EP0693113A1 - Secondary (2,3) alkyl sulfate surfactants in detergent compositions with polyhydroxy fatty acid amides - Google Patents

Secondary (2,3) alkyl sulfate surfactants in detergent compositions with polyhydroxy fatty acid amides

Info

Publication number
EP0693113A1
EP0693113A1 EP94913364A EP94913364A EP0693113A1 EP 0693113 A1 EP0693113 A1 EP 0693113A1 EP 94913364 A EP94913364 A EP 94913364A EP 94913364 A EP94913364 A EP 94913364A EP 0693113 A1 EP0693113 A1 EP 0693113A1
Authority
EP
European Patent Office
Prior art keywords
surfactants
alkyl
alkyl sulfate
fatty acid
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94913364A
Other languages
German (de)
French (fr)
Inventor
Jean-Pol Boutique
Yi-Chang Fu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0693113A1 publication Critical patent/EP0693113A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • C11D1/652Mixtures of anionic compounds with carboxylic amides or alkylol amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest

Definitions

  • the present invention relates to cleaning compositions and methods which employ secondary (2,3) alkyl sulfate surfactants in admixture with polyhydroxy fatty acid amide surfactants.
  • Most conventional detergent compositions contain mixtures of various detersive surfactants in order to remove a wide variety of soils and stains from surfaces.
  • various anionic surfactants especially the alkyl benzene sulfonates, are useful for removing particulate soils
  • various nonionic surfactants such as the alkyl ethoxylates and alkylphenol ethoxylates, are useful for removing greasy soils.
  • secondary alkyl sulfates offers considerable advantages to the formulator and user of detergent compositions.
  • the secondary alkyl (2,3) sulfates are more soluble in aqueous media than their counterpart primary alkyl sulfates of comparable chain lengths. Accordingly, they can be formulated as readily- soluble, high-surfactant (i.e., "high-active") particles for use in granular laundry detergents. Moreover, they can be formulated as stable, homogeneous liquid detergents.
  • the solubility of the secondary (2,3) alkyl sulfates allows them to be formulated in the concentrated form now coming into vogue with both granular and liquid laundry detergents. Since the secondary (2,3) alkyl sulfates can be made available in solid, particulate form, they can be dry-mixed into granular detergent compositions without the need for passage through spray drying towers.
  • Nonionic surfactants typically used in multi-action detergent compositions comprise a polyethylene oxide adduct of an aliphatic alcohol or alkyl phenol. While useful for their intended purpose, very little in the way of improvement has been made with such materials. In addition to the foregoing considerations, the formulator of modern detergents has been confronted with the fact that the highly effective phosphate builders are no longer usable in many areas of the world. Moreover, there would be substantial advantages if an alternative to petrochemical-based alkyl benzene sulfonate surfactants were to be identified.
  • the secondary (2,3) alkyl sulfate anionic surfactants can be advantageously used in combination with polyhydroxy fatty acid amide nonionic surfactants to provide mixed anionic/nonionic surfactants which have substantial advantages over anionic/noni ⁇ onic mixtures known in the art.
  • the surfactant mixtures herein exhibit cleaning performance equivalent to, or better than, the alkyl benzene sulfonates.
  • the surfactant mixtures herein are milder to the skin than the alkyl benzene sulfonates, and are more compatible with detersive enzymes.
  • the surfactant mixtures herein provide extremely low interfacial tensions and, hence, excellent grease/oil cleaning even in the absence of phosphate builders.
  • the surfactant mixtures herein also provide excellent cleaning of mixed soils and stains.
  • the polyhydroxy fatty acid amides are available mainly from nonpetrochemical resources such as fats and sugars.
  • the surfactant mixtures herein are quite biodegradable.
  • SAS secondary (2,3) alkyl sulfates
  • PFAS polyhydroxy fatty acid amide surfactants
  • AE alkyl ethoxylate surfactants
  • AS primary alkyl sulfate surfactants
  • the improved solubility is of substantial benefit under cold water conditions (e.g., at temperatures in the range of 5 * C to about 30 * C) where the rate of solubility of detergent granules in an aqueous washing liquor can be problematic.
  • the improved solubility achieved herein is also of substantial benefit when preparing the modern compact or dense detergent granules where solubility can be problematic.
  • the present invention relates to the use of secondary (2,3) alkyl sulfate surfactants in combination with polyhydroxy fatty acid amide surfactants to provide low (typically below 1 dyne/cm) interfacial tensions in aqueous media. Such low interfacial tensions promote the removal of oily soils from fabrics by mecjianisms such as "roll-up" or, preferably, spontaneous emulsification.
  • the invention thus also relates to the use of secondary (2,3) alkyl sulfate surfactants in combination with polyhydroxy fatty acid amide surfactants to provide cleaning action in a fabric laundering process which comprises agitating fabrics in an aqueous laundry containing said surfactants.
  • the invention herein provides liquid, granular, bar, gel, and the like detergent compositions, comprising: (a) at least about 2%, typically from about 5% to about 50%, by weight of a secondary (2,3) alkyl sulfate surfactant; (b) at least about 2% by weight of a polyhydroxy fatty acid amide surfactant; and
  • compositions and methods herein can also optionally employ various adjunct materials (c) such as detersive enzymes which are members selected from the group consisting of proteases, amylases, upases, cellulases, peroxidases and mixtures thereof.
  • adjunct materials such as detersive enzymes which are members selected from the group consisting of proteases, amylases, upases, cellulases, peroxidases and mixtures thereof.
  • detersive adjuncts useful herein include the conventional non-secondary (2,3) alkylsulfate, non-polyhydroxy fatty acid amide adjunct surfactant.
  • the invention herein makes it possible to lower interfacial tensions and to clean surfaces effectively without using alkylbenzene sulfonate surfactants.
  • detersive adjuncts useful herein include the detergency builders.
  • the invention herein makes it possible to use non-phosphate builders to lower interfacial tensions and to clean surfaces effectively. Accordingly, preferred builders herein are the polycarboxylate builders, especially the citrates and oxydisuccinates. Such builders (especially citrate) are preferred for use in liquid compositions.
  • the invention also provides granular or bar detergent compositions wherein the detergency builder is a member selected froj the group consisting of zeolite builders, layered silicate builders, polycarboxylate builders, and mixtures thereof.
  • compositions herein can be in bar form, wherein the builder is a phosphate builder.
  • the invention also provides a method for cleaning surfaces, comprising contacting (preferably, with agitation) said surfaces with an aqueous medium containing an effective amount (typically 100 ppm to 3000 ppm in solution) of the aforesaid compositions. Fabric laundering methods, dishwashing methods and methods for cleaning other hard surfaces are thus provided. All percentages, ratios and proportions herein are by weight, unless otherwise specified. All documents cited are incorporated herein by reference.
  • R0S03-M+ wherein R is typically a linear C10-C20 hydrocarbyl group and M is a water-solubilizing cation.
  • Branched-chain primary alkyl sulfate surfactants i.e., branched-chain "PAS" having 10-20 carbon atoms are also known; see, for example, European Patent Application 439,316, Smith et al, filed 21.01.91.
  • Secondary alkyl sulfate surfactants are those materials which have the sulfate moiety distributed randomly along the hydrocarbyl "backbone" of the molecule. Such materials may be depicted by the structure
  • the secondary (2,3) alkyl sulfates have now been found to be preferred for use in the presence of calcium ions and under conditions of high water hardness, or in the so-called "under-built” situation which can occur when nonphosphate builders are employed.
  • the primary alkyl sulfates can be problematic due to such interactions with calcium or magnesium cations.
  • the solubility of the primary alkyl sulfates is not as great as the secondary (2,3) alkyl sulfates.
  • the formulation of high-active surfactant particles and high-concentrate liquid detergents has now been found to be simpler and more effective with the secondary (2,3) alkyl sulfates than with the primary alkyl sulfates.
  • the secondary (2,3) alkyl sulfates are exceptionally easy to formjjte as heavy-duty liquid laundry detergents, especially in combination with short-chain adjunct surfactants.
  • the random secondary alkyl sulfates i.e., secondary alkyl sulfates with the sulfate group at positions such as the 4, 5, 6, 7, etc. secondary carbon atoms
  • such materials tend to be tacky solids or, more generally, pastes.
  • the random alkyl sulfates do not afford the processing advantages associated with the solid secondary (2,3) alkyl sulfates when formulating detergent granules, bars, or tablets.
  • the secondary (2,3) alkyl sulfates provide better sudsing than the random mixtures. It is preferred that the secondary (2,3) alkyl sulfates be substantially free (i.e., contain less than about 20%, more preferably less than about 10%, most preferably less than about 5%) of such random secondary alkyl sulfates.
  • the secondary (2,3) alkyl sulfates used herein are quite different in several important properties from the secondary olefin sulfonates (e.g., U.S. Patent 4,064,076, Klisch et al, 12/20/77); accordingly, the secondary sulfonates are not the focus of the present invention.
  • the preparation of the secondary (2,3) alkyl sulfates of the type useful herein can be carried out by the addition of H2SO4 to olefins.
  • a typical synthesis using ⁇ -olefins and sulfuric acid is disclosed in U.S. Patent 3,234,258, Morris, or in U.S. Patent 5,075,041, Lutz, granted December 24, 1991.
  • Such crystallinity-interrupting materials are typically effective at levels of 20%, or less, of the secondary (2,3) alkyl sulfate.
  • the secondary (2,3) alkyl sulfate surfactants contain less than about 3% sodium sulfate, preferably less than about 1% sodium sulfate.
  • sodium sulfate is an innocuous material. However, it dissolves and adds to the ionic "load" in aqueous media, and this can contribute to phase separation in the liquid compositions and to gel breaking in the gel compositions.
  • Various means can be used to lower the sodium sulfate content of the secondary (2,3) alkyl sulfates.
  • Krafft temperature is a term of art which is well-known to workers in the field of surfactant sciences.
  • Krafft temperature is described by K. Shinoda in the text “Principles of Solution and Solubility", translation in collaboration with Paul Becher, published by Marcel Dekker, Inc. 1978 at pages 160-161.
  • the solubility of a surface active agent in water increases rather slowly with temperature up to that point, i.e., the Krafft temperature, at which the solubility evidences an extremely rapid rise.
  • the Krafft temperature At a temperature approximately 4'C above the Krafft temperature a solution of almost any composition becomes a homogeneous phase.
  • the Krafft temperature of any given type of surfactant such as the secondary (2,3) alkyl sulfates herein wh h comprise an anionic hydrophilic sulfate group and a hydrophobic hydrocarbyl group, will vary with the chain length of the hydrocarbyl group. This is due to the change in water solubility with the variation in the hydrophobic portion of the surfactant molecule.
  • the secondary (2,3) alkyl sulfate surfactant herein comprises a mixture of alkyl chain lengths
  • the Krafft temperature will not be a single point but, rather, will be denoted as a "Krafft boundary”.
  • the optional sodium sulfate removal operation it is preferred to conduct the optional sodium sulfate removal operation at a temperature which is below the Krafft boundary, and preferably below the Krafft temperature of the shortest chain-length surfactant present in such mixtures, since this avoids excessive losses of secondary (2,3) alkyl sulfate to the wash solution.
  • the washing process can be conducted batchwise by suspending wet or dry secondary (2,3) alkyl sulfates in sufficient water to provide 10-50% solids, typically for a mixing time of at least 10 minutes at about 22'C (for a C ⁇ 6 secondary [2,3] alkyl sulfate), followed by pressure filtration.
  • the slurry will comprise somewhat less than 35% solids, inasmuch as such slmxigs are free-flowing and amenable to agitation during the washing process.
  • the washing process also reduces the levels of organic contaminants which comprise the random secondary alkyl sulfates noted above.
  • Polyhydroxy Fatty Acid Amide Surfactants -
  • the polyhydroxy fatty acid amides used herein are of the formula:
  • R 1 is H, Ci -C ⁇ hydrocarbyl , 2-hydroxyethyl , 2-hydroxy- propyl , or a mixture thereof, preferably C1-C4 al kyl , more prefer ⁇ ably Ci or C2 al kyl , most preferably Ci al kyl (i .e.
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl moiety.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH2-(CH0H) n -CH20H, -CH(CH20H)-(CH0H) n -i- CH2OH, -CH2-(CHOH)2(CHOR')(CHOH)-CH2 ⁇ H, where n is an integer from 1 to 5, inclusive, and R' is H or a cyclic mono- or poly- saccharide, and alkoxy!ated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly -CH2-(CH0H)4-CH20H.
  • R can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-isobutyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • Rl is preferably methyl .
  • Rl is preferably C2-C8 alkyl, especially n-propyl, iso-propyl, n-butyl, iso-butyl, pentyl, hexyl and 2-ethyl hexyl .
  • R2-C0-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
  • the methods comprise reacting N-alkylamino polyols with, preferably, fatty acid methyl esters in a solvent using an alkoxide catalyst at temperatures of about 85 * C to provide high yields (90-98%) of polyhydroxy fatty acid amides having desirable low levels (typically, less than about 1.0%) of sub-optimally degradable cyclized by-products and also with improved color and improved color stability, e.g., Gardner Colors below about 4, preferably between 0 and 2.
  • any unreacted N-alkylamino polyol remaining in the product can be acylated with an acid anhydride, e.g., acetic anhydride, maleic anhydride, or the like, to minimize the overall level of such residual amines in the product.
  • an acid anhydride e.g., acetic anhydride, maleic anhydride, or the like.
  • Resi- dual sources of classical fatty acids, which can suppress suds can be depleted by reaction with, for example, triethanolamine.
  • cyclized by-products herein is meant the undesirable reaction by-products of the primary reaction wherein it appears that the multiple hydroxyl groups in the polyhydroxy fatty acid amides can form ring structures which are, in the main, not readily biodegradable. It will be appreciated by those skilled in the chemical arts that the preparation of the polyhydroxy fatty acid amides herein using the di- and higher saccharides such as maltose will result in the formation of polyhydroxy fatty acid amides wherein linear substituent Z (which contains multiple hydroxy substituents) is naturally "capped" by a polyhydroxy ring strypatur p .. Such materials are not cyclized by-products, as defined herein.
  • the amount of polyhydroxy fatty acid amide surfactants herein can range from about 2% to about 60%, typically from about 5% to about 30%, by weight of the total compositions herein.
  • Interfacial Tension By “interfacial Tension” (“IFT”) herein is meant the tension measured at the oil/water interface. IFT measurements using the spinning drop technique, are disclosed by Cayias, Schechter and Wade, “The Measurement of Low Interfacial Tension via the Spinning Drop Technique", ACS Symposium Series No. 8 (1975) ADSORPTION AT INTERFACES, beginning at page 234. Equipment for running IFT measurements is currently available from W. H. Wade, Depts. of Chemistry and Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712.
  • low interfacial tension herein is meant an IFT which is sufficiently low that oily soil removal mechanisms like “roll-up” or, preferably, “spontaneous emulsification”, i.e., rapid emu!sification with little or no mechanical agitation, can occur.
  • a typical fatty acid N-methyl glucamide nonionic surfactant at concentrations in water ranging from about 300 ppm to about 600 ppm and at water hardness (Ca ++ ) concentra ⁇ tions of 2 grains/gallon (14 ppm), 7 gr/gal (48 ppm) and 15 gr/gal (103 ppm) one notes a range of IFT from about 0.25 dynes/cm to about 0.4 dynes/cm. Under such conditions, soil removal may occur by roll-up.
  • compositions herein can be simply, but convincingly, demonstrated by admixing a detergent composition in accordance with the invention containing the specially selected soap with water. After dissolution of the detergent, a few drops of oil to which a colored oil-soluble dye has been added are added to the detergent solution. With minimal agitation, the entire system appears to take on the color of the dye, due to the dyed oil having been finely dispersed by the spontaneous emulsification effect. This dispersion remains for a considerable length of time, typically 30 minutes to several hours, even when agitation has stopped. By contrast, with surfactant systems which fail to provide spontaneous emulsification, the dyed oil droplets produced during agitation rapidly coalesce to form one or more relatively large oil globules at the air/water interface.
  • a consumer relevant test soil is dyed with 0.5% Oil Red EGN.
  • a 100 ml sample of the detergent composition being tested is prepared at the desired concentration (typically, about 500 ppm) and temperature in water which is "pre-hardened” to any desired concentration of calcium ions (typically, about 48 ppm), and contained in an 8 oz. capped jar.
  • the sample pH is adjusted to the intended end-use pH (typically in the range of 6.5 to 8) and 0.2 g of the test soil is added.
  • the jar is shaken 4 times and the sample graded. Alternatively, the sample is placed in a beaker and stirred with a stir bar for 15 seconds.
  • the sample is graded as follows:
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1%, by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • AU Anson units
  • proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, BolJ. et al, published January 9, 1985).
  • the cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al , issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine ollusk (Dolabella Auricula Solander). Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also upases in Japanese Patent Application 53-20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P.” Other commercial upases include Amano-CES, Upases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by 0. Kirk, assigned to Novo Industries A/S.
  • Enzyme stabilization systems are also described, for example, in U.S. Patents 4,261,868, 3,600,319, and 3,519,570.
  • Enzv e Stabilizers The enzymes employed herein are stabilized by the presence of water-soluble sources of calcium ions in the finished compositions which provide calcium ions to the enzymes. Additional stability can be provided by the presence of various other art-disclosed stabilizers, especially borate species: see Severson, U.S. 4,537,706, cited above.
  • Typical detergents, especially liquids will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 5 to about 15, and most preferably from about 8 to about 12, millimoles of calcium ion per liter of finished composition. This can vary somewhat, depending on the amount of enzyme present and its response to the calcium ions.
  • the level of calcium ion should be selected so that there is always some minimum level available for the enzyme, after allowing for complexation with builders, fatty acids, etc., in the composition.
  • Any water-soluble calcium salt can be used as the source of calcium ion, including, but not limited to, calcium chloride, calcium sulfate, calcium alate, calcium hydroxide, calcium fnrfliat . and calcium acetate.
  • a small amount of calcium ion generally from about 0.05 to about 0.4 millimoles per liter, is often also present in the composition due to calcium in the enzyme slurry and formula water.
  • the formulation may include a sufficient quantity of a water-soluble calcium ion source to provide such amounts in the laundry liquor. In the alternative, natural water hardness may suffice.
  • compositions herein will typically comprise from about 0.05% to about 2% by weight of a water-soluble source of calcium ions.
  • the amount can vary, of course, with the amount and type of enzyme employed in the composition.
  • compositions herein may also optionally, but preferably, contain various additional stabilizers, especially borate-type stabilizers.
