EP0697051A1 - False ceiling - Google Patents

False ceiling

Info

Publication number
EP0697051A1
EP0697051A1 EP94915072A EP94915072A EP0697051A1 EP 0697051 A1 EP0697051 A1 EP 0697051A1 EP 94915072 A EP94915072 A EP 94915072A EP 94915072 A EP94915072 A EP 94915072A EP 0697051 A1 EP0697051 A1 EP 0697051A1
Authority
EP
European Patent Office
Prior art keywords
ceiling
plates
holes
air
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94915072A
Other languages
German (de)
French (fr)
Other versions
EP0697051B1 (en
Inventor
Helmut Fuchs
Dietmar Eckoldt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to SI9430031T priority Critical patent/SI0697051T1/en
Priority claimed from PCT/EP1994/001227 external-priority patent/WO1994024382A1/en
Publication of EP0697051A1 publication Critical patent/EP0697051A1/en
Application granted granted Critical
Publication of EP0697051B1 publication Critical patent/EP0697051B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/001Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B2001/8263Mounting of acoustical elements on supporting structure, e.g. framework or wall surface
    • E04B2001/8281Flat elements mounted parallel to a supporting surface with an acoustically active air gap between the elements and the mounting surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8433Tray or frame type panels or blocks, with or without acoustical filling with holes in their face
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8442Tray type elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/8495Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the openings going through from one face to the other face of the element

Definitions

  • the invention relates to a false ceiling according to the preamble of claim 1, as is known from Frick, O. et al "Baukonstrumentsmieslehre", Part 1, Teubner, Stuttgart 1992.
  • Substructures "suspended" from massive, load-bearing floor ceilings are used as preferably light, largely industrially prefabricated, dry and easy to install ceiling systems on a large scale and with a wide range of variants.
  • ceiling cladding and suspended ceilings take on both decorative and constructional functions.
  • the UD Installed as cladding at a certain distance from the solid ceiling, the UD often helps to meet various building physics requirements for the building with regard to thermal insulation, fire protection and sound insulation. However, it is also suitable as a facing for the lighting, room design and room acoustic adaptation of individual rooms to their individual use. After all, larger cavities between the raw ceiling and UD also serve for the hidden laying / integration of pipelines, cable connections, and the inlet and outlet of the various building services systems.
  • Figure 1 shows a conventional reactive absorber according to Frick et al, with a) a plate resonator, b) a Helmholtz resonator and figure c) the degree of absorption.
  • the UD is not only used for decorative and acoustic purposes, but also as a (low-pressure) ventilation ceiling, (radiation) heating ceiling or (surface) cooling ceiling, it should also take on other technical functions at the same time, then the acoustically unavoidable fibrous / porous damping material as a serious disadvantage: It would not only hinder assembly and installation, but also maintenance and operation of the systems. There is therefore an urgent need for UD systems that meet the spatial and building acoustical requirements without the use of porous absorbers and at the same time meet the structural requirements better than conventional acoustic ceilings.
  • the object of the invention is to provide a fiber-free acoustic false ceiling that absorbs broadband.
  • the new UD component presented here on the basis of staggered flat plates as a resonance damper combines properties of the microperforated and membrane absorbers by having a practically closed smooth surface on the room side,
  • the new ceiling tile absorber can be suspended from the solid ceiling in front of or as UD in all under 1. be used as well as be equipped with all the properties and functions specified under 1. and 2. without having the disadvantages mentioned under 4.
  • Fiber-free UD as facing shells (Fig. 10) to increase the airborne and impact sound insulation of the solid ceiling
  • Fiber-free UD as an acoustic ceiling ( Figure 10) for reducing noise and regulating the room acoustics from thin panels 1, the air in the holes in the panels together with the air in the ceiling cavity 11 being damped natural vibrations stimulated by the sound field on the room side, preferably with executes medium and higher frequencies, with plates 1, with uniformly or non-uniformly arranged holes ( ⁇ 2 mm; and perforation area share ⁇ 2%), in which the air together with the air in the ceiling cavity or in the stiffener 2 formed Cavity produces excited, damped vibrations, preferably at medium and high frequencies, through the room-side sound field in the holes,
  • Fiber-free UD as a sound-absorbing boundary of the ceiling cavity as a sound-transmitting channel, which, in the manner of the damping mechanisms described under (b), executes damped vibrations excited and damped by the channel-side sound field in a wide frequency range and thus to reduce the longitudinal transmission to the neighbor space contributes.
  • the UD component made of flat, micro-perforated ceiling panels with high density on the room side enables complete industrial prefabrication.
  • the extremely small holes enable complete privacy, the visual impression of a closed ceiling area and possibilities for decorative loosening of the ceiling.
  • the fiber-free plate components can be used to create almost any shape Train reflectors for lighting, outlets and inlets for ventilation and radiators for heating, without having to forego their acoustic effectiveness.
  • Micro-perforated UD systems can meet the highest purity requirements because they
  • the UD components offer ideal conditions for assembly, disassembly and reassembly and are completely and inexpensively traceable due to their simple, homogeneous construction.
  • the UD components also meet a very current trend in cooling of administrative buildings and assembly facilities in summer: with so-called "Chilled ceilings" made of largely standardized metallic components can save the high fan output, which can easily account for 50% of the operating costs in conventional air conditioning systems. This also helps to reduce CO 2 emissions and eliminates an often very annoying source of drafts, noise pollution and allergies in living and working spaces. With thermal insulation (e.g.
  • the distance between the cooling lamella and insulation, lamella thickness, hole diameter and number of holes per m can be coordinated so that an optimal adaptation to the reverberation time of the Room or to the emission spectrum of the sound sources installed therein.
  • the fiber-free, micro-perforated UD components also offer clear advantages over conventional systems when it comes to heating and ventilation ceilings.
  • UD components can be constructed with one, two or more layers. As a simple facing shell, they can be completely flat and smooth, as well as with decorative patterns and stiffening beads, bends and folds. As a suspended cassette ceiling, the cavities of the cassettes themselves can be designed as ventilation ducts. Your rear wall facing the actual ceiling cavity can advantageously be designed from an acoustic as well as a functional point of view in such a way that Different cavity depths occur side by side to broaden the absorption effect, indentations and formations for receiving components of the house installation are created in the actual ceiling cavity on the underside, in the cassette cavity on the top side by means of moldings and by partition walls supply air, exhaust air and distributor Channels are created.
  • FIGS. 8, 9, 10 is to be explained in relation to the prior art according to FIGS. 1 to 7.
  • Figure 1 shows reactive absorbers.
  • Figure 1 a shows a plate resonator, in which the plate vibrates as a mass in front of the air cushion as a spring, whereby, however, porous material e.g. is required as edge damping in order to achieve a somewhat broadband damping behavior as shown in Figure 1 c.
  • porous material e.g. is required as edge damping in order to achieve a somewhat broadband damping behavior as shown in Figure 1 c.
  • Figure 2 manages to excite a large number of different plate vibrations at different frequencies in a very complex bucket structure in such a way that an overall broadband absorption spectrum at medium frequencies is achieved, even without the use of porous material.
  • 1 5 denotes the cover membrane, 1 6 the porous material with a waterproof cover 17 or mechanical protection 18.
  • Perforated membrane and rear wall are components that can vibrate, i.e. not rigid plates. The membranes are excited to vibrate and thereby extract the energy from the sound.
  • the holes in the hole membrane 14 vary between 3 and 10 mm.
  • 13 represents the walls of the honeycomb Structure, 1 1 is the cavity that is usually filled with air.
  • This membrane absorber can also be manufactured as a module, the membranes 12, 14, 15 and 13 being made of plastic or metal.
  • porous absorbers It is also known to cover large-volume porous absorbers with perforated plates, but the perforated plates are only intended to provide mechanical protection.
  • porous absorbers are e.g. pressed mineral fiber boards, which are placed behind suspended ceilings, these fiber boards often being glued together with a thin aluminum foil for practical reasons or wrapped in plastic foil. Since it is known that the penetration of the sound waves into the passive absorber is largely prevented, the film is made “sound-permeable" by "needling" with a large number of small holes.
  • Figure 6 shows the absorption spectrum from Maa, D.-Y. "Theory and design of microperforated panel sound absorbing constructions". Scientia Sinica 18 (1975), H. 1, 55-71, a micro-perforated plate being arranged in front of a rigid wall. However, this theoretical investigation has never found any technical application.
  • the air in the holes in the false ceiling only transmits the sound vibrations of the sound waves striking the perforated sheets into the damping material located behind them. Only there is the sound energy converted into heat by friction on the fibers or in the pores of the insulating material, thereby reducing the sound energy.
  • the problems of the conventional sound absorbers especially since recent investigations have shown that the sound-absorbing material, for example rock wool or glass wool, is carcinogenic, as well as possible moisture absorption, dust development and abrasion, have the result that new possibilities for sound absorption are sought.
  • the membrane absorbers have been known for a long time, but since they are more expensive than the relatively inexpensive materials made of rock wool or glass wool, they have not been able to establish themselves.
  • the membrane absorbers be it in their cup-shaped configuration or in the earlier construction with jagged surfaces - to broaden the absorption spectrum - are relatively complicated and therefore expensive.
  • the false ceiling according to the invention is simple to manufacture, easy to install and not expensive, since it consists only of the finely perforated perforated plates and the lateral boundary surfaces of the air space and the flat rear wall or plate.
  • the holes with a diameter of preferably 0.4-0.8 mm do not serve as "breakthroughs" for the unimpeded penetration of the sound energy into the air space between the ceiling and ceiling.
  • the extremely small perforation area fraction of a maximum of 5%, preferably only 0.5-3%, for the purpose according to the invention, would be even less suitable for the (passive) transmission of sound energy from the room into the intermediate space than the openings according to the prior art , because these perforated areas have between 1 5 - 50%.
  • the air in the holes of the microperforated perforated sheets according to the invention acts as a very special mass-spring oscillation system, which (reactive) to vibrations in each case due to the sound field impinging on the microperforated perforated sheet frequency range of interest is made stimulable.
  • the tuning to the respective frequency range takes place through a very specific choice of the geometric parameters, in particular the thickness of the perforated plate, the thickness of the air space, the diameter of the holes, the spacing of the holes, the shape of the holes, the proportion of perforation in the total area of the perforated plate and the shape ⁇ the perforated plates.
  • the choice of hole geometry not only determines the frequency range of the absorption, but also the effectiveness of the absorber in this frequency range.
  • the necessary damping is not achieved by attaching additional porous or fibrous "swallowing materials" as shown in Fig. 1 a or Fig. 7, but entirely by friction of the air particles in the narrow holes on their walls.
  • the desired frequency range and the required friction can be optimally adjusted to the respective application, so that an almost complete absorption of the incident sound energy is possible.
  • the plates are so thick and stable that they cannot be excited to vibrate by the impinging sound waves. Without the microperforation of the type according to the invention, the plate, if it were designed to be capable of oscillation, as shown in FIG.
  • Fig. 10a-e shows the false ceiling according to the invention, wherein Fig. 10e shows the false ceiling as a module, which is then installed in a cassette shape under the ceiling as a false ceiling.
  • Fig. 10 denote the flat micro-perforated plate made of sheet metal or hard plastic with holes 4 and 7, a flat oscillatable plate as the rear wall of the module.
  • 3b is the rigid frame of the module and 1 1 the cavities or spaces that are filled with air.
  • 3 are suspensions and 3a e.g. Beams or a substructure for supporting the false ceiling or facing shell. Since the panels or modules are supplied in units of approximately 1 square meter, different distances between the ceiling D and the rear wall can be realized via the suspensions 3 or substructure 3a, thereby broadening the absorption spectrum.
  • 2 are stiffeners of the plates 1, 6, which of course can also be arranged over the entire length and width of the plate so that it does not vibrate.
  • Figure 1 1 shows the spectrum of a microperforated plate made of aluminum with a plate thickness t of 0.1 5 mm, hole diameter 0.16 mm. Hole spacing 1.2 mm and thickness of the air layer in the space between the plate and the rear wall or ceiling of 600 mm and a hole area fraction p of 1.4% given by the hole diameter and distance.
  • a desired resonance frequency fp 54 x 10 ⁇ ⁇ / D • f • K m according to the theory of Maa, where ⁇ hole area / total area, D the air layer thickness in the interspace and K m a constant that is proportional to the hole diameter multipli ⁇ adorned with the root of f, one can then vary the parameters of plate thickness, percentage of hole area or number of holes for a certain hole diameter and air gap D within certain limits.
  • a broadening of the spectrum is also obtained when the plate is slightly curved downwards, for example with a plate width of 1000 mm and a curvature of 60-80 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

