EP0694340A1 - Dispositif concentrateur en particules fines ou cassées - Google Patents

Dispositif concentrateur en particules fines ou cassées Download PDF

Info

Publication number
EP0694340A1
EP0694340A1 EP95401755A EP95401755A EP0694340A1 EP 0694340 A1 EP0694340 A1 EP 0694340A1 EP 95401755 A EP95401755 A EP 95401755A EP 95401755 A EP95401755 A EP 95401755A EP 0694340 A1 EP0694340 A1 EP 0694340A1
Authority
EP
European Patent Office
Prior art keywords
particles
funnel
deflector
fine
broken
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95401755A
Other languages
German (de)
English (en)
Inventor
Jean-Paul Euzen
Jean De Bonneville
Daniel Vuillemot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0694340A1 publication Critical patent/EP0694340A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/003Separation of articles by differences in their geometrical form or by difference in their physical properties, e.g. elasticity, compressibility, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/06Cone or disc shaped screens

Definitions

  • the present invention relates to a concentrator device for fine or broken particles, usable in particular in installations comprising catalytic reactors with moving bed, and in particular in catalytic reforming installations.
  • fine or broken particles is a nuisance in all reactors but in particular in moving bed reactors because they cause several types of drawbacks.
  • these particles cause a change in the porosity of the medium which disturbs the regularity of the gas flow and therefore directly affects the performance of the unit.
  • the presence of fine particles modifies the flow conditions of solid particles within the moving bed itself, in particular in the case of annular beds (delimited by concentric grids) in contact with the grid of the central collector. since, entrained by the fluids, fine or broken particles are pushed towards the grid of the central collector where they can become blocked.
  • the present invention provides a concentrator device which aims to separate a flow of particles having a concentration C0 of fine or broken particles (according to needs, particles with a smaller average diameter will be defined at a determined threshold, either absolute or relative to the average diameter of the particles) in at least two flows.
  • At least one of the fluxes obtained (called flux of reduced concentration in fine or broken particles) will have a concentration C1 in fine particles substantially lower than C0, while the other (the others) flux (called flux concentrated in fine particles or conversely) will have, conversely, a concentration C2 substantially higher than the concentration C0 of the initial flow.
  • the device which is the subject of the invention is, in FIG. 1, placed in a cylindrical enclosure 1 with a conical bottom (which could be just as well hemispherical or elliptical) and comprising an external wall.
  • An introduction means 2 brings the flow of particles to be treated to the level of the first separator stage; under the effect of gravity. Most of this flow consists of quasi-spherical particles, that is to say particles which can roll, and of variable sizes. Without these dimensions being able to limit the invention, examples of reforming catalysts 1.5 to 2.8 mm in diameter will be given.
  • the particle flow flows by gravity through the device.
  • the first separator stage comprises a funnel 3 and a deflector 4 connected to the funnel.
  • Figure 1 therefore comprises 2 separator stages in series.
  • the means of introduction of the particles for the second separator is the orifice 5 of the first separator which preferably comprises a tube.
  • the funnel 3, the deflector 4 and the introduction means have substantially the same axis, which is vertical or inclined, and preferably substantially vertical, to allow gravity flow.
  • the purpose of the funnel is to collect a portion of the particles coming from the upper introduction means, before redistributing them through a reduced size orifice placed substantially vertically from the first introduction point.
  • the funnel flares up. Its upper diameter is preferably a fraction, approximately between 1/4 and 2/3, of the diameter of the container and the upper part is placed so as to intercept a large fraction, between 1/3 and 3/4, of the slope of solid particles while leaving a free annular space for the flow of the rest of the particles.
  • the outer edge 7 of the funnel must be located at a distance H from the lower end of the means of introduction (tubing 2 or 5) of the particles. This distance is of the order of a few centimeters. The point of the slope may therefore be free or not, depending on the value of this distance.
  • the section of the outlet orifice 5 of the funnel (therefore located on the axis of the funnel) is preferably close to the section of the means for introducing the particles, it can also be smaller.
  • the angle of inclination ⁇ of the funnel (or that of the planar facets) relative to the horizontal is greater than the angle of sliding of the particles on the surface of the deflector so as to allow a regular flow of the particles which s 'press on this edge of the funnel. It is usually at least 5-10 degrees higher than the slip angle.
  • the base of the truncated cone, or prism, forming the funnel can possibly be extended by a short tube 6.
  • the purpose of the deflector is to push the largest and roundest particles towards the wall and the periphery. It is frustoconical or prismatic, with a flaring downwards. At the upper part its diameter is connected to the diameter of the upper part of the funnel, so that the line of intersection is circular if the funnel and the deflector are real trunks of cones (conical shape), but a line broken if the funnel and / or the deflector are prismatic. The deflector and the funnel are thus connected.
