 takes approximately the course of the
Meßsignals U2 der katalytisch aktiven Meßelektrode 21 an. Bei nachlassendem Konvertierungsgrad des Katalysators steigt der Sauerstoffpartialdruck im Abgas an, so daß an der Dreiphasengrenze der katalytisch inaktiven Elektrode 11 die Potentialdifferenz abnimmt. Den Verlauf des Meßsignals Ul bei einem Wirkungsgrad des Katalysators von etwa 90% zeigt die dargestellte gestrichelte Kurve.Measurement signal U2 of the catalytically active measuring electrode 21. As the degree of conversion of the catalyst decreases, the oxygen partial pressure in the exhaust gas rises, so that the potential difference decreases at the three-phase limit of the catalytically inactive electrode 11. The dashed curve shown shows the course of the measurement signal U 1 with an efficiency of the catalyst of approximately 90%.
Der erfindungsgemäße Sensor eignet sich somit zur Überwachung der Funktionsfähigkeit von Katalysatoren, welche in Abgasanlagen von Brennkraftmaschinen eingesetzt sind, die auf ein fettes Abgas (Lambda < 1) eingeregelt sind. The sensor according to the invention is therefore suitable for monitoring the functionality of catalysts which are used in exhaust systems of internal combustion engines which are regulated to a rich exhaust gas (lambda <1).

Claims

Ansprüche Expectations
1. Sensor zur Bestimmung der Sauerstoffkonzentration in Gasgemischen mit einem sauerstoffionenleitenden1. Sensor for determining the oxygen concentration in gas mixtures with an oxygen ion-conducting
Festelektrolyt, welcher eine die Gleichgewichtseinstellung des Gasgemisches nicht katalysierende Meßelektrode aufweist, die dem Gasgemisch ausgesetzt ist, dadurch gekennzeichnet, daß einer platinhaltigen Meßelektrode (11) ein Stoff zugesetzt ist, welcher die katalytische Wirkung derSolid electrolyte which has a measuring electrode which does not catalyze the equilibrium of the gas mixture and which is exposed to the gas mixture, characterized in that a substance is added to a platinum-containing measuring electrode (11) which has the catalytic effect of the
Meßelektrode (11) zu inhibieren vermag, derart, daß ein zumindest annähernd dem freien Sauerstoff entsprechendes Potential an der Meßelektrode (11) ausbildbar ist.Measuring electrode (11) is able to inhibit in such a way that an at least approximately free oxygen potential can be formed on the measuring electrode (11).
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß der der platinhaltigen Meßelektrode (11) zugesetzte Stoff Wismut ist.2. Sensor according to claim 1, characterized in that the platinum-containing measuring electrode (11) added substance is bismuth.
3. Sensor nach Anspruch 2, dadurch gekennzeichnet, daß der Wismut-Anteil 1 bis 50 mol% bezogen auf die Gesamtmenge von3. Sensor according to claim 2, characterized in that the bismuth portion 1 to 50 mol% based on the total amount of
Platin und Wismut beträgt.Is platinum and bismuth.
4. Sensor nach Anspruch 3, dadurch gekennzeichnet, daß der Wismut-Anteil 5 bis 20 mol% bezogen auf die Gesamtmenge von Platin und Wismut beträgt.4. Sensor according to claim 3, characterized in that the bismuth fraction is 5 to 20 mol% based on the total amount of platinum and bismuth.
5. Sensor nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß das Wismut ganz oder teilweise durch Antimon ersetzt ist.5. Sensor according to one of claims 2 to 4, characterized in that the bismuth is replaced in whole or in part by antimony.
6. Sensor nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß das Wismut ganz oder teilweise durch Blei ersetzt ist. 6. Sensor according to one of claims 2 to 5, characterized in that the bismuth is completely or partially replaced by lead.
7. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß eine weitere dem Gasgemisch ausgesetzte Meßelektrode (21) vorgesehen ist, welche eine die Gleichgewichtseinstellung des Gasgemisches katalysierende Wirkung besitzt.7. Sensor according to claim 1, characterized in that a further exposed to the gas mixture measuring electrode (21) is provided which has a catalyzing effect of the equilibrium of the gas mixture.
8. Sensor nach Anspruch l, dadurch gekennzeichnet, daß eine einem Referenzgas ausgesetzte Referenzelektrode (15) vorgesehen ist. 8. Sensor according to claim l, characterized in that a reference electrode (15) exposed to a reference gas is provided.
EP95910419A 1994-03-14 1995-02-28 Electrochemical sensor to determine the oxygen concentration in gaz mixtures Withdrawn EP0698207A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4408361A DE4408361C2 (en) 1994-03-14 1994-03-14 Electrochemical sensor for determining the oxygen concentration in gas mixtures
DE4408361 1994-03-14
PCT/DE1995/000253 WO1995025276A1 (en) 1994-03-14 1995-02-28 Electrochemical sensor to determine the oxygen concentration in gaz mixtures

Publications (1)