PCT No. PCT/EP94/01277 Sec. 371 Date Oct. 19, 1995 Sec. 102(e) Date Oct. 19, 1995 PCT Filed Apr. 20, 1994 PCT Pub. No. WO94/24382 PCT Pub. Date Oct. 27, 1994A false ceiling for buildings designed to absorb acoustic waves has perforated plates. One or several suspended plates (1, 6) are provided which are so hard that they cannot vibrate. The plates have a plurality of regularly or irregularly arranged holes (4, 7) with 0.2-3 mm diameter, the surface of the holes being less than 4% of the total surface. The air in the holes (4, 7) forms with the overlying cavities (11) a dampening active mass system of the foil absorber type.

Description

Unterdecke Suspended ceiling
Die Erfindung betrifft eine Unterdecke gemäß dem Oberbegriff des Anspruchs 1 , wie sie aus Frick, O. et al "Baukonstruktionslehre", Teil 1 ., Teubner, Stuttgart 1992 bekannt ist.The invention relates to a false ceiling according to the preamble of claim 1, as is known from Frick, O. et al "Baukonstruktionslehre", Part 1, Teubner, Stuttgart 1992.
1 . Geαenstand1 . Geαenstand
Von massiven, tragenden Geschoßdecken "abgehängte" Unterkonstruktionen kommen als vorzugsweise leichte, weitgehend industriell vorgefertigte, trocken und einfach montierbare Deckensysteme in großem Umfang und sehr variantenreich zum Einsatz. In Neubauten und bei der Altbausanierung von Aufenthaltsräumen, Verwaltungsräumen, Unterrichtsräumen oder Industrie- Messe- oder Sporthallen sowie Büro-, Kauf- und Krankenhäusern übernehmen sogenannte Deckenbekleidungen und Unterdecken (UD) sowohl dekorative als auch bautechnische Funktionen.Substructures "suspended" from massive, load-bearing floor ceilings are used as preferably light, largely industrially prefabricated, dry and easy to install ceiling systems on a large scale and with a wide range of variants. In new buildings and in the renovation of old buildings in recreation rooms, administration rooms, classrooms or industrial, trade fair or sports halls as well as office, department and hospital buildings, so-called ceiling cladding and suspended ceilings (UD) take on both decorative and constructional functions.
2. Zweck und Funktion2. Purpose and function
Als Verkleidung in gewissem Abstand zur Massivdecke montiert, hilft die UD häufig, verschiedene bauphysikalische Anforderungen an das Gebäude hinsichtlich Wärmeschutz, Brandschutz und Schallschutz zu erfüllen. Sie eignet sich aber als Vorsatzschale ebenso zur lichttechnischen, raumgestalterischen und raumakustischen Anpassung einzelner Räume auf ihre individuelle Nutzungsart. Schließlich dienen größere Hohlräume zwischen Rohdecke und UD auch zur verdeckten Verlegung/Integration von Rohrleitungen, Kabelverbindungen, Aus- und Einlassen der diversen haustechnischen Anlagen.Installed as cladding at a certain distance from the solid ceiling, the UD often helps to meet various building physics requirements for the building with regard to thermal insulation, fire protection and sound insulation. However, it is also suitable as a facing for the lighting, room design and room acoustic adaptation of individual rooms to their individual use. After all, larger cavities between the raw ceiling and UD also serve for the hidden laying / integration of pipelines, cable connections, and the inlet and outlet of the various building services systems.
3. Anforderungen an UD3. Requirements for UD
An Unterdecken bzw. an die meist ebenen Bauteile, aus denen sie zusammengesetzt sind, werden hohe Anforderungen in dreierlei Hinsicht gestellt: 3.1 bautechnisch:There are three requirements for ceilings and the mostly flat components from which they are composed: 3.1 construction:
(a) hohe Stabilität bei geringem Gewicht,(a) high stability with low weight,
(b) glatte, resistente Oberflächenbeschaffenheit,(b) smooth, resistant surface texture,
(c) leichte, reversible Montage (c) easy, reversible assembly
3.2 bauakustisch:3.2 acoustical:
(a) hohe flächenbezogene Masse (5-10 kg/m2),(a) high mass per unit area (5-10 kg / m2),
(b) geschlossene, fugenfreie Modulbauweise (50-200 cm),(b) closed, joint-free modular construction (50-200 cm),
(c) faserige/poröse Hohlraumdämpfung (50-100 mm)(c) fibrous / porous cavity damping (50-100 mm)
3.3raumakustisch:3.3 room acoustic:
(a) hoher Perforationsgrad (20-40 %)(a) high degree of perforation (20-40%)
(b) faserige/poröse Absorberauflage (10-50 mm)(b) fibrous / porous absorber pad (10-50 mm)
(c) große Abhängehöhe (20-50 cm).(c) large suspension height (20-50 cm).
Welcher der sich teilweise widersprechenden Anforderungen der Vorrang eingeräumt wird, hängt auch von der jeweiligen Raumnutzung ab. Es sind aber einige grundsätzliche Probleme bei konventionellen UD-Systemen ungelöst, wenn diese gleichzeitig als Aku¬ stikdecke wirksam sein sollen:Which of the contradicting requirements is given priority also depends on the use of space. However, there are some fundamental problems with conventional UD systems that are unsolved if they are also to be effective as an acoustic ceiling:
4. Nachteile herkömmlicher UD4. Disadvantages of conventional UD
Selbst wenn die UD nur die im Decken-Hohlraum angeordneten Installationen kaschieren und den Raum selbst akustisch bedampfen soll, wie in Frick et al oder in "Trockenbau" 7/92 "Heiss-umkämpfte Kühle" beschrieben, erscheinen die in großem Umfang als Schalen-Bauteil, Decken-Auflage und Hohlraum-Dämpfung eingesetzten Mineralfaser-Platten und -Matten wegen ihrer mechanischen Empfindlichkeit bei Montage- und Installationsarbeiten, hygienischen Bedenklichkeit bei Räumen höherer Reinheitsklasse, physiologischen Auswirkungen bei Abrieb und Austragung von FasernEven if the UD is only to conceal the installations arranged in the ceiling cavity and acoustically vaporize the room itself, as described in Frick et al or in "Drywall" 7/92 "Hotly contested coolness", they appear to a large extent as bowls. Component, ceiling pad and cavity damping used mineral fiber panels and mats because of their mechanical sensitivity during assembly and installation work, hygienic concerns in rooms of a higher cleanliness class, physiological effects in the case of abrasion and removal of fibers
als nachteilig und hinderlich.as disadvantageous and cumbersome.
Bild 1 zeigt einen konventionellen reaktiven Absorber nach Frick et al, wobei a) einen Platten-Resonator, b) einen Helmholtz-Resonator und die Figur c) den Absorptionsgrad darstellt.Figure 1 shows a conventional reactive absorber according to Frick et al, with a) a plate resonator, b) a Helmholtz resonator and figure c) the degree of absorption.
Der konventionelle Riesel- und Sichtschutz durch Folien mit geringer Masse und Loch¬ platten mit großem Perforationsgrad (aus raumakustischer Sicht) widerspricht der bauakustischen Forderung nach einer raumseitig möglichst geschlossenen, nicht zu leichten Vorsatzschale.The conventional trickle and sight protection through foils with low mass and perforated plates with a high degree of perforation (from a room acoustic point of view) contradicts this Building acoustics demand for a facing that is as closed as possible on the room side and not too light.
Die aus raumakustischer Sicht für die Absorption tiefer Frequenzen zu fordernde große Abhängehöhe von Akustikdecken gemäß Frick et al widerspricht häufig der bauakusti¬ schen Forderung nach geringer Längsübertragung über den Decken-Hohlraum über be¬ nachbarten Räumen, selbst wenn der Hohlraum nach Art eines Schalldämpfers wieder¬ um mit größeren Mengen faserigen oder porösen Dämpfungs-Materials angefüllt wird.The large suspension height of acoustic ceilings according to Frick et al, which is required from the room acoustics point of view for the absorption of low frequencies, often contradicts the building acoustics requirement for low longitudinal transmission via the ceiling cavity via adjacent rooms, even if the cavity is again like a silencer to be filled with larger amounts of fibrous or porous damping material.
Wenn aber die UD nicht nur dekorativen und akustischen Zwecken dient, sondern als (Niederdruck-) Lüftungsdecke, (Strahlungs-)Heizungsdecke oder (Flächen-)Kühldecke gleichzeitig auch andere haustechnische Funktionen übernehmen soll, dann stellt sich das aus akustischer Sicht bisher unumgängliche faserige/poröse Dämpfungs-Material als schwerer Nachteil heraus: Es würde hier nicht nur Montage und Installation, sondern auch Wartung und Betrieb der Anlagen behindern. Deshalb besteht ein dringender Bedarf für UD-Systeme, die ganz ohne den Einsatz poröser Absorber den räum- und bauakusti¬ schen Anforderungen gerecht werden und gleichzeitig den bautechnischen Erfordernis¬ sen besser als herkömmliche Akustikdecken entgegen kommen.However, if the UD is not only used for decorative and acoustic purposes, but also as a (low-pressure) ventilation ceiling, (radiation) heating ceiling or (surface) cooling ceiling, it should also take on other technical functions at the same time, then the acoustically unavoidable fibrous / porous damping material as a serious disadvantage: It would not only hinder assembly and installation, but also maintenance and operation of the systems. There is therefore an urgent need for UD systems that meet the spatial and building acoustical requirements without the use of porous absorbers and at the same time meet the structural requirements better than conventional acoustic ceilings.
5. Alternative Deckenplatten-Schallabsorber5. Alternative ceiling tile sound absorbers