  • the deflector leaves a space L for passage of particles sufficient to avoid the effects of arch or blockage against the external wall of the enclosure 1, therefore a space of at least 10 times the diameter of the particles the largest, and preferably at least 20 times, but not too weak so that the slope, which collapses towards the center from this crossed deflector edge, cannot reach the outer edge of the immediately lower funnel.
  • the inclination of this deflector relative to the horizontal is at least 5 to 10 degrees greater than the angle of sliding of the particles on the surface of the deflector so as to allow a regular flow of the particles which are supported on this deflector.
  • the operator will define the angle ⁇ , the quantity L (distance between the lower end of the deflector and the wall) and h (vertical distance between the upper edge of the funnel and the upper surface slope) or H (vertical distance between the upper edge of the funnel and the introduction means).
  • the principle of the proposed device is therefore to exploit this effect by regularly bringing back towards the center part of the slope formed in line with the supply orifices.
  • This process can be repeated one or more times by superimposing several separator stages which each have the objective of separating a stream of particles in two, a stream of particles enriched in fine or broken particles which are refocused while a second stream less rich in fine and broken is pushed outward.
  • the funnel, immediately below associated with a deflector
  • the intersection (M in FIG. 1) between the slope created at this funnel and the free particles flowing from the upper deflector, this intersection is located outside the upper section of said funnel.
  • the surface of the deflector may, as indicated above, be of frustoconical or prismatic shape, its surface may be smooth or in the form of a grid or a plate provided with slots or perforations, so as to allow the passage of the finest particles while promoting the sliding of medium or large particles towards the periphery. If this wall is not full (as shown in FIG. 1), it is advantageously proposed to place under the grid or the perforated plate a small full plate which makes it possible to collect and refocus the fine particles which have passed through. through the gate. It is quite obvious that this small plate, or flange 8 of refocusing for example, of frustoconical shape should not however obstruct the flow of the slope which descends from the preceding central orifice 5. Obviously, this plate is directed towards the lower part of the device and towards the axis of the associated funnel.
  • Each of the withdrawal rates can of course be adjusted independently by means of a suitable device, such as for example a mechanical or pneumatic valve.
  • a suitable device such as for example a mechanical or pneumatic valve.
  • We can also advantageously provide for the distances L and the diameters of the pipes 12 and 10 so that the particles can flow freely without being sorted. In this case, we would do the sorting discontinuously.
  • the withdrawal of the stream concentrated in fine or broken particles is obtained by means 9, arranged substantially along the axis of the last funnel, it being understood that this is the funnel immediately above by means of racking.
  • This means 9 comprises according to Figure 1 a tube 10 advantageously connected to a funnel 11 collecting the concentrated flow over an area around the axis of the last funnel. Any other means having the function of collecting and discharging the concentrated flow is suitable.
  • the flow of particles remaining, containing all the other particles not discharged by means 9, is recovered, advantageously in FIG. 1 by the preferably conical or elliptical bottom of enclosure 1 and discharged by means 12. Any other means of recovering the remaining flow is suitable, in particular the means usually placed for this purpose at the base of moving bed reactors or silos.
  • the funnels and deflectors can be scalloped, in particular if they are composed of plane facets, and therefore have a non-planar connection line to allow greater variation in the flow rates of solids without compromising the principle of operation of the device.
  • the substantially revolution device described above instead of the substantially revolution device described above, if geometrical or space constraints encourage it, generally semi-circular or even planar devices can also be used with profit, as long as they respect the basic principle. offers.
  • the complete device corresponds to a fraction of the device described above; the description and diagram given in Figures 1 and 2 to represent the section of the proposed device remains perfectly valid, except that the word funnel no longer represents a half or a quarter of frustoconical funnel, or even a flat surface if the device is no longer of revolution, and that in the same way, the deflector is no longer of revolution, but semi circular or planar.
  • separator devices can coexist "in parallel" on the same plane in the same enclosure with a means of supplying particles to be treated for each of the first separator stages.
  • the advantage of the device according to the invention is that all the streams of particles are re-sorted and in particular the stream of finer particles from the first separator stage is re-sorted by each of the following stages, so that at the end of at least minus 2 separator stages, and preferably more than 2, the concentration of fine or broken particles is reduced significantly.
  • This objective is achieved by means of the device according to the invention thanks to the dynamic slope effect used, that is to say that all the particles are always in motion to form the slope and to flow, the slope does not is never blocked (otherwise the catalyst particles would stick). This effect also allows the speaker to be emptied completely at the desired time, and without mixing the flows.

