EP0692009A1 - Process for processing used or waste plastic material - Google Patents

Process for processing used or waste plastic material

Info

Publication number
EP0692009A1
EP0692009A1 EP94913053A EP94913053A EP0692009A1 EP 0692009 A1 EP0692009 A1 EP 0692009A1 EP 94913053 A EP94913053 A EP 94913053A EP 94913053 A EP94913053 A EP 94913053A EP 0692009 A1 EP0692009 A1 EP 0692009A1
Authority
EP
European Patent Office
Prior art keywords
depolymerization
phase
condensate
products
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94913053A
Other languages
German (de)
French (fr)
Other versions
EP0692009B1 (en
Inventor
Rolf Holighaus
Klaus Niemann
Martin Rupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Der Gruene Punkt Duales System Deutschland AG
Original Assignee
Veba Oel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel AG filed Critical Veba Oel AG
Publication of EP0692009A1 publication Critical patent/EP0692009A1/en
Application granted granted Critical
Publication of EP0692009B1 publication Critical patent/EP0692009B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/005Coking (in order to produce liquid products mainly)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste

Definitions

  • the invention relates to a method for processing old or waste plastics for the purpose of obtaining chemical raw materials and liquid fuel components.
  • the invention is based on a process for the hydrotreatment of carbon-containing material, in which polymers, in particular polymer wastes in comminuted or dissolved form, are added to a high-boiling oil and this mixture is hydrogenated in the presence of hydrogen in order to obtain fuel components and chemical raw materials (see DD 254 207 A1).
  • a process for converting used tires, rubber and / or other plastics into liquid, gaseous and solid products by depolymerizing treatment in a solvent under elevated pressure and elevated temperature has been described in DE-A-25 30 229.
  • no harmful substances such as SO2, soot or the like should enter the atmosphere in this process.
  • hydrogenation was carried out at a hydrogen pressure of 150 bar and a temperature of 450 ° C in the presence of substances catalyzing the cleavage and hydrogenation reactions is fed to a hydrogenation reactor.
  • DE-A-2 205 001 describes a process for the thermal treatment of waste and rubber, in which the waste is split at temperatures from 250 to 450 ° C. in the presence of an auxiliary phase which is liquid at the reaction temperature.
  • a method is also known in which polymer waste, in particular waste rubber, is dissolved in the residue products of petroleum processing. The resulting mixture is then coked to coke.
  • the polymer concentration in the hydrogenation feed is, for example, between 0.01 and 20% by weight according to the process according to DD 254207.
  • the common hydrogenating treatment of heavy oils with dissolved and / or suspended polymers is limited to hydrogenation processes in which the hydrogenation is carried out in tubular reactors with or without a suspended catalyst. If reactors were operated with fixedly arranged catalysts, the use of polymers was only possible to a limited extent, in particular if polymers were added which depolymerize already in the heating phase up to approximately 420 ° C. before the reactor enters.
  • the invention consists in a method for processing old or waste plastics for the purpose of obtaining chemical raw materials and liquid fuel components by depolymerizing the starting materials into a pumpable and a volatile phase, separating the volatile phase into a gas phase and a condensate or condensable depolymerization products which are subjected to standard refinery procedures, the pumpable phase remaining after separation of the volatile phase being subjected to a bottom phase hydrogenation, gasification, smoldering or a combination of these process steps.
  • the resulting gaseous depolymerization products gas
  • the resulting condensable depolymerization products condensate
  • the pumpable, viscous depolymerization products containing, bottom phase depolymerized product
  • the process parameters are preferably selected so that the highest possible proportion of the so-called condensate is produced.
  • the plastics to be used in the present process are e.g. B. Mixed fractions from waste collections, including by Duale System Kunststoff GmbH (DSD). In these mixed fractions z. B. polyethylene, polypropylene, polyvinyl chloride, polystyrene, polymer blends such as ABS and polycondensates.
  • Plastic production waste, commercial packaging waste made of plastic, residual, mixed and pure fractions from the plastic processing industry can also be used, the chemical composition of this plastic waste not being critical for the suitability for use in the present process.
  • Suitable insert products are also elastomers, technical rubber articles or used tires in a suitable pre-shredded form.
  • the used plastics or waste plastics come, for example, from molded parts, laminates, composite materials, foils or synthetic fibers.
  • halogen-containing plastics examples include chlorinated polyethylene (PEC), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), chloroprene rubber, to name just a few important representatives.