In konventionellen Akustikdecken kommen fast ausschließlich passive (poröse/faserige) Absorber zum Einsatz (Trockenbau 7/92). Damit die Luftschallwellen aus dem. Raum ungehindert in das Dämpfungsmaterial eindringen können, müssen die Deckenplatten ei¬ nen hohen Perforationsgrad (1 5-50 %) aufweisen. Sie können deshalb nur eine ent¬ sprechend geringe Luftschall-Dämmung zum Decken-Hohlraum gewährleisten. Konven¬ tionelle reaktive (Platten-/Folien-/Helmholtz-)Absorber gem. Bild 1 benötigen abgeschlos¬ sene Hohlkammern, die zur Erzielung einer auch nur mäßig breitbandigen Absorption wiederum mit Dämpfungsmaterial angefüllt sein müssen. Sogenannte Membran-Absor¬ ber gem. Anordnungen nach Bild 2 (Becherstrukturen) und Bild 3 (Membranabsorber) und wie in Fuchs, H.V. "Zur Absorption tiefer Frequenzen in Tonstudios. Rundfunktech¬ nische Mitteilungen rtm 36 (1992), H. 1 , S. 1 -1 1 " beschrieben, kommen zwar ohne po¬ röses/faseriges Material aus. Sie benötigen aber weiterhin 5-10 cm tiefe Hohlkammern. Durch ihren dreischaligen Aufbau auf einer relativ engmaschigen (10-20 cm) Waben¬ struktur sind sie außerdem als UD-Bauteil für normale Akustikdecken viel zu aufwendig und teuer. Letzere kommen allenfalls als rundum geschlossene Metallkassetten im Decken-Hohlraum oder als integriertes UD-Bauteil zur Ergänzung der Absorption bei tiefen Frequenzen in Räumen mit besonderen raumakustischen Anforderungen infrage.In conventional acoustic ceilings, passive (porous / fibrous) absorbers are used almost exclusively (drywall 7/92). So that the airborne sound waves from the. To be able to penetrate the damping material unhindered, the ceiling panels must have a high degree of perforation (1-5-50%). They can therefore only guarantee a correspondingly low airborne sound insulation to the ceiling cavity. Conventional reactive (plate / foil / Helmholtz) absorbers acc. Fig. 1 require closed hollow chambers, which in turn have to be filled with damping material in order to achieve even moderately broadband absorption. So-called membrane absorber acc. Arrangements according to Fig. 2 (cup structures) and Fig. 3 (membrane absorber) and as in Fuchs, HV "For the absorption of low frequencies in recording studios. Broadcasting communications rtm 36 (1992), H. 1, S. 1 -1 1" described, get along without porous / fibrous material. But you still need 5-10 cm deep hollow chambers. Due to their three-shell structure on a relatively narrow-meshed (10-20 cm) honeycomb structure, they are also much too complex and expensive as a UD component for normal acoustic ceilings. The latter come at most as completely closed metal cassettes in the Ceiling cavity or as an integrated UD component to supplement the absorption at low frequencies in rooms with special room acoustic requirements.
Aufgabe der Erfindung ist es, eine faserfreie Akustik-Unterdecke zu schaffen, die breit- bandig absorbiert.The object of the invention is to provide a fiber-free acoustic false ceiling that absorbs broadband.
Diese Aufgabe wird erfindungsgemäß durch die Unterdecken nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.This object is achieved by the suspended ceilings according to claim 1. Advantageous refinements are characterized in the subclaims.
Das hier vorgestellte neue UD-Bauteil auf der Basis gestaffelter ebener Platten als Reso¬ nanz-Dämpfer kombiniert Eigenschaften der mikroperforierten und Membran-Absor¬ ber, indem es zwar raumseitig eine praktisch geschlossene glatte Oberfläche aufweist,The new UD component presented here on the basis of staggered flat plates as a resonance damper combines properties of the microperforated and membrane absorbers by having a practically closed smooth surface on the room side,
- aber hohlraumseitig keine eigenen Hohlkammer- oder Waben-Strukturen benötigt,- but does not require its own hollow chamber or honeycomb structures on the cavity side,
- ganz ohne den Einsatz poröser/faseriger Materialien auskommt.- does without the use of porous / fibrous materials.
Der neue Deckenplatten-Absorber kann als Deckenbekleidung unmittelbar vor bzw. als UD von der Massivdecke abgehängt in allen unter 1 . aufgeführten Anwendungsberei¬ chen eingesetzt sowie mit allen unter 1. und 2. spezifizierten Eigenschaften und Funktio¬ nen ausgestattet werden, ohne daß er die unter 4. angesprochenen Nachteile aufweist.The new ceiling tile absorber can be suspended from the solid ceiling in front of or as UD in all under 1. be used as well as be equipped with all the properties and functions specified under 1. and 2. without having the disadvantages mentioned under 4.
6. Besondere Merkmale6. Special features
Im Folgenden werden die akustischen Vorteile des UD-Systems dargestellt:The acoustic advantages of the UD system are shown below:
(a) Unterdecke als Vorsatzschale(a) Suspended ceiling as a facing
Faserfreie UD als Vorsatzschaie (Bild 10) zur Erhöhung der Luftschall- und Trittschall- Dämmung der MassivdeckeFiber-free UD as facing shells (Fig. 10) to increase the airborne and impact sound insulation of the solid ceiling
aus dünnen nicht durch Schallwellen in Schwingungen anregbare Platten 1 , 6 hoher Dichte mit ausreichender flächenbe¬ zogener Masse (5-10 kg/m2; z.B. Metall, Kunststoff, Holz), mit gleichmäßig oder ungleichmäßig angeordneten kleinen ( < 2 mm) Löchern und geringem Lochfiächenanteil ( < 2 %), hohlraumseitig versteift durch Streben, Rippen 2 (Bild 10b), so daß der Schalldurchgang durch die Löcher vernachlässigbar bleibt und ein Durchhän¬ gen der Deckenplatten auch bei großen Raster-Feldern (bis etwa 200 cm) bzw. zwi¬ schen den entsprechenden Abhängern vermieden wird.from thin plates 1, 6 of high density which cannot be excited by sound waves in vibrations and have a sufficient area-related mass (5-10 kg / m2; eg metal, plastic, wood), with small or evenly arranged small (<2 mm) holes and small Perforated area (<2%), stiffened on the cavity side by struts, ribs 2 (Fig. 10b), so that the passage of sound through the holes remains negligible and sagging of the ceiling panels is avoided even in the case of large grid fields (up to approximately 200 cm) or between the corresponding hangers.
(b) Unterdecke als Schallabsorber für das raumseitige Schallfeld(b) Suspended ceiling as sound absorber for the room-side sound field
Faserfreie UD als Akustikdecke (Bild 10) zur Lärmminderung und Regulierung der Raum¬ akustik aus dünnen Platten 1 , wobei die in den Löchern befindliche Luft in den Platten zusammen mit der Luft im Deckenhohlraum 1 1 durch das raumseitige Schallfeld angeregte, bedämpfte Eigenschwingungen, vorzugsweise bei mittleren und höheren Frequenzen ausführt, mit Platten 1 , mit gleichmäßig oder ungleichmäßig angeordneten Löchern (< 2 mm; und Lochfiächenanteil < 2 %), in denen die Luft zusammen mit der Luft im Decken-Hohlraum bzw. im durch die Ver¬ steifung 2 gebildeten Hohlraum durch das raumseitige Schallfeld in den Löchern angeregte, bedämpfte Schwingungen, vorzugsweise bei mittleren und hohen Frequenzen ausführt,Fiber-free UD as an acoustic ceiling (Figure 10) for reducing noise and regulating the room acoustics from thin panels 1, the air in the holes in the panels together with the air in the ceiling cavity 11 being damped natural vibrations stimulated by the sound field on the room side, preferably with executes medium and higher frequencies, with plates 1, with uniformly or non-uniformly arranged holes (<2 mm; and perforation area share <2%), in which the air together with the air in the ceiling cavity or in the stiffener 2 formed Cavity produces excited, damped vibrations, preferably at medium and high frequencies, through the room-side sound field in the holes,
(c) Unterdecke als Schalldämpfer für die Luftschall-Längsleitung im Decken-Hohl¬ raum(c) Suspended ceiling as a silencer for the airborne longitudinal duct in the ceiling cavity
Faserfreie UD als schallabsorbierende Berandung des Decken-Hohlraums als Schall über¬ tragenden Kanal, die nach Art der unter (b) beschriebenen Dämpfungs-Mechanismen durch das kanalseitige Schallfeld angeregte, bedämpfte Schwingungen in einem breiten Frequenzbereich ausführt und damit zur Reduktion der Längsübertragung zum Nachbar¬ raum beiträgt.Fiber-free UD as a sound-absorbing boundary of the ceiling cavity as a sound-transmitting channel, which, in the manner of the damping mechanisms described under (b), executes damped vibrations excited and damped by the channel-side sound field in a wide frequency range and thus to reduce the longitudinal transmission to the neighbor space contributes.
7. Weitere technologische Vorteile7. Other technological advantages
Das UD-Bauteil aus ebenen, raumseitig mikroperforierten Decken-Platten hoher Dichte ermöglicht eine komplette industrielle Vorfertigung. Die extrem kleinen Löcher ermögli¬ chen vollständigen Sichtschutz, den optischen Eindruck einer geschlossenen Deckenfläche und Möglichkeiten zur dekorativen Auflockerung der Decke.The UD component made of flat, micro-perforated ceiling panels with high density on the room side enables complete industrial prefabrication. The extremely small holes enable complete privacy, the visual impression of a closed ceiling area and possibilities for decorative loosening of the ceiling.
Aus den faserfreien Platten-Bauteilen lassen sich nahezu beliebig gestaltete Formteile als Reflektoren für die Beleuchtung, Aus- und Einlasse für die Lüftung und Radiatoren für die Heizung ausbilden, ohne daß deshalb auf ihre akustische Wirksamkeit verzichtet werden müßte.The fiber-free plate components can be used to create almost any shape Train reflectors for lighting, outlets and inlets for ventilation and radiators for heating, without having to forego their acoustic effectiveness.