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

La présente invention concerne un dispositif concentrateur en particules fines ou cassées qui permet de séparer un flux de particules en au moins un flux concentré en particules fines ou cassées et au moins un flux de concentration réduite en particules fines ou cassées. Le dispositif comporte outre le(s) moyen(s) d'introduction (2) et de soutirage (9,12), au moins deux étages séparateurs comportant au moins un entonnoir (3) d'axe incliné ou sensiblement vertical, évasé vers le haut, disposé en dessous du moyen d'introduction (2), pour recueillir les particules, ledit entonnoir (3) étant connecté à au moins un déflecteur (4) dirigé vers le bas pour permettre l'écoulement gravitaire des particules et la formation d'un talus de particules au niveau de l'entonnoir (3).

Description

  • La présente invention concerne un dispositif concentrateur en particules fines ou cassées, utilisable notamment dans les installations comportant des réacteurs catalytiques à lit mobile, et en particulier dans les installations de réformage catalytique.
  • La présence de particules fines ou cassées est gênante dans tous les réacteurs mais en particulier dans les réacteurs à lit mobile parce qu'elles provoquent plusieurs types d'inconvénients.
    En premier lieu, ces particules entraînent une modification de la porosité du milieu ce qui perturbe la régularité de l'écoulement des gaz et donc nuit directement aux performances de l'unité.
    En second lieu, la présence de particules fines modifie les conditions d'écoulement des particules solides au sein du lit mobile lui-même, en particulier dans le cas des lits annulaires (délimités par des grilles concentriques) au contact de la grille du collecteur central puisque, entraînées par les fluides, les particules fines ou cassées sont poussées vers la grille du collecteur central où elles peuvent se bloquer. Dans ce cas, les caractéristiques de frottement de cette grille sont considérablement dégradées, ce qui provoque un ralentissement du mouvement des particules dans cette zone, ou même peut entraîner le blocage contre la grille de groupes plus ou moins importants de particules, voire un blocage de l'ensemble du lit mobile, ce qui est particulièrement néfaste pour le fonctionnement et les performances du réacteur en lit mobile, et même de l'ensemble de l'unité correspondante.
  • Pour remédier à ces inconvénients, la présente invention propose un dispositif concentrateur qui a pour objectif de séparer, un flux de particules ayant une concentration C₀ en particules fines ou cassées (selon les besoins on définira comme particules fines les particules dont le diamètre moyen est inférieur à un seuil déterminé, soit absolu, soit relatif par rapport au diamètre moyen des particules) en au moins deux flux. L'un au moins des flux obtenus (dit flux de concentration réduite en particules fines ou cassées) aura une concentration C₁ en particules fines sensiblement inférieure à C₀ , tandis que l'autre (les autres) flux (appelé flux concentré en particules fines ou cassées) aura, inversement une concentration C₂ sensiblement supérieure à la concentration C₀ du flux de départ.
  • Il a été recherché pour atteindre ce but un dispositif ne comportant pas de pièce tournante ou n'entraînant pas les particules à grande vitesse (comme les cyclones), qui ne casse pas les particules (comme cela peut être le cas sur certains tamis) et qui soit le plus simple possible, le plus compact possible pour pouvoir s'intégrer dans les installations industrielles existantes.
  • Plus précisément, l'invention concerne un dispositif concentrateur en particules fines ou cassées dans un écoulement gravitaire, qui comporte :
    • au moins un moyen pour l'introduction par gravité du flux de particules à traiter ayant une concentration Co en particules fines ou cassées,
    • au moins deux étages séparateurs comportant chacun au moins un entonnoir d'axe incliné ou sensiblement vertical, évasé vers le haut, disposé en dessous dudit moyen d'introduction, pour recueillir lesdites particules, ledit étage comportant également au moins un déflecteur connecté audit entonnoir et dirigé vers le bas, de façon à permettre l'écoulement gravitaire des particules et à créer un talus des particules au niveau de l'entonnoir,