  • additional stabilizers especially borate-type stabilizers.
  • such stabilizers will be used at levels in the compositions from about 0.25% to about 10%, preferably from about 0.5% to about 5%, more preferably from about 0.75% to about 3%, by weight of boric acid or other borate compound capable of forming boric acid in the composition (calculated on the basis of boric acid).
  • Boric acid is preferred, although other compounds such as boric oxide, borax and other alkali metal borates (e.g., sodium ortho-, meta- and pyroborate, and sodium pentaborate) are suitable.
  • Substituted boric acids e.g., phenylboronic acid, butane boronic acid, and p-bromo phenylboronic acid
  • compositions herein can option ⁇ ally include one or more other detergent adjunct materials or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition (e.g., perfumes, colorants, dyes, etc.).
  • other detergent adjunct materials e.g., perfumes, colorants, dyes, etc.
  • the following are illustrative examples of such adjunct materials.
  • Builders - Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are tvp callv used in fabric laundering compositions to assist in the removal of particulate soils.
  • the level of builder can vary widely depending upon the end use of the composition and its desired physical form.
  • the compositions will typically comprise at least about 1% builder.
  • Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder.
  • Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder.
  • Lower or higher levels of builder are not meant to be excluded.
  • Inorganic detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphos- phates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates " and sesquicarbon- ates), sulphates, and aluminosilicates.
  • non-phosphate builders are required in some locales.
  • SKS-6 is a highly preferred layered silicate for us ⁇ isrein, but other such layered silicates, such as those having the general formula Na Si ⁇ ⁇ +ryH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
  • delta-Na2Si ⁇ 5 (NaSKS-6 form) is most preferred for use herein.
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • magnesium silicate which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • aluminosilicate ion exchange materials are commer ⁇ cially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosili ⁇ cates or synthetically derived.
  • a method for producing alumino- silicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976.
  • Preferred syotJifitic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), and Zeolite X.
  • the crystalline aluminosilicate ion exchange material has the formula:
  • This material is known as Zeolite A.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycar ⁇ boxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • polycarboxylate builders include a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxy- polycarboxylates include the ether hydroxy- polycarboxylates, copoly ers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisul- phonic acid, and carboxy ethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricar- boxylic acid, carboxymethyloxysuccinic acid, and soluble salts thejeof.
  • polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular composi ⁇ tions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • Fatty acids e.g., i2 _c 18 monocarboxylic acids
  • i2 _c 18 monocarboxylic acids can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity.
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,4QJ 148 and 3,422,137) can also be used.
  • the detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
  • bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering.
  • the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition .comprising the bleaching agent-plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbon- ates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • the nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non- oxygen bleaching agent of particular interest includes photo- activated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al . If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonated zinc phthalocyanine.
  • Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellu- losic polymers, copoly eric blocks of ethylene terephthalate or proj Lene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al .
  • Suitable polymeric soil release agents include the t p rfipht.halat p polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al , the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent composi ⁇ tions, and include ethylenediaminetetrakis (methylenephosphon- ates), nitrilotris (methylenephosphonates) and diethylenetriamine- pentakis (methylenephosphonates), as DEQUEST.
  • these am ufl_ )hosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • a preferred biodegradable chelator for use herein is ethy - enediamine disuccinate ("EDDS"), as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins. If utilized, these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent composi ⁇ tions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
  • EDDS ethy - enediamine disuccinate
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986.
  • Another group of preferred clay soil removal/antiredeposition agents are the cationic compounds dis ⁇ closed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984.
  • Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S.
  • Brightener Any optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from about 0.05% to about 1.2%, by weight, into the detergent compositions herein.
  • Commercial optical brighteners which may be useful in the present invention can be classified into subgroups which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-me bered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982).
  • these brighteners include 4-methyl-7-diethyl- amino coumarin; l,2-bis(-benzimidazol-2-yl)ethylene; 1,3-diphenylphrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-styryl-naphth-[l,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [l,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be incorporated into the compositions of the present invention.
  • the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40 * C and about 5 * C, and a minimum boiling point not less than about 110 * C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferrably having a melting point below about lOO'C.
  • the hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al .
  • the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
  • paraffin as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
  • Another preferred category of non-surfactant suds suppressors comprises silicone suds suppressors. This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed of fused onto the silica. Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S.
  • silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526.
  • Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
  • An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
  • typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from abut 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol.
  • a primary antifoam agent which is a mixture of (a) a polyorgano
  • suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872.
  • the secondary alcohols include the C ⁇ -Ci6 alkyl alcohols having a C ⁇ -C ⁇ 6 chain.
  • a preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12.
  • Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem.
  • Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1:5 to 5:1.
  • Suds suppressors when utilized, are preferably present in a "suds suppressing amount.”
  • Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
  • compositions herein will generally comprise from 0% to about 5% of suds suppressor.
  • monocarboxylic fatty acids, and salts therein will be present typically in amounts up to about 5%, by weight, of the detergent composition.
  • from about 0.5% to about 3% of fatty monocarboxylate suds suppressor is utilized.
  • Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarly to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing.
  • from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%.
  • these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized.
  • Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition.
  • Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used.
  • the alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
  • compositions herein can also be used with a variety of other adjunct ingredi ⁇ ents which provide still other benefits in various compositions within the scope of this invention.
  • the following illustrates a variety of such adjunct ingredients, but is not intended to be limiting therein.
  • Fabric Softeners Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from about 0.5% to about 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning.
  • Clay softeners can be used in combination with amine and cationic softeners, as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1, 1983 and U.S. Patent 4,291,071, Harris et al , issued September 22, 1981.
  • compositions herein can optionally contain various anionic, nonionic, zwitterionic, etc. surfactants. If used, such adjunct surfactants are typically present at levels of from about 5% to about 35% of the compositions. However, it is to be understood that the incorporation of adjunct anionic sur ⁇ factants is entirely optional herein, inasmuch as the cleaning performance of the secondary (2,3) alkyl sulfates in combination with the polyhydroxy fatty acid amides is excellent and these materials can be used to entirely replace such surfactants as the alkyl benzene sulfonates in fully-formulated detergent compositions.
  • Nonli iting examples of optional surfactants useful herein include the conventional Cn-Ci ⁇ alkyl benzene sulfonates and primary and random alkyl sulfates, the Cio-Ci ⁇ alkyl alkoxy sulfates (especially EO 1-5 ethoxy sulfates), Cio-Ci ⁇ alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C10-C18 alkyl polyglycosides and their corresponding sulfated polyglycosides, 12-C18 alpha-sulfonated fatty acid esters, C12-C18 alkyl and alkyl phenol alkoxy!ates (especially ethoxylates and mixed ethoxy/propoxy), C12-C18 betaines and sulfobetaines ("sultaines”), C10-C18 amine oxides, and the like.
  • Other conven ⁇ tional useful surfactants are listed in
  • ingredients useful in detergent compositions can be included in the composi ⁇ tions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, etc.
  • suds boosters such as the C10-C16 alkanolamides can be incorporated into the compositions, typically at 1%-10% levels.
  • the C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
  • Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
  • soluble magnesium salts such as MgCl2, MgS ⁇ 4, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional sudsing.
  • Various detersive ingredients employed in the present compo ⁇ sitions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
  • the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
  • the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
  • a porous hydro ⁇ phobic silica (trademark SIPERNAT DlO, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C13-15 ethoxylated alcohol E0(7) nonionic surfactant.
  • the enzyme/surfact ⁇ ant solution is 2.5 X the weight of silica.
  • the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
  • silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
  • the result ⁇ ing silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
  • ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected” for use in deter ⁇ gents, including liquid laundry detergent compositions.
  • Liquid detergent compositions can contain water and other solvents as carriers.
  • Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
  • Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2- propanediol) can also be used.
  • the compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
  • the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and about 10.5.
  • Liquid dishwashing formulations preferably have a pH between about 6.8 and about 9.
  • Laundry products are typically between pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
  • a heavy duty liquid detergent matrix of the following formula is prepared: Ingredient %
  • Ci2-14 alcohol 7 ethoxylate 6 Diethylene triamine pentamethylene phosphonic acid 0.95 Boric acid 2.4
  • Solutions containing 0.67% of this composition are prepared in water of hardness equal to 5 millimolar.
  • compositions and uses of the secondary (2,3) alkyl sulfates according to this invention contain no phosphates.
  • liquid detergents of Examples I-II are prepared by dissolving or dispersing the indicated ingredients in an aqueous carrier and adjusting the pH in the range of 7.D-10.5.
  • a liquid laundry detergent composition herein comprises the following.
  • a dishwashing composition with high grease removal properties is as follows.
  • particulate detergent compositions herein comprising the secondary (2,3) alkyl sulfate surfactants can be prepared using a variety of well-known processes. For example, particles can be formed by agglomeration, wherein solids (including the secondary (2,3) alkyl sulfates) are forced/hurled together by physical mixing and held together by a binder. Suitable apparatus for agglomeration includes dry powder mixers, fluid beds and turbilizers, available from manufacturers such as L ⁇ dige, Eric, Bepex and Aeromatic.
  • particles can be formed by extrusion.
  • solids such as the secondary (2,3) alkyl sulfates are forced together by pumping a damp powder at relatively high pressures and high energy inputs through small holes in a die plate.
  • This process results in rod like particles which can be divided into any desired particle size.
  • Apparatus includes axial or radial extruders such as those available from Fuji, Bepex and Teledyne/Readco.
  • particles can be formed by prilling.
  • a liquid mixture containing the desired ingredients i.e., one of them being secondary (2,3) alkyl sulfate particles
  • the desired ingredients i.e., one of them being secondary (2,3) alkyl sulfate particles
  • the liquid droplets cool they become more solid and thus the particles are formed.
  • the solidification can occur due to the phase change of a molten binder to a solid or through hydration of free mois ⁇ ture into crystalline bound moisture by some hydratable material in the original liquid mixture.
  • particles can be formed by compaction. This method is similar to tablet formation processes, wherein solids (i.e., secondary [2,3] alkyl sulfate particles) are forced together by compressing the powder feed into a die/mold on rollers or flat sheets.
  • solids i.e., secondary [2,3] alkyl sulfate particles
  • particles can be formed by melt/solidifica ⁇ tion.
  • particles are formed by melting the second- ary (2,3) alkyl sulfate with any desired additional ingredient and allowing the melt to cool, e.g., in a mold or as droplets.
  • Binders can optionally be used in the foregoing methods to enhance particle integrity and strength.
  • Water alone, is an operative binder with secondary (2,3) alkyl sulfates, since it will dissolve some of the secondary (2,3) alkyl sulfate to provide a binding function.
  • Other binders include, for example, starches, polyacrylates, carboxymethylcellulose and the like. Binders are well-known in the particle making literature. If used, binders are typically employed at levels of 0.1%-5% by weight of the finished particles.
  • fillers such as hydratable and nonhydratable salts, crystalline and glassy solids, various detersive ingredi- ents such as zeolites and the like, can be incorporated in the particles. If used, such fillers typically comprise up to about
  • Particles prepared in the foregoing manner can be subse ⁇ quently dried or cooled to adjust their strength, physical properties and final moisture content, according to the desires of the formulator.
  • the preferred overall making process for particulate products herein involves three distinct Steps: (1) agglomeration of the ingredients to form the base formula, followed by; (2) admixing various ingredients with the agglomerates formed in Step (1) (e.g., percarbonate bleach, bleach activators, and the like); and optionally, but preferably, (3) spraying materials such as perfume onto the final mix.
  • Step (1) agglomeration of the ingredients to form the base formula, followed by; (2) admixing various ingredients with the agglomerates formed in Step (1) (e.g., percarbonate bleach, bleach activators, and the like); and optionally, but preferably, (3) spraying materials such as perfume onto the final mix.
  • the base formula is agglomerated as opposed to spray dried in order to prevent degradation of some of the heat sensitive surfactants.
  • the resulting product is a high density (ranging from 600 g/l ter - 800 g/liter) free flowing detergent mix that can be used in place of current spray dried laundry detergents.
  • Aeromatic fluidized bed or a continuous type static or vibrating fluidized bed (NIR0, Bepex or Carrier
  • Step A Preparation of Surfactant Paste -
  • the objective is to combine the surfactants and liquids in the compositions into a common mix in order to aid in surfactant solubilization and agglomeration.
  • the surfactants and other liquid components in the composition are mixed together in a Sigma Mixer at 140'F (60'C) at about 40 rpm to about 75 rpm for a period of from 15 minutes to about 30 minutes to provide a paste having the general consistency of 20,000-40,000 centipoise.
  • the paste is stored at 140 * F (60'C) until agglomeration Step (B) is ready to be conducted.
  • the ingredients used in this Step include surfactants acrylate/maleic polymer (m.w. 70,000) and polyethylene glycol "PEG" 4000-8000.
  • Step B Agglomeration of Powders with Surfactant Paste -
  • the purpose of this Step is to transform the base formula ingredients into flowable detergent particles having a medium particle size range of from about 300 microns to about 600 microns.
  • the powders including materials such as zeolite, citrate, citric acid builder, layered silicate builder (as SKS-6), sodium carbonate, ethylenediaminedisuccinate, magnesium sulfate and optical brightener
  • the Eirich Mixer R-Series
  • mixed briefly ca. 5 seconds - 10 seconds
  • the surfactant paste from Step A is then charged into the mixer and the mixing is continued at about 1500 rpm to about 3000 rpm for a period from about 1 minute to about 10 minutes, preferably 1-3 minutes, at ambient temperature.
  • the mixing is stopped when coarse agglomerates (average particle size 800-1600 microns) are formed.
  • Step C The purpose of this Step is to reduce the agglomer- ates' stickiness by removing/drying moisture and to aid in particle size reduction to the target particle size (in the median particle size range from about 300 to about 600 microns, as measured by sieve analysis).
  • the wet agglomerates are charged into a fluidized bed at an air stream temperature of from about 41 * C to about 60 * C and dried to a final moisture content of the particles from about 4% to about 10%.
  • Step D Coat Agglomerates and Add Free-Flow Aids -
  • the objective in this Step is to achieve the final target particle size range of from about 300 microns to about 600 microns, and to admix materials which coat the agglomerates, reduce the caking/ lumping tendency of the particles and help maintain acceptable flowability.
  • the dried agglomerates from Step C are charged into the Eirich Mixer (R-Series) and mixed at a rate of about 1500 rpm to about 3000 rpm while adding 2-6% Zeolite A (median particle size 2-5 ⁇ m) during the mixing.
  • the mixing is continued until the desired median particle size of from about 1200 to about 400 microns is achieved (typically from about 5 seconds to about 45 seconds).
  • from about 0.1% to about 1.5% by weight of precipitated silica average particle size 1-3 microns
  • the following illustrates a laundry detergent composition prepared in the foregoing manner.
  • Citric acid/SKS-6l 11.5 13.5 Sodium carbonate 12.2 14.4
  • a laundry bar suitable for hand-washing soiled fabrics is prepared by standard extrusion processes and comprises the following:
  • compositions can also optionally contain various adjunct cationic surfactants and mixtures of cationic and nonionic adjunct surfactants.
  • Useful cationics include the C ⁇ o _c 18 lkyl trimethylammonium halides, the C10-C18 alkyl dimethyl (Ci-C ⁇ ) hydroxyalkylammonium halides, 10-C18 choline esters, and the like. If used, such cationic surfactants can typically comprise from 1% to 15% by weight of the co ⁇ QBflsitions herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Detergent compositions containing secondary (2,3) alkyl sulfate surfactants and polyhydroxy fatty acid amides provide extremely low interfacial tensions in aqueous media. Thus, excellent cleaning performance is secured with such compositions, even in the absence of phosphate builders and alkyl benzene sulfonate surfactants. Thus, biodegradable laundry detergent compositions comprising a secondary (2,3) alkyl sulfate and a polyhydroxy fatty acid amides are provided.