  • sulfur-containing plastics for example polysulfones or rubbers crosslinked with sulfur bridges, such as in old tires, are produced in large quantities and, in the presence of the appropriate equipment for pre-comminution and pre-sorting in plastic and metal components, are used for depolymerization and further processing Extraction of chemical raw materials or fuel components accessible.
  • thermoplastics this also includes thermosets and polyadducts and products based on cellulose such as cellulose and paper.
  • the products made from this include semi-finished products, individual parts, components, packaging, storage and transport containers and consumer goods.
  • the semifinished products also include boards and boards (printed circuit boards) and laminated boards, some of which may still contain metal coatings and which, like the other products to be used, after comminution to particle or piece sizes of 0.5 to 50 mm, possibly of metal -, Glass or ceramic components can be separated using a suitable classification process.
  • the waste and waste plastics mentioned generally also contain inorganic secondary components such as pigments, glass fibers, fillers such as titanium or zinc oxide, flame retardants, pigment-containing printing inks, carbon black and also metals such as e.g. B. metallic aluminum.
  • inorganic secondary components such as pigments, glass fibers, fillers such as titanium or zinc oxide, flame retardants, pigment-containing printing inks, carbon black and also metals such as e.g. B. metallic aluminum.
  • the old and waste plastics mentioned, the z. B. from the collections of the DSD in mixtures or batches of different compositions may contain up to 10, possibly up to 20% by weight of inorganic secondary components.
  • These plastic mixtures are usually used in shredded or preconditioned form z. B. used as granules or chips or the like in the present process:
  • Product streams can be divided.
  • the condensate can be z. B. by hydrotreating on firmly arranged commercial Co-Mo or Ni-Mo catalysts in a high-quality synthetic crude oil (Syncrude) or also directly in chlorine-tolerating chemical-technical or refining processes as a hydrocarbon-containing base substance.
  • a gas in amounts of about 5 to 20 wt .-% based on the plastic mixture used, which in addition to methane, ethane, propane and
  • Butane can also contain gaseous hydrogen halides, such as mainly hydrogen chloride and volatile, chlorine-containing hydrocarbon compounds.
  • the hydrogen chloride can, for. B. wash out with water from the gas stream to obtain a 30% aqueous hydrochloric acid.
  • the residual gas can be hydrogenated in a bottom phase hydrogenation or in a hydrotreater from organically bound chlorine and z. B. the refinery gas processing.
  • the individual product streams in particular the condensate, can subsequently be further processed in the sense of raw material recycling, e.g. B. used as raw materials for olefin production in ethylene plants.
  • An advantage of the process according to the invention is that inorganic secondary constituents of the old or waste plastics are concentrated in the sump phase, while the condensate not containing these constituents can be processed further by less complex processes.
  • by optimally setting the process parameters temperature and residence time it can be achieved that, on the one hand, a relatively high proportion of condensate is formed and, on the other hand, the viscous depolymerizate of the bottom phase remains pumpable under the process conditions.
  • a useful approximation is that an increase in temperature by 10 ° C. with an average residence time increases the yield of the products passing into the volatile phase by more than 50%.
  • the residence time dependency for two typical temperatures is shown in FIG. 3.
  • the condensate yield can be additionally optimized by the further preferred procedural measures of adding catalysts, stripping with steam, low boilers or hydrocarbon gases, turbulent stirring or pumping over.
  • Typical of the present process is a condensate yield of about 50% by weight and more based on the total amount of the plastics used in the depolymerization. This advantageously considerably relieves the pressure-intensive process stages of pressure gasification, bottom phase hydrogenation and smoldering (pyrolysis).
  • the preferred temperature range for the depolymerization for the process according to the invention is 150 to 470 ° C. A range from 250 to 450 ° C. is particularly suitable.
  • the residence time can be 0.1 to 20 hours. A range from 1 to 10 h has proven to be generally sufficient.
  • the pressure is inventive method a less critical size. So it may be preferable to carry out the process under negative pressure, e.g. B. if volatile components have to be deducted for procedural reasons. Relatively high pressures are also practicable, however, they require more equipment. In general, the pressure should be in the range from 0.01 to 300 bar, in particular 0.1 to 100 bar. The method can preferably be good at normal pressure or slightly above z. B.
  • the process is advantageously carried out with a slight negative pressure down to about 0.2 bar.