Mikroperforierte UD-Systeme können höchste Reinheitsanforderungen erfüllen, weil sieMicro-perforated UD systems can meet the highest purity requirements because they
keinerlei poröses/faseriges Dämpfungsmaterial involvieren, wenig Möglichkeiten für Ablagerungen bieten, außen wie innen einfach wisch-desinfizierbar sind.no porous / fibrous damping material involved, few possibilities for deposits, outside and inside are easy to wipe disinfect.
Sie bringen geradezu ideale Voraussetzungen mit für die Montage, Demontage und Remontage und sind wegen ihres einfachen, homogenen Aufbaus vollständig und kostengünstig rückführbar.ln Metallausführung kommen die UD-Bauteile auch einem sehr aktuellen Trend beim Kühlen von Verwaltungsgebäuden und Versammlungsstätten im Sommer entgegen: Mit sogenannten "Kühldecken" aus weitgehend standardisierten metallischen Bauteilen läßt sich die hohe Ventilatorleistung, die bei herkömmlichen Klimaanlagen ohne weiteres 50 % der Betriebskosten ausmachen kann, einsparen. So läßt sich auch ein Beitrag zur Senkung des Cθ2-Ausstoßes leisten und eine oft sehr lästige Quelle von Zugerscheinungen, Lärmbelastungen und Allergien in Wohn- und Arbeitsräumen eliminieren. Bei über dem Rohrregister für das Kühlmittel (i.a. Wasser) angeordneter Wärmedämmung (z.B. Alu-kaschierter Hartschaum) lassen sich der Abstand zwischen Kühl-Lamelle und Dämmung, Lamellendicke, Lochdurchmesser und Lochanzahl pro m so aufeinander abstimmen, daß eine optimale Anpassung an die Nachhallzeit des Raumes oder an das Emissionsspektrum der darin aufgestellten Schallquellen erreicht werden kann. Auch hinsichtlich der Heizungs- und Lüftungsdecken bieten die faserfreien, mikroperforierten UD-Bauteile klare Vorteile gegenüber den herkömmlichen Systemen.They offer ideal conditions for assembly, disassembly and reassembly and are completely and inexpensively traceable due to their simple, homogeneous construction. In metal construction, the UD components also meet a very current trend in cooling of administrative buildings and assembly facilities in summer: with so-called "Chilled ceilings" made of largely standardized metallic components can save the high fan output, which can easily account for 50% of the operating costs in conventional air conditioning systems. This also helps to reduce CO 2 emissions and eliminates an often very annoying source of drafts, noise pollution and allergies in living and working spaces. With thermal insulation (e.g. aluminum-laminated hard foam) arranged above the pipe register for the coolant (generally water), the distance between the cooling lamella and insulation, lamella thickness, hole diameter and number of holes per m can be coordinated so that an optimal adaptation to the reverberation time of the Room or to the emission spectrum of the sound sources installed therein. The fiber-free, micro-perforated UD components also offer clear advantages over conventional systems when it comes to heating and ventilation ceilings.
UD-Bauteile können einschalig, zwei- oder mehrschalig aufgebaut werden. Als einfache Vorsatzschale können sie sowohl völlig eben und glatt als auch mit dekorativen Mustern und aussteifenden Sicken, Abkantungen und Falzen versehen werden. Als abgehängte Kassetten-Decke lassen sich die Hohlräume der Kassetten selbst als Lüftungs-Kanäle ausbilden. Ihre dem eigentlichen Decken-Hohlraum zugewandte Rückwand kann aus akustischer wie aus funktionstechnischer Sicht vorteilhaft so gestaltet werden, daß unterschiedliche Hohlraum-Tiefen nebeneinander zur Verbreiterung der Ab¬ sorptionswirkung entstehen, im eigentlichen Decken-Hohlraum unterseitig Vertiefungen und Ausformungen zur Aufnahme von Komponenten der Haus-Installation entstehen, im Kassetten-Hohlraum oberseitig durch Ausformungen und durch Zwischenwände Zuluft-, Abluft- und Verteiler-Kanäle geschaffen werden.UD components can be constructed with one, two or more layers. As a simple facing shell, they can be completely flat and smooth, as well as with decorative patterns and stiffening beads, bends and folds. As a suspended cassette ceiling, the cavities of the cassettes themselves can be designed as ventilation ducts. Your rear wall facing the actual ceiling cavity can advantageously be designed from an acoustic as well as a functional point of view in such a way that Different cavity depths occur side by side to broaden the absorption effect, indentations and formations for receiving components of the house installation are created in the actual ceiling cavity on the underside, in the cassette cavity on the top side by means of moldings and by partition walls supply air, exhaust air and distributor Channels are created.
Im folgenden soll die Erfindung, wie sie in Abb. 8, 9, 10, dargestellt ist, gegenüber dem Stand der Technik nach den Abb. 1 bis 7 erläutert werden.In the following, the invention, as shown in FIGS. 8, 9, 10, is to be explained in relation to the prior art according to FIGS. 1 to 7.
Bild 1 zeigt wie oben bereits kurz erläutert, reaktive Absorber.As already briefly explained above, Figure 1 shows reactive absorbers.
Bild 1 a stellt einen Platten-Resonator dar, bei dem die Platte als Masse vor dem Luftkis¬ sen als Feder schwingt, wobei jedoch poröses Material z.B. als Randdämpfung benötigt wird, um ein etwas breitbandigeres Dämpfungsverhalten wie in Bild 1 c zu erreichen.Figure 1 a shows a plate resonator, in which the plate vibrates as a mass in front of the air cushion as a spring, whereby, however, porous material e.g. is required as edge damping in order to achieve a somewhat broadband damping behavior as shown in Figure 1 c.
In sogenannten Folienabsorbern nach DE 27 58 041 gem. Bild 2 gelingt es, in einer sehr komplexen Becherstruktur eine große Zahl unterschiedlicher Platten-Schwingungen bei verschiedenen Frequenzen so anzuregen, daß ein insgesamt breitbandiges Absorptions- Spektrum bei mittleren Frequenzen, auch ohne den Einsatz porösen Materials, erreicht wird.In so-called film absorbers according to DE 27 58 041. Figure 2 manages to excite a large number of different plate vibrations at different frequencies in a very complex bucket structure in such a way that an overall broadband absorption spectrum at medium frequencies is achieved, even without the use of porous material.
Beim sogenannten Membran-Absorber, z.B. nach DE 35 04 208 und DE 34 12 432, ge¬ lingt es erstmalig, Platten- und Helmholtz-Resonatoren so hintereinander aufzubauen, daß vielfältig über mehrere Luftschichten und Löcher gekoppelte Schwingungen in ei¬ nem völlig ebenen Bauteil bereits relativ breitbandig anregbar werden. Wenn man vor der Deckmembran dieses reaktiven Absorbers eine auch nur relativ dünne Schicht (1 - 5 mm) aus porösem Material, wie in Bild 3 dargestellt, anbringt, so läßt sich gem. Bild 4 und 5 ein Gewinn an Absorption bei hohen Frequenzen erzielen.In the so-called membrane absorber, e.g. according to DE 35 04 208 and DE 34 12 432, it is possible for the first time to construct plate and Helmholtz resonators in such a way that vibrations coupled in multiple layers of air and holes in a completely flat component can already be excited in a relatively wide range. If one attaches even a relatively thin layer (1 - 5 mm) made of porous material, as shown in Figure 3, in front of the cover membrane of this reactive absorber, then according to. Figures 4 and 5 achieve a gain in absorption at high frequencies.
In Bild 3 ist mit 1 5 die Deckmembran bezeichnet, mit 1 6 das poröse Material mit einer wasserdichten Abdeckung 17 bzw. mechanischem Schutz 18. Unterhalb der Deckmem¬ bran 15 befindet sich die Lochmembran 14 und davon beabstandet die Rückwand 12. Sowohl die Deckmembran, Lochmembran und Rückwand sind dabei schwingfähige Komponenten, also keine starre Platten. Die Membranen werden zu Schwingungen an¬ geregt und sie entziehen dadurch dem Schall die Energie. Die Löcher in der Lochmem¬ bran 14 schwanken dabei zwischen 3 - 10 mm. 13 stellt dabei die Wände der Waben Struktur dar, 1 1 ist der Hohlraum, der üblicherweise mit Luft gefüllt ist. Dieser Membra¬ nabsorber kann auch als Modul gefertigt werden, wobei die Membrane 12, 14, 15 und 13 aus Kunststoff oder Metall bestehen können.In Figure 3, 1 5 denotes the cover membrane, 1 6 the porous material with a waterproof cover 17 or mechanical protection 18. Below the cover membrane 15 there is the perforated membrane 14 and the rear wall 12 spaced therefrom. Perforated membrane and rear wall are components that can vibrate, i.e. not rigid plates. The membranes are excited to vibrate and thereby extract the energy from the sound. The holes in the hole membrane 14 vary between 3 and 10 mm. 13 represents the walls of the honeycomb Structure, 1 1 is the cavity that is usually filled with air. This membrane absorber can also be manufactured as a module, the membranes 12, 14, 15 and 13 being made of plastic or metal.
