JPH07209220A - Quality control method for molten metal - Google Patents

Quality control method for molten metal

Info

Publication number
JPH07209220A
JPH07209220A JP2305494A JP2305494A JPH07209220A JP H07209220 A JPH07209220 A JP H07209220A JP 2305494 A JP2305494 A JP 2305494A JP 2305494 A JP2305494 A JP 2305494A JP H07209220 A JPH07209220 A JP H07209220A
Authority
JP
Japan
Prior art keywords
temperature
molten metal
cooling curve
change
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2305494A
Other languages
Japanese (ja)
Inventor
Yamaji Kitaoka
山治 北岡
Satoshi Yamawaki
慧 山脇
Kazumasa Nagasawa
一正 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEI JOHO SYST KK
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
NIKKEI JOHO SYST KK
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEI JOHO SYST KK, Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical NIKKEI JOHO SYST KK
Priority to JP2305494A priority Critical patent/JPH07209220A/en
Publication of JPH07209220A publication Critical patent/JPH07209220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To realize a highly accurate and effective quality control by prescribing temperature range where unsteady inflection state appears and effecting predictive control of fluctuation in various characteristics accompanying the solidified texture of molten metal or the fluctuation in texture. CONSTITUTION:Temperature of a predetermined quantity of molten allay 3 sampled by a casting mold 1 of a cooling curve measuring apparatus 10 is measured by means of a thermocouple 2. Electromotive force of the thermocouple 2 is expressed in terms of temperature by means of an operation analyzer 4 and presented on a temperature/analytic result display 6. On the other hand, a set value is inputted to a decision controller 5 where the temperature variable with time is calculated over a specified temperature range and the variation is compared with a set value to decide pass/fail of the molten metal and then the decision result is presented on a display 7. Consequently, erroneous decision due to measurement of temperature variation having no correlation with solidified texture caused by the disturbed measurement conditions or stability of measuring atmosphere, electric noise, etc., can be prevented and a slight fluctuation on a cooling curve caused by slight variation of texture can be decided accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属溶湯の品質管理方法
に係り、金属溶湯の温度変化による冷却曲線を測定し、
該冷却曲線の温度変化による非定常的変曲状態によって
前記金属溶湯の凝固組織または鋳造性あるいは機械的性
質などの諸特性を予測する品質管理方法における精度を
適切に向上しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quality control method for molten metal, in which a cooling curve due to temperature change of the molten metal is measured,
It is intended to appropriately improve the accuracy in a quality control method for predicting various characteristics such as solidification structure or castability or mechanical properties of the molten metal by an unsteady inflection state of the cooling curve due to temperature change.

【0002】[0002]

【従来の技術】高純度の金属溶湯を冷却凝固させた場合
は、その冷却曲線は一般的には、液相から固相への相変
化に伴う凝固点における温度変化を除いては自然冷却に
よるなだらかな変化をする定常的曲線を示す。特に凝固
点においては純度、冷却条件等により夫々異なる温度低
下、温度上昇あるいは温度停滞等を伴う複雑な温度変化
を示し、前述の自然冷却に伴うなだらかな安定した温度
変化すなわち定常的曲線状態とは異なる非定常的な変曲
状態を示す。合金溶湯の場合は、更に複雑となり、冷却
過程で複数の晶出物を晶出するので複雑な凝固潜熱の授
受があり、その結果冷却曲線は凝固潜熱の授受に見合っ
た温度変化を示す。凝固開始前、凝固途中、凝固完了後
の各部におけるなだらかな変化を示す定常的曲線状態と
合わせて、複数の晶出物の晶出に伴う非定常的変曲部を
多く持つ曲線を示す。このような曲線は、その曲線の非
定常的変曲状態から凝固潜熱の授受のあったことを読み
取ることができ、その合金溶湯の凝固組成を予測するこ
とが可能である。このような知見に基づいて合金溶湯の
冷却曲線を測定して金属溶湯の品質を管理することが行
われている。すなわち、金属溶湯の品質管理方法として
該金属溶湯の温度変化による冷却曲線を測定し、該冷却
曲線の温度変化による非定常的変曲状態によって上記金
属溶湯の凝固組織、鋳造性または機械的性質などの諸特
性の何れか1つまたは2つ以上を予測管理することにつ
いては種々に採用されている。例えば、Al-Si 合金はそ
れに含有される共晶Siの形態、すなわちその大きさ、形
によって強度、延性等合金の有する物理的機械的諸性質
に大きな影響を受けることは知られており、共晶Siの形
態は溶湯を無処理で鋳造すると板状で大きく発達した粗
い共晶Siを形成し、それ故強度、延性等の物理的性質が
低下する欠点がある。このようなことから、Al-Si 合金
溶湯にNa、Sr等の共晶Si微細化剤を添加処理し、所望の
形態の共晶Siを得ようとすることが行われている。
2. Description of the Related Art When a high-purity metal melt is cooled and solidified, its cooling curve is generally smooth by natural cooling except for the temperature change at the solidification point accompanying the phase change from liquid phase to solid phase. A steady curve showing various changes is shown. Especially at the freezing point, it shows complicated temperature changes with temperature drop, temperature rise or temperature stagnation, etc., which differ depending on purity, cooling conditions, etc., and is different from the above-mentioned smooth and stable temperature change associated with natural cooling, that is, a steady curve state. A non-steady inflection state is shown. In the case of the molten alloy, it becomes more complicated, and since a plurality of crystallized substances are crystallized in the cooling process, complicated solidification latent heat transfer occurs. As a result, the cooling curve shows a temperature change commensurate with the transfer of solidification latent heat. A curve having many non-steady inflection parts associated with crystallization of a plurality of crystallized substances is shown together with a steady curve state showing a smooth change in each part before solidification starts, during solidification, and after solidification is completed. In such a curve, it can be read that the latent heat of solidification was transferred from the non-steady inflection state of the curve, and the solidification composition of the molten alloy can be predicted. Based on such knowledge, the cooling curve of the molten alloy is measured to control the quality of the molten metal. That is, as a quality control method for a molten metal, a cooling curve due to a temperature change of the molten metal is measured, and a solidification structure, castability or mechanical property of the molten metal is measured according to an unsteady inflection state due to a temperature change of the cooling curve. Predictive management of any one or two or more of the above characteristics has been variously adopted. For example, it is known that the morphology of eutectic Si contained in an Al-Si alloy, that is, its size and shape, is greatly affected by the physical and mechanical properties of the alloy such as strength and ductility. The morphology of crystalline Si has the drawback that when the molten metal is cast without treatment, it forms a plate-like and largely developed eutectic Si, which reduces the physical properties such as strength and ductility. For this reason, it has been attempted to add a eutectic Si refining agent such as Na or Sr to the molten Al-Si alloy to obtain a desired eutectic Si.

