EP0695938A1 - Procedure for determing the percentage constituent of a material composed of at least two distinct constituents - Google Patents

Procedure for determing the percentage constituent of a material composed of at least two distinct constituents Download PDF

Info

Publication number
EP0695938A1
EP0695938A1 EP95401821A EP95401821A EP0695938A1 EP 0695938 A1 EP0695938 A1 EP 0695938A1 EP 95401821 A EP95401821 A EP 95401821A EP 95401821 A EP95401821 A EP 95401821A EP 0695938 A1 EP0695938 A1 EP 0695938A1
Authority
EP
European Patent Office
Prior art keywords
sample
constituent
constituents
thermal capacity
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95401821A
Other languages
German (de)
French (fr)
Inventor
Henri François Chayrigues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Transmission Systems SAS
Original Assignee
Hispano Suiza SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hispano Suiza SA filed Critical Hispano Suiza SA
Publication of EP0695938A1 publication Critical patent/EP0695938A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4846Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample
    • G01N25/4866Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample by using a differential method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • the purpose of the proposed method is to satisfy the existing need and is therefore essentially a method of determining the percentage of a constituent of a material composed of at least two distinct constituents.
  • the thermal capacity of a sample of said material or a physical quantity proportional to this thermal capacity is determined, and, from knowledge of the thermal capacity of each of the two said constituents or of said quantity which is proportional to it, a first difference is calculated between the thermal capacities of the sample and of said constituent or between said physical quantities which are respectively proportional thereto, and a second difference between the thermal capacities of the two said constituents of the material or between said physical quantities which are respectively proportional to it, and, the percentage of said constituent is determined by calculating the ratio of the first to the second difference.
  • the main advantage of the methods in accordance with the invention resides in the ease and speed of their implementation, by the use of differential calorimeters, preferably associated with calculating machines, then constituting specialized apparatus capable, from a single measure, to determine the percentage sought.
  • FIGS. 1 and 2 represent the curves recorded according to two variant methods according to the invention.
  • the main device used is a differential calorimeter which allows the recording of the curves represented in the variation figures as a function of the temperature T in degree C of the function.
  • dQ dt derived from the amount of heat transferred to a material over time, in millicalories / second.
  • the differential calorimeter used was the DSC4 type from the manufacturer PERKIN-ELMER.
  • the indicated values of temperature rise rate and cooling rate and mass of the sample are indicative values. Those of the initial and final temperatures were chosen so that the thermal capacities CP are substantially constant.
  • a base line LB is acquired and specific to the device used.
  • the curves CC1 and EI are recorded and correspond, one CC1 to a first known constituent of the material, the other EI to a sample of the unknown material. These three curves allow the calculation of the thermal capacity CPEI of the sample of the unknown material, and to deduce therefrom the percentage of the first known constituent that it contains.
  • the percentage PCC1 of the known constituent CC1, which the sample of the material EI contains, is proportional to 100 times the ratio of the absolute value of the difference
  • known thermal capacities of the first and second known constituents of said material: PCC1
  • the previous examples correspond to actual measurements made using the "PERKIN-ELMER" differential calorimeter. It is possible to optimize the methods described by preferably using only one measurement.
  • the baseline is acquired by means of a internal calibration, which the device has, and the values of the known thermal capacities CC1 and CC2 of the first and second known constituents of the material are introduced from a computer keyboard, or else are stored beforehand.
  • the thermal capacities CPCC1 and / or CPCC2 are not known beforehand, to measure them by means of the apparatus itself during preliminary measurements.
  • the new claimed methods allow rapid determinations (5 minutes), and receive all the applications in which the thermal capacities of the constituents are different; moreover, the samples can have small dimensions (of the order of a gram, or even less than a gram), can also have irregular shapes, which is an advantage compared to certain known methods according to which the thickness of the the sample is measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A differential calorimeter is used to produce graphs relating rate of heat transference to time. The graphs comprise a baseline (LB), a curve (CC1) for a first known constituent of the sample and a curve (E1) for the sample. The thermal capacity of the sample (CPEI) is first determined using masses analysed, known thermal capacity of the first constituent and the ratio of surfaces (A1,C1,C1l,A1') and A1',B1,B1',A1') cut off by vertical intercepts of the graphs. The percentage of the first constituent in the sample is then found from the ratio of the difference in first constituent and sample thermal capacities to the difference of the two constituents thermal capacities.