Description

SECONDARY (2,3) ALKYL SULFATE SURFACTANTS IN DETERGENT COMPOSITIONS WITH POLYHYDROXY FATTY ACID AMIDES
FIELD OF THE INVENTION The present invention relates to cleaning compositions and methods which employ secondary (2,3) alkyl sulfate surfactants in admixture with polyhydroxy fatty acid amide surfactants.
BACKGROUND OF THE INVENTION Most conventional detergent compositions contain mixtures of various detersive surfactants in order to remove a wide variety of soils and stains from surfaces. For example, various anionic surfactants, especially the alkyl benzene sulfonates, are useful for removing particulate soils, and various nonionic surfactants, such as the alkyl ethoxylates and alkylphenol ethoxylates, are useful for removing greasy soils.
While a review of the literature would seem to suggest that a wide selection of surfactants is available to the detergent manufacturer, the reality is that many such materials are specialty chemicals which are not suitable for routine use in low unit cost items such as home laundering compositions. The fact remains that many home-use laundry detergents still comprise one or more of the conventional alkyl benzene sulfonate or primary alkyl sulfate surfactants. One class of surfactants which has found limited use in various compositions where emulsification is desired comprises the secondary alkyl sulfates. The conventional secondary alkyl sulfates are available as generally pasty, random mixtures of sulfated linear and/or partially branched alkanes. Such materials have not come into widespread use in laundry detergents, since they offer no particular advantages over the alkyl benzene sulfonates.
It has now been discovered that a particular sub-set of the class of secondary alkyl sulfates, referred to herein as secondary (2,3) alkyl sulfates ("SAS"), offers considerable advantages to the formulator and user of detergent compositions. For example, the secondary alkyl (2,3) sulfates are more soluble in aqueous media than their counterpart primary alkyl sulfates of comparable chain lengths. Accordingly, they can be formulated as readily- soluble, high-surfactant (i.e., "high-active") particles for use in granular laundry detergents. Moreover, they can be formulated as stable, homogeneous liquid detergents. In addition, the solubility of the secondary (2,3) alkyl sulfates allows them to be formulated in the concentrated form now coming into vogue with both granular and liquid laundry detergents. Since the secondary (2,3) alkyl sulfates can be made available in solid, particulate form, they can be dry-mixed into granular detergent compositions without the need for passage through spray drying towers.
In addition to the foregoing advantages seen for the secondary (2,3) alkyl sulfates, it has now been determined that they are both aerobically and anaerobically degradable, which assists in their disposal in the environment. Most fully-formulated detergent compositions will comprise a mixture of detersive surfactants. Such mixtures allow the formu- lator to provide a broad spectrum of cleaning properties with a variety of soils, and under washing conditions, with washing temperatures ranging from as low as 5*C to the boil, with wide ranges of water hardness, and the l ke. As noted above, modern, full -formulated detergents can comprise both anionic and nonionic surfactants in order to remove particulate soils, proteinaceous soils, oily and greasy soils, and the like, from surfaces being cleansed. Such "multi-action" surfactant mixtures are especially important when the user is confronted by mixed soils and stains. For example, cosmetic stains often comprise a complex mixture of highly colored inorganic particulate matter combined with an oleaginous foundation material. Cosmetic stains are, thus, a classic example of a mixed stain. Likewise, food stains are often complex mixtures of fatty materials, protein¬ aceous materials and finely-divided organic particulates. As is well-known, the removal of such stains, especially from fabrics, can be quite difficult.
Nonionic surfactants typically used in multi-action detergent compositions comprise a polyethylene oxide adduct of an aliphatic alcohol or alkyl phenol. While useful for their intended purpose, very little in the way of improvement has been made with such materials. In addition to the foregoing considerations, the formulator of modern detergents has been confronted with the fact that the highly effective phosphate builders are no longer usable in many areas of the world. Moreover, there would be substantial advantages if an alternative to petrochemical-based alkyl benzene sulfonate surfactants were to be identified.
By the present invention it has been determined that the secondary (2,3) alkyl sulfate anionic surfactants can be advantageously used in combination with polyhydroxy fatty acid amide nonionic surfactants to provide mixed anionic/nonionic surfactants which have substantial advantages over anionic/noni¬ onic mixtures known in the art. The surfactant mixtures herein exhibit cleaning performance equivalent to, or better than, the alkyl benzene sulfonates. The surfactant mixtures herein are milder to the skin than the alkyl benzene sulfonates, and are more compatible with detersive enzymes. The surfactant mixtures herein provide extremely low interfacial tensions and, hence, excellent grease/oil cleaning even in the absence of phosphate builders. The surfactant mixtures herein also provide excellent cleaning of mixed soils and stains. The polyhydroxy fatty acid amides are available mainly from nonpetrochemical resources such as fats and sugars. The surfactant mixtures herein are quite biodegradable.
Moreover, there has now been found to be a substantial and remarkable improvement in cold water solubility as a result of the blending and agglomeration of a mixture of the secondary (2,3) alkyl sulfates (SAS) herein with polyhydroxy fatty acid amide surfactants (PFAS), alkyl ethoxylate surfactants (AE) and primary alkyl sulfate surfactants (AS) to provide mixed SAS/PFAS/AE/AS particles. While not intending to be limited by theory, it appears that this increase in solubility may be due to the destruction of the crystallinity of the SAS. Whatever the reason, the improved solubility is of substantial benefit under cold water conditions (e.g., at temperatures in the range of 5*C to about 30*C) where the rate of solubility of detergent granules in an aqueous washing liquor can be problematic. Of course, the improved solubility achieved herein is also of substantial benefit when preparing the modern compact or dense detergent granules where solubility can be problematic. These and other advantages of the present invention are described more fully hereinafter.
BACKGROUND ART Detergent compositions with various "secondary" and branched alkyl sulfates are disclosed in various patents; see: U.S. 2,900,346, Fowkes et al, August 18, 1959; U.S. 3,468,805, Grifo et al, September 23, 1969; U.S. 3,480,556, DeWitt et al , November 25, 1969; U.S. 3,681,424, Bloch et al , August 1, 1972; U.S. 4,052,342, Fernley et al, October 4, 1977; U.S. 4,079,020, Mills et al, March 14, 1978; U.S. 4,235,752, Rossall et al, November 25, 1980; U.S. 4,529,541, Wilms et al, July 16, 1985; U.S. 4,614,612, Reilly et al, September 30, 1986; U.S. 4,880,569, Leng et al, November 14, 1989; U.S. 5,075,041, Lutz, December 24, 1991; U.K. 818,367, Bataafsche Petroleum, August 12, 1959; U.K. 1,585,030, Shell, February 18, 1981; GB 2,179,054A, Leng et al, February 25, 1987 (referring to GB 2,155,031). U.S. Patent 3,234,258, Morris, February 8, 1966, relates to the sulfation of alpha olefins using H2SO4, an olefin reactant and a low boiling, nonionic, organic crystallization medium.
SUMMARY OF THE INVENTION The present invention relates to the use of secondary (2,3) alkyl sulfate surfactants in combination with polyhydroxy fatty acid amide surfactants to provide low (typically below 1 dyne/cm) interfacial tensions in aqueous media. Such low interfacial tensions promote the removal of oily soils from fabrics by mecjianisms such as "roll-up" or, preferably, spontaneous emulsification. The invention thus also relates to the use of secondary (2,3) alkyl sulfate surfactants in combination with polyhydroxy fatty acid amide surfactants to provide cleaning action in a fabric laundering process which comprises agitating fabrics in an aqueous laundry containing said surfactants.
The invention herein provides liquid, granular, bar, gel, and the like detergent compositions, comprising: (a) at least about 2%, typically from about 5% to about 50%, by weight of a secondary (2,3) alkyl sulfate surfactant; (b) at least about 2% by weight of a polyhydroxy fatty acid amide surfactant; and
(c) optional detersive adjunct materials.
The compositions and methods herein preferably employ secondary (2,3) alkyl sulfate surfactants having an alkyl chain length in the range from about Cio to about C20» especially c14"c18» and mixtures thereof, for fabric laundering and C12-C16 for dishwashing.
The compositions and methods herein can also optionally employ various adjunct materials (c) such as detersive enzymes which are members selected from the group consisting of proteases, amylases, upases, cellulases, peroxidases and mixtures thereof.
Other detersive adjuncts useful herein include the conventional non-secondary (2,3) alkylsulfate, non-polyhydroxy fatty acid amide adjunct surfactant. The invention herein makes it possible to lower interfacial tensions and to clean surfaces effectively without using alkylbenzene sulfonate surfactants.
Other detersive adjuncts useful herein include the detergency builders. The invention herein makes it possible to use non-phosphate builders to lower interfacial tensions and to clean surfaces effectively. Accordingly, preferred builders herein are the polycarboxylate builders, especially the citrates and oxydisuccinates. Such builders (especially citrate) are preferred for use in liquid compositions. The invention also provides granular or bar detergent compositions wherein the detergency builder is a member selected froj the group consisting of zeolite builders, layered silicate builders, polycarboxylate builders, and mixtures thereof.
In yet another mode, the compositions herein can be in bar form, wherein the builder is a phosphate builder.
The invention also provides a method for cleaning surfaces, comprising contacting (preferably, with agitation) said surfaces with an aqueous medium containing an effective amount (typically 100 ppm to 3000 ppm in solution) of the aforesaid compositions. Fabric laundering methods, dishwashing methods and methods for cleaning other hard surfaces are thus provided. All percentages, ratios and proportions herein are by weight, unless otherwise specified. All documents cited are incorporated herein by reference.
DETAILED DESCRIPTION OF THE INVENTION Primary Ingredients
Secondary (2.31 Alkyl Sulfate Surfactants - For the conveni¬ ence of the formulator, the following identifies and illustrates the differences between the sulfated surfactants employed herein and otherwise conventional alkyl sulfate surfactants. Conventional primary alkyl sulfate surfactants have the general formula
R0S03-M+ wherein R is typically a linear C10-C20 hydrocarbyl group and M is a water-solubilizing cation. Branched-chain primary alkyl sulfate surfactants (i.e., branched-chain "PAS") having 10-20 carbon atoms are also known; see, for example, European Patent Application 439,316, Smith et al, filed 21.01.91.
Conventional secondary alkyl sulfate surfactants are those materials which have the sulfate moiety distributed randomly along the hydrocarbyl "backbone" of the molecule. Such materials may be depicted by the structure
CH3(CH2)n(CHOS03-M+)(CH2)mCH3 wherein and n are integers of 2 or greater and the sum of + n is typically about 9 to 17, and M is a water-solubilizing cation. By contrast with the above, the selected secondary (2,3) alkyl sulfate surfactants used herein comprise structures of formulas A and B
(A) CH3(CH2)X(CH0S03"M+) CH3 and
(B) CH3(CH2)y(CH0S03-M+) CH2CH3 for the 2-sulfate and 3-sulfate, respectively. Mixtures of the 2- and 3-sulfate can be used herein. In formulas A and B, x and (y+1) are, respectively, integers of at least about 6, and can range from about 7 to about 20, preferably about 10 to about 16. M is a cation, such as an alkali metal, ammonium, alkanolammoni m, alkaline earth metal, or the like. Sodium is typical for use as M to prepare the water-soluble (2,3) alkyl sulfates, but ethanolam- monium, diethanolammonium, triethanolammonium, potassium, ammonium, and the like, can also be used. By the present invention it has been determined that the physical/chemical properties of the foregoing types of alkyl sulfate surfactants are unexpectedly different, one from another, in several aspects which are important to formulators of various types of detergent compositions. For example, the primary alkyl sulfates can disadvantageously interact with, and even be precipi¬ tated by, metal cations such as calcium and magnesium. Thus, water hardness can negatively affect the primary alkyl sulfates to a greater extent than the secondary (2,3) alkyl sulfates herein. Accordingly, the secondary (2,3) alkyl sulfates have now been found to be preferred for use in the presence of calcium ions and under conditions of high water hardness, or in the so-called "under-built" situation which can occur when nonphosphate builders are employed. Importantly, when formulating concentrated liquid detergents with calcium or magnesium ions to enhance grease cutting or sudsing performance, or to provide enzyme stability, it has now been found that the primary alkyl sulfates can be problematic due to such interactions with calcium or magnesium cations. Moreover, the solubility of the primary alkyl sulfates is not as great as the secondary (2,3) alkyl sulfates. Hence, the formulation of high-active surfactant particles and high-concentrate liquid detergents has now been found to be simpler and more effective with the secondary (2,3) alkyl sulfates than with the primary alkyl sulfates. Thus, in addition to compatibility with enzymes, the secondary (2,3) alkyl sulfates are exceptionally easy to formjjte as heavy-duty liquid laundry detergents, especially in combination with short-chain adjunct surfactants.