  • the depolymerization can preferably be carried out with the addition of a catalyst, for example a Lewis acid such as aluminum chloride, a radical-forming substance such as a peroxide or a metal compound, for example a zeolite impregnated with a heavy metal salt solution.
  • a catalyst for example a Lewis acid such as aluminum chloride, a radical-forming substance such as a peroxide or a metal compound, for example a zeolite impregnated with a heavy metal salt solution.
  • the depolymerization can take place under turbulent flow conditions, e.g. B. by mechanical stirrer, but also by pumping around the reactor contents.
  • inventions of the method consist in depolymerization under inert gas, ie. H. Gas that is essentially inert to the feedstocks and depolymerization products, e.g. B. N2, CO2, CO or hydrocarbons.
  • inert gas ie. H. Gas that is essentially inert to the feedstocks and depolymerization products, e.g. B. N2, CO2, CO or hydrocarbons.
  • the process can also be carried out with the introduction of stripping gases and stripping vapors, such as nitrogen, water vapor or hydrocarbon gases.
  • Suitable liquid auxiliary phases or solvents or solvent mixtures are, for example, used organic solvents, that is to say waste solvents, incorrect production batches of organic liquids, waste oils or fractions from petroleum refining, for example vacuum residues.
  • used organic solvents that is to say waste solvents, incorrect production batches of organic liquids, waste oils or fractions from petroleum refining, for example vacuum residues.
  • solvents or foreign oils or recirculated own oils can also be dispensed with.
  • the depolymerization can be carried out in a conventional reactor, e.g. B. a stirred tank reactor with external circulation, which is designed for the corresponding process parameters, such as pressure and temperature, and whose container material is resistant to the acidic components that may arise, such as hydrogen chloride.
  • a conventional reactor e.g. B. a stirred tank reactor with external circulation, which is designed for the corresponding process parameters, such as pressure and temperature, and whose container material is resistant to the acidic components that may arise, such as hydrogen chloride.
  • suitable "unit operations" methods can be considered, such as those used for the so-called visbreaking of heavy crude oils or of residual oils from mineral oil processing. Possibly. they must be adapted accordingly to the requirements of the method according to the invention.
  • This process stage is advantageously designed for continuous operation, i. H. the plastic is continuously introduced into the liquid phase of the depolymerization reactor and the depolymerizate and top product are continuously removed.
  • the outlay on equipment for depolymerizing is comparatively low. This applies in particular if the process is carried out in the vicinity of normal pressure, ie in the range from 0.2 to 2 bar. In comparison to hydrogenating pretreatments, the expenditure on equipment is also significantly lower. If the depolymerization process is carried out optimally, the subsequent process steps can be relieved by up to 50% and more. At the same time, a large proportion of condensable hydrocarbons is deliberately generated during depolymerization, which can be worked up to valuable products by known and comparatively inexpensive processes.
  • the depolymerizate is easy to handle, since it remains pumpable and in this form represents a good starting material for the subsequent process stages.
  • the depolymerizate and the condensate are worked up separately from one another.
  • the condensable depolymerization products are preferably subjected to a hydrogenating refining on fixed granular catalyst.
  • the condensate can be subjected to conventional hydrotreating using commercially available nickel / molybdenum or cobalt / molybdenum contacts at hydrogen partial pressures of 10 to 250 bar and temperatures of 200 to 430 ° C.
  • a guard bed for trapping entrained ash components or coke-forming components is expediently connected upstream, depending on the composition of the condensate obtained.
  • the contact is arranged on solid trays as usual and the direction of flow of the condensate can be provided from the tray towards the top of the hydrotreating column or in the opposite direction.
  • acidic components such as hydrogen halide, hydrogen sulfide and. The like.
  • the feeding of water, alkali compounds and possibly corrosion inhibitors into the condensation part of appropriate separators is expedient.
  • the condensable depolymerization products or the condensate can also be subjected to hydrogenating refining on a moving catalyst or in a flowing catalyst bed.
  • the condensate obtained during the depolymerization is, for example, an excellent feedstock for a steam cracker after it has passed through the hydrotreater.
  • the Z. B. Liquid product obtained in hydrotreater is processed as synthetic crude oil (syncrude) in conventional refinery structures for the production of fuel components or as a chemical raw material, for example for ethylene production in ethylene plants.
  • gaseous constituents resulting from hydrotreating are suitable, for example, to be added to the products used for steam reforming.
  • At least a partial stream of the depolymerizate is subjected to pressure gasification.