Description

Lors de la production d'un certain nombre de matériaux comprenant au moins deux constituants, il est utile de connaître la composition du matériau au cours de son élaboration, afin de pouvoir obtenir le matériau correspondant avec précision à l'utilisation envisagée. Tel est le cas, par exemple, des aciers, ou plus généralement des alliages métalliques. Tel est aussi le cas des matériaux composites constitués par une résine plastique au sein de laquelle sont placées des fibres de renforcement.During the production of a certain number of materials comprising at least two constituents, it is useful to know the composition of the material during its preparation, in order to be able to obtain the material corresponding precisely to the intended use. This is the case, for example, of steels, or more generally of metal alloys. This is also the case for composite materials consisting of a plastic resin within which are placed reinforcing fibers.

En ce qui concerne les alliages métalliques, est connu un procédé d'observation de la température de l'alliage en fusion, notamment de l'abaissement de la température de solidification de l'alliage en fonction du pourcentage d'éléments complémentaires ajoutés pour déterminer ce pourcentage. Les déterminations de pourcentages de constituants par ce procédé sont généralement longues, de mise en oeuvre malaisée, voire dangereuse. D'autres procédés existent, - chimiques, par attaques acides, ou, physiques, par pyrolyse, mesures de volume, ou de densité -, et présentent globalement des inconvénients analogues et pour certains ne prennent pas en compte les porosités.With regard to metallic alloys, a method of observing the temperature of the molten alloy is known, in particular the lowering of the solidification temperature of the alloy as a function of the percentage of additional elements added to determine this percentage. Determinations of percentages of constituents by this process are generally long, difficult to implement, even dangerous. Other methods exist, - chemical, by acid attacks, or, physical, by pyrolysis, measurements of volume, or density -, and generally have similar drawbacks and for some do not take the porosities into account.

Le besoin existe donc de pouvoir déterminer les pourcentages de la composition d'un matériau comprenant plusieurs constituants, de manière rapide, aisée. Ceci est particulièrement manifeste en ce qui concerne la teneur en fibres des matériaux plastiques composites.There is therefore a need to be able to determine the percentages of the composition of a material comprising several constituents, quickly and easily. This is particularly evident with regard to the fiber content of composite plastic materials.

Le procédé proposé a pour but de satisfaire le besoin existant et est donc essentiellement un procédé de détermination du pourcentage d'un constituant d'un matériau composé d'au moins deux constituants distincts.The purpose of the proposed method is to satisfy the existing need and is therefore essentially a method of determining the percentage of a constituent of a material composed of at least two distinct constituents.

Selon le procédé conforme à l'invention, on détermine la capacité thermique d'un échantillon dudit matériau ou une grandeur physique proportionnelle à cette capacité thermique, et, à partir de la connaissance de la capacité thermique de chacun des deuxdits constituants ou de ladite grandeur physique qui y est proportionnelle, on calcule une première différence entre les capacités thermiques de l'échantillon et dudit constituant ou entre lesdites grandeurs physiques qui y sont respectivement proportionnelles, et, une deuxième différence entre les capacités thermiques des deuxdits constituants du matériau ou entre lesdites grandeurs physiques qui y sont respectivement proportionnelles, et, on détermine le pourcentage dudit constituant en calculant le rapport de la première à la deuxième différence.According to the method according to the invention, the thermal capacity of a sample of said material or a physical quantity proportional to this thermal capacity is determined, and, from knowledge of the thermal capacity of each of the two said constituents or of said quantity which is proportional to it, a first difference is calculated between the thermal capacities of the sample and of said constituent or between said physical quantities which are respectively proportional thereto, and a second difference between the thermal capacities of the two said constituents of the material or between said physical quantities which are respectively proportional to it, and, the percentage of said constituent is determined by calculating the ratio of the first to the second difference.

Les avantageuses dispositions suivantes sont en outre de préférence adoptées:

  • pour déterminer la capacité thermique dudit échantillon, on établit la correspondance entre la température d'une première masse de l'échantillon et d'une deuxième masse munie dudit constituant, et, lesdites grandeurs physiques qui sont respectivement proportionnelles à leurs capacités thermiques, puis, pour une température déterminée, on mesure lesdites grandeurs physiques, et, enfin, on détermine la capacité thermique massique de l'échantillon en calculant le rapport d'un premier produit de ladite grandeur physique relative à l'échantillon, par ladite deuxième masse du constituant, par la capacité thermique connue du constituant à un deuxième produit de ladite grandeur physique relative audit constituant par ladite première masse de l'échantillon;
  • on acquiert la connaissance de la capacité thermique de chacun desdits constituants ou de ladite grandeur physique qui y est proportionnelle, en réalisant une détermination analogue à celle de la capacité thermique dudit échantillon ou de la grandeur physique qui y est proportionnelle;
  • on établit la correspondance entre la température d'une même masse déterminée de chacun desdits constituants et de l'échantillon, et, lesdites grandeurs physiques qui sont respectivement proportionnelles à leurs capacités thermiques, puis, pour une température déterminée, on mesure lesdites grandeurs physiques, et enfin, on détermine ledit pourcentage d'un desdits constituants du matériau en calculant le rapport de la différence des grandeurs physiques relatives à l'échantillon et audit constituant à la différence des grandeurs physiques relatives aux deuxdits constituants.
The following advantageous arrangements are also preferably adopted:
  • to determine the thermal capacity of said sample, the temperature between a first mass of the sample and a second mass provided with said constituent is established, and said physical quantities which are respectively proportional to their thermal capacities, then, for a determined temperature, said physical quantities are measured, and finally, the mass thermal capacity of the sample is determined by calculating the ratio of a first product of said physical quantity relative to the sample, by said second mass of the constituent , by the known thermal capacity of the constituent to a second product of said physical quantity relative to said constituent by said first mass of the sample;
  • acquiring knowledge of the thermal capacity of each of said constituents or of said physical quantity which is proportional thereto, by carrying out a determination analogous to that of the thermal capacity of said sample or of the physical quantity which is proportional thereto;
  • the correspondence between the temperature of the same determined mass of each of said constituents and of the sample is established, and said physical quantities which are respectively proportional to their thermal capacities, then, for a determined temperature, said physical quantities are measured, and finally, said percentage of one of said components of the material is determined by calculating the ratio of the difference of the physical quantities relating to the sample and to said component to the difference of the physical quantities relating to the two said components.

L'avantage principal des procédés conformes à l'invention réside dans la facilité et la rapidité de leurs mises en oeuvre, par utilisation de calorimètres différentiels, de préférence associés à des machines calculatrices, constituant alors des appareils spécialisés susceptibles, à partir d'une mesure unique, de déterminer le pourcentage recherché.The main advantage of the methods in accordance with the invention resides in the ease and speed of their implementation, by the use of differential calorimeters, preferably associated with calculating machines, then constituting specialized apparatus capable, from a single measure, to determine the percentage sought.

L'invention sera mieux comprise et des caractéristiques secondaires et leurs avantages apparaîtront au cours de la description de deux réalisations données ci-dessous à titre d'exemple.The invention will be better understood and secondary characteristics and their advantages will become apparent during the description of two embodiments given below by way of example.

Il est entendu que la description et les dessins ne sont donnés qu'à titre indicatif et non limitatif.It is understood that the description and the drawings are given for information only and are not limiting.

Il sera fait référence aux dessins annexés, dans lesquels les figures 1 et 2 représentent les courbes enregistrées selon deux variantes de procédés conformes à l'invention.Reference will be made to the appended drawings, in which FIGS. 1 and 2 represent the curves recorded according to two variant methods according to the invention.

Les deux exemples de mise en oeuvre du procédé conforme à l'invention sont explicités en regard des figures 1 et 2.The two examples of implementation of the method according to the invention are explained with reference to FIGS. 1 and 2.

L'appareil principal utilisé est un calorimètre différentiel qui permet l'enregistrement des courbes représentées sur les figures de variation en fonction de la température T en degré C de la fonction dQ dt

Figure imgb0001
, dérivée de la quantité de chaleur transférée à un matériau par rapport au temps, en millicalorie/seconde. Dans les exemples représentés, le calorimètre différentiel utilisé était le type DSC4 du fabricant PERKIN-ELMER.The main device used is a differential calorimeter which allows the recording of the curves represented in the variation figures as a function of the temperature T in degree C of the function. dQ dt
Figure imgb0001
, derived from the amount of heat transferred to a material over time, in millicalories / second. In the examples shown, the differential calorimeter used was the DSC4 type from the manufacturer PERKIN-ELMER.