Weiterhin ist bekannt, großvolumige poröse Absorber mit Lochplatten abzudecken, wo¬ bei jedoch die Lochplatten nur einen mechanischen Schutz bewirken sollen. Diese porö¬ sen Absorber sind z.B. gepreßte Mineralfaserplatten, die hinter abgehängten Unter¬ decken aufgelegt sind, wobei oft aus Praktikabilität diese Faserplatten mit einer dünnen Alu-Folie verklebt oder in Kunststoff-Folie eingepackt werden. Da man weiß, daß da¬ durch das Eindringen der Schallwellen in den passiven Absorber weitgehend unterbun¬ den wird, wird die Folie durch "Nadelung" mit einer Vielzahl kleiner Löcher "schalldurchlässig" gemacht.It is also known to cover large-volume porous absorbers with perforated plates, but the perforated plates are only intended to provide mechanical protection. These porous absorbers are e.g. pressed mineral fiber boards, which are placed behind suspended ceilings, these fiber boards often being glued together with a thin aluminum foil for practical reasons or wrapped in plastic foil. Since it is known that the penetration of the sound waves into the passive absorber is largely prevented, the film is made "sound-permeable" by "needling" with a large number of small holes.
Bild 6 zeigt das Absorptionsspektrum aus Maa, D.-Y. "Theory and design of microper- forated panel sound absorbing constructions". Scientia Sinica 18 (1975), H. 1 , 55-71 , wobei eine mikroperforierte Platte vor einer starren Wand angeordnet ist. Diese theoreti¬ sche Untersuchung hat jedoch nirgends eine technische Anwendung gefunden.Figure 6 shows the absorption spectrum from Maa, D.-Y. "Theory and design of microperforated panel sound absorbing constructions". Scientia Sinica 18 (1975), H. 1, 55-71, a micro-perforated plate being arranged in front of a rigid wall. However, this theoretical investigation has never found any technical application.
Bisher ist es nur bei den o.g. Membran-Absorbern nach Bild 3 gelungen, ganz bestimmte Eigenschwingungen der ebenen Membranen, die sich der dahinter angeordneten Waben¬ struktur gut anpassen, anzuregen und dadurch für die gewünschte Absorption nutzbar zu machen. Bei den in der Raumakustik bisher eingesetzten Platten-Resonatoren mit ih¬ ren relativ dicken und damit steifen Platten, liegen die Frequenzen der "höheren Moden" der Platten vor dem jeweiligen Luftkissen soweit oberhalb der Frequenz der "Grund-Mo¬ de", daß sie bisher überhaupt nicht zur Absorption von Schallenergie aus dem Raum herangezogen werden. Werden diese Membranabsorber für Strömungskanäle, z.B. in Klimaanlagen, hergestellt, so werden die Platten üblicherweise dünner hergestellt. Die Schallwellen im Kanal werden dabei weit oberhalb der Masse/Feder-Resonanzfrequenz durch die wechselseitig (rund um den Kanal) angeordneten rein passiven Absorber von vorneherein viel stärker "geschluckt" als durch irgendwelche höheren Moden der Platten selbst. Selbst wenn letztere entsprechend den Plattenabmessungen in einem interessan¬ ten Frequenzbereich nahe der Grundfrequenz anregbar wären, könnten diese Schwin¬ gungen wegen der einseitig ganzflächig pressenden Mineralwolle-Füllung sich gar nicht richtig ausbilden. Dies war vermutlich auch der Grund, woraum nicht versucht worden ist, höhere Moden in dem mikroperforierten Absorber nach Bild 6 mit dem Ziel einer Verbreiterung des wirksamen Frequenzbereiches anregbar zu machen. So far, only the above-mentioned membrane absorbers according to Figure 3 have been able to excite very specific natural vibrations of the flat membranes, which adapt well to the honeycomb structure arranged behind them, and thereby make them usable for the desired absorption. In the case of the plate resonators previously used in room acoustics, with their relatively thick and therefore stiff plates, the frequencies of the "higher modes" of the plates in front of the respective air cushion are so far above the frequency of the "basic mode" that they have so far not been used at all to absorb sound energy from the room. If these membrane absorbers are manufactured for flow channels, for example in air conditioning systems, the plates are usually made thinner. The sound waves in the channel are "swallowed" much more strongly from the outset by the purely passive absorbers arranged mutually (around the channel) than by any higher modes of the plates themselves. Even if the latter in accordance with the plate dimensions an interesting frequency range close to the fundamental frequency could be excited, these vibrations could not develop properly due to the mineral wool filling pressing on one side over the entire surface. This was probably the reason why no attempt was made to make higher modes in the microperforated absorber according to Figure 6 excitable with the aim of broadening the effective frequency range.
unmittelbar auf den Lochplatten ganzτTä τϊg aüflϊegt- üϊe ?nme^ Anordnungen meßtechnisch im Schallraum immer wieder untersucht, da sie in vielen In¬ dustriebetrieben als Unterdecken verwendet werden. In Bild 7 ist eine derartige Anord¬ nung mit einem 0,5 mm dicken Stahlblech, 2,5 mm Lochdurchmesser und 1 6 % Loch¬ fiächenanteil, wobei das Blech etwa 200 mm unterhalb der Decke angeordnet ist, mit ihrem Absorptionsspektrum dargestellt. Man erkennt, daß die Vliese einen erheblichen Anteil an Absorption in höheren Frequenzbereichen aufweisen. Die Absorptionsfrequenz fχ/4 = Co / 4D (mit Co = Schallgeschwindigkeit und D Abstand der Platte zur Rück¬ wand) zeigt dabei erwartungsgemäß gegenüber der Frequenz χ/2 eine erhöhte Absorp¬ tion. Dies zeigt, daß die erzielte Absorption auf das auf der Unterdecke aufliegende Dämpfungsmaterial zurückzuführen ist. Die Luft in den Löchern der Unterdecke über¬ trägt lediglich die Schallschwingungen der auf die Lochbleche auftreffenden Schallwel¬ len in das dahinterliegende Dämpfungsmaterial. Erst dort wird die Schallenergie durch Reibung an den Fasern oder in den Poren des Dämmaterials in Wärme umgewandelt und dadurch die Schallenergie vermindert. Arrangements directly on the perforated plates are continuously examined by measurement technology in the sound space, since they are used in many industrial operations as suspended ceilings. Such an arrangement with a 0.5 mm thick steel sheet, 2.5 mm hole diameter and 16% hole area, the sheet being arranged approximately 200 mm below the ceiling, is shown with its absorption spectrum in FIG. It can be seen that the nonwovens have a considerable amount of absorption in higher frequency ranges. As expected, the absorption frequency fχ / 4 = Co / 4D (with Co = speed of sound and D distance of the plate from the rear wall) shows an increased absorption compared to the frequency χ / 2. This shows that the absorption achieved is due to the damping material lying on the suspended ceiling. The air in the holes in the false ceiling only transmits the sound vibrations of the sound waves striking the perforated sheets into the damping material located behind them. Only there is the sound energy converted into heat by friction on the fibers or in the pores of the insulating material, thereby reducing the sound energy.
Die Probleme der konventionellen Schallabsorber, insbesondere da neuere Untersuchun¬ gen ergeben haben, daß das schalldämmende Material, z.B. Steinwolle oder Glaswolle, kanzerogen sei, sowie mögliche Feuchtigkeitsaufnahme, Staubentwicklung und Abrieb, bewirkten, daß nach neuen Möglichkeiten der Schalldämpfung gesucht wird. Anderer¬ seits sind die Membranabsorber schon seit längerer Zeit bekannt, da sie jedoch teurer gegenüber den relativ preiswerten Materialien aus Steinwolle oder Glaswolle sind, haben sie sich nicht durchsetzen können. Auch sind die Membranabsorber, sei es in ihrer be¬ cherförmigen Ausgestaltung oder in der früheren Bauweise mit zerklüfteten Oberflächen - zur Verbreiterung des Absorptionsspektrums - demgegenüber relativ kompliziert und daher teuer. Die erfindungsgemäße Unterdecke dagegen ist einfach herzustellen, einfach anzubringen und nicht teuer, da sie nur aus den fein perforierten Lochblechen und den seitlichen Be¬ grenzungsflächen des Luftzwischenraums und der ebenen Rückwand bzw. Platte be¬ steht. Die Löcher mit einem Durchmesser von vorzugsweise von 0,4 - 0,8 mm dienen nicht als "Durchbrechungen" zum möglichst ungehinderten Eindringen der Schallenergie in den Luftzwischenraum zwischen Unterdecke und Decke. Der für den erfindungsge¬ mäßen Zweck äußerst geringe Lochfiächenanteil von maximal 5%, vorzugsweise nur 0,5 - 3 %, wäre für die (passive) Übertragung von Schallenergie aus dem Raum in den Zwischenraum noch weniger geeignet als die Durchbrechungen nach dem Stand der Technik, da diese Lochflächenanteile zwischen 1 5 - 50 % aufweisen. Stattdessen wirkt die Luft in den Löchern der mikroperforierten Lochbleche gemäß der Erfindung zusam¬ men mit den Luftkissen in dem Zwischenraum als ein ganz spezielles Masse-Feder- Schwingsystem, das durch das auf das mikroperforierte Lochblech auftreffende Schall¬ feld (reaktiv) zu Schwingungen im jeweils interessierenden Frequenzbereich anregbar gemacht wird. Dabei erfolgt die Abstimmung auf den jeweiligen Frequenzbereich durch ganz gezielte Wahl der geometrischen Parameter, insbesondere der Dicke der Lochble¬ che, Dicke des Luftzwischenraüms, Durchmesser der Löcher, Abstände der Löcher, Form der Löcher, Anteil der Perforation in der Gesamtfläche des Lochbleches und Form¬ gebung der Lochbleche.The problems of the conventional sound absorbers, especially since recent investigations have shown that the sound-absorbing material, for example rock wool or glass wool, is carcinogenic, as well as possible moisture absorption, dust development and abrasion, have the result that new possibilities for sound absorption are sought. On the other hand, the membrane absorbers have been known for a long time, but since they are more expensive than the relatively