【0003】しかし上記したような場合、Na、Sr等は空
気中の酸素と反応し易く、或いはまた溶湯中の不純物と
反応して所期の目標特性を発揮する状態となし難いこと
もある。そこで処理後迅速に分析出来る分光分析によっ
てNa、Sr等の含有量を測定し、その含有量を確かめた後
鋳造する方法がとられているが、迅速に測定できる分光
分析法でさえ20〜30分の分析時間を要する。また、
含有元素の相互作用、或いはまた同一量のNa、Srであっ
ても他成分の影響を受け、鋳造組織の異なることがあ
り、強度、延性等の鋳造体の有する機械的、物理的諸性
質に大きく影響する。
In the above cases, however, Na, Sr, etc. may easily react with oxygen in the air, or may react with impurities in the molten metal to achieve the desired target characteristics. Therefore, after the treatment, a method of measuring the contents of Na, Sr, etc. by spectroscopic analysis that can be rapidly analyzed, and casting after confirming the contents is taken. Minute analysis time is required. Also,
Interaction of contained elements, or even the same amount of Na and Sr, may be influenced by other components, casting structures may differ, and mechanical and physical properties of the cast such as strength and ductility It has a great influence.

【0004】このようなことから近年溶湯の組成を分析
する代わりに、あるいは分析と同時に予め溶湯の冷却曲
線と鋳造組織の形態との相関性を把握し、これらを元デ
ータとしておき、次いで別途溶製した同組成の溶湯の一
部を採取して試料とし、この試料の冷却曲線を測定し、
この冷却曲線を先に予め測定しておいた冷却曲線と鋳造
組織形態の相関性を把握しておいた元データと対比し、
別途溶製した被測定溶湯が凝固したときの鋳造組織の形
態を予測する方法が開発利用されている。すなわちこれ
は、溶湯の凝固時、鋳造組織の形態によって冷却曲線に
僅かなずれを生じることを利用したものであって、この
ような溶湯の凝固時の熱分析を利用した溶湯の測定装置
がすでに市販されている(クロス社製AEメーター)。
For these reasons, instead of analyzing the composition of the molten metal in recent years, or at the same time as the analysis, the correlation between the cooling curve of the molten metal and the morphology of the casting structure is grasped in advance, and these are used as the original data, and then separately melted. A part of the produced molten metal of the same composition is sampled and the cooling curve of this sample is measured,
Contrast this cooling curve with the original data that had the correlation between the cooling curve previously measured and the cast structure morphology,
A method for predicting the morphology of a cast structure when a separately melted molten metal to be measured is solidified has been developed and used. That is, this utilizes the fact that a slight deviation occurs in the cooling curve due to the morphology of the casting structure when the molten metal is solidified, and such a molten metal measuring device using thermal analysis during solidification of the molten metal has already been used. It is commercially available (cross meter AE meter).