Pendant une phase préliminaire du procédé, les paramètres suivants ont d'abord été enregistrés:

  • Vitesse de montée de température:   20°C/mn
  • Vitesse de refroidissement:   320°C/mn
  • Température initiale:   70°C
  • Température finale:   90°C
  • Unités:   millicalorie ou milliwatt
  • Echelle:   2 milliwatts
  • Sans remise au zéro électrique du signal du calorimètre:   R.A.Z NON
  • Réglage du zéro électrique:   ZERO
  • Masse de l'échantillon:   20mg
  • Tracé en temps réel des courbes de CP.
During a preliminary phase of the process, the following parameters were first recorded:
  • Temperature rise speed: 20 ° C / min
  • Cooling rate: 320 ° C / min
  • Initial temperature: 70 ° C
  • Final temperature: 90 ° C
  • Units: millicalorie or milliwatt
  • Scale: 2 milliwatts
  • Without electrical reset of the calorimeter signal: RESET NO
  • Electric zero adjustment: ZERO
  • Sample mass: 20mg
  • Real-time plotting of CP curves.

Les valeurs indiquées de vitesse de montée en température et de vitesse de refroidissement et de masse de l'échantillon sont des valeurs indicatives. Celles des températures initiale et finale ont été choisies de manière que les capacités thermiques CP soient sensiblement constantes.The indicated values of temperature rise rate and cooling rate and mass of the sample are indicative values. Those of the initial and final temperatures were chosen so that the thermal capacities CP are substantially constant.

Les choix de "sans remise au zéro électrique", du "réglage du zéro électrique" et du "tracé en temps réel" des courbes de capacités thermiques ont été effectués pour tenir compte du fait que l'appareil utilisé ne permettait pas l'enregistrement de plusieurs courbes (3 dans les exemples décrits) de capacités thermiques en conservant le même zéro électrique du signal. Il a de ce fait été nécessaire d'enregistrer en temps réel les courbes qui, sans cela, n'auraient pas été sauvegardées. La procédure de mesure adoptée permet ainsi la superposition des courbes au fur et à mesure des analyses.The choices of "without electrical reset", "electrical zero adjustment" and "real-time plotting" of the thermal capacity curves have been carried out to take into account the fact that the device used did not allow the recording of several curves (3 in the examples described) of thermal capacities while preserving the same electrical zero of the signal. It was therefore necessary to record in real time the curves which otherwise would not have been saved. The adopted measurement procedure thus allows the superimposition of the curves during the analyzes.

Les échantillons de matériau dont on souhaite connaître la composition sont analysés les uns à la suite des autres, sans procéder à une réinitialisation de l'appareil entre deux analyses, les courbes étant donc tracées en temps réel.The material samples of which it is desired to know the composition are analyzed one after the other, without carrying out a reinitialization of the apparatus between two analyzes, the curves therefore being plotted in real time.

Selon le premier procédé décrit en regard de la figure 1, une ligne de base LB est acquise et propre à l'appareil utilisé. Les courbes CC1 et EI sont enregistrées et correspondent, l'une CC1 à un premier constituant connu du matériau, l'autre EI à un échantillon du matériau inconnu. Ces trois courbes permettent le calcul de la capacité thermique CPEI de l'échantillon du matériau inconnu, et d'en déduire le pourcentage du premier constituant connu qu'il contient. Il est précisé que, selon ce premier procédé, les masses analysées MCC1 du premier constituant connu et MEI de l'échantillon (dont le pourcentage de la teneur en premier constituant est inconnu) du matériau peuvent avoir des valeurs différentes, CPCC1 étant la capacité thermique, connue, du premier constituant connu du matériau dont on recherche le pourcentage, et, A1 B1 C1 et A1' B1' C1' étant deux droites parallèles à l'axe des ordonnées, correspondant à des températures T1, T1', intersectant les courbes LB, CC1 et EI aux points A1, B1, C1, et, A1', B1', C1', respectivement, l'expression permettant d'abord de calculer CPEI est la suivante: CPEI = (surface A1 C1 C1' A1') x MCC1 (surface A1 B1 B1'A1') x MEI x CPCC1

Figure imgb0002
According to the first method described with reference to FIG. 1, a base line LB is acquired and specific to the device used. The curves CC1 and EI are recorded and correspond, one CC1 to a first known constituent of the material, the other EI to a sample of the unknown material. These three curves allow the calculation of the thermal capacity CPEI of the sample of the unknown material, and to deduce therefrom the percentage of the first known constituent that it contains. It is specified that, according to this first method, the masses analyzed MCC1 of the first known constituent and MEI of the sample (the percentage of which in the first constituent is unknown) of the material may have different values, CPCC1 being the thermal capacity , known, of the first known constituent of the material of which the percentage is sought, and, A1 B1 C1 and A1 'B1' C1 'being two lines parallel to the ordinate axis, corresponding to temperatures T1, T1', intersecting the curves LB, CC1 and EI at points A1, B1, C1, and, A1 ', B1', C1 ', respectively, the expression used to calculate CPEI first is as follows: CPEI = (area A1 C1 C1 'A1') x MCC1 (area A1 B1 B1'A1 ') x MEI x CPCC1
Figure imgb0002