inexpensive materials made of rock wool or glass wool, they have not been able to establish themselves. In contrast, the membrane absorbers, be it in their cup-shaped configuration or in the earlier construction with jagged surfaces - to broaden the absorption spectrum - are relatively complicated and therefore expensive. The false ceiling according to the invention, on the other hand, is simple to manufacture, easy to install and not expensive, since it consists only of the finely perforated perforated plates and the lateral boundary surfaces of the air space and the flat rear wall or plate. The holes with a diameter of preferably 0.4-0.8 mm do not serve as "breakthroughs" for the unimpeded penetration of the sound energy into the air space between the ceiling and ceiling. The extremely small perforation area fraction of a maximum of 5%, preferably only 0.5-3%, for the purpose according to the invention, would be even less suitable for the (passive) transmission of sound energy from the room into the intermediate space than the openings according to the prior art , because these perforated areas have between 1 5 - 50%. Instead, the air in the holes of the microperforated perforated sheets according to the invention, together with the air cushions in the intermediate space, acts as a very special mass-spring oscillation system, which (reactive) to vibrations in each case due to the sound field impinging on the microperforated perforated sheet frequency range of interest is made stimulable. The tuning to the respective frequency range takes place through a very specific choice of the geometric parameters, in particular the thickness of the perforated plate, the thickness of the air space, the diameter of the holes, the spacing of the holes, the shape of the holes, the proportion of perforation in the total area of the perforated plate and the shape ¬ the perforated plates.
insbesondere wird mit der Wahl der Lochgeometrie nicht nur der Frequenzbereich der Absorption, sondern auch die Wirksamkeit des Absorbers in diesem Frequenzbereich festgelegt. Die notwendige Dämpfung wird nicht wie nach Abb. 1 a oder Abb. 7, durch Anbringung von zusätzlichen porösen oder faserigen "Schluckstoffen" bewerkstelligt, sondern ganz ausschließlich durch Reibung der Luftteilchen in den engen Löchern an de¬ ren Wänden. Der gewünschte Frequenzbereich und die erforderliche Reibung können so optimal auf den jeweiligen Einsatzfall eingestellt werden, so daß eine fast vollständige Absorption der auftreffenden Schallenergie möglich wird. Die Platten sind dabei so dick und stabil aufgebaut, daß sie nicht von den auftreffenden Schallwellen zu Schwingun¬ gen angeregt werden können. Ohne die Mikroperforation der erfindungsgemäßen Art würde die Platte, sofern sie schwingungsfähig ausgebildet wäre, wie in Bild 8 darge¬ stellt, als Feder-Masse-System allenfalls bei sehr tiefen Frequenzen und nur schmalban- dig mitschwingen, gemäß der gestrichelten Kurve 1 , und dadurch absorbieren. Die Mi¬ kroperforation, Kurve 2, bewirkt dagegen eine relativ breitbandige Absorption bei mittle¬ ren und höheren Frequenzen gemäß Bild 8, weil nur die leichtere Luft in den Löchern als Masse mit der Luft in dem Hohlraum als Feder mitschwingt. Mit zwei hintereinander angeordneten starren mikroperforierten Platten läßt sich, wie Bild 9 zeigt, eine noch breitere Absorptionskurve erreichen, ohne daß Dämpfungsmaterial zusätzlich einge bracht werden müßte, oder feste Teile nach Art eines Resonators mitschwingen mü߬ ten.in particular, the choice of hole geometry not only determines the frequency range of the absorption, but also the effectiveness of the absorber in this frequency range. The necessary damping is not achieved by attaching additional porous or fibrous "swallowing materials" as shown in Fig. 1 a or Fig. 7, but entirely by friction of the air particles in the narrow holes on their walls. The desired frequency range and the required friction can be optimally adjusted to the respective application, so that an almost complete absorption of the incident sound energy is possible. The plates are so thick and stable that they cannot be excited to vibrate by the impinging sound waves. Without the microperforation of the type according to the invention, the plate, if it were designed to be capable of oscillation, as shown in FIG. 8, would at best oscillate as a spring-mass system at very low frequencies and only narrow band, according to the dashed curve 1, and thereby absorb. The microperforation, curve 2, on the other hand, causes a relatively broadband absorption at medium and higher frequencies as shown in Figure 8, because only the lighter air in the holes as a mass resonates with the air in the cavity as a spring. With two in a row arranged rigid micro-perforated plates, as shown in Figure 9, an even broader absorption curve can be achieved without additional damping material having to be introduced or without having to vibrate solid parts in the manner of a resonator.
Abb. 10a - e zeigt die erfindungsgemäße Unterdecke, wobei Bild 10e die Unterdecke als Modul zeigt, das dann kassettenförmig unter die Decke als Unterdecke angebracht wird.Fig. 10a-e shows the false ceiling according to the invention, wherein Fig. 10e shows the false ceiling as a module, which is then installed in a cassette shape under the ceiling as a false ceiling.
In Abb. 10 sind mit 1 und 6 die ebene mikroperforierte Platte aus Blech oder hartem Kunststoff mit Löchern 4 und 7 eine ebene schwingfähige Platte als Rückwand des Moduls bezeichnet. 3b ist der starre Rahmen des Moduls und 1 1 die Hohlräume oder Zwischenräume, die mit Luft gefüllt sind. 3 sind Abhängungen und 3a z.B. Balken oder eine Unterkonstruktion zum Tragen der Unterdecke bzw. Vorsatzschale. Da die Platten oder Module in etwa 1 Quadratmeter großen Einheiten geliefert werden, können über die Abhängungen 3 oder Unterkonstruktion 3a verschiedene Abstände der Unterdecke D zur Rückwand realisiert werden, wodurch das Absorptionsspektrum verbreitert wird. 2 sind Versteifungen der Platten 1 , 6, die natürlich auch über die gesamte Länge und Breite der Platte angeordnet sein können, so daß diese nicht schwingt.In Fig. 10, 1 and 6 denote the flat micro-perforated plate made of sheet metal or hard plastic with holes 4 and 7, a flat oscillatable plate as the rear wall of the module. 3b is the rigid frame of the module and 1 1 the cavities or spaces that are filled with air. 3 are suspensions and 3a e.g. Beams or a substructure for supporting the false ceiling or facing shell. Since the panels or modules are supplied in units of approximately 1 square meter, different distances between the ceiling D and the rear wall can be realized via the suspensions 3 or substructure 3a, thereby broadening the absorption spectrum. 2 are stiffeners of the plates 1, 6, which of course can also be arranged over the entire length and width of the plate so that it does not vibrate.
Bild 1 1 zeigt das Spektrum einer mikroperforierten Platte aus Aluminium bei einer Dicke der Platte t von 0,1 5 mm, Lochdurchmesser 0,16 mm. Lochabstand 1 ,2 mm und Dicke der Luftschicht im Zwischenraum zwischen Platte und Rückwand oder Decke von 600 mm und einem durch Lochdurchmesser und Abstand gegebenem Lochfiächenanteil p von 1 ,4 %.Figure 1 1 shows the spectrum of a microperforated plate made of aluminum with a plate thickness t of 0.1 5 mm, hole diameter 0.16 mm. Hole spacing 1.2 mm and thickness of the air layer in the space between the plate and the rear wall or ceiling of 600 mm and a hole area fraction p of 1.4% given by the hole diameter and distance.
Bei einer gewünschten Resonanzfrequenz fp = 54 x 10^ σ/D • f • Km nach der Theorie von Maa, wobei σ Lochfläche / Gesamtfläche, D die Luftschichtdicke im Zwi¬ schenraum und Km eine Konstante, die proportional ist zum Lochdurchmesser multipli¬ ziert mit der Wurzel aus f, kann man dann die Parameter Plattendicke, Lochfiächenanteil bzw. Anzahl der Löcher bei einem bestimmten Lochdurchmesser und Luftzwischenraum D in gewissen Grenzen variieren. So ergibt bei einer 3 mm dicken Aluminiumplatte, ei¬ nem Lochfiächenanteil p = 1 ,4 und Luftzwischenraum D = 50 mm sich ein Loch¬ durchmesser d von 0,45 mm. Bei gleich großen Löchern, aber erhöhter Anzahl, ver¬ schiebt sich nach der Theorie die Resonanzfrequenz zu höheren Frequenzen. Dies kann man auch erreichen mit kleineren Löchern. Eine Verbreiterung des Spektrums erhält man weiterhin, wenn die Platte gering nach unten gewölbt ist, z.B. bei einer Plattenbreite von 1000 mm und einer Wölbung von 60 - 80 mm. At a desired resonance frequency fp = 54 x 10 ^ σ / D • f • K m according to the theory of Maa, where σ hole area / total area, D the air layer thickness in the interspace and K m a constant that is proportional to the hole diameter multipli¬ adorned with the root of f, one can then vary the parameters of plate thickness, percentage of hole area or number of holes for a certain hole diameter and air gap D within certain limits. With a 3 mm thick aluminum plate, a hole area fraction p = 1, 4 and air gap D = 50 mm, a hole diameter d of 0.45 mm results. If the holes are of the same size but the number is increased, the resonance frequency shifts to higher frequencies according to the theory. This can also be achieved with smaller holes. A broadening of the spectrum is also obtained when the plate is slightly curved downwards, for example with a plate width of 1000 mm and a curvature of 60-80 mm.