    • au moins un moyen de soutirage d'au moins un flux de particules de concentration C1>Co en particules fines ou cassées dit flux concentré, ledit moyen étant disposé sensiblement selon l'axe du dernier entonnoir,
    • au moins un moyen pour la récupération d'au moins un flux de particules de concentration C1<Co en particules fines ou cassées.
  • Le dispositif et son fonctionnement seront mieux compris à partir des figures 1 et 2 :
    • la figure 1 décrivant un mode de réalisation à plusieurs étages séparateurs,
    • la figure 2 représente en détail un étage séparateur.
  • Le dispositif objet de l'invention est, dans la figure 1, placé dans une enceinte 1 cylindrique à fond conique (qui pourrait être tout aussi bien hémisphérique ou elliptique) et comportant une paroi externe.
    Un moyen d'introduction 2, amène le flux de particules à traiter au niveau du premier étage séparateur; sous l'effet de la gravité.
    La plus grande partie de ce flux est constitué de particules quasi-sphériques, c'est-à-dire de particules pouvant rouler, et de tailles variables. Sans que ces dimensions puissent limiter l'invention, on donnera pour exemple des particules de catalyseurs de réformage de 1.5 à 2.8 mm de diamètre.
  • Le flux des particules s'écoule gravitairement à travers le dispositif.
  • Sur la figure 1, le premier étage séparateur comporte un entonnoir 3 et un déflecteur 4 connecté à l'entonnoir.
  • Tous les étages séparateurs ont cette structure, qui est représenté figure 2.
  • La figure 1 comporte donc 2 étages séparateurs en série. Le moyen d'introduction des particules pour le second séparateur est l'orifice 5 du premier séparateur qui comporte de préférence une tubulure.
  • Il est aisément concevable d'augmenter le nombre d'étages séparateurs pour affiner la séparation des particules fines ou cassées, selon les contraintes d'exploitation.
  • L'entonnoir 3, le déflecteur 4 et le moyen d'introduction ont sensiblement le même axe, qui est vertical ou incliné, et de préférence sensiblement vertical, pour permettre l'écoulement gravitaire.
  • L'entonnoir a pour objectif de collecter une partie des particules venant du moyen d'introduction supérieur, avant de les redistribuer par un orifice de taille réduite placé sensiblement à la verticale du premier point d'introduction. L'entonnoir s'évase vers le haut. Son diamètre supérieur est de préférence une fraction, comprise approximativement entre 1/4 et 2/3, du diamètre du récipient et la partie supérieure est placée de manière à intercepter une fraction importante, entre 1/3 et 3/4, du talus de particules solides tout en laissant un espace annulaire libre pour l'écoulement du reste des particules.
    Le bord externe 7 de l'entonnoir doit être situé à une distance H de l'extrémité basse du moyen d'introduction (tubulure 2 ou 5) des particules. Cette distance est de l'ordre de quelques centimètres.
    La pointe du talus pourra donc être libre ou non, selon la valeur de cette distance.
  • On peut également définir une distance h entre le bord externe 7 de l'entonnoir et la ligne qui part du bord correspondant de la tubulure d'alimentation en particules et qui fait avec l'horizontale un angle égal à l'angle du talus R avec l'horizontal (figure 2) ou angle au repos. L'angle de talus et l'angle de frottement des particules sont des grandeurs accessibles à partir d'essais largement connus, certains sont normalisés.
  • La section de l'orifice 5 de sortie de l'entonnoir (situé donc sur l'axe de l'entonnoir) est de préférence voisine de la section du moyen d'introduction des particules, elle peut être également inférieure.
    L'angle d'inclinaison α de l'entonnoir (ou celui des facettes planes) par rapport à l'horizontale est supérieur à l'angle de glissement des particules sur la surface du déflecteur de manière à permettre un écoulement régulier des particules qui s'appuient sur ce bord de l'entonnoir. Il est généralement supérieur de 5 à 10 degrés au moins de l'angle de glissement. La base du tronc de cône, ou de prisme, formant l'entonnoir peut éventuellement être prolongée par une courte tubulure 6.