Le pourcentage PCC1 du constituant connu CC1, que contient l'échantillon du matériau EI, est proportionnel à 100 fois le rapport de la valeur absolue de la différence |CPCC1-CPEI| des capacités thermiques du premier constituant connu et de l'échantillon du matériau inconnu divisée par la valeur absolue de la différence |CPCC1-CPCC2| des capacités thermiques connues des premier et deuxième constituants connus dudit matériau: PCC1 = |CPCC1-CPEI| |CPCC1-CPCC2| x 100

Figure imgb0003
The percentage PCC1 of the known constituent CC1, which the sample of the material EI contains, is proportional to 100 times the ratio of the absolute value of the difference | CPCC1-CPEI | thermal capacities of the first known constituent and the sample of the unknown material divided by the absolute value of the difference | CPCC1-CPCC2 | known thermal capacities of the first and second known constituents of said material: PCC1 = | CPCC1-CPEI | | CPCC1-CPCC2 | x 100
Figure imgb0003

Selon le deuxième procédé décrit en regard de la figure 2, il est possible de déterminer le pourcentage PCC1 du constituant connu CC1 que contient l'échantillon du matériau inconnu EI sans connaître au préalable les capacités thermiques CPCC1 et CPCC2 des premier et deuxième constituants dudit matériau. Par contre, il est nécessaire de posséder des échantillons de masses égales de chacun des deux constituants connus et du matériau inconnu. Il suffit alors d'enregistrer les trois courbes relatives aux deux constituants connus CC1 et CC2, et, celle relative au matériau inconnu EI. A2 B2 C2 et A2' B2' C2' étant deux droites parallèles, correspondant à des températures T2, T2', à l'axe des données, intersectant les courbes CC2, EI et CC1 aux points A2, B2, C2 et A2', B2', C2', respectivement, l'expression permettant de calculer le pourcentage PCC1 du premier constituant que contient le matériau inconnu est la suivante: PCC1 = surface (B2 C2 C2'B2') surface (A2 C2 C2' A2') x 100

Figure imgb0004
According to the second method described with reference to FIG. 2, it is possible to determine the percentage PCC1 of the known constituent CC1 that the sample of the unknown material EI contains without first knowing the thermal capacities CPCC1 and CPCC2 of the first and second constituents of said material . On the other hand, it is necessary to have samples of equal masses of each of the two known constituents and of the unknown material. It then suffices to record the three curves relating to the two known constituents CC1 and CC2, and, that relating to the unknown material EI. A2 B2 C2 and A2 'B2' C2 'being two parallel lines, corresponding to temperatures T2, T2', at the data axis, intersecting curves CC2, EI and CC1 at points A2, B2, C2 and A2 ', B2 ', C2', respectively, the expression used to calculate the percentage PCC1 of the first constituent contained in the unknown material is as follows: PCC1 = surface (B2 C2 C2'B2 ') surface (A2 C2 C2 'A2') x 100
Figure imgb0004

En variante, il est également possible de programmer, dans un ordre indifférent, une montée en température du calorimètre, et une mise en palier. Le saut de la courbe observé au moment du passage d'une phase de mesure à l'autre est proportionnel à la capacité thermique, à un facteur correctif près, et est apte à remplacer les longueurs des segments des droites A2 B2 C2, A2', B2', C2', découpés sur ces droites par les courbes CC1, CC2 et EI.As a variant, it is also possible to program, in any order, a rise in temperature of the calorimeter, and a leveling off. The jump in the curve observed when passing from one measurement phase to the other is proportional to the thermal capacity, to within a corrective factor, and is capable of replacing the lengths of the segments of the lines A2 B2 C2, A2 ' , B2 ', C2', cut on these lines by the curves CC1, CC2 and EI.