With regard to the random secondary alkyl sulfates (i.e., secondary alkyl sulfates with the sulfate group at positions such as the 4, 5, 6, 7, etc. secondary carbon atoms), such materials tend to be tacky solids or, more generally, pastes. Thus, the random alkyl sulfates do not afford the processing advantages associated with the solid secondary (2,3) alkyl sulfates when formulating detergent granules, bars, or tablets. Moreover, the secondary (2,3) alkyl sulfates provide better sudsing than the random mixtures. It is preferred that the secondary (2,3) alkyl sulfates be substantially free (i.e., contain less than about 20%, more preferably less than about 10%, most preferably less than about 5%) of such random secondary alkyl sulfates.
One additional advantage of the secondary (2,3) alkyl sulfate surfactants herein over other positional or "random" alkyl sulfate isomers is in regard to the improved benefits afforded by said secondary (2,3) alkyl sulfates with respect to soil redeposition in the context of fabric laundering operations. As is well-known to users, laundry detergents loosen soils from fabrics being washed and suspend the soils in the aqueous laundry liquor. However, as is well-known to detergent formulators, some portion of the suspended soil can be redeposited back onto the fabrics. Thus, some redistribution and redeposition of the soil onto all fabrics in the load being washed can occur. This, of course, is undesirable and can lead to the phenomenon known as fabric "greying". (As a simple test of the redeposition characteristics of any given laundry detergent formulation, unsoiled white "tracer" cloths can be included with the soiled fabrics being laundered. At the end of the laundering operation the extent that the white tracers deviate from their initial degree of whiteness can be measured photometrically or estimated visually by skilled observers. The more the tracers' whiteness is retained, the less soil redeposition has occurred.)
It has now been determined that the secondary (2,3) alkyl sulfates afford substantial advantages in soil redeposition characteristics over the other positional isomers of secondary alkyl sulfates in laundry detergents, as measured by the cloth tr^fifiunethod noted above. Thus, the selection of secondary (2,3) alkyl sulfate surfactants according to the practice of this invention which preferably are substantially free of other positional secondary isomers unexpectedly assists in solving the problem of soil redeposition in a manner not heretofore recognized.
It is to be noted that the secondary (2,3) alkyl sulfates used herein are quite different in several important properties from the secondary olefin sulfonates (e.g., U.S. Patent 4,064,076, Klisch et al, 12/20/77); accordingly, the secondary sulfonates are not the focus of the present invention. The preparation of the secondary (2,3) alkyl sulfates of the type useful herein can be carried out by the addition of H2SO4 to olefins. A typical synthesis using α-olefins and sulfuric acid is disclosed in U.S. Patent 3,234,258, Morris, or in U.S. Patent 5,075,041, Lutz, granted December 24, 1991. The synthesis, conducted in solvents which afford the secondary (2,3) alkyl sulfates on cooling, yields products which, when purified to remove the unreacted materials, randomly sulfated materials, unsulfated by-products such as C 0 and higher alcohols, secondary olefin sulfonates, and the like, are typically 90+% pure mixtures of 2- and 3-sulfated materials (up to 10% sodium sulfate is typically present) and are white, non-tacky, apparently crystalline, solids. Some 2,3-disulfates may also be present, but generally comprise no more than 5% of the mixture of secondary (2,3) alkyl mono-sulfates. Such materials are available as under the name "DAN", e.g., "DAN 200" from Shell Oil Company.
If increased solubility of the "crystalline" secondary (2,3) alkyl sulfate surfactants is desired, the formulator may wish to employ mixtures of such surfactants having a mixture of alkyl chain lengths. Thus, a mixture of Ci2-C18 alkyl chains will provide an increase in solubility over a secondary (2,3) alkyl sulfate wherein the alkyl chain is, say, entirely C\ζ. The solubility of the secondary (2,3) alkyl sulfates can also be enhanced by the addition thereto of other surfactants such as the alkyl ethoxylates or other nonionic surfactants, or by any other material which decreases the crystallinity of the secondary (2,3) alkyl sulfates. Such crystallinity-interrupting materials are typically effective at levels of 20%, or less, of the secondary (2,3) alkyl sulfate. When formulating liquid compositions, especially clear liquids, it is preferred that the secondary (2,3) alkyl sulfate surfactants contain less than about 3% sodium sulfate, preferably less than about 1% sodium sulfate. In and of itself, sodium sulfate is an innocuous material. However, it dissolves and adds to the ionic "load" in aqueous media, and this can contribute to phase separation in the liquid compositions and to gel breaking in the gel compositions. Various means can be used to lower the sodium sulfate content of the secondary (2,3) alkyl sulfates. For example, when the H2SO4 addition to the olefin is completed, care can be taken to remove unreacted H2SO4 before the acid form of the secondary (2,3) alkyl sulfate is neutralized. In another method, the sodium salt form of the secondary (2,3) alkyl sulfate which contains sodium sulfate can be rinsed with water at a temperature near or below the Krafft temperature of the sodium secondary (2,3) alkyl sulfate. This will remove Na S0 with only minimal loss of the desired, purified sodium secondary (2,3) alkyl sulfate. Of course, both procedures can be used, the first as a pre-neutralization step and the second as a post-neutralization step.
The term "Krafft temperature" as used herein is a term of art which is well-known to workers in the field of surfactant sciences. Krafft temperature is described by K. Shinoda in the text "Principles of Solution and Solubility", translation in collaboration with Paul Becher, published by Marcel Dekker, Inc. 1978 at pages 160-161. Stated succinctly, the solubility of a surface active agent in water increases rather slowly with temperature up to that point, i.e., the Krafft temperature, at which the solubility evidences an extremely rapid rise. At a temperature approximately 4'C above the Krafft temperature a solution of almost any composition becomes a homogeneous phase. In general, the Krafft temperature of any given type of surfactant, such as the secondary (2,3) alkyl sulfates herein wh h comprise an anionic hydrophilic sulfate group and a hydrophobic hydrocarbyl group, will vary with the chain length of the hydrocarbyl group. This is due to the change in water solubility with the variation in the hydrophobic portion of the surfactant molecule.
In the practice of the present invention the formulator may optionally wash the secondary (2,3) alkyl sulfate surfactant which is contaminated with sodium sulfate with water at a temperature that is no higher than the Krafft temperature, and which is preferably lower than the Krafft temperature, for the particular secondary (2,3) alkyl. sulfate being washed. This allows the sodium sulfate to be dissolved and removed with the wash water, while keeping losses of the secondary (2,3) alkyl sulfate into the wash water to a minimum.
Under circumstances where the secondary (2,3) alkyl sulfate surfactant herein comprises a mixture of alkyl chain lengths, it will be appreciated that the Krafft temperature will not be a single point but, rather, will be denoted as a "Krafft boundary". Such matters are well-known to those skilled in the science of surfactant/solution measurements. In any event, for such mixtures of secondary (2,3) alkyl sulfates, it is preferred to conduct the optional sodium sulfate removal operation at a temperature which is below the Krafft boundary, and preferably below the Krafft temperature of the shortest chain-length surfactant present in such mixtures, since this avoids excessive losses of secondary (2,3) alkyl sulfate to the wash solution. For example, for Cj6 secondary sodium alkyl (2,3) sulfate surfactants it is preferred to conduct the washing operation at temperatures below about 30*C, preferably below about 20*C. It will be appreciated that changes in the cations will change the preferred temperature for washing to secondary (2,3) alkyl sulfates, due to changes in the Krafft temperature.
The washing process can be conducted batchwise by suspending wet or dry secondary (2,3) alkyl sulfates in sufficient water to provide 10-50% solids, typically for a mixing time of at least 10 minutes at about 22'C (for a Cχ6 secondary [2,3] alkyl sulfate), followed by pressure filtration. In a preferred mode, the slurry will comprise somewhat less than 35% solids, inasmuch as such slmxigs are free-flowing and amenable to agitation during the washing process.
As an additional benefit, the washing process also reduces the levels of organic contaminants which comprise the random secondary alkyl sulfates noted above.
Polyhydroxy Fatty Acid Amide Surfactants - The polyhydroxy fatty acid amides used herein are of the formula:
0 Rl (I) R2 - C - N - Z wherein: R1 is H, Ci -Cβ hydrocarbyl , 2-hydroxyethyl , 2-hydroxy- propyl , or a mixture thereof, preferably C1-C4 al kyl , more prefer¬ ably Ci or C2 al kyl , most preferably Ci al kyl (i .e. , methyl ) ; and R2 is a C5-C32 hydrocarbyl moiety, preferably straight chain C7-C19 alkyl or alkenyl, more preferably straight chain C9-C17 alkyl or alkenyl, most preferably straight chain Cπ-Cig alkyl or alkenyl, or mixture thereof; and Z is a pol hydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 2 (in the case of glyceraldehyde) or at least 3 hydroxyls (in the case of other reducing sugars) directly connected to the chain, or an alkoxy!ated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl moiety. Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde. As raw materials, high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials. Z preferably will be selected from the group consisting of -CH2-(CH0H)n-CH20H, -CH(CH20H)-(CH0H)n-i- CH2OH, -CH2-(CHOH)2(CHOR')(CHOH)-CH2θH, where n is an integer from 1 to 5, inclusive, and R' is H or a cyclic mono- or poly- saccharide, and alkoxy!ated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly -CH2-(CH0H)4-CH20H.
In Formula (I), R can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-isobutyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl. For highest sudsing, Rl is preferably methyl . If low sudsing is desired, Rl is preferably C2-C8 alkyl, especially n-propyl, iso-propyl, n-butyl, iso-butyl, pentyl, hexyl and 2-ethyl hexyl . R2-C0-N< can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
While polyhydroxy fatty acid amides can be made by the process of Schwartz, U.S. 2,703,798, contamination with cyclized by-products and other colored materials can be problematic. As an overall proposition, the preparative methods described in W0-9,206,154 and W0-9,206,984 will afford high quality polyhydroxy fatty acid amides. The methods comprise reacting N-alkylamino polyols with, preferably, fatty acid methyl esters in a solvent using an alkoxide catalyst at temperatures of about 85*C to provide high yields (90-98%) of polyhydroxy fatty acid amides having desirable low levels (typically, less than about 1.0%) of sub-optimally degradable cyclized by-products and also with improved color and improved color stability, e.g., Gardner Colors below about 4, preferably between 0 and 2. (With compounds such as butyl, iso-butyl and n-hexyl, the methanol introduced via the catalyst or generated during the reaction provides sufficient fluidization that the use of additional reaction solvent may be optional.) If desired, any unreacted N-alkylamino polyol remaining in the product can be acylated with an acid anhydride, e.g., acetic anhydride, maleic anhydride, or the like, to minimize the overall level of such residual amines in the product. Resi- dual sources of classical fatty acids, which can suppress suds, can be depleted by reaction with, for example, triethanolamine.
By "cyclized by-products" herein is meant the undesirable reaction by-products of the primary reaction wherein it appears that the multiple hydroxyl groups in the polyhydroxy fatty acid amides can form ring structures which are, in the main, not readily biodegradable. It will be appreciated by those skilled in the chemical arts that the preparation of the polyhydroxy fatty acid amides herein using the di- and higher saccharides such as maltose will result in the formation of polyhydroxy fatty acid amides wherein linear substituent Z (which contains multiple hydroxy substituents) is naturally "capped" by a polyhydroxy ring strypaturp.. Such materials are not cyclized by-products, as defined herein.
The amount of polyhydroxy fatty acid amide surfactants herein can range from about 2% to about 60%, typically from about 5% to about 30%, by weight of the total compositions herein.
Interfacial Tension (IFT) By "interfacial tension" ("IFT") herein is meant the tension measured at the oil/water interface. IFT measurements using the spinning drop technique, are disclosed by Cayias, Schechter and Wade, "The Measurement of Low Interfacial Tension via the Spinning Drop Technique", ACS Symposium Series No. 8 (1975) ADSORPTION AT INTERFACES, beginning at page 234. Equipment for running IFT measurements is currently available from W. H. Wade, Depts. of Chemistry and Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712.
By "low interfacial tension" herein is meant an IFT which is sufficiently low that oily soil removal mechanisms like "roll-up" or, preferably, "spontaneous emulsification", i.e., rapid emu!sification with little or no mechanical agitation, can occur. For example, using a typical fatty acid N-methyl glucamide nonionic surfactant, at concentrations in water ranging from about 300 ppm to about 600 ppm and at water hardness (Ca++) concentra¬ tions of 2 grains/gallon (14 ppm), 7 gr/gal (48 ppm) and 15 gr/gal (103 ppm) one notes a range of IFT from about 0.25 dynes/cm to about 0.4 dynes/cm. Under such conditions, soil removal may occur by roll-up. By contrast, when the aforesaid nonionic surfactant is employed with the anionic surfactant in the manner of this inven¬ tion, especially in the presence of calcium ions, the IFT can be reduced to 0.15 dynes/cm, or less, and the spontaneous oil emulsi¬ fication mechanism, more effective than roll-up, is observed. SPONTANEOUS EMULSIFICATION