Publication Number Publication Date
EP0698207A1 true EP0698207A1 (en) 1996-02-28

Family

ID=6512583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95910419A Withdrawn EP0698207A1 (en) 1994-03-14 1995-02-28 Electrochemical sensor to determine the oxygen concentration in gaz mixtures

Country Status (7)

Country Link
US (1) US5630920A (en)
EP (1) EP0698207A1 (en)
JP (1) JPH08510561A (en)
KR (1) KR100347643B1 (en)
AU (1) AU1754195A (en)
DE (1) DE4408361C2 (en)
WO (1) WO1995025276A1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN166695A0 (en) * 1995-03-10 1995-04-06 Ceramic Oxide Fabricators Pty. Ltd. Gas sensor
AU697752B2 (en) * 1995-03-10 1998-10-15 Ceramic Oxide Fabricators Pty. Ltd. Gas sensor
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
JP3671100B2 (en) * 1996-02-23 2005-07-13 日本碍子株式会社 Oxide sensor
DE19623212A1 (en) * 1996-06-11 1997-12-18 Bosch Gmbh Robert Sensor for determining the concentration of oxidizable components in a gas mixture
DE19623434A1 (en) * 1996-06-12 1997-12-18 Bosch Gmbh Robert Sensor for determining the concentration of oxidizable components in a gas mixture
JP3863974B2 (en) * 1996-10-31 2006-12-27 株式会社日本自動車部品総合研究所 Gas detector
WO1999014584A1 (en) * 1997-09-15 1999-03-25 Heraeus Electro-Nite International N.V. Gas sensor
DE19815700B4 (en) 1998-04-08 2004-01-29 Robert Bosch Gmbh Electrochemical sensor element with porous reference gas storage
DE19835766C2 (en) * 1998-08-07 2003-07-03 Bosch Gmbh Robert Arrangement for wiring an electrochemical sensor
JP2000065789A (en) * 1998-08-25 2000-03-03 Ngk Insulators Ltd Carbon monoxide sensor, its production and its use
DE19853595C1 (en) * 1998-11-20 2000-08-24 Dornier Gmbh Method and transducer for the detection of the oxygen content in a gas
JP3540177B2 (en) * 1998-12-04 2004-07-07 日本特殊陶業株式会社 Gas sensor and flammable gas component concentration measuring device using the same
DE19932048A1 (en) * 1999-07-09 2001-01-11 Bosch Gmbh Robert Sensor for determining a concentration of gas components in gas mixtures
DE19947240B4 (en) * 1999-09-30 2004-02-19 Robert Bosch Gmbh Method for operating a mixed potential exhaust gas probe and circuit arrangements for carrying out the method
KR100851185B1 (en) 2000-10-16 2008-08-08 이 아이 듀폰 디 네모아 앤드 캄파니 Infrared thermographic screening technique for semiconductor-based chemical sensors
BR0114823A (en) 2000-10-16 2004-02-25 Du Pont Apparatus and method for analyzing at least one individual gas component, apparatus and method for calculating the concentration of at least two individual gas components
US6849239B2 (en) * 2000-10-16 2005-02-01 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US20020192293A1 (en) * 2001-04-06 2002-12-19 Gadiraju Srinivas R. Method for manufacture of extended release dosage form
US7153412B2 (en) * 2001-12-28 2006-12-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Electrodes, electrochemical elements, gas sensors, and gas measurement methods
KR101075306B1 (en) 2002-04-05 2011-10-19 이 아이 듀폰 디 네모아 앤드 캄파니 Apparatus for analyzing mixtures of gases
US7575931B2 (en) * 2002-06-19 2009-08-18 E.I. Du Pont De Nemours And Company Method and apparatus for reducing a nitrogen oxide, and control thereof
US20040126286A1 (en) 2002-06-19 2004-07-01 Deruyter John C. Method and apparatus for reducing a nitrogen oxide
EP2407243B1 (en) 2003-07-31 2020-04-22 Handylab, Inc. Multilayered microfluidic device
EP1745153B1 (en) 2004-05-03 2015-09-30 Handylab, Inc. Processing polynucleotide-containing samples
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
US8236246B2 (en) 2004-10-07 2012-08-07 E I Du Pont De Nemours And Company Gas sensitive apparatus
US7460958B2 (en) 2004-10-07 2008-12-02 E.I. Du Pont De Nemours And Company Computer-implemented system and method for analyzing mixtures of gases
JP4830525B2 (en) * 2005-04-14 2011-12-07 株式会社豊田中央研究所 Limit current type gas sensor and its use
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
ES2692380T3 (en) 2006-03-24 2018-12-03 Handylab, Inc. Method to perform PCR with a cartridge with several tracks
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
ES2648798T3 (en) 2007-07-13 2018-01-08 Handylab, Inc. Polynucleotide capture materials and methods of use thereof
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
JP4996527B2 (en) * 2008-04-14 2012-08-08 日本特殊陶業株式会社 Laminated gas sensor element and gas sensor
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
EP2697657B8 (en) 2011-04-15 2017-08-16 Becton, Dickinson and Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
EP2761305B1 (en) 2011-09-30 2017-08-16 Becton, Dickinson and Company Unitized reagent strip
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
EP2773892B1 (en) 2011-11-04 2020-10-07 Handylab, Inc. Polynucleotide sample preparation device
AU2013214849B2 (en) 2012-02-03 2016-09-01 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU525317B (en) * 1917-09-21 1918-03-05 Gardner Lee Improvements in hydrocarbon burners
NL22348C (en) * 1927-04-23
DE2304464C2 (en) * 1973-01-31 1983-03-10 Robert Bosch Gmbh, 7000 Stuttgart Sensor for monitoring the functionality of catalytic converters in exhaust gas
JPS5334077B2 (en) * 1973-08-29 1978-09-19
CA1015827A (en) * 1974-11-18 1977-08-16 General Motors Corporation Air/fuel ratio sensor having catalytic and noncatalytic electrodes
DE2909201C2 (en) * 1979-03-09 1986-11-20 Robert Bosch Gmbh, 7000 Stuttgart Electrochemical measuring sensor for the determination of the oxygen content in gases, especially in exhaust gases from internal combustion engines
US4547281A (en) * 1983-11-21 1985-10-15 Gte Laboratories Incorporated Gas analysis apparatus
JPH0668480B2 (en) * 1987-04-24 1994-08-31 日本碍子株式会社 Electrode structure in oxygen sensor
JPH01221654A (en) * 1988-03-01 1989-09-05 Japan Electron Control Syst Co Ltd Enzyme sensor for internal combustion engine
US5486279A (en) * 1989-10-17 1996-01-23 Robert Bosch Gmbh Electrochemical measuring probe
DE4021929C2 (en) * 1990-07-10 1998-04-30 Abb Patent Gmbh sensor
DE4032436A1 (en) * 1990-10-12 1992-04-16 Bosch Gmbh Robert SENSOR ELEMENT FOR LIMIT CURRENT SENSORS FOR DETERMINING THE (GAMMA) VALUE OF GAS MIXTURES
EP0582830B1 (en) * 1992-07-31 1997-03-19 Hoechst Aktiengesellschaft Ceramic planar sensor for detection of combustable gases
US5411644A (en) * 1993-11-03 1995-05-02 Neukermans; Armand P. Method of operated dual pump getter and oxidant sensor and regulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9525276A1 *