Les exemples précédents, correspondent à des mesures réelles effectuées au moyen du calorimètre différentiel de "PERKIN-ELMER". Il est possible d'optimiser les procédés décrits en n'utilisant de préférence qu'une seule mesure. Selon cette dernière variante, la ligne de base est acquise par l'intermédiaire d'une calibration interne, que possède l'appareil, et les valeurs des capacités thermiques connues CC1 et CC2 des premier et deuxième constituants connus du matériau sont introduites à partir d'un clavier de calculateur, ou encore sont mémorisées au préalable. Avec un tel appareil constitué par un calorimètre différentiel et un calculateur associé, il reste naturellement possible, dans le cas où les capacités thermiques CPCC1 et/ou CPCC2 ne sont pas connues au préalable, de les mesurer au moyen de l'appareil lui-même au cours de mesures préalables.The previous examples correspond to actual measurements made using the "PERKIN-ELMER" differential calorimeter. It is possible to optimize the methods described by preferably using only one measurement. According to this last variant, the baseline is acquired by means of a internal calibration, which the device has, and the values of the known thermal capacities CC1 and CC2 of the first and second known constituents of the material are introduced from a computer keyboard, or else are stored beforehand. With such an apparatus constituted by a differential calorimeter and an associated computer, it remains naturally possible, in the case where the thermal capacities CPCC1 and / or CPCC2 are not known beforehand, to measure them by means of the apparatus itself during preliminary measurements.

Les procédés qui viennent d'être décrits, et les appareils qui en permettent la mise en oeuvre sont particulièrement bien adaptés à la détermination de pourcentage de résines et de fibres contenues dans les matériaux composites, ces pourcentages caractérisant usuellement les produits finis.The processes which have just been described, and the apparatuses which allow their implementation, are particularly well suited to determining the percentage of resins and fibers contained in the composite materials, these percentages usually characterizing the finished products.

Alors que les méthodes connues à ce jour (méthodes chimiques par attaques acides, méthodes physiques par pyrolyse, ou mesures de volumes ou de densités) sont souvent longues (plusieurs heures) et parfois, pour certaines d'entre elles inutilisables (l'attaque acide, comme la pyrolyse attaquent par exemple les deux constituants fibres et matrice organique d'un matériau composite), les nouveaux procédés revendiqués permettent des déterminations rapides (5 minutes), et reçoivent toutes les applications dans lesquelles les capacités thermiques des constituants sont différentes; par ailleurs, les échantillons peuvent avoir des petites dimensions (de l'ordre du gramme, ou même inférieures au gramme), peuvent également avoir des formes irrégulières, ce qui est un avantage par rapport à certaines méthodes connues selon lesquelles l'épaisseur de l'échantillon est mesurée.While the methods known to date (chemical methods by acid attacks, physical methods by pyrolysis, or measurements of volumes or densities) are often long (several hours) and sometimes, for some of them unusable (acid attack , as pyrolysis attack for example the two constituents fibers and organic matrix of a composite material), the new claimed methods allow rapid determinations (5 minutes), and receive all the applications in which the thermal capacities of the constituents are different; moreover, the samples can have small dimensions (of the order of a gram, or even less than a gram), can also have irregular shapes, which is an advantage compared to certain known methods according to which the thickness of the the sample is measured.

L'invention n'est pas limitée aux réalisations décrites, mais en couvre au contraire toutes les variantes qui pourraient leur être apportées sans sortir de leur cadre, ni de leur esprit.The invention is not limited to the embodiments described, but on the contrary covers all the variants which could be made to them without departing from their scope or their spirit.

Claims (4)