The "spontaneous emulsification" of greasy/oily soils pro¬ vided by the compositions herein can be simply, but convincingly, demonstrated by admixing a detergent composition in accordance with the invention containing the specially selected soap with water. After dissolution of the detergent, a few drops of oil to which a colored oil-soluble dye has been added are added to the detergent solution. With minimal agitation, the entire system appears to take on the color of the dye, due to the dyed oil having been finely dispersed by the spontaneous emulsification effect. This dispersion remains for a considerable length of time, typically 30 minutes to several hours, even when agitation has stopped. By contrast, with surfactant systems which fail to provide spontaneous emulsification, the dyed oil droplets produced during agitation rapidly coalesce to form one or more relatively large oil globules at the air/water interface.
More specifically, this demonstration of spontaneous emulsi¬ fication can be run as.follows. A consumer relevant test soil is dyed with 0.5% Oil Red EGN. A 100 ml sample of the detergent composition being tested is prepared at the desired concentration (typically, about 500 ppm) and temperature in water which is "pre-hardened" to any desired concentration of calcium ions (typically, about 48 ppm), and contained in an 8 oz. capped jar. The sample pH is adjusted to the intended end-use pH (typically in the range of 6.5 to 8) and 0.2 g of the test soil is added. The jar is shaken 4 times and the sample graded. Alternatively, the sample is placed in a beaker and stirred with a stir bar for 15 seconds. The sample is graded as follows:
0 « Clear solution with large red oil droplets in it (0.1-5 mm diameter), i.e., no emulsification;
1 = Solution has a definite pink appearance with red oil droplets in it (0.1-1 mm), i.e., slight emulsification;
2 = Solution is dark pink with small red droplets in it, i.e., moderate emulsification;
3 = Solution is red with small red droplets in it (1-200/un), i.e., emulsification is substantial; 4 = Solution is dark red with little or no visible droplets
(<l-50ιm), i.e., emulsification is complete. Note: The grading can also be done spectrophotometrically (based on light transmittance).
Preferred compositions according to this invention can achieve grades of 3-4 on this scale.
Adjunct Ingredients
, Enzvmes - Detersive enzymes are included in the detergent formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, for the prevention of refugee dye transfer and for fabric restoration. The enzymes to be incorporated include proteases, amylases, upases, cellulases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1%, by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
Suitable examples of proteases are the subtilisins which are obtained from particular strains of B.subtilis and B.licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradena es ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands). Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, BolJ. et al, published January 9, 1985).
Amylases include, for example, α-amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
The cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al , issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine ollusk (Dolabella Auricula Solander). Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also upases in Japanese Patent Application 53-20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P." Other commercial upases include Amano-CES, Upases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. l ipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum Upases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and Upases ex Pseudomonas gladiol i . The LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO 341,947) is a preferred lipase for use herein.
Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by 0. Kirk, assigned to Novo Industries A/S. A wide range of enzyme materials and means for their incorp¬ oration into synthetic detergent granules is also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al (). Enzymes are further disclosed in U.S. Patent 4,101,457, Place et al, issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985, both. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. Patent 4,261,868, Hora et al, issued April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 4,261,868, issued April 14, 1981 to Horn, et al, U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patents 4,261,868, 3,600,319, and 3,519,570.
Enzv e Stabilizers - The enzymes employed herein are stabilized by the presence of water-soluble sources of calcium ions in the finished compositions which provide calcium ions to the enzymes. Additional stability can be provided by the presence of various other art-disclosed stabilizers, especially borate species: see Severson, U.S. 4,537,706, cited above. Typical detergents, especially liquids, will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 5 to about 15, and most preferably from about 8 to about 12, millimoles of calcium ion per liter of finished composition. This can vary somewhat, depending on the amount of enzyme present and its response to the calcium ions. The level of calcium ion should be selected so that there is always some minimum level available for the enzyme, after allowing for complexation with builders, fatty acids, etc., in the composition. Any water-soluble calcium salt can be used as the source of calcium ion, including, but not limited to, calcium chloride, calcium sulfate, calcium alate, calcium hydroxide, calcium fnrfliat . and calcium acetate. A small amount of calcium ion, generally from about 0.05 to about 0.4 millimoles per liter, is often also present in the composition due to calcium in the enzyme slurry and formula water. In solid detergent compositions the formulation may include a sufficient quantity of a water-soluble calcium ion source to provide such amounts in the laundry liquor. In the alternative, natural water hardness may suffice.
It is to be understood that the foregoing levels of calcium ions are sufficient to provide enzyme stability. More calcium ions can be added to the compositions to provide an additional measure of grease removal performance. Accordingly, as a general proposition the compositions herein will typically comprise from about 0.05% to about 2% by weight of a water-soluble source of calcium ions. The amount can vary, of course, with the amount and type of enzyme employed in the composition.
The compositions herein may also optionally, but preferably, contain various additional stabilizers, especially borate-type stabilizers. Typically, such stabilizers will be used at levels in the compositions from about 0.25% to about 10%, preferably from about 0.5% to about 5%, more preferably from about 0.75% to about 3%, by weight of boric acid or other borate compound capable of forming boric acid in the composition (calculated on the basis of boric acid). Boric acid is preferred, although other compounds such as boric oxide, borax and other alkali metal borates (e.g., sodium ortho-, meta- and pyroborate, and sodium pentaborate) are suitable. Substituted boric acids (e.g., phenylboronic acid, butane boronic acid, and p-bromo phenylboronic acid) can also be used in place of boric acid.
In addition to enzymes, the compositions herein can option¬ ally include one or more other detergent adjunct materials or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition (e.g., perfumes, colorants, dyes, etc.). The following are illustrative examples of such adjunct materials.
Builders - Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are tvp callv used in fabric laundering compositions to assist in the removal of particulate soils.
The level of builder can vary widely depending upon the end use of the composition and its desired physical form. When present, the compositions will typically comprise at least about 1% builder. Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder. Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder. Lower or higher levels of builder, however, are not meant to be excluded. Inorganic detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphos- phates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates" and sesquicarbon- ates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the composi¬ tions herein function surprisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders. Moreover, the secondary (2,3) alkyl sulfate plus enzyme components perform best in the presence of weak, nonphosphate builders which allow free calcium ions to be present. This is especially true for liquid compositions.
Examples of silicate builders are the alkali metal silicates, particularly those having a Siθ2:Na2θ ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2Si0s morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043. SKS-6 is a highly preferred layered silicate for usς isrein, but other such layered silicates, such as those having the general formula Na Si θ χ+ryH2θ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na2Siθ5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems. Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
Aluminosilicate builders are also useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent composi¬ tions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula: Mz(zAlθ2-ySiθ2) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from about 0.5 to about 2; and y is 1; this material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaC03 hardness per gram of anhydrous aluminosili- cate. Preferred aluminosilicates are zeolite builders which have the formula:
Naz[(A102)z (Siθ2)y]-xH2θ wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
Useful aluminosilicate ion exchange materials are commer¬ cially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosili¬ cates or synthetically derived. A method for producing alumino- silicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred syotJifitic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
Nai2[(A102)l2(Si02)l2]-xH2θ wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycar¬ boxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
Other useful detergency builders include the ether hydroxy- polycarboxylates, copoly ers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisul- phonic acid, and carboxy ethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricar- boxylic acid, carboxymethyloxysuccinic acid, and soluble salts thejeof.
Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular composi¬ tions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-l,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuc- cinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccin- ates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986. Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
Fatty acids, e.g., i2_c18 monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator. In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,4QJ 148 and 3,422,137) can also be used.
Bleaching Compounds - Bleaching Agents and Bleach Activators - The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition .comprising the bleaching agent-plus-bleach activator. The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents. Perborate bleaches, e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
One category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are dis¬ closed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al , filed June 3, 1985, European Patent Application 0,133,354, Banks et al, pub¬ lished February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al . Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxy- hydrate and equivalent "percarbonate" bleaches, sodium pyrophos- phate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., 0X0NE, manufactured commercially by DuPont) can also be used.
Mixtures of bleaching agents can also be used. Peroxygen bleaching agents, the perborates, the percarbon- ates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein. Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non- oxygen bleaching agent of particular interest includes photo- activated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al . If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonated zinc phthalocyanine.
Polymeric Soil Release Agent - Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions and processes of this invention. Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures. The polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is boq ed to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture con- tains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such compon¬ ents having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or (b) one or more hydrophobe components comprising (i) C3 oxyalkylene terephthalate segments, wherein, if said hydrophobe components also comprise oxyethylene terephthal- ate, the ratio of oxyethylene terephthalate:C3 oxyalkylene tere- phthalate units is about 2:1 or lower, (ii) C4-C6 alkylene or oxy C4-C6 alkylene segments, or mixtures therein, (iii) poly (vinyl ester) segments, preferably poly(vinyl acetate), having a degree of polymerization of at least 2, or (iv) C1-C4 alkyl ether or C4 hydroxyalkyl ether substituents, or mixtures therein, wherein said substituents are present in the form of C1-C4 alkyl ether or C4 hydroxyalkyl ether cellulose derivatives, or mixtures therein, and such cellulose derivatives are amphiphilic, whereby they have a sufficient level of C1-C4 alkyl ether and/or C4 hydroxyalkyl ether units to deposit upon conventional polyester synthetic fiber surfaces and retain a sufficient level of hydroxyls, once adhered to such conventional synthetic fiber surface, to increase fiber surface hydrophilicity, or a combination of (a) and (b).
Typically, the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from 2 to about 200, although higher levels can be used, preferably from 3 to about 150, more prefer¬ ably from 6 to about 100. Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as Mθ3S(CH2)nOCH2CH2θ-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellu- losic polymers, copoly eric blocks of ethylene terephthalate or proj Lene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al .
Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C1-C6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al . Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (West Germany).
One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. The molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975. Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units containing 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Examples of this polymer include the commercially available material ZELC0N 5126 (from Dupont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