【0005】上記したような方法による測定結果の1例
は図5に示す如くであって、この図5は共晶Si微細化処
理を施していないA356合金(Al-7%Si-0.3%Mg)に
おける共晶近傍の冷却曲線と共晶Siの形態を示したもの
であって、この共晶温度は約571℃であり、過冷温度
1℃以下である。また共晶Si微細化処理を施していない
ので共晶Siの形態は該図6に併せて示したように大きく
粗い。なお図6は、Sr処理した同上A356合金の冷却
曲線と共晶Siの形態を示したものであって、この共晶温
度は568℃であり、過冷温度は1℃以上であり、また
共晶Siの形態はこの図5に併せて示したように小さく微
細である。即ち図6によればSr添加処理によって共晶Si
が十分に微細化されていることが判る。この冷却曲線と
共晶Siの形態は、上述のような無処理の合金および共晶
Si微細化処理した合金の冷却曲線とそのときの共晶Siの
形態を繰り返し測定することによって、相関関係のある
ことが知られている。
An example of the measurement result by the above method is shown in FIG. 5, which shows an A356 alloy (Al-7% Si-0.3% Mg) which has not been subjected to eutectic Si refinement treatment. ) Shows the cooling curve near the eutectic and the morphology of eutectic Si, the eutectic temperature is about 571 ° C., and the supercooling temperature is 1 ° C. or less. Further, since the eutectic Si refining treatment is not applied, the morphology of eutectic Si is large and rough as shown in FIG. 6 shows the cooling curve and morphology of eutectic Si of the Sr-treated A356 alloy, the eutectic temperature is 568 ° C., the supercooling temperature is 1 ° C. or higher, and The morphology of crystalline Si is small and fine as also shown in FIG. That is, according to FIG. 6, eutectic Si
It can be seen that is sufficiently miniaturized. This cooling curve and the morphology of eutectic Si are based on the untreated alloy and eutectic as described above.
It is known that there is a correlation by repeatedly measuring the cooling curve of the Si refined alloy and the morphology of eutectic Si at that time.

【0006】なお前記のような原理を利用した測定につ
いては、コンピュータを使用して冷却曲線の第1の変曲
点を示す温度と、第2の変曲点を示す温度(共晶温度と
いう)との差(過冷却温度という)を計算し、この過冷
却温度と共晶温度で当該合金の共晶Si微細化処理が十分
になされているか否かを識別し測定装置の指示部に指示
することができる。
Regarding the measurement using the above-mentioned principle, the temperature at which the first inflection point and the temperature at which the second inflection point of the cooling curve indicates are calculated using a computer (referred to as eutectic temperature). And the eutectic temperature are used to identify whether or not the eutectic Si refinement treatment of the alloy has been sufficiently performed, and to give an instruction to the measuring device. be able to.

【0007】[0007]

【発明が解決しようとする課題】ところでこのような冷
却曲線を利用した被測定溶湯の凝固組織の予測は、冷却
曲線を詳細に分析することによって一層詳細に凝固組織
を判別することができる。すなわち、例えば合金に含有
される元素の種類が多く、その元素の含有量が固溶量以
上であれば凝固組織は種々の晶出物を含有し、その合金
の冷却曲線は凝固組織の形態に則したものとなる。しか
しながら該晶出物の形態によって判読できる冷却曲線の
変化は非常に僅かな場合があり、この場合該曲線の僅か
なずれを上述のコンピュータを使用した測定装置で判読
するためには、連続的に勾配を計算しその勾配の変化の
連続性の有無等を比較して判断し、凝固組織を予測する
こととなる。
By the way, in the prediction of the solidification structure of the melt to be measured using such a cooling curve, the solidification structure can be discriminated in more detail by analyzing the cooling curve in detail. That is, for example, there are many kinds of elements contained in the alloy, and if the content of the element is the solid solution amount or more, the solidification structure contains various crystallized substances, and the cooling curve of the alloy is in the form of the solidification structure. It will comply. However, the change in the cooling curve that can be read by the morphology of the crystallized substance may be very small, and in this case, in order to read the slight deviation of the curve with the above-mentioned computer-based measuring device, it is necessary to continuously measure The gradient is calculated, the presence or absence of continuity of changes in the gradient is compared and judged, and the coagulated tissue is predicted.

【0008】然し、上述したような手法によって求めら
れる勾配の変化はそのときの測定条件、測定雰囲気の安
定性および電気的ノイズ等により変動することも多い。
例えば僅かな風によりその温度における温度位置で冷却
曲線が変化し、その結果凝固組織とは相関性のない温度
変化を読み取ることになって誤った判断をすることとな
る。また電気的ノイズによって冷却曲線が変化する場合
も同様である。さらに、合金の組成によっては別種の晶
出物が互いに近傍の温度で晶出するようなこともあり、
温度変化だけでは何れの晶出物によるものであるか判読
しにくいことがある。
However, the change in the gradient obtained by the above-mentioned method often varies depending on the measurement conditions at that time, the stability of the measurement atmosphere, electrical noise, and the like.
For example, a slight wind changes the cooling curve at the temperature position at that temperature, and as a result, a temperature change that does not correlate with the solidified tissue is read, resulting in an erroneous judgment. The same applies when the cooling curve changes due to electrical noise. Furthermore, depending on the composition of the alloy, different types of crystallized substances may crystallize at temperatures close to each other,
It may be difficult to determine which crystallized substance is due to the temperature change alone.

【0009】[0009]

【課題を解決するための手段】本発明は上記したような
従来技術における課題を解決することについて検討を重
ね、冷却曲線の変化測定について特殊な手法を採用する
ことにより、精度高く、適切な測定結果を得ることに成
功したものであって、以下の如くである。
The present invention has been studied to solve the problems in the prior art as described above, and by adopting a special method for measuring the change of the cooling curve, accurate and appropriate measurement can be performed. It succeeded in obtaining the result, and is as follows.