  • Le déflecteur a pour objectif de repousser vers la paroi et la périphérie les particules les plus grosses et les plus rondes. Il est de forme tronconique ou prismatique, avec un évasement vers le bas. A la partie supérieure son diamètre se raccorde au diamètre de la partie haute de l'entonnoir, si bien que la ligne d'intersection est circulaire si l'entonnoir et le déflecteur sont de vrais troncs de cônes (forme cônique), mais une ligne brisée si l'entonnoir ou/et le déflecteur sont de forme prismatique. Le déflecteur et l'entonnoir sont ainsi connectés. A la partie basse, le déflecteur laisse un espace L de passage aux particules suffisant pour éviter les effets d'arche ou de blocage contre la paroi externe de l'enceinte 1, soit donc un espace d'au moins 10 fois le diamètre des particules les plus grosses, et de préférence d'au moins 20 fois, mais pas trop faible de manière à ce que le talus, qui s'éboule vers le centre dès ce bord de déflecteur franchi, ne puisse pas atteindre le bord externe de l'entonnoir immédiatement inférieur. L'inclinaison de ce déflecteur par rapport à l'horizontale est supérieure de quelques 5 à 10 degrés au moins à l'angle de glissement des particules sur la surface du déflecteur de manière à permettre un écoulement régulier des particules qui s'appuient sur ce déflecteur.
    Suivant la qualité de la séparation recherchée, l'exploitant définira l'angle α, la grandeur L (distance entre l'extrémité basse du déflecteur et la paroi) et h (distance verticale entre le bord supérieur de l'entonnoir et la surface supérieure du talus) ou H (distance verticale entre le bord supérieur de l'entonnoir et le moyen d'introduction).
  • Lorsqu'un talus se forme naturellement sous un orifice d'alimentation chargé d'introduire des particules dont la répartition granulométrique en diamètres est assez large, ou qui contiennent à la fois des particules sensiblement rondes et d'autres de forme plus anguleuse, qui résultent souvent du bris des particules rondes, toutes ces particules n'ont pas toutes la même probabilité d'aller en telle ou telle région du talus. En effet, les particules rondes les plus grosses roulent beaucoup plus facilement le long du talus pour ne s'arrêter qu'à la périphérie, alors que les particules les plus fines ont d'une part une énergie cinétique plus faible donc s'arrêtent plus facilement et plus rapidement, et d'autre part de nombreuses occasions de trouver une anfractuosité, un petit espace entre des particules immobiles pour se coincer et s'arrêter. De la même manière, les particules qui présentent des angles ou des faces plus plates ont une plus grande probabilité de s'arrêter sur la pente du talus sans aller jusqu'à sa périphérie. En conséquence, le diamètre moyen des particules croît régulièrement depuis l'axe du talus, à la verticale du point d'alimentation, jusqu'à la périphérie, à la partie inférieure du talus.
  • Le principe du dispositif proposé est donc d'exploiter cet effet en ramenant régulièrement vers le centre une partie du talus formé à l'aplomb des orifices d'alimentation. Ce processus peut être répété une ou plusieurs fois en superposant plusieurs étages séparateurs qui ont chacun l'objectif de séparer un flux de particules en deux, un flux de particules enrichi en particules fines ou cassées qui sont recentrées tandis qu'un second flux moins riche en fines et en cassées est repoussé vers l'extérieur.
    On veillera à ce que l'entonnoir, immédiatement inférieur (associé à un déflecteur) soit disposé de façon à ce que l'intersection (M sur la figure 1) entre le talus crée au niveau de cet entonnoir et les particules libres s'écoulant à partir du déflecteur supérieur, cette intersection soit située en dehors de la section supérieure dudit entonnoir.
  • La surface du déflecteur peut, comme on l'indique plus haut être de forme tronconique ou prismatique, sa surface peut être lisse ou sous forme d'une grille ou d'une plaque munie de fentes ou de perforations, de manière à laisser passer les particules les plus fines tout en favorisant le glissement des particules moyennes ou grosses vers la périphérie. Si cette paroi n'est pas pleine (ainsi que cela est montré sur la figure 1), il est proposé avantageusement de placer sous la grille ou la plaque perforée une petite plaque pleine qui permette de collecter et recentrer les particules fines qui sont passées à travers la grille. Il est bien évident que cette petite plaque, ou collerette 8 de recentrage par exemple, de forme tronconique ne doit pas faire pour autant obstacle à l'écoulement du talus qui descend de l'orifice central précédent 5. A l'évidence, cette plaque est dirigée vers la partie basse du dispositif et vers l'axe de l'entonnoir associé.