Another preferred polymeric soil release agent is a sulfon- ated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone. These soil release agents are described fully in U.S. Patent 4,968,451, issued November 6, 1990 to J. J. Scheibel and E. P. Gosselink.
Other suitable polymeric soil release agents include the tprfipht.halatp polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al , the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfo- aroyl, end-capped terephthalate esters. If utilized, soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent composi¬ tions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%. Chelating Agents - The detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents. Such chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates. Amino carboxylates useful as optional chelating agents include ethylenediaminetetraacetates, N-hydroxyethylethylenedi- aminetriacetates, nitrilotriacetates, ethylenediamine tetrapropri- onates, triethylenetetraa inehexaacetates, diethylenetriamine- pentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent composi¬ tions, and include ethylenediaminetetrakis (methylenephosphon- ates), nitrilotris (methylenephosphonates) and diethylenetriamine- pentakis (methylenephosphonates), as DEQUEST. Preferably, these am ufl_ )hosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al . Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
A preferred biodegradable chelator for use herein is ethy - enediamine disuccinate ("EDDS"), as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins. If utilized, these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent composi¬ tions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
Clay Soil Removal/Anti-redeposition Agents - The compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and anti-redeposition properties. Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylated amines; liquid detergent compositions typically contain about 0.01% to about 5%.
The most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986. Another group of preferred clay soil removal/antiredeposition agents are the cationic compounds dis¬ closed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984. Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985. Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the,, compositions herein. Another type of preferred anti- redeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art. Polymeric Dispersing Agents - Polymeric dispersing agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric.dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition.
Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylene alonic acid. The presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight. Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued March 7, 1967. m. Acrvlic/maleic-based copolymers may also be used as a pre¬ ferred component of the dispersing/anti-redeposition agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most prefer¬ ably from about 7,000 to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1. Water- soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/ma!eate copolymers of this type are known materials which are described in European Patent Appli¬ cation No. 66915, published December 15, 1982.
Another polymeric material which can be included is poly¬ ethylene glycol (PEG). PEG can exhibit dispersing agent perform- ance as well as act as a clay soil removal/antiredeposition agent. Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
Brightener - Any optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from about 0.05% to about 1.2%, by weight, into the detergent compositions herein. Commercial optical brighteners which may be useful in the present invention can be classified into subgroups which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-me bered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982).
Specific examples of optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PH0RWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba- Geigy; Arctic White CC and Artie White CWD, available from Hilton- Davis, located in Italy; the 2-(4-styryl-phenyl)-2H- naphthol [1,2- d]triazoles; 4,4'-bis- (l,2,3-triazol-2-yl)-stil- benes; 4,4'-bis- (styryl)bisphenyls; and the a inocoumarins. Specific examples of these brighteners include 4-methyl-7-diethyl- amino coumarin; l,2-bis(-benzimidazol-2-yl)ethylene; 1,3-diphenylphrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-styryl-naphth-[l,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [l,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be incorporated into the compositions of the present invention. Suds suppression can be of particular importance under conditions such as those found in European-style front loading laundry washing machines, or in the concentrated detergency process of U.S. Patents 4,489,455 and 4,489,574, or when the detergent compositions herein optionally include a relatively high sudsing adjunct surfactant.
A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979). One category of suds suppressor of particular interest encompasses monocarboxylic fatty acids and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
The detergent compositions herein may also contain non- surfactant suds suppressors. These include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g. stearone), etc. Other suds inhibitors include N-alkylated amino triazines such as tri- tojifijςa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g. K, Na, and Li) phosphates and phosphate esters. The hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form. The liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40*C and about 5*C, and a minimum boiling point not less than about 110*C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferrably having a melting point below about lOO'C. The hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al . The hydrocarbons, thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms. The term "paraffin," as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons. Another preferred category of non-surfactant suds suppressors comprises silicone suds suppressors. This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed of fused onto the silica. Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S. Other silicone suds suppressors are disclosed in U.S. Patent 3,455,839 which relates to compositions and processes for defoam- ing aqueous solutions by incorporating therein small amounts of polydimethylsiloxane fluids.
Mixtures of silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526. Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987. An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
(i) polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about 1500 cs. at 25*C; (ii) from about 5 to about 50 parts per 100 parts by weight of (i) of siloxane resin composed of (CH3)3 SiOχ/2 units of Siθ2 units in a ratio of from (CH3)3-Si0j 2 units and to Siθ2 units of from about 0.6:1 to about 1.2:1; and (ii ) from about 1 to about 20 parts per 100 parts by weight of (i) of a solid silica gel; In the preferred silicone suds suppressor used herein, the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene-polypropylene glycol copolymers or mixtures thereof (preferred), and not polypropylene glycol. The primary silicone suds suppressor is branched/crosslinked and not linear.
To illustrate this point further, typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from abut 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol. Similar amounts can be used in granular compositions, gels, etc. See also U.S. Patents 4,978,471, Starch, issued December 18, 1990, and 4,983,316, Starch, issued January 8, 1991, and U.S. Patents 4,639,489 and 4,749.740, Aizawa et al at column 1, line 46 through column 4, lirtf 35.
The silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/poly- propylene glycol, all having an average molecular weight of less than about 1,000, preferably between about 100 and 800. The polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %. The preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1,000, more preferably between about 100 and.800, most preferably between 200 and 400, and a copolymer of polyethylene glycol/polypropylene glycol, preferably PPG 200/PEG 300. Preferred is a weight ratio of between about 1:1 and 1:10, most preferably between 1:3 and 1:6, of polyethylene glycol :copolymer of polyethylene-polypropylene glycol. The preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101.
Other suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872. The secondary alcohols include the Cδ-Ci6 alkyl alcohols having a Cι-Cχ6 chain. A preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12. Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem. Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1:5 to 5:1.
For any detergent compositions to be used in automatic laundry washing machines, suds should not form to the extent that they overflow the washing machine. Suds suppressors, when utilized, are preferably present in a "suds suppressing amount." By "suds suppressing amount" is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
The compositions herein will generally comprise from 0% to about 5% of suds suppressor. When utilized as suds suppressors, monocarboxylic fatty acids, and salts therein, will be present typically in amounts up to about 5%, by weight, of the detergent composition. Preferably, from about 0.5% to about 3% of fatty monocarboxylate suds suppressor is utilized. Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarly to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing. Preferably from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%. As used herein, these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized. Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition. Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used. The alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
In addition to the foregoing ingredients, the compositions herein can also be used with a variety of other adjunct ingredi¬ ents which provide still other benefits in various compositions within the scope of this invention. The following illustrates a variety of such adjunct ingredients, but is not intended to be limiting therein.
Fabric Softeners - Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from about 0.5% to about 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning. Clay softeners can be used in combination with amine and cationic softeners, as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1, 1983 and U.S. Patent 4,291,071, Harris et al , issued September 22, 1981.
— / -jnnct Surfactants - The compositions herein can optionally contain various anionic, nonionic, zwitterionic, etc. surfactants. If used, such adjunct surfactants are typically present at levels of from about 5% to about 35% of the compositions. However, it is to be understood that the incorporation of adjunct anionic sur¬ factants is entirely optional herein, inasmuch as the cleaning performance of the secondary (2,3) alkyl sulfates in combination with the polyhydroxy fatty acid amides is excellent and these materials can be used to entirely replace such surfactants as the alkyl benzene sulfonates in fully-formulated detergent compositions. Nonli iting examples of optional surfactants useful herein include the conventional Cn-Ciβ alkyl benzene sulfonates and primary and random alkyl sulfates, the Cio-Ciβ alkyl alkoxy sulfates (especially EO 1-5 ethoxy sulfates), Cio-Ciβ alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C10-C18 alkyl polyglycosides and their corresponding sulfated polyglycosides, 12-C18 alpha-sulfonated fatty acid esters, C12-C18 alkyl and alkyl phenol alkoxy!ates (especially ethoxylates and mixed ethoxy/propoxy), C12-C18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and the like. Other conven¬ tional useful surfactants are listed in standard texts.
Other Ingredients - A wide variety of other ingredients useful in detergent compositions can be included in the composi¬ tions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, etc. If high sudsing is desired, suds boosters such as the C10-C16 alkanolamides can be incorporated into the compositions, typically at 1%-10% levels. The C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous. If desired, soluble magnesium salts such as MgCl2, MgSθ4, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional sudsing. Various detersive ingredients employed in the present compo¬ sitions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating. Preferably, the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate. In use, the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
To illustrate this technique in more detail, a porous hydro¬ phobic silica (trademark SIPERNAT DlO, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C13-15 ethoxylated alcohol E0(7) nonionic surfactant. Typically, the enzyme/surfact¬ ant solution is 2.5 X the weight of silica. The resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used). The result¬ ing silicone oil dispersion is emulsified or otherwise added to the final detergent matrix. By this means, ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected" for use in deter¬ gents, including liquid laundry detergent compositions.
Liquid detergent compositions can contain water and other solvents as carriers. Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable. Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2- propanediol) can also be used. The compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
The detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and about 10.5. Liquid dishwashing formulations preferably have a pH between about 6.8 and about 9. Laundry products are typically between pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
TEST EXAMPLE __t The following example illustrates the benefits of the inven¬ tion. A heavy duty liquid detergent matrix of the following formula is prepared: Ingredient %
Citric acid (as anhydrous) 6
Palm kernel fatty acids 9
Ci -14 alkyl N-methyl glucamide 9
Ci2-14 alcohol 7 ethoxylate 6 Diethylene triamine pentamethylene phosphonic acid 0.95 Boric acid 2.4
Sodium formate 0.15 Neutralizing base (NaOH, monoethanolamine) up to pH 7.8 Water and minors up to 100 parts
(enzymes, perfume, suds suppressors)
Solutions containing 0.67% of this composition are prepared in water of hardness equal to 5 millimolar.