【0010】(1)予め得られた互いに対応する冷却曲
線の温度変化と凝固組織に基いて溶湯より採られた試料
の冷却曲線を求め、該冷却曲線の温度変化による非定常
的変曲状態によって前記溶湯の凝固組織を予測するに当
り、該非定常的変曲状態の顕われる温度範囲を規定し、
該温度範囲内において顕われた非定常的変曲状態によっ
て上記溶湯の凝固組織または組織変化に伴う諸特性の変
化を予測管理することを特徴とした金属溶湯の品質管理
方法。
(1) A cooling curve of a sample taken from a molten metal is obtained on the basis of a temperature change of a cooling curve corresponding to each other and a solidification structure obtained in advance, and a non-steady inflection state due to a temperature change of the cooling curve is obtained. In predicting the solidification structure of the molten metal, the temperature range in which the unsteady inflection state appears is defined,
A method for quality control of molten metal, characterized by predicting and controlling changes in various characteristics associated with the solidification structure or structure change of the molten metal due to an unsteady inflection state manifested within the temperature range.

【0011】(2)予め得られた互いに対応する冷却曲
線の温度変化と凝固組織に基いて溶湯より採られた試料
の冷却曲線を求め、該冷却曲線の温度変化による非定常
的変曲状態によって前記溶湯の凝固組織を予測するに当
り、該非定常的変曲状態の顕われる温度範囲および時間
範囲を規定し、それらの温度範囲および時間範囲内にお
いて顕われた非定常的変曲状態によって上記溶湯の凝固
組織または組織変化に伴う諸特性の変化を予測管理する
ことを特徴とした金属溶湯の品質管理方法。
(2) The cooling curve of the sample taken from the molten metal is obtained based on the temperature changes of the cooling curves corresponding to each other and the solidification structure obtained in advance, and the cooling curve is subjected to the non-stationary inflection state due to the temperature change. In predicting the solidification structure of the molten metal, the temperature range and the time range in which the unsteady inflection state appears are defined, and the molten metal is defined by the unsteady inflection state revealed in those temperature range and time range. A method for quality control of molten metal, characterized by predicting and managing changes in various characteristics associated with solidification structure or structure change of steel.

【0012】[0012]

【作用】予め得られた互いに対応する冷却曲線の温度変
化と凝固組織に基いて溶湯より採られた試料の冷却曲線
を求め、該冷却曲線の温度変化による非定常的変曲状態
によって前記溶湯の凝固組織を予測するに当り、該非定
常的変曲状態の顕われる温度範囲を規定し、該温度範囲
内において顕われた非定常的変曲状態によって上記溶湯
の凝固組織または組織変化に伴う諸特性の変化を予測管
理することにより測定条件や測定雰囲気および電気的ノ
イズなどによる変動と識別し、目的とする凝固組織によ
る温度変化を的確に読み取らしめて正確な品質管理を行
わしめることとなる。
The cooling curve of the sample taken from the molten metal is obtained based on the temperature changes of the cooling curves corresponding to each other and the solidification structure obtained in advance, and the molten metal of the molten metal is changed according to the non-steady inflection state due to the temperature change of the cooling curve. In predicting the solidification structure, the temperature range in which the non-stationary inflection state appears is defined, and the various properties associated with the solidification structure or the tissue change of the molten metal due to the non-steady state inflection state developed in the temperature range. By predicting and managing the change of the temperature, it is possible to identify the change due to the measurement condition, the measurement atmosphere, the electrical noise, etc., and to accurately read the temperature change due to the target coagulation structure to perform the accurate quality control.

【0013】前述したような金属溶湯の凝固組織を予測
するに当り、該非定常的変曲状態の顕われる温度範囲お
よび時間範囲を規定し、それらの温度範囲および時間範
囲内において顕われた非定常的変曲状態によって上記溶
湯の凝固組織または組織変化に伴う諸特性の変化を予測
管理することにより前記測定条件などの変動するような
条件においても上述したような的確性を適切に得しめ、
目的とする精度の高い品質管理を有効に行わせる。
In predicting the solidification structure of the molten metal as described above, the temperature range and time range in which the unsteady inflection state appears are defined, and the unsteady state appearing in those temperature range and time range is defined. By appropriately managing the change of various characteristics due to the solidification structure or the structure change of the molten metal by the dynamic inflection state, even under varying conditions such as the measurement conditions, appropriately obtain the accuracy as described above,
Effectively carry out the desired high-precision quality control.

【0014】[0014]

【実施例】本発明によるものを添附図面を適宜に参照し
て説明すると、図1は本発明方法を実施するための冷却
曲線測定装置10であって、1は鋳型であり、該鋳型に
採取された所定容量の合金溶湯3を保持し、これを試料
とする。然して2は熱電対であって、前記鋳型1内の溶
湯試料3についての温度を測定する。また4は熱電対の
起電力の検知および演算解析装置であって、前記熱電対
2の起電力は該起電力の検知および演算解析装置4で温
度換算される。さらに5は判断制御装置であって、該判
断制御装置に設定値を入力して指定した温度範囲または
指定した温度範囲と時間範囲について時間と共に変わる
温度変化を計算し、その変化を設定値と比較して合格、
不合格を判断し、その結果は合格、不合格を表示する合
否表示器7に送って表示される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the accompanying drawings as needed. FIG. 1 shows a cooling curve measuring device 10 for carrying out the method of the present invention. The molten alloy 3 having a predetermined volume is held and used as a sample. However, 2 is a thermocouple, which measures the temperature of the molten metal sample 3 in the mold 1. A thermocouple electromotive force detection and calculation / analysis device 4 converts the electromotive force of the thermocouple 2 into a temperature by the electromotive force detection and calculation / analysis device 4. Further, 5 is a judgment control device, which inputs a set value to the judgment control device to calculate a temperature change which changes with time in a specified temperature range or a specified temperature range and time range, and compares the change with a set value. And passed,
The rejection is judged, and the result is sent to the pass / fail indicator 7 for displaying the pass / fail and displayed.