  • all entrained-flow gasifiers (Texaco, Shell, Prenflo), fixed-bed gasifiers (Lurgi, Espag) and Ziwi gasifiers are suitable as devices for pressure gasification. gas.
  • Processes for the thermal cracking of hydrocarbons with oxygen are particularly suitable, as are carried out in processes of oil gasification by partial oxidation of the hydrocarbons as a flame reaction in a combustion chamber. The reactions are autothermal - not catalytic.
  • the crude gas consisting essentially of CO and H2 in the pressure gasification can be worked up to synthesis gas or used for the production of hydrogen.
  • At least a partial stream of the depolymerizate is fed to a bottom phase hydrogenation.
  • the bottom phase hydrogenation is particularly preferred when a high proportion of liquid hydrocarbons is to be obtained from the depolymerizate.
  • the bottom phase hydrogenation of the pumpable liquid-viscous depolymerizate is carried out, for example, in such a way that any petroleum-derived vacuum residue is added and, after compression to 300 bar, hydrogenation gas is added.
  • the reaction material passes through heat exchangers connected in series, in which the heat exchange with product streams takes place, for example, a hot separator top product.
  • the reaction mixture which has been preheated to typically 400 ° C., is further heated to the desired reaction temperature and then fed to the reactor or a reactor cascade in which the bottom phase hydrogenation takes place.
  • the components which are gaseous at reaction temperature are separated from liquid and solid components in a downstream hot separator under process pressure.
  • the latter also contain the inorganic minor components.
  • the heavier oil components are separated from the gaseous fraction in a separator, which can be fed to an atmospheric distillation after expansion.
  • a separator In a downstream separator system, the process gases are first removed from the uncondensed portion, which are worked up in a gas scrubber and returned as recycle gas. The remaining amount of the hot separator product is freed from the process water, for example after further cooling, and fed to an atmospheric column for further work-up.
  • the bottom draw of the hot separator can conveniently be expanded in two stages and subjected to vacuum distillation to remove residual oil.
  • the thickened residue which also contains the inorganic secondary constituents, can be fed to the gasification device in liquid or solid form for the purpose of generating synthesis gas.
  • the residues obtained in the bottom phase hydrogenation (hot separator residue) and the smoldering coke obtained when the depolymerizate smells, each containing the inorganic secondary constituents, can be utilized by a further thermal process step, the residues arising there containing the inorganic secondary constituents e.g. B. can be further processed for the purpose of metal recovery.
  • the light and medium oil fractions obtained from the bottom phase hydrogenation can be used in refinery structures as valuable raw materials for the production of fuels or plastic precursors such as olefins or aromatics. If these products from the bottom phase hydrogenation should not be stable in storage, they can be subjected to the hydrotreating treatment provided for condensate or condensable components in the present process.
  • a preferred embodiment of the process according to the invention consists in that the pumpable viscous depolymerizate, after separating off the gaseous and condensable depolymerization products as a liquid product, is each divided into a partial gasification which is to be pressurized and also a partial stream to be fed to a bottom phase hydrogenation.
  • the division according to the invention of the pumpable viscous depolymerizate into a pressure gasification and into a partial stream to be fed to a bottom phase hydrogenation and possibly pyrolysis in connection with the separate processing of the condensable components in one hydrotreating step leads to one significantly improved plant utilization.
  • Devices such as those developed for the pressure reduction of solid fuels or for the thermal cracking of hydrocarbons with oxygen or in plants for the sump phase hydrogenation of carbon-containing materials under high pressure are very capital-intensive plant parts, the throughput capacity of which is optimally utilized when they are relieved of feed materials, as previously separated in the present process as a condensate stream and subjected to a separate processing in a hydrotreater under comparatively mild process conditions.
  • Another preferred option of the present method is to subject at least a partial stream of the depolymerization to a smoldering process to obtain smoldering gas, smoldering tar and smoked coke.
  • the gaseous hydrogen chloride gas obtained during depolymerization or condensable in the form of an aqueous solution can be used separately in the sense of material recycling. Remaining fractions which are not components of the gaseous depolymerization products which can be converted into a liquid product yield and which u. a. chlorine-organic as well as sulfur- and nitrogen-containing compounds can be freed from the heteroatoms chlorine, sulfur, nitrogen or oxygen in the course of the bottom phase hydrogenation or the residue processing integrated into the same, which are separated off as hydrogen compounds.