  • Chacun des débits de soutirage peut bien entendu être réglé indépendamment au moyen d'un dispositif adéquat, comme par exemple une vanne mécanique ou pneumatique. On peut également avantageusement prévoir les distances L et les diamètres des tubulures 12 et 10 de façon à ce que les particules puissent s'écouler librement sans être triées. Dans ce cas, on pratiquerait le tri en discontinu.
  • A la base du dispositif, le soutirage du flux concentré en particules fines ou cassées est obtenu par un moyen 9, disposé sensiblement selon l'axe du dernier entonnoir, étant entendu qu'il s'agit de l'entonnoir immédiatement supérieur au moyen de soutirage.
    Ce moyen 9 comprend selon la figure 1 une tubulure 10 avantageusement raccordée à un entonnoir 11 collectant le flux concentré sur une zone autour de l'axe du dernier entonnoir.
    Tout autre moyen ayant pour fonction de collecter et évacuer le flux concentré convient.
  • Le flux de particules restant, contenant toutes les autres particules non évacuées par le moyen 9, est récupéré, avantageusement sur la figure 1 par le fond de préférence conique ou elliptique de l'enceinte 1 et évacué par un moyen 12.
    Tout autre moyen de récupération du flux restant convient, notamment les moyens habituellement placés à cet effet à la base des réacteurs à lit mobile ou des silos.
  • En variante, les entonnoirs et déflecteurs peuvent être échancrés, en particulier s'ils sont composés de facettes planes, et donc présenter un ligne de raccordement non plane pour permettre une plus grande variation des débits de solides sans compromettre le principe du fonctionnement du dispositif.
    En variante, au lieu du dispositif sensiblement de révolution décrit plus haut, si des contraintes géométriques ou d'encombrement y incitent, des dispositifs globalement semi-circulaires ou même plans peuvent aussi être employés avec profit, tant qu'ils respectent le principe de base proposé. Le dispositif complet corrrespond alors à une fraction du dispositif décrit plus haut; la description et le schéma donnés figures 1 et 2 pour représenter la coupe du dispositif proposé reste parfaitement valide, à ceci près que le mot entonnoir ne représente plus qu'un demi ou un quartier d'entonnoir tronconique, ou même une surface plane si le dispositif n'est plus de révolution, et que de la même manière, le déflecteur n'est plus de révolution, mais semi circulaire ou plan.
  • Dans le dispositif de la figure 1, tous les étages séparateurs sont alignés sur le même axe.
    Cette disposition préférée n'est pas obligatoire, il peut exister un décalage entre les axes des étages séparateurs, mais limité. En effet, les particules doivent tomber, dans leur majorité, dans l'aire du cône (section définie par le bord supérieur de l'entonnoir).
  • Selon une autre variante, plusieurs dispositifs séparateurs peuvent coexister "en parallèle" sur un même plan dans une même enceinte avec un moyen d'alimentation en particules à traiter pour chacun des premiers étages séparateurs.
  • Selon un autre mode de réalisation, on peut prévoir entre 2 étages séparateurs, la mise en place d'un entonnoir seul ou collecteur de fines, pour recentrer le flux concentré, ou bien la mise en place de déflecteur(s) seul(s) pour diriger les particules les plus grosses à la périphérie.
    Toutes combinaisons de ces variantes sont possibles.
  • L'avantage du dispositif selon l'invention est que tous les flux de particules sont retriés et en particulier le flux de particules plus fines issu du premier étage séparateur est retrié par chacun des étages suivants, de façon à ce que au bout d'au moins 2 étages séparateurs, et de préférence plus de 2, la concentration en particules fines ou cassées soit réduite de façon significative. Cet objectif est atteint au moyen du dispositif selon l'invention grâce à l'effet de talus dynamique utilisé, c'est-à-dire que toutes les particules sont toujours en mouvement pour former le talus et s'écouler, le talus n'est jamais bloqué (sinon les particules de catalyseurs se colleraient). Cet effet permet aussi de vider complètement l'enceinte au moment voulu, et sans mélange des flux.