【0015】なお図1における6は、温度および解析結
果表示器であって、前記した熱電対2の起電力の検知お
よび演算解析装置4で温度換算された値および演算解析
された結果を表示し、また記録する記録計である。鋳型
1はその熱容量を管理し、または加熱しつつ採取した定
量の合金溶湯3における凝固速度を被測定溶湯から製品
となる鋳造体の凝固速度と合わせて得られた測定結果
が、被測定溶湯から製品となる鋳造体の凝固組織を正確
に予測せしめることができる。
Reference numeral 6 in FIG. 1 denotes a temperature and analysis result display, which displays the value converted into temperature and the result of calculation analysis by the electromotive force detection and calculation analysis device 4 of the thermocouple 2. It is a recorder that records again. The mold 1 manages its heat capacity, or the measurement result obtained by combining the solidification rate of a fixed amount of the molten alloy 3 collected while heating with the solidification rate of the cast product to be the product from the measured molten metal is It is possible to accurately predict the solidification structure of the cast product.

【0016】図2は、上記したような図1の冷却曲線測
定装置を用いてPを70PPM 添加処理したAl-15 %Si-
0.7%Mg合金の冷却曲線である。この場合において前記
判断制御装置5に指定する温度範囲については、予め冷
却曲線が測定され、該冷却曲線の温度変化と凝固組織の
相関性の確認されている温度変化の生じる温度を含む範
囲をいう。このようにすることによって、測定条件、測
定雰囲気の安定性および電気的ノイズ等によって乱され
た結果による凝固組織と相関性のない温度変化を測定す
ることによる誤判断を防ぐことができ、僅かな組織変化
に伴う僅かな冷却曲線上の変化を正しく判断することが
できる。
FIG. 2 shows Al-15% Si- treated with P at 70 PPM by using the cooling curve measuring apparatus shown in FIG.
It is a cooling curve of a 0.7% Mg alloy. In this case, the temperature range designated in the judgment control device 5 is a range including the temperature where the cooling curve is measured in advance and the temperature change of the cooling curve and the correlation of the solidified tissue are confirmed. . By doing so, it is possible to prevent erroneous judgment due to measurement of temperature change that does not correlate with the coagulated tissue due to the result of being disturbed by the measurement conditions, the stability of the measurement atmosphere, the electrical noise, etc. It is possible to correctly judge the slight change on the cooling curve due to the change in the structure.

【0017】なおこの図2に示したものは温度範囲のみ
の規定で略適切に予測目的を達し得る場合であるが、こ
の図2に示したPを70PPM 添加処理したようなAl-15
%Si-0.7%Mg合金の共晶組成物に該共晶温度に近い温度
でMg2Si の如き化合物を晶出するような合金の場合につ
いてその冷却曲線を測定するならば図2に示したような
共晶曲線11と共に共晶曲線12とを生ずることとな
る。即ちこのような場合において温度のみを指定範囲
(a)とした場合において、この図2に示したように共
晶曲線11と共晶曲線12の温度が共に指定範囲(a)
内にあるので検出された変曲状態が何れのものによって
生じた曲線であるか判別できないような場合が生ずる。
The case shown in FIG. 2 is a case in which the prediction purpose can be achieved almost appropriately by defining only the temperature range. However, Al-15 as shown in FIG.
If the cooling curve is measured for an alloy in which a compound such as Mg 2 Si is crystallized in a eutectic composition of% Si-0.7% Mg alloy at a temperature close to the eutectic temperature, it is shown in FIG. The eutectic curve 11 and the eutectic curve 12 are generated. That is, in such a case, when only the temperature is within the specified range (a), the temperatures of the eutectic curve 11 and the eutectic curve 12 are both within the specified range (a) as shown in FIG.
There is a case in which it is not possible to determine which of the curved lines is caused by the detected inflection state because it is inside.

【0018】本発明においてはこのような場合において
は温度範囲(a)と共に時間範囲(b)をも規定し、そ
うした温度範囲(a)と時間範囲(b)内において顕わ
れた変更状態を検出し、それぞれの温度変化を把握でき
判断を誤らないようになる。温度変化の生じる時間は鋳
型1の熱容量、溶湯サンプルの量、溶湯の温度、サンプ
ル治具の温度、必要に応じて鋳型1の加熱出力等をほぼ
一定にしておくことにより適切に予測できる。
In the present invention, in such a case, the time range (b) is defined together with the temperature range (a), and the change state manifested in the temperature range (a) and the time range (b) is detected. However, each temperature change can be grasped and the judgment can be prevented from being mistaken. The time in which the temperature change occurs can be appropriately predicted by keeping the heat capacity of the mold 1, the amount of the molten metal sample, the temperature of the molten metal, the temperature of the sample jig, and the heating output of the mold 1 as necessary, almost constant.