Procédé de détermination du pourcentage (PCC1) d'un constituant (CC1) d'un matériau (EI) composé d'au moins deux constituants distincts (CC1, CC2),
   caractérisé en ce qu'on détermine la capacité thermique (CPEI) d'un échantillon (EI) dudit matériau ou une grandeur physique proportionnelle à cette capacité thermique, et, à partir de la connaissance de la capacité thermique (CPCC1, CPCC2) de chacun des deuxdits constituants (CC1, CC2) ou de ladite grandeur physique qui y est proportionnelle, on calcule une première différence (CPCC1-CPEI) entre les capacités thermiques de l'échantillon (EI) et dudit constituant (CC1) ou entre lesdites grandeurs physiques qui y sont respectivement proportionnelles, et, une deuxième différence (CPCC1-CPCC2) entre les capacités thermiques des deuxdits constituants (CC1, CC2) du matériau ou entre lesdites grandeurs physiques qui y sont respectivement proportionnelles, et, on détermine le pourcentage (PCC1) dudit constituant (CC1) en calculant le rapport de la première à la deuxième différence.
Method for determining the percentage (PCC1) of a constituent (CC1) of a material (EI) composed of at least two distinct constituents (CC1, CC2),
characterized in that the thermal capacity (CPEI) of a sample (EI) of said material is determined or a physical quantity proportional to this thermal capacity, and, from knowledge of the thermal capacity (CPCC1, CPCC2) of each of said two components (CC1, CC2) or of said physical quantity which is proportional thereto, a first difference (CPCC1-CPEI) is calculated between the thermal capacities of the sample (EI) and of said constituent (CC1) or between said physical quantities which are respectively proportional to it, and, a second difference (CPCC1-CPCC2) between the thermal capacities of the two said constituents (CC1, CC2) of the material or between said physical quantities which are respectively proportional thereto, and, the percentage is determined (PCC1) of said constituent (CC1) by calculating the ratio of the first to the second difference.
Procédé selon la revendication 1,
   caractérisé en ce que, pour déterminer la capacité thermique (CPEI) dudit échantillon (EI), on établit la correspondance (CC1, CC2, EI) entre la température d'une première masse (MEI) de l'échantillon et d'une deuxième masse (MCC1) dudit constituant, et, lesdites grandeurs physiques qui sont respectivement proportionnelles à leurs capacités thermiques, puis, pour une température déterminée (T1, T1'), on mesure lesdites grandeurs physiques, et enfin, on détermine la capacité thermique massique (CPEI) de l'échantillon en calculant le rapport d'un premier produit de ladite grandeur physique relative à l'échantillon (EI), par ladite deuxième masse (MCC1) du constituant, par la capacité thermique connue (CPCC1) du constituant à un deuxième produit de ladite grandeur physique relative audit constituant (CC1) par ladite première masse (MEI) de l'échantillon.
Method according to claim 1,
characterized in that, to determine the thermal capacity (CPEI) of said sample (EI), the correspondence (CC1, CC2, EI) is established between the temperature of a first mass (MEI) of the sample and of a second mass (MCC1) of said constituent, and, said physical quantities which are respectively proportional to their thermal capacities, then, for a determined temperature (T1, T1 ′), said physical quantities are measured, and finally, the mass thermal capacity is determined ( CPEI) of the sample by calculating the ratio of a first product of said physical quantity relative to the sample (EI), by said second mass (MCC1) of the constituent, by the known thermal capacity (CPCC1) of the constituent to a second product of said physical quantity relative to said constituent (CC1) by said first mass (MEI) of the sample.
Procédé selon la revendication 1,
   caractérisé en ce qu'on acquiert la connaissance de la capacité thermique (CPCC1, CPCC2) de chacun desdits constituants ou de ladite grandeur physique qui y est proportionnelle, en réalisant une détermination analogue à celle de la capacité thermique (CPEI) dudit échantillon (EI) ou de la grandeur physique qui y est proportionnelle.
Method according to claim 1,
characterized in that one acquires knowledge of the thermal capacity (CPCC1, CPCC2) of each of said constituents or of said physical quantity which is proportional thereto, by carrying out a determination analogous to that of the thermal capacity (CPEI) of said sample (EI ) or the physical quantity which is proportional to it.
Procédé selon la revendication 3,
   caractérisé en ce qu'on établit la correspondance entre la température (T) d'une même masse déterminée de chacun desdits constituants (CC1, CC2) et de l'échantillon (EI), et, lesdites grandeurs physiques qui sont respectivement proportionnelles à leurs capacités thermiques, puis, pour une température déterminée (T2, T2'), on mesure lesdites grandeurs physiques, et enfin, on détermine ledit pourcentage (PCC1) d'un (CC1) desdits constituants du matériau en calculant le rapport de la différence |CPCC1-CPEI| des grandeurs physiques relatives à l'échantillon et audit constituant à la différence des grandeurs physiques relatives aux deuxdits constituants |CPCC1-CPCC2|.
Method according to claim 3,
characterized in that the correspondence is established between the temperature (T) of the same determined mass of each of said constituents (CC1, CC2) and of the sample (EI), and, said physical quantities which are respectively proportional to their thermal capacities, then, for a determined temperature (T2, T2 '), said physical quantities are measured, and finally, said percentage (PCC1) of one (CC1) of said constituents of the material is determined by calculating the ratio of the difference | CPCC1-CPEI | physical quantities relating to the sample and said constituent unlike physical quantities relating to the two said constituents | CPCC1-CPCC2 |.
EP95401821A 1994-08-03 1995-08-03 Procedure for determing the percentage constituent of a material composed of at least two distinct constituents Withdrawn EP0695938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9409594A FR2723445B1 (en) 1994-08-03 1994-08-03 METHOD FOR DETERMINING THE PERCENTAGE OF A CONSTITUENT OF A MATERIAL COMPOSED OF AT LEAST TWO SEPARATE CONSTITUENTS
FR9409594 1994-08-03

Publications (1)