Claims (13)

1. Dispositif concentrateur en particules fines ou cassées, dans un écoulement gravitaire, caractérisé en ce qu'il comporte :
- au moins un moyen pour l'introduction par gravité du flux de particules à traiter ayant une concentration C0 en particules fines ou cassées,
- au moins deux étages séparateurs comportant chacun au moins un entonnoir d'axe incliné ou sensiblement vertical, évasé vers le haut, disposé en dessous dudit moyen d'introduction, pour recueillir lesdites particules, ledit étage comportant également au moins un déflecteur connecté audit entonnoir et dirigé vers le bas, de façon à permettre l'écoulement gravitaire des particules et à créer un talus des particules au niveau de l'entonnoir,
- au moins un moyen de soutirage d'au moins un flux de particules de concentration C1>Co en particules fines ou cassées dit flux concentré, ledit moyen étant disposé sensiblement selon l'axe du dernier entonnoir,
- au moins un moyen pour la récupération d'au moins un flux de particules de concentration C1<Co en particules fines ou cassées,
2. Dispositif selon la revendication 1, caractérisé en ce que le déflecteur et l'entonnoir sont de forme tronconique.
3. Dispositif selon la revendication 1, caractérisé en ce que le déflecteur et l'entonnoir sont de forme prismatique.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte, entre 2 étages séparateurs consécutifs, au moins un entonnoir dépourvu de déflecteur connecté.
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte, entre 2 étages séparateurs consécutifs, au moins un déflecteur non connecté à un entonnoir.
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le flux de concentration C1<C0 en particules fines ou cassées est récupéré par le fond de l'enceinte dans laquelle se trouve le dispositif.
7 - Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte au moins 2 dispositifs séparateurs en parallèle.
8 - Dispositif selon l'une des revendications précédentes, caractérisé en ce que le(s) déflecteur(s) est constitué d'une grille et qu'il est disposé sous ladite grille une plaque pleine pour collecter et recentrer les particules fines ou cassées.
9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'angle d'inclinaison α de(s) l'entonnoir(s) est supérieur de 5 degrés au moins à l'angle de glissement des particules sur la surface du déflecteur.
10 - Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'inclinaison du déflecteur par rapport à l'horizontale est supérieur de 5 degrés au moins à l'angle de glissement des particules sur la surface du déflecteur.
11. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la distance L entre la paroi de l'enceinte contenant le dispositif et l'extrémité du déflecteur en vis à vis, est égal à au moins 10 fois le diamètre des particules les plus grosses.
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il est situé dans une enceinte comportant un fond conique, elliptique ou hémisphérique.
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il traite des particules de catalyseur de réformage de diamètre compris entre 1,5 et 2,8 mm.
EP95401755A 1994-07-29 1995-07-25 Dispositif concentrateur en particules fines ou cassées Withdrawn EP0694340A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9409558A FR2723008B1 (fr) 1994-07-29 1994-07-29 Dispositif concentrateur en particules fines ou cassees
FR9409558 1994-07-29

Publications (1)

Publication Number Publication Date
EP0694340A1 true EP0694340A1 (fr) 1996-01-31

Family

ID=9465980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401755A Withdrawn EP0694340A1 (fr) 1994-07-29 1995-07-25 Dispositif concentrateur en particules fines ou cassées

Country Status (7)

Country Link
US (1) US5772044A (fr)
EP (1) EP0694340A1 (fr)
JP (1) JPH0857428A (fr)
KR (1) KR960003822A (fr)
CN (1) CN1128683A (fr)
FR (1) FR2723008B1 (fr)
TW (1) TW269646B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050172A1 (fr) * 1997-05-08 1998-11-12 Alexei Nikiforovich Zjulin Separateur de matieres granulaires
CN102962192A (zh) * 2012-12-08 2013-03-13 张家港市金腾化工机械制造有限公司 化工用物料筛选机

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7819347B2 (en) * 2006-06-08 2010-10-26 Restaurant Technology, Inc. Metered material dispenser
US8022756B2 (en) 2007-05-15 2011-09-20 Qualcomm, Incorporated Output circuits with class D amplifier
RU2489450C9 (ru) * 2007-10-17 2014-01-27 Басф Се Фотолатентные катализаторы на основе металлорганических соединений
KR101271623B1 (ko) * 2010-11-19 2013-06-11 삼성중공업 주식회사 분리 장치
US8827185B2 (en) 2011-10-14 2014-09-09 Restaurant Technology, Inc. Measuring dispenser for granular seasoning material and method of seasoning
RU167396U1 (ru) * 2016-09-08 2017-01-10 Олег Владимирович Левин Станция для разделения катализатора на фракции
CN108686956B (zh) * 2018-05-16 2024-05-03 华东理工大学 一种粉体颗粒分选装置及分选方法
CN111203383A (zh) * 2020-01-08 2020-05-29 安徽中科光电色选机械有限公司 一种轻飘物重力分选机
RU208708U1 (ru) * 2021-06-05 2022-01-10 Общество с ограниченной ответственностью "Тайпс Сортинг" Многофункциональный калибратор для гетерогенных смесей