Claims

Patentansprüche Claims
1. Unterdecke für Räume in Gebäuden, die zur Absorption von Schallwellen aus¬ gebildet ist und perforierte Metallplatten aufweist,1. suspended ceiling for rooms in buildings, which is designed to absorb sound waves and has perforated metal plates,
dadurch gekennzeichnet,characterized,
daß eine abgehängte Platte (1) vorgesehen ist, die derart hart ausgebildet ist, daß sie nicht schwingungsfähig ist, und eine Vielzahl von gleichmäßig oder ungleichmäßig angeordneten Löchern (4) mit einem Durchmesser d von 0,2 - 3 mm und einem Lochfiächenanteil von weniger als 4% aufweist, und die Luft in den Löchern (4) mit der Luft in den darüber befindlichen Hohlräumen (11) ein Feder-Masse-System bildet und die Platte (1) mittels längenvariierbaren Abhängungen (3) oder Unterkonstruktionen (3a) befestigt ist.that a suspended plate (1) is provided, which is designed so hard that it is not capable of vibrating, and a plurality of uniformly or unevenly arranged holes (4) with a diameter d of 0.2-3 mm and a hole area percentage of less than 4%, and the air in the holes (4) forms a spring-mass system with the air in the cavities (11) above it and fastens the plate (1) by means of variable-length suspensions (3) or substructures (3a) is.
2. Unterdecke nach Anspruch 1 ,2. false ceiling according to claim 1,
dadurch gekennzeichnet,characterized,
daß die Löcher (4) einen Durchmesser d von 0,1 - 1 mm, vorzugsweise von 0,2 - 0,8 mm, und einen Lochfiächenanteil von weniger als 2% aufweisen.that the holes (4) have a diameter d of 0.1-1 mm, preferably 0.2-0.8 mm, and a hole area fraction of less than 2%.
3. Unterdecke nach Anspruch 1 ,3. suspended ceiling according to claim 1,
dadurch gekennzeichnet,characterized,
daß mehrere Platten (1, 6) vorgesehen sind und diese zur Decke hin in größer werdendem Abstand D angeordnet sind. Unterdecke nach den Ansprüchen 1 - 3,that several plates (1, 6) are provided and these are arranged at an increasing distance D from the ceiling. Suspended ceiling according to claims 1-3,
dadurch gekennzeichnet,characterized,
daß die Platten (1,6) aus Kunststoff, Verbundwerkstoff oder Metall bestehen.that the plates (1,6) consist of plastic, composite material or metal.
Unterdecke nach den Ansprüchen 1 -4,Suspended ceiling according to claims 1 -4,
dadurch gekennzeichnet,characterized,
daß die Unterdecke zur Vermeidung der Durchhängung mit Versteifungen (2) versehen ist.that the false ceiling is provided with stiffeners (2) to avoid sagging.
Unterdecke nach den Ansprüchen 1 -5,Suspended ceiling according to claims 1 -5,
dadurch gekennzeichnet,characterized,
daß die Platten (1,6) gewölbt mit der Wölbung nach unten ausgebildet sind.that the plates (1,6) are curved with the curvature down.
Unterdecke nach den Ansprüchen 1 -6,Suspended ceiling according to claims 1-6,
dadurch gekennzeichnet,characterized,
daß die Platten (1 , 6) mit seitlichem Rahmen (3b) und einer ebenen Rück¬ wand (7) als Modul ausgebildet sind. that the plates (1, 6) with a side frame (3b) and a flat rear wall (7) are designed as a module.
EP94915072A 1993-04-20 1994-04-20 False ceiling Expired - Lifetime EP0697051B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9430031T SI0697051T1 (en) 1993-04-20 1994-04-20 False ceiling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4312885A DE4312885A1 (en) 1993-04-20 1993-04-20 Counter-ceiling
DE4312885 1993-04-20
PCT/EP1994/001227 WO1994024382A1 (en) 1993-04-20 1994-04-20 False ceiling