Publication Number Publication Date
EP0695938A1 true EP0695938A1 (en) 1996-02-07

Family

ID=9466005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401821A Withdrawn EP0695938A1 (en) 1994-08-03 1995-08-03 Procedure for determing the percentage constituent of a material composed of at least two distinct constituents

Country Status (3)

Country Link
EP (1) EP0695938A1 (en)
JP (1) JPH0862165A (en)
FR (1) FR2723445B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062273A (en) * 2000-06-06 2002-02-28 Matsushita Electric Ind Co Ltd Method and device for evaluating quality of lead-free soldering material, and method and system for flow soldering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075674A (en) * 1980-03-25 1981-11-18 Inst Cercetari Chim Method and apparatus for the calorimetric study of composite materials
WO1982001248A1 (en) * 1980-09-26 1982-04-15 Corp Hetra Method of and apparatus for nondestructively determining the composition of an unknown material sample
US5052819A (en) * 1989-06-12 1991-10-01 Baratta Francis I Method of and apparatus for nondestructively determining the composition of an unknown material sample
US5099441A (en) * 1988-05-31 1992-03-24 Eastman Kodak Company Method for determining thermal conductivity incorporating differential scanning calorimetry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075674A (en) * 1980-03-25 1981-11-18 Inst Cercetari Chim Method and apparatus for the calorimetric study of composite materials
WO1982001248A1 (en) * 1980-09-26 1982-04-15 Corp Hetra Method of and apparatus for nondestructively determining the composition of an unknown material sample
US5099441A (en) * 1988-05-31 1992-03-24 Eastman Kodak Company Method for determining thermal conductivity incorporating differential scanning calorimetry
US5052819A (en) * 1989-06-12 1991-10-01 Baratta Francis I Method of and apparatus for nondestructively determining the composition of an unknown material sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.TAYLOR: "differential scanning calorimetry and fibre analysis", TRAC, TRENDS IN ANALYTICAL CHEMISTRY, vol. 2, no. 4, CAMBRIDGE GB, pages 88 - 92, XP026592238, DOI: doi:10.1016/0165-9936(83)85025-0 *

Also Published As

Publication number Publication date
JPH0862165A (en) 1996-03-08
FR2723445A1 (en) 1996-02-09
FR2723445B1 (en) 1996-09-13

Similar Documents

Publication Publication Date Title
EP0841112B1 (en) Process for casting between cylinders
CA2718762C (en) Characterization of flaws in composites identified by thermography
FR2649174A1 (en) BALANCING METHOD AND RESULTING BALANCED ROTOR
CA1251278A (en) Device for rapid determination of the humidity rate of a material
JP2007024531A (en) Electronic thermometer, control method and control program of thermometer
EP0047218A2 (en) Process for controlling and regulating the continuous casting of strips between rolls
EP0695938A1 (en) Procedure for determing the percentage constituent of a material composed of at least two distinct constituents
EP1861686A1 (en) Estimation of temperature of plates in a wet clutch
CA1095238A (en) Crucible for thermal analysis of aluminium alloys
FR2569762A1 (en) HYDROCARBON WELL TEST PROCESS
EP3771879B1 (en) Device for detecting and characterising clogging likely to form in a wall subjected to heat exchange
KR20010053515A (en) Method for Controlling a Coating Process
JPH07209220A (en) Quality control method for molten metal
US9097584B2 (en) Method and apparatus for detecting cadmium with optical emission spectroscopy
BE1013802A3 (en) Heater without metal wood for measuring noack volatility of a sample liquid petroleum product in particular a lubricating oil and method implemented during the use of this device.
JP3103963B2 (en) How to measure thermal conductivity
Cree et al. Statistical comparisons of four (4) different thermal analysis sample cup types for chemistry control of ductile base iron
FR2865809A1 (en) CHARACTERIZATION OF QUARTZ CRYSTAL FREQUENCY
EP0577512A1 (en) Method and apparatus for determining the fatigue limit of a material
EP0459896B1 (en) Method and apparatus for investigating the visco-elastic behaviour of a viscoelastic material
EP1899087B1 (en) Method for continuously controlling the thickness of the base of extruded blanks of aerosol containers
WO2006005858A1 (en) Method of monitoring one or more physical parameters and fuel cell using same
Pearce et al. Impurity correction techniques applied to existing doping measurements of impurities in zinc
Krapez et al. Lock-in thermography and fatigue limit of metals; Thermographie a demodulation synchrone et limite de fatigue des metaux
Balda An estimation of the residual life of blades

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980303