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231861A (en) * 1979-03-26 1980-11-04 Parsons Manufacturing, Incorporated Grain cleaning apparatus
EP0482683A1 (fr) * 1990-10-23 1992-04-29 METALLGESELLSCHAFT Aktiengesellschaft Procédé et dispositif pour séparer un courant de matière en vrac en fractions de dimensions différentes de grains
US5123542A (en) * 1991-06-03 1992-06-23 Hoppe Gerald W Method and apparatus for cleaning, distributing and aerating grain

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1335326A1 (ru) * 1985-11-24 1987-09-07 Украинский научно-исследовательский и проектно-конструкторский институт по обогащению и брикетированию углей Грохот
US4738774A (en) * 1986-10-10 1988-04-19 Patrick Charles W Spout line buster

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231861A (en) * 1979-03-26 1980-11-04 Parsons Manufacturing, Incorporated Grain cleaning apparatus
EP0482683A1 (fr) * 1990-10-23 1992-04-29 METALLGESELLSCHAFT Aktiengesellschaft Procédé et dispositif pour séparer un courant de matière en vrac en fractions de dimensions différentes de grains
US5123542A (en) * 1991-06-03 1992-06-23 Hoppe Gerald W Method and apparatus for cleaning, distributing and aerating grain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050172A1 (fr) * 1997-05-08 1998-11-12 Alexei Nikiforovich Zjulin Separateur de matieres granulaires
CN102962192A (zh) * 2012-12-08 2013-03-13 张家港市金腾化工机械制造有限公司 化工用物料筛选机

Also Published As

Publication number Publication date
FR2723008A1 (fr) 1996-02-02
JPH0857428A (ja) 1996-03-05
US5772044A (en) 1998-06-30
CN1128683A (zh) 1996-08-14
FR2723008B1 (fr) 1996-09-20
KR960003822A (ko) 1996-02-23
TW269646B (fr) 1996-02-01

Similar Documents

Publication Publication Date Title
US7025890B2 (en) Dual stage centrifugal liquid-solids separator
EP0694340A1 (fr) Dispositif concentrateur en particules fines ou cassées
WO2013064756A1 (fr) Plateau de distribution d&#39;un melange gaz liquide equipe d&#39;elements de distribution peu sensibles au defaut d&#39;horizontalite
EP0345158B1 (fr) Dispositif pour l&#39;évacuation des poussières dans les installations de déchargement en vrac
CH420016A (fr) Dispositif de triage de produits solides granuleux
EP0852963A1 (fr) Séparateur à enroulement direct de particules d&#39;un mélange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidisé
WO1999025445A1 (fr) Distributeur de liquide pour colonne de distillation non verticale, et colonne de distillation ainsi equipee
RU58379U1 (ru) Сепаратор газовый вихревого типа (варианты)
WO2008068432A2 (fr) Appareil de sélection granulométrique et/ou de séchage de matière
FR2629371A1 (fr) Dispositif de depoussierage de gaz industriels par separateurs mecaniques - pneumatiques
FR2520640A1 (fr) Depoussiereur a inversion de courant
US5215553A (en) Apparatus for separating particles from a gaseous medium
FR2690362A1 (fr) Sasseur et procédé de sassage d&#39;une matière en suspension dans l&#39;air.
EP0174232A1 (fr) Procédé de clarification à lit de boue pour liquide chargé de matières solides
EP0140769B1 (fr) Installation de traitement de matière en lit fluidisé
EP0740955A1 (fr) Enceintes avec soutirage amélioré des particules solides
FR2630658A1 (fr) Procede et dispositif pour la separation de produits de densites differentes, notamment des particules en suspension dans un fluide
FR2473349A1 (fr) Procede pour separer le liquide d&#39;un melange de gaz et de liquide et separateur pour la realisation de ce procede
RU2299756C1 (ru) Сепаратор газовый вихревого типа эжекционный (варианты)
FR2468411A1 (fr) Separateur de particules
CA2103331A1 (fr) Dispositif de separation en phases
RU2171720C2 (ru) Вихре-акустический классификатор
FR2528159A1 (fr) Procede et appareil pour le sechage de matieres pulverulentes en general
FR2560070A1 (fr) Procede et appareillage pour separer en deux phases un liquide boueux contenant des granules de differentes grosseurs, dans un recipient
FR2561123A3 (fr) Evaporateur a cascade

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB GR IT NL

17P Request for examination filed

Effective date: 19960731

17Q First examination report despatched

Effective date: 19991126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000407