To these solutions, various anionic surfactants are added to an amount corresponding to 19% anionic surfactant in the matrix described above. The pH of the solutions is then adjusted to 7.8. The interfacial tensions of these solutions are measured using a Spinning Drop Tensiometer SITE (Kruse Instruments) at 30*C after 10 minutes contact with an oil composed of triolein technical grade 54% a.m. (ref. T-7752 available from Sigma) loaded with 5% oleic acid.
The performance of these solutions on greasy soil removal is then tested using the launderometer technique. In this technique, 200 mis of the solutions are put in jars together with stained swatches like artificial sebum on cotton fabrics, available from W. F. Krefeld under the code WFK 10D. The jars are then rotated for 30 minutes up to 40*C. After washing, the stained swatches are then rinsed and dried, and the percentage of soil removal is instrumentally determined by measuring the reflectance values.
The results of the interfacial tension measurements and of the launderometer test summarized below clearly demonstrate the benefits of the SAS versus current anionics. Anionic Surfactant Added to Test Example IFT (dvne/cml % Stain Removal
WFK 10D
LAS* 0.38 35.0 C12-14 primary alkyl sulfate N Naa 0.32 44.0
Ci2 SAS (DAN 212)** 0.18 54.0
Ci SAS (DAN 214)** 0.15 63.0
Ci6 SAS (DAN 216)** 0.09 60.0
Sodium alkylbenzene sulfonate **Secondary (2,3) alkyl sulfates available from Shell
The following are typical, nonlimiting examples which further illustrate the detergent compositions and uses of the secondary (2,3) alkyl sulfates according to this invention. Preferred compositions for most purposes contain no phosphates.
The liquid detergents of Examples I-II are prepared by dissolving or dispersing the indicated ingredients in an aqueous carrier and adjusting the pH in the range of 7.D-10.5.
EXAMPLE I A liquid laundry detergent composition herein comprises the following.
Ingredient % (wt.l Secondary (2,3) alkyl sulfate* 15.0
Ci4 N-methyl glucamide 5.0
Sodium citrate 3.0
Cio alcohol ethoxylate (E03) 13.0
Monoethanolamine 2.5 MAXATASE (enzyme) 0.5
LIPOLASE (enzyme) 0.5
Water/propylene glycol/ethanol (100:1:1) Balance *Ci2-Ci6 average chain length; Na salt form; less than 1% Na2S04.
EXAMPLE II A dishwashing composition with high grease removal properties is as follows.
Ingredient % fwt.
Cχ2 N-methyl glucamide 9.0
C12 ethoxy (1) sulfate 5.0 c10-12 secondary (2,3) alkyl sulfate (Na)* 6.5 C12 ethoxy (2) carboxylate 4.5
Jj2 alcohol ethoxylate (E04) 3.0
C12 amine oxide 3.0
Sodium cumene sulfonate 2.0 Ethanol 4.0
Mg++ (as MgCl2) 0.2
Ca++ (as Ca formate) 0.4
Water Balance
Purified to contain less than 1% Na2S04. In general terms, particulate detergent compositions herein comprising the secondary (2,3) alkyl sulfate surfactants can be prepared using a variety of well-known processes. For example, particles can be formed by agglomeration, wherein solids (including the secondary (2,3) alkyl sulfates) are forced/hurled together by physical mixing and held together by a binder. Suitable apparatus for agglomeration includes dry powder mixers, fluid beds and turbilizers, available from manufacturers such as Lδdige, Eric, Bepex and Aeromatic.
In another mode, particles can be formed by extrusion. In this method, solids such as the secondary (2,3) alkyl sulfates are forced together by pumping a damp powder at relatively high pressures and high energy inputs through small holes in a die plate. This process results in rod like particles which can be divided into any desired particle size. Apparatus includes axial or radial extruders such as those available from Fuji, Bepex and Teledyne/Readco.
In yet another mode, particles can be formed by prilling. In this method, a liquid mixture containing the desired ingredients (i.e., one of them being secondary (2,3) alkyl sulfate particles) is pumped under high pressure and sprayed into cool air. As the liquid droplets cool they become more solid and thus the particles are formed. The solidification can occur due to the phase change of a molten binder to a solid or through hydration of free mois¬ ture into crystalline bound moisture by some hydratable material in the original liquid mixture.
In still another mode, particles can be formed by compaction. This method is similar to tablet formation processes, wherein solids (i.e., secondary [2,3] alkyl sulfate particles) are forced together by compressing the powder feed into a die/mold on rollers or flat sheets.
In another mode, particles can be formed by melt/solidifica¬ tion. In this method, particles are formed by melting the second- ary (2,3) alkyl sulfate with any desired additional ingredient and allowing the melt to cool, e.g., in a mold or as droplets.
Binders can optionally be used in the foregoing methods to enhance particle integrity and strength. Water, alone, is an operative binder with secondary (2,3) alkyl sulfates, since it will dissolve some of the secondary (2,3) alkyl sulfate to provide a binding function. Other binders include, for example, starches, polyacrylates, carboxymethylcellulose and the like. Binders are well-known in the particle making literature. If used, binders are typically employed at levels of 0.1%-5% by weight of the finished particles.
If desired, fillers such as hydratable and nonhydratable salts, crystalline and glassy solids, various detersive ingredi- ents such as zeolites and the like, can be incorporated in the particles. If used, such fillers typically comprise up to about
20% by weight of the particles.
Particles prepared in the foregoing manner can be subse¬ quently dried or cooled to adjust their strength, physical properties and final moisture content, according to the desires of the formulator.
The preferred overall making process for particulate products herein involves three distinct Steps: (1) agglomeration of the ingredients to form the base formula, followed by; (2) admixing various ingredients with the agglomerates formed in Step (1) (e.g., percarbonate bleach, bleach activators, and the like); and optionally, but preferably, (3) spraying materials such as perfume onto the final mix.
The base formula is agglomerated as opposed to spray dried in order to prevent degradation of some of the heat sensitive surfactants. The resulting product is a high density (ranging from 600 g/l ter - 800 g/liter) free flowing detergent mix that can be used in place of current spray dried laundry detergents.
With regard to the base Agglomeration (Step 1, above), this procedure is comprised of four Steps:
(A) preparing a surfactant paste using mixers such as the Readco Standard Sigma Mixer, T-Series;
(B) agglomerating powder components with the surfactant paste using mixers such as the Eirich Mixer, R-Series; (C) drying the agglomerates, such as in a batch-type
Aeromatic fluidized bed or a continuous type static or vibrating fluidized bed (NIR0, Bepex or Carrier
Companies); and
(D) coating the agglomerates using a mixer such as an Eirich Mixer, R-Series.
The following describes the Agglomeration Step in more detail . Step A - Preparation of Surfactant Paste - The objective is to combine the surfactants and liquids in the compositions into a common mix in order to aid in surfactant solubilization and agglomeration. In this Step, the surfactants and other liquid components in the composition are mixed together in a Sigma Mixer at 140'F (60'C) at about 40 rpm to about 75 rpm for a period of from 15 minutes to about 30 minutes to provide a paste having the general consistency of 20,000-40,000 centipoise. Once thoroughly mixed, the paste is stored at 140*F (60'C) until agglomeration Step (B) is ready to be conducted. The ingredients used in this Step include surfactants acrylate/maleic polymer (m.w. 70,000) and polyethylene glycol "PEG" 4000-8000.
Step B - Agglomeration of Powders with Surfactant Paste - The purpose of this Step is to transform the base formula ingredients into flowable detergent particles having a medium particle size range of from about 300 microns to about 600 microns. In this Step, the powders (including materials such as zeolite, citrate, citric acid builder, layered silicate builder (as SKS-6), sodium carbonate, ethylenediaminedisuccinate, magnesium sulfate and optical brightener) are charged into the Eirich Mixer (R-Series) and mixed briefly (ca. 5 seconds - 10 seconds) at about 1500 rpm to about 3000 rpm in order to mix the various dry powders fully. The surfactant paste from Step A is then charged into the mixer and the mixing is continued at about 1500 rpm to about 3000 rpm for a period from about 1 minute to about 10 minutes, preferably 1-3 minutes, at ambient temperature. The mixing is stopped when coarse agglomerates (average particle size 800-1600 microns) are formed.
Step C - The purpose of this Step is to reduce the agglomer- ates' stickiness by removing/drying moisture and to aid in particle size reduction to the target particle size (in the median particle size range from about 300 to about 600 microns, as measured by sieve analysis). In this Step, the wet agglomerates are charged into a fluidized bed at an air stream temperature of from about 41*C to about 60*C and dried to a final moisture content of the particles from about 4% to about 10%. Step D - Coat Agglomerates and Add Free-Flow Aids - The objective in this Step is to achieve the final target particle size range of from about 300 microns to about 600 microns, and to admix materials which coat the agglomerates, reduce the caking/ lumping tendency of the particles and help maintain acceptable flowability. In this Step, the dried agglomerates from Step C are charged into the Eirich Mixer (R-Series) and mixed at a rate of about 1500 rpm to about 3000 rpm while adding 2-6% Zeolite A (median particle size 2-5μm) during the mixing. The mixing is continued until the desired median particle size of from about 1200 to about 400 microns is achieved (typically from about 5 seconds to about 45 seconds). At this point, from about 0.1% to about 1.5% by weight of precipitated silica (average particle size 1-3 microns) is added as a flow aid and the mixing is stopped. The following illustrates a laundry detergent composition prepared in the foregoing manner.
EXAMPLE III Agglomerate
% (wt.) in % (wt.) in final product agglomerate c14-15 alkyl sulfate, Na 5.8 6.8
Ci6 secondary (2,3) alkyl sulfate, Na 17.3 20.4
C12-C13 ethoxylated alcohol (E03) 4.7 5.5
C12-14 N-methylglucamide 4.7 5.5 Acrylate/maleate copolymer 6.2 7.3
Polyethylene glycol (4000) 1.4 1.7
Aluminosilicate (zeolite) 8.8 10.3
Sodium citrate 1.9 2.2
Citric acid/SKS-6l 11.5 13.5 Sodium carbonate 12.2 14.4
EDDS2 0.4 0.5
Mg sulfate 0.4 0.5
Optical brightener 0.1 0.1
Moisture 7.6 8.9 Silica3 0.4 0.5
Balance (unreacted and Na2S04) 1.6 1.9 Agglomerate total 85.0 100.0 Dry Mix
Percarbonate, Na 7.8
N0BS4 5.9
Silicone/PEG antifoam 0.3
Lipolase 0.3
Savinase 0.3
Spray-on
Perfume 0.4
Finished product total 100.0 ^Co-particle of citric acid and layered silicate (2.0 ratio) ^Ethylenediamine disuccinate Hydrophobic precipitated silica (trade name SIPERNAT D-11) 4Sodium nonanoyloxybenzene sulfonate
Concencentrated, low sudsing, heavy-duty liquid detergents are as follows.
EXAMPLE IV
A B
Ingredient % (Wt.) % (Wt.)
Ci4 SAS* 10 --
Ci2 SAS* -- 15
C12-14 N-methyl glucamide 5 6 c12-14 alcohol ethoxylate (7 E0) 3.5 5
Citric acid (as anh.) 3.5 2.5
Palm kernel fatty acids 5 10
Diethylene triamine penta methylene phosphonic acid 0.5 1.5
Bor.ic acid 1.5 2
Sodium formate 0.2 --
Monoethanolamine 3.0 up to pH 7.8
1,2-Propanediol 13 20
NaOH up to pH 7.8 --
Water and minors up to 100 parts up to 100 parts
*SAS = secondary (2,3) al kyl sul fate
A heavy duty granul ar composition is as follows. EXAMPLE V
Ingredient % (wt . )
Ci6 SAS 18 c14- 15 al kyl sul fate 6 C12 N-butyl glucamide 3
C12-15 alcohol ethoxylate (3 EO) 3
Zeolite A (1-10 microns) 13
Sodium citrate 3.5 Sodium carbonate 10.5
Tetraacetyl ethylenediamine 6.5
Sodium percarbonate (400-600 microns) 23
Polyacrylate/maleate copolymer 5
Water, enzymes and minors up to 100 parts EXAMPLE VI
A laundry bar suitable for hand-washing soiled fabrics is prepared by standard extrusion processes and comprises the following:
Ingredient % (wt.) Ci6 secondary (2,3) alkyl sulfate, Na 30
Ci2-14 N-methylglucamide 5
Sodium tripolyphosphate 7
Sodium pyrophosphate 7
Sodium carbonate 25 Zeolite A (0.1-10μ) 5
Coconut monoethanolamide 2
Carboxymethylcellulose 0.2
Polyacrylate (m.w. 1400) 0.2
Brightener, perfume 0.2 Protease 0.3
CaS04 1
MgSQa- 1
Water 4
Filler* --- Balance --- *Can be selected from convenient materials such as CaC03, talc, clay, silicates, and the like.
EXAMPLE VU Gel compositions are as follows.
To 0.8 grams of magnesium sulfate, 0.8 grams of Ca formate and 6.7 grams of cocoamido propyl betaine (30% active, Albright- Wilson, United Kingdom) dissolved in 25 grams of water, 8 grams of C91-8T Dobanol (100% active, Shell, USA), 1.00 grams of boric acid and 20 grams of urea (99% active, Fisher Scientific, USA) are added and mixed at 71-74'C. Once a homogeneous mixture is obtained, 8 grams of 97.6% active coconut N-methyl glucamide and 28 grams of sodium Cχ6 secondary (2,3) alkyl sulfate are added and agitation is continued. (Ingredients such as detersive enzymes can be added when the temperature of the liquid reaches about 35-40*C.) The final liquid product forms a gel on cooling.
In an alternate mode, a gel is provided without urea. To a solution formed by dissolving 0.002 grams of blue dye in 42 grams of water at 62*C, 0.25 grams of MgS04, 0.25 grams of CaCl2, 0.50 grams of perfume and 35% of 50% coconutalkyl C12-C14 N-methyl glucamide paste are added with agitation. Once all the materials are dissolved, 21 grams of an 80% sodium C12-1 secondary (2,3) alkyl sulfate paste 1s added. The solution is stirred for an additional 30 minutes at 77'C. At about 40*C, 0.5 grams of a commercial detersive protease composition is added and stirring is continued. Once stirring is stopped, the viscous liquid quickly solidifies into a gel after cooling.
While the foregoing examples illustrate the practice of this invention using the secondary (2,3) alkyl sulfate surfactants and other, mainly anionic, adjunct surfactants, such compositions can also optionally contain various adjunct cationic surfactants and mixtures of cationic and nonionic adjunct surfactants. Useful cationics include the Cιo_c18 lkyl trimethylammonium halides, the C10-C18 alkyl dimethyl (Ci-Cβ) hydroxyalkylammonium halides, 10-C18 choline esters, and the like. If used, such cationic surfactants can typically comprise from 1% to 15% by weight of the coπQBflsitions herein.