Also Published As

Publication number Publication date
US5630920A (en) 1997-05-20
KR960702612A (en) 1996-04-27
DE4408361C2 (en) 1996-02-01
WO1995025276A1 (en) 1995-09-21
KR100347643B1 (en) 2002-11-07
JPH08510561A (en) 1996-11-05
AU1754195A (en) 1995-10-03
DE4408361A1 (en) 1995-09-28

Similar Documents

Publication Publication Date Title
DE4408361C2 (en) Electrochemical sensor for determining the oxygen concentration in gas mixtures
EP0536158B1 (en) Process for protection of catalysts
JP3553073B2 (en) Sensor for measuring the concentration of gas components in the mixture
DE19912102C2 (en) Electrochemical gas sensor
DE69734382T2 (en) Carbon monoxide sensor and measuring device using this sensor
US4720335A (en) Wide range air fuel ratio sensor
EP2106545B1 (en) Solid-electrolyte sensor element for determining ammonia in a measurement gas
DE112008003323T5 (en) Air fuel ratio sensor and control unit for an internal combustion engine
EP0627077B1 (en) Sensor for the determination of gas components and/or gas concentrations of gas mixtures
DE19963008B4 (en) Sensor element of a gas sensor for the determination of gas components
DE10013882A1 (en) Sensor element with pre-catalysis
DE2625040A1 (en) OXYGEN SENSOR DEVICE
EP1023591B1 (en) COMPOSITION STRUCTURE FOR NO x?-SENSORS
EP0271917A2 (en) Air/fuel ratio sensor
DE19912100B4 (en) Electrochemical gas sensor
WO1990010862A1 (en) SENSOR ELEMENT FOR LIMIT CURRENT SENSORS FOR DETERMINING μ-VALUES OF MIXTURES OF GASES
DE3239850A1 (en) Apparatus for the determination of a non-stoichiometric fuel/air ratio
DE10023062B4 (en) Measuring device for determining the concentration of gas components in the exhaust gas of an internal combustion engine and method for controlling an operation of the measuring device
WO2001011346A2 (en) Sensor element and method for determining oxygen concentration in gas mixtures
EP1498729A1 (en) Electrochemical pump cell for gas sensors
JPH0716996Y2 (en) Oxygen sensor
JP2000180408A (en) Method for measuring concentration of combustible component in gas to be measured and gas sensor
DE19854889A1 (en) Sensor for determining nitrogen oxides in vehicle exhaust gas
DE19848578A1 (en) Sensor fitted to a vehicle exhaust

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19960321

17Q First examination report despatched

Effective date: 20011206

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020425