Publications (2)

Publication Number Publication Date
EP0697051A1 true EP0697051A1 (en) 1996-02-21
EP0697051B1 EP0697051B1 (en) 1997-01-02

Family

ID=6485917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94915072A Expired - Lifetime EP0697051B1 (en) 1993-04-20 1994-04-20 False ceiling

Country Status (9)

Country Link
US (1) US5740649A (en)
EP (1) EP0697051B1 (en)
JP (1) JPH09502490A (en)
CN (1) CN1074492C (en)
AT (1) ATE147118T1 (en)
DE (2) DE4312885A1 (en)
DK (1) DK0697051T3 (en)
ES (1) ES2098938T3 (en)
GR (1) GR3022213T3 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315759C1 (en) * 1993-05-11 1994-05-05 Fraunhofer Ges Forschung Sound-absorbent glazing for building - comprises perforated plate with small-diameter holes close together
JP2815542B2 (en) * 1994-08-31 1998-10-27 三菱電機ホーム機器株式会社 Sound absorption mechanism using porous structure
DE19626676A1 (en) * 1996-07-03 1998-01-08 Kaefer Isoliertechnik Device for reducing sound levels in buildings
DE19730355C1 (en) * 1997-07-15 1999-03-18 Fraunhofer Ges Forschung Noise absorber for air duct in building glazing
DE19750102A1 (en) 1997-11-12 1999-06-02 Stankiewicz Gmbh Gas-flowed line with sound absorption effect
DE19754107C1 (en) 1997-12-05 1999-02-25 Fraunhofer Ges Forschung Sound absorber, for suspension from ceiling
DE19839973A1 (en) 1998-09-02 2000-03-23 Fraunhofer Ges Forschung Plate-shaped component
JP2000273980A (en) * 1999-03-23 2000-10-03 Takenaka Komuten Co Ltd Roof for large space building
JP2000330571A (en) * 1999-05-21 2000-11-30 Nok Vibracoustic Kk Sound absorbing structure
AU3300900A (en) * 2000-03-20 2001-10-03 Newmat, S.A. Flexible sheet fabrics for tensile structures, method for making same, tensile false ceilings comprising same
DE20006946U1 (en) 2000-04-14 2001-08-16 FAIST Automotive GmbH & Co. KG, 86381 Krumbach Broadband sound absorbing component for walls, floors and ceilings
DE10019543C2 (en) * 2000-04-20 2002-03-07 Fraunhofer Ges Forschung Supply air
WO2002089110A1 (en) * 2001-04-27 2002-11-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Silencer
US7140426B2 (en) 2003-08-29 2006-11-28 Plascore, Inc. Radiant panel
US8617715B2 (en) * 2003-12-06 2013-12-31 Cpfilms Inc. Fire retardant shades
NO322685B1 (en) * 2005-03-23 2006-11-27 Deamp As Plate Element
US20090151729A1 (en) * 2005-11-08 2009-06-18 Resmed Limited Nasal Assembly
JP2007256750A (en) * 2006-03-24 2007-10-04 Yamaha Corp Sound absorption material, method of manufacturing the same, and sound absorption panel
US9254370B2 (en) 2006-11-14 2016-02-09 Resmed Limited Frame and vent assembly for mask assembly
DK1950357T3 (en) * 2007-01-29 2010-11-01 Albers & Co Acoustic elements
JP5326472B2 (en) * 2007-10-11 2013-10-30 ヤマハ株式会社 Sound absorption structure
DE202007017699U1 (en) * 2007-12-19 2009-02-26 VS Vereinigte Spezialmöbelfabriken GmbH & Co. KG partition element
US20090181242A1 (en) * 2008-01-11 2009-07-16 Enniss James P Exterior window film
EP2085962A2 (en) * 2008-02-01 2009-08-05 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorbing properties
JP5402025B2 (en) * 2008-02-01 2014-01-29 ヤマハ株式会社 Sound absorption structure and acoustic room
CN101787750B (en) * 2009-12-18 2011-04-20 杭州电子科技大学 Sound-absorbing and noise-decreasing device based on ferroelectric material
US8999509B2 (en) 2011-04-27 2015-04-07 Cpfilms Inc. Weather resistant exterior film composite
CH704894A2 (en) 2011-05-04 2012-11-15 H D S Technology Ag Room boundary structure, methods for producing the same and for that element.
CN104299608A (en) * 2013-07-17 2015-01-21 青钢金属建材(上海)有限公司 Sound absorbing noise reduction assembly and method thereof
CN105161089B (en) * 2015-06-17 2019-10-15 成都斯铂润音响设备有限公司 A kind of sound absorber
EP3535221A1 (en) 2016-11-04 2019-09-11 Corning Incorporated Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
CN110024023B (en) * 2016-11-29 2020-08-07 富士胶片株式会社 Sound-proof structure
DE202023001783U1 (en) 2023-08-18 2023-09-20 Ifl Ingenieurbüro Für Leichtbau Gmbh & Co Kg Device for impact sound insulation of a container in a container building

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752017A (en) * 1956-06-26 Light diffusing ceiling construction
DD83442A (en) *
US2729431A (en) * 1951-11-17 1956-01-03 George P Little Company Inc Air conditioning and sound deadening ceiling installation
NL285145A (en) * 1961-11-08
US3253082A (en) * 1964-08-28 1966-05-24 Nova Ind Inc Electrical shielding structure
JPS5247809U (en) * 1975-10-02 1977-04-05
DE3032269A1 (en) * 1980-08-27 1982-04-08 Hoechst Ag, 6000 Frankfurt RESONATOR SOUND ABSORPTION ELEMENT
US4529637A (en) * 1983-08-24 1985-07-16 Hankel Keith M Acoustical material
SU1308728A1 (en) * 1985-08-30 1987-05-07 Центральный Научно-Исследовательский И Проектный Институт Типового И Экспериментального Проектирования Комплексов И Зданий Культуры,Спорта И Управления Им.Б.С.Мезенцева Transluscent suspension ceiling
DE3705916C2 (en) * 1987-02-25 1996-06-13 Profil Vertrieb Gmbh Substructures for vaulted false ceilings
JP2805630B2 (en) * 1989-03-20 1998-09-30 三晃金属工業株式会社 Sound absorbing insulation roof and ceiling structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9424382A1 *

Also Published As

Publication number Publication date
ATE147118T1 (en) 1997-01-15
DE59401480D1 (en) 1997-02-13
EP0697051B1 (en) 1997-01-02
ES2098938T3 (en) 1997-05-01
DE4312885A1 (en) 1994-10-27
CN1121364A (en) 1996-04-24
DK0697051T3 (en) 1997-01-20
CN1074492C (en) 2001-11-07
JPH09502490A (en) 1997-03-11
US5740649A (en) 1998-04-21
GR3022213T3 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
EP0697051B1 (en) False ceiling
US6675551B1 (en) Plate-shaped constructional element and method
DE19861016C2 (en) Structured molded bodies for sound absorption
EP0750777A1 (en) Foil sound absorber
DE102016120554A1 (en) Multifunctional ceiling construction
WO1994024382A1 (en) False ceiling
EP3455427B1 (en) Sound absorber arrangement and sound-damped room
CN114991329A (en) Acoustic dry wall board
DE29815712U1 (en) Sound absorber
RU2639213C2 (en) Multilayer acoustic panel
RU2362855C1 (en) Noise-attenuating panel
RU28502U1 (en) Double-walled panel of modular type
DE19730355C1 (en) Noise absorber for air duct in building glazing
DE10151474A1 (en) Sound absorber incorporates porous absorber layer on front side of which are formed strip-shaped, soundtight covers (3) of specific width, separated by narrow gaps
DE102016007248B4 (en) Sound absorption device for reducing sound pressure levels
JP3045294B1 (en) Sound absorbing wall
CN210531248U (en) Fan silencer
DE202013104545U1 (en) Device for active and / or passive influencing of room acoustics
EP1839296A1 (en) Sound-absorbing box
DE2437947A1 (en) ARRANGEMENT FOR ABSORPTION OF AIR SOUND
RU2622270C1 (en) Air circuit with acoustic treatment
CN217079210U (en) Broadband sound-absorbing noise-reducing composite board
DE9320543U1 (en) Sound absorbing component
CZ306868B6 (en) Two-layer acoustic cladding
AT515580B1 (en) Sound absorber with lower frequency range

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950823

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 950823

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960325

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950823

REF Corresponds to:

Ref document number: 147118

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE GEORG ROEMPLER UND ALDO ROEMPLER

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 71394

REF Corresponds to:

Ref document number: 59401480

Country of ref document: DE

Date of ref document: 19970213

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3022213

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098938

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Effective date: 19971031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040406

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040413

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040422

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040423

Year of fee payment: 11

Ref country code: AT

Payment date: 20040423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040426

Year of fee payment: 11

Ref country code: CH

Payment date: 20040426

Year of fee payment: 11

Ref country code: BE

Payment date: 20040426

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040427

Year of fee payment: 11

Ref country code: DK

Payment date: 20040427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20040428

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20040429

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20040430

Year of fee payment: 11

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050420

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050421

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051020

BERE Be: lapsed

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051230

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050421

BERE Be: lapsed

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20050430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130423

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59401480

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59401480

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140423