【0019】本発明によるものの代表的管理測定の実施
例について説明すると、以下の如くである。
A typical control measurement example according to the present invention will be described below.

【実施例1】800℃の温度に溶解したA390合金
(Al-17 %Si-5%Cu-0.5%Mg)の30gを図1に示した
測定装置10の鋳型1内に採取し、熱電対2を溶湯3内
に挿入して溶湯3の冷却曲線を測定した結果は図3に示
す如くである。
Example 1 30 g of A390 alloy (Al-17% Si-5% Cu-0.5% Mg) melted at a temperature of 800 ° C. was sampled in a mold 1 of a measuring device 10 shown in FIG. The result of measuring the cooling curve of the molten metal 3 by inserting 2 into the molten metal 3 is as shown in FIG.

【0020】即ち、測定装置10のコントロール装置5
には前もって経験によって得られた初晶Siの晶出温度6
50℃に対して±15℃の温度範囲を指定し、この温度
範囲において冷却曲線勾配の変化割合が変わったことを
読み取るようにしたものであって、このように冷却曲線
の勾配の変化割合が変わったことを読み取る位置を温度
範囲指定したことによって、他のところの同じような温
度勾配の変化割合13を読み取り誤判断することが回避
でき精度を向上することができた。
That is, the control device 5 of the measuring device 10
The crystallization temperature of primary Si obtained from experience in advance was 6
The temperature range of ± 15 ° C is specified with respect to 50 ° C, and it is read that the rate of change of the cooling curve gradient has changed in this temperature range. By designating the temperature range at which the changed position is read, it is possible to avoid misjudgment by reading the similar temperature gradient change rate 13 elsewhere, and improve the accuracy.

【0021】[0021]

【実施例2】800℃の温度に溶解したA357合金
(Al-7%Si-0.6%Mg)の30gを図1に示す測定装置1
0の鋳型1内に採取し、熱電対2を溶湯3内に挿入して
溶湯3の冷却曲線を測定した。結果の冷却曲線を図4に
示す如くである。
Example 2 Measuring apparatus 1 shown in FIG. 1 for 30 g of A357 alloy (Al-7% Si-0.6% Mg) melted at a temperature of 800 ° C.
Sample No. 0 was cast in the mold 1, the thermocouple 2 was inserted into the melt 3, and the cooling curve of the melt 3 was measured. The resulting cooling curve is as shown in FIG.

【0022】即ち、測定装置10のコントロール装置5
には前もって経験によって得られた共晶Siの晶出温度5
60℃、およびMg2Si化合物の晶出温度540℃に対し
て575℃〜525℃の温度範囲を指定すると共に、晶
出Siの晶出開始時刻を溶湯3の溶湯温度750℃を開始
時刻として3.5 ±1分、およびMg2Si化合物の晶出開始
時刻を同様に9±1分を指定し、この温度範囲と時間範
囲の複合において冷却曲線の勾配の変化割合が変わった
ことを読み取るようにした。
That is, the control device 5 of the measuring device 10
The crystallization temperature of eutectic Si obtained from experience in advance was 5
The temperature range of 575 ° C to 525 ° C is specified for 60 ° C and the crystallization temperature of Mg2Si compound of 540 ° C, and the crystallization start time of crystallized Si is 3.5 ± with the melt temperature of the melt 3 being 750 ° C as the start time. Similarly, 1 minute and 9 ± 1 minute of the crystallization start time of the Mg 2 Si compound were designated, and it was read that the rate of change of the slope of the cooling curve changed in this composite of the temperature range and the time range.

【0023】即ち、何れにしても、このように冷却曲線
の勾配の変化割合が変わったことを読み取る位置を範囲
指定したことによって、共晶による冷却曲線の勾配の変
化割合の変化と、Mg2Si化合物の晶出による冷却曲線の
勾配の変化割合の変化とを読み間違えることなく、精度
の向上した測定をなすことができた。
That is, in any case, the change in the gradient change rate of the cooling curve due to the eutectic and the change in the Mg2Si compound are caused by the range designation of the position for reading the change in the gradient change rate of the cooling curve. It was possible to make a measurement with improved accuracy without making a mistake in reading the change in the rate of change of the gradient of the cooling curve due to the crystallization.

【0024】[0024]

【発明の効果】以上説明したような本発明によるときは
このような金属溶湯の温度変化による冷却曲線を測定
し、その非定常的変曲状態によって凝固組織や鋳造性ま
たは機械的性質などを求める品質管理方法において、そ
の精度を適切に向上し、有効な品質管理を実施し得るも
のであるから工業的にその効果の大きい発明である。
According to the present invention as described above, the cooling curve due to the temperature change of such a molten metal is measured, and the solidification structure, castability, mechanical properties, etc. are obtained from the unsteady inflection state. In the quality control method, the accuracy can be appropriately improved, and effective quality control can be performed, so that the invention is industrially highly effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する冷却曲線測定装置の説明
図である。
FIG. 1 is an explanatory view of a cooling curve measuring device for carrying out the method of the present invention.

【図2】図1の装置によってPを70PPM 添加処理した
Al-15 %Si-0.7%Mg合金の冷却曲線を求めた結果の図表
である。
[FIG. 2] 70 PPM of P was treated by the apparatus of FIG.
It is a chart of the result of having obtained the cooling curve of Al-15% Si-0.7% Mg alloy.