Claims

What is claimed is:
1. Use of secondary (2,3) alkyl sulfate surfactants in combination with polyhydroxy fatty acid amide surfactants to provide low interfacial tensions in aqueous media.
2. Use of secondary (2,3) alkyl sulfate surfactants in combination with polyhydroxy fatty acid amide surfactants to provide cleaning action in a fabric laundering process which comprises agitating fabrics in an aqueous laundry containing said surfactants.
3. A detergent composition, comprising:
(a) at least 2% by weight of a secondary (2,3) alkyl sulfate surfactant;
(b) at least 2% by weight of a polyhydroxy fatty acid amide surfactant; and
(c) optional detersive adjunct materials.
4. A composition according to any of Claims 1*3 wherein the secondary (2,3) alkyl sulfate surfactant has an alkyl chain length in the range from C,Q to C,«, and mixtures thereof.
5. A composition according to either of Claims 3 or 4 which comprises a detersive enzyme which is a member selected from the group consisting of proteases, amylases, Upases, cellulases, peroxidases and mixtures thereof, as the adjunct material (c).
6. A composition according to any of Claims 1 -5 which additionally comprises a non- secondary (2,3) al ylsulfirte, non-polyhydroxy fatty acid amide adjunct surfactant.
7. A composition according to Claim 6 wherein the adjunct surfactant is a non- aQcytbenzene sulfonate surfectant.
8. A composition according to any of Claims 3-7 which additionally comprises a detergendJHhiUder as the adjunct material (c).
9. A composition according to Claim 8 wherein the detergency builder is a member selected from the group consisting of zeolite builders, layered silicate builders, polycarboxylate builders, and mixtures thereof
10. A composition according to Claim 8 in bar form wherein the builder is a phosphate builder.
EP94913364A 1993-04-08 1994-04-05 Secondary (2,3) alkyl sulfate surfactants in detergent compositions with polyhydroxy fatty acid amides Withdrawn EP0693113A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4540893A 1993-04-08 1993-04-08
US45408 1993-04-08
PCT/US1994/003725 WO1994024246A1 (en) 1993-04-08 1994-04-05 Secondary (2,3) alkyl sulfate surfactants in detergent compositions with polyhydroxy fatty acid amides

Publications (1)

Publication Number Publication Date
EP0693113A1 true EP0693113A1 (en) 1996-01-24

Family

ID=21937708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94913364A Withdrawn EP0693113A1 (en) 1993-04-08 1994-04-05 Secondary (2,3) alkyl sulfate surfactants in detergent compositions with polyhydroxy fatty acid amides

Country Status (4)

Country Link
EP (1) EP0693113A1 (en)
JP (1) JPH08509757A (en)
CN (1) CN1124499A (en)
WO (1) WO1994024246A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738778A1 (en) * 1995-04-19 1996-10-23 The Procter & Gamble Company Nonaqueous, particulate-containing liquid detergent compositions
JP6732424B2 (en) * 2015-10-05 2020-07-29 花王株式会社 Liquid detergent composition for clothing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU528816B2 (en) * 1978-02-14 1983-05-12 Unilever Ltd. Detergent composotions
ES2077250T3 (en) * 1990-09-28 1995-11-16 Procter & Gamble COMPOSITIONS OF DETERGENTS CONTAINING ANIONIC SURFACE AGENTS, POLYHYDROXY-AMIDES OF FATTY ACIDS AND MAGNESIUM.
US5318728A (en) * 1992-11-30 1994-06-07 The Procter & Gamble Company Low sudsing polyhydroxy fatty acid amide detergents
JPH08503986A (en) * 1992-11-30 1996-04-30 ザ、プロクター、エンド、ギャンブル、カンパニー Low foaming mixed polyhydroxy fatty acid amide cleaning with nonionic / anionic surfactant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9424246A1 *

Also Published As

Publication number Publication date
WO1994024246A1 (en) 1994-10-27
JPH08509757A (en) 1996-10-15
CN1124499A (en) 1996-06-12

Similar Documents

Publication Publication Date Title
CA2148101C (en) High sudsing detergent compositions with specially selected soaps
US5318728A (en) Low sudsing polyhydroxy fatty acid amide detergents
WO1994020599A1 (en) Detergent compositions containing ethylenediamine-n,n&#39;-diglutaric acid or 2-hydroxypropylenediamine-n,n&#39;-disuccinic acid
CA2247947C (en) Secondary alkyl sulfate particles with improved solubility by compaction/coating process
WO1994012609A1 (en) Detergent compositions with calcium ions and polyhydroxy fatty acid amide nonionic/selected anionic/soap surfactant mixture
AU683883B2 (en) Secondary (2,3) alkyl sulfate surfactants in mixed surfactant particles
CA2160228C (en) Secondary (2,3) alkyl sulfate surfactants in stable enzyme-containing detergent compositions
WO1994024238A1 (en) Detergent compositions
WO1996002601A1 (en) Solid bleach activator compositions
CA2160229C (en) Magnesium-containing detergent compositions in stable liquid, gel or other forms with secondary (2,3) alkyl sulfate surfactants
EP0693113A1 (en) Secondary (2,3) alkyl sulfate surfactants in detergent compositions with polyhydroxy fatty acid amides
WO1994024245A1 (en) Purification of secondary (2, 3) alkyl sulfate surfactants
EP0693106A1 (en) Secondary (2,3) alkyl sulfate surfactants to coat free-flowing granular detergent compositions
EP0693109A1 (en) Calcium-containing detergent compositions in stable liquid, gel or other forms with secondary (2,3) alkylsulfate surfactants
EP0693107A1 (en) Secondary (2,3) alkyl sulfate surfactants in high density granular detergent compositions
WO1994012598A1 (en) Cleaning with low-sudsing mixed polyhydroxy fatty acid amide nonionic/anionic surfactants
WO1994012610A1 (en) Detergent compositions containing polyhydroxy fatty acid amide, sulfated polyhydroxy fatty acid amide and soap
WO1997032950A1 (en) Secondary alkyl sulfate surfactant with improved solubility by kneading/extruding process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19960401

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980804