【図3】A390合金を本発明により温度範囲を規定し
て冷却曲線の非定常的変曲状態を求めた結果の図表であ
る。
FIG. 3 is a chart of the results of determining the non-steady inflection state of the cooling curve of the A390 alloy according to the present invention by defining the temperature range.

【図4】A357合金を本発明による温度範囲と時間範
囲とを規定して冷却曲線の非定常的変曲状態を求めた結
果の図表である。
FIG. 4 is a chart showing the results of determining the non-steady inflection state of the cooling curve of the A357 alloy by defining the temperature range and the time range according to the present invention.

【図5】共晶Si微細化処理を施してないA356合金の
共晶近傍における冷却曲線とその共晶Siの顕微鏡的形態
を併せて示した図表である。
FIG. 5 is a table showing a cooling curve in the vicinity of a eutectic crystal of an A356 alloy that has not been subjected to eutectic Si refining treatment and a microscopic morphology of the eutectic Si.

【図6】Sr処理した上記A356合金の冷却曲線と共晶
Siの顕微鏡的形態とを併せて示した図表である。
FIG. 6: Cooling curve and eutectic of the above S356-treated A356 alloy
It is the chart which also showed the microscopic form of Si.

【符号の説明】[Explanation of symbols]

1 鋳型 2 熱電対 3 合金溶湯 4 起電力の検知および演算解析装置 5 判断制御装置 6 温度および解析結果表示器 7 合格、不合格を表示する合否表示器 10 測定装置 DESCRIPTION OF SYMBOLS 1 Mold 2 Thermocouple 3 Molten metal alloy 4 Electromotive force detection and calculation / analysis device 5 Judgment control device 6 Temperature and analysis result display 7 Pass / fail display 10 indicating pass / fail 10 Measuring device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山脇 慧 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内 (72)発明者 長沢 一正 静岡県庵原郡蒲原町蒲原1丁目34番1号 日軽情報システム株式会社静岡事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kei Yamawaki 1-34-1, Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nichiritsu Giken Co., Ltd. No. 34-1 Nikkei Information Systems Co., Ltd. Shizuoka Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 予め得られた互いに対応する冷却曲線の
温度変化と凝固組織に基いて溶湯より採られた試料の冷
却曲線を求め、該冷却曲線の温度変化による非定常的変
曲状態によって前記溶湯の凝固組織を予測するに当り、
該非定常的変曲状態の顕われる温度範囲を規定し、該温
度範囲内において顕われた非定常的変曲状態によって上
記溶湯の凝固組織または組織変化に伴う諸特性の変化を
予測管理することを特徴とした金属溶湯の品質管理方
法。
1. A cooling curve of a sample taken from a molten metal is obtained on the basis of a temperature change of a cooling curve corresponding to each other and a solidification structure obtained in advance, and the cooling curve is subjected to an unsteady inflection state due to a temperature change of the cooling curve. In predicting the solidification structure of molten metal,
The temperature range in which the unsteady inflection state appears is defined, and the change in various characteristics associated with the solidification structure or the structure change of the molten metal is predicted and controlled by the unsteady inflection state that appears in the temperature range. A characteristic method for quality control of molten metal.
【請求項2】 予め得られた互いに対応する冷却曲線の
温度変化と凝固組織に基いて溶湯より採られた試料の冷
却曲線を求め、該冷却曲線の温度変化による非定常的変
曲状態によって前記溶湯の凝固組織を予測するに当り、
該非定常的変曲状態の顕われる温度範囲および時間範囲
を規定し、それらの温度範囲および時間範囲内において
顕われた非定常的変曲状態によって上記溶湯の凝固組織
または組織変化に伴う諸特性の変化を予測管理すること
を特徴とした金属溶湯の品質管理方法。
2. A cooling curve of a sample taken from a molten metal is obtained on the basis of a temperature change of a cooling curve corresponding to each other and a solidification structure obtained in advance, and the cooling curve is subjected to an unsteady inflection state due to the temperature change of the cooling curve. In predicting the solidification structure of molten metal,
The temperature range and the time range in which the non-stationary inflection state appears are defined, and the characteristics associated with the solidification structure or the microstructure change of the molten metal are defined by the non-stationary inflection state that appears in the temperature range and the time range. A quality control method for molten metal, characterized by predicting and controlling changes.
JP2305494A 1994-01-25 1994-01-25 Quality control method for molten metal Pending JPH07209220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305494A JPH07209220A (en) 1994-01-25 1994-01-25 Quality control method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305494A JPH07209220A (en) 1994-01-25 1994-01-25 Quality control method for molten metal

Publications (1)

Publication Number Publication Date
JPH07209220A true JPH07209220A (en) 1995-08-11

Family

ID=12099738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305494A Pending JPH07209220A (en) 1994-01-25 1994-01-25 Quality control method for molten metal

Country Status (1)

Country Link
JP (1) JPH07209220A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317076A (en) * 1997-05-14 1998-12-02 Nissan Motor Co Ltd Method for presuming shrinkage property of molten aluminum
JP2001050920A (en) * 1999-08-11 2001-02-23 Metal Science Kk Method for estimating crystal grain size of aluminum alloy
JP2001099797A (en) * 1999-09-28 2001-04-13 Metal Science Kk Method for measuring equivalent of sodium and quantity of phosphorus in aluminum alloy
JP2001318066A (en) * 2000-05-02 2001-11-16 Marcom:Kk Impurity metal concentration detection method and device in leadless solder
JP2002214171A (en) * 2001-01-12 2002-07-31 Metal Science Kk Method for measuring content of iron in aluminum alloy
WO2004081248A1 (en) * 1996-11-25 2004-09-23 Kohei Kubota Magnesium alloy and process for the preparation thereof
JP2010162547A (en) * 2009-01-13 2010-07-29 Eco System Kk Method and device for discriminating cleanliness of molten metal from solidification curve
CN108188385A (en) * 2018-01-19 2018-06-22 青岛贝诺磁电科技有限公司 A kind of casting smelting real time data synchronization manages system
WO2019087435A1 (en) * 2017-11-06 2019-05-09 株式会社I2C技研 Casting solidification analysis method, casting method, and electronic program
JP2021171768A (en) * 2020-04-20 2021-11-01 エコ・システム有限会社 Crystal grain refining determination method from cooling curve
JP7166668B1 (en) * 2021-07-12 2022-11-08 カナエハイテック合同会社 Non-ferrous material evaluation equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081248A1 (en) * 1996-11-25 2004-09-23 Kohei Kubota Magnesium alloy and process for the preparation thereof
JPH10317076A (en) * 1997-05-14 1998-12-02 Nissan Motor Co Ltd Method for presuming shrinkage property of molten aluminum
JP2001050920A (en) * 1999-08-11 2001-02-23 Metal Science Kk Method for estimating crystal grain size of aluminum alloy
JP2001099797A (en) * 1999-09-28 2001-04-13 Metal Science Kk Method for measuring equivalent of sodium and quantity of phosphorus in aluminum alloy
JP2001318066A (en) * 2000-05-02 2001-11-16 Marcom:Kk Impurity metal concentration detection method and device in leadless solder
JP2002214171A (en) * 2001-01-12 2002-07-31 Metal Science Kk Method for measuring content of iron in aluminum alloy
JP2010162547A (en) * 2009-01-13 2010-07-29 Eco System Kk Method and device for discriminating cleanliness of molten metal from solidification curve
WO2019087435A1 (en) * 2017-11-06 2019-05-09 株式会社I2C技研 Casting solidification analysis method, casting method, and electronic program
JPWO2019087435A1 (en) * 2017-11-06 2020-11-12 株式会社I2C技研 Solidification analysis method, casting method and electronic program during casting
US11745258B2 (en) 2017-11-06 2023-09-05 I2C Co., Ltd Casting solidification analysis method, casting method, and electronic program
CN108188385A (en) * 2018-01-19 2018-06-22 青岛贝诺磁电科技有限公司 A kind of casting smelting real time data synchronization manages system
JP2021171768A (en) * 2020-04-20 2021-11-01 エコ・システム有限会社 Crystal grain refining determination method from cooling curve
JP7166668B1 (en) * 2021-07-12 2022-11-08 カナエハイテック合同会社 Non-ferrous material evaluation equipment

Similar Documents

Publication Publication Date Title
Veldman et al. Dendrite coherency of Al-Si-Cu alloys
US4667725A (en) Method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
Emadi et al. Comparison of newtonian and fourier thermal analysis techniques for calculation of latent heat and solid fraction of aluminum alloys
Tzimas et al. Evaluation of volume fraction of solid in alloys formed by semisolid processing
Ares et al. Influence of solidification thermal parameters on the columnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys
Shabestari et al. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis
Shabestari et al. Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy
JPH07209220A (en) Quality control method for molten metal
Ghoncheh et al. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique
Osório et al. Mechanical properties as a function of thermal parameters and microstructure of Zn–Al castings
Costa et al. Growth direction and Si alloying affecting directionally solidified structures of Al–Cu–Si alloys
Cho et al. The relationship between dendrite arm spacing and cooling rate of Al-Si casting alloys in high pressure die casting
US4333512A (en) Method of quickly predicting the degree of nodularity of spheroidal graphite cast iron from a molten iron sample
Gottardi et al. Solid fraction determination via DSC analysis
US6604016B1 (en) Iron castings with compacted or spheroidal graphite produced by determining coefficients from cooling curves and adjusting the content of structure modifying agents in the melt
JP4298925B2 (en) Method for determining the required amount of structural modifier to be added to cast iron, equipment therefor and computer program product
KR100263511B1 (en) The determination of the carbon equivalent structure modified cast iron
CA1239800A (en) Method of controlling metallurgical structure of cast aluminum
Fredriksson Interpretation and Use of Cooling Curves—Thermal Analysis
US3774441A (en) Method and apparatus for the thermal analysis of metallic melts
JP2798725B2 (en) Method for measuring solid fraction of solid-liquid coexisting metal
CN1348099A (en) Wavelet thermal analysis method and analyzer for solidification of metal melt
D’Souza et al. Determination of transition temperatures during freezing and melting of interdendritic phases in Ni based superalloys
JP3286839B2 (en) Analytical method for carbon and silicon contents of molten cast iron and pig iron.
RU2220409C2 (en) Procedure establishing convective heat transfer coefficient