  • the gaseous depolymerization products if appropriate freed from acidic components such as hydrogen halides, can preferably be fed to the hydrogen feed gas or the hydrogen cycle gas of the bottom phase hydrogenation.
  • the combination of depolymerization, hydrogenating treatment of the preferred distillate constituents, bottom phase hydrogenation, gasification (partial oxidation) and / or smoldering of the depolymerizate of the bottom phase means that the latter treatment stages, which are technologically particularly complex and complex but tolerate inorganic ingredients, can be relieved in terms of capacity.
  • the method according to the invention offers a high material recycling potential of the plastics used.
  • FIG. 1 The process according to the invention with the main plant parts of a depolymerization device, a hydrotreater, pressure gasification, a bottom phase hydrogenation of a carbonization plant and the plant parts for working up the gaseous depolymerization products is illustrated in the diagram in FIG.
  • the system configuration with a smoldering system is shown in dashed lines as an optional system component.
  • the distribution of the associated material flows is illustrated schematically by means of the line routing shown.
  • the reference symbols in FIG. 1 have the following meaning:
  • a flow chart for the system configuration according to FIG. 1 is given as follows in the sense of an exemplary embodiment for the specified feed products.
  • the appropriately comminuted, possibly washed and dried waste plastic is continuously fed to the depolymerization reactor 1, which is provided with heating, stirring, pressure-maintaining devices, associated inlet and outlet valves and measuring and control devices for checking the level.
  • 25.0% by weight of the bottom phase hydrogenation 3 and 25.0% by weight of the gasification device 4 are fed in from the depolymerizate.
  • 25.0% by weight of vacuum residue are fed to the bottom phase hydrogenation 3 as a recycle stream.
  • the reaction product of the gasification device consists in a typical procedure of 24.0% by weight of a synthesis gas and about 1.0% by weight of an ash-containing soot.
  • the product stream of the depolymerizate from reactor 1 can be partly fed to pyrolysis or smoldering plant 5 for the production of pyrolysis coke, smoldering tar and smoldering gas.
  • the pyrolysis coke is fed to the gasification device, the smoldering tar and the smoldering gas of the bottom phase hydrogenation.
  • the inorganic secondary constituents enriched in the depolymerizate are further concentrated in the subsequent workup. If the depolymerizate is fed to gasification, the inorganic secondary constituents are subsequently found in the discharged slag. In the case of the bottom phase hydrogenation, they are contained in the hydrogenation residue and in the smoldering in the smoked coke. If the hydrogenation residue and / or the smoked coke are also fed to the gasification, all the inorganic secondary constituents entered in the process according to the invention leave the product to be processed as gasification slag.
  • FIG. 2 shows a preferred embodiment of the entry part for the old or waste plastics into the depolymerization plant with an associated work-up part for the gaseous and the condensable depolymerization products.
  • the reference symbols in FIG. 2 have the following meaning:
  • the old or waste plastic enters the silo 1 and from there into the reactor 2 via the conveying device 16.
  • the reactor contents are heated by means of a circulation system consisting of a circulation pump 4 and a furnace 3.
  • a stream is withdrawn from the circulation via the suspension pump 5, which flows into the insert container 6
  • Vacuum residue supplied via line 14 is mixed and then fed to further processing via high pressure pump 7.
  • the gases and condensable components formed in reactor 2 are passed through condenser 8 and separated. After passing through hydrochloric acid washer 9, the cleaned gases 10 are passed on for further use.
  • the acid components previously contained are removed after washing as aqueous hydrochloric acid 12.
  • the condensate separated in condenser 8 is fed from there for further use.
  • the plastic mixture was depolymerized in the reactor at temperatures between 360 ° C and 420 ° C. Four fractions were formed, the distribution of which is shown in the table below as a function of the reactor temperature:
  • the depolymerized material stream (III) was drawn off continuously and fed to a bottom phase hydrogenation plant together with petroleum-derived vacuum residue for further cleavage.
  • the viscosity of the depolymerizate was 200 mPas at 175 ° C.
  • the hydrocarbon condensates (stream II) were condensed in a separate plant and fed to a suitable further processing in a hydrotreater.
  • the gaseous hydrogen chloride (stream IV) was taken up with water and released as 30% aqueous hydrochloric acid.
  • the hydrocarbon gases (stream I) were fed to the bottom phase hydrogenation plant for conditioning.
  • Condensate from a depolymerization plant which was obtained from a plastic mixture (DSD house collection) at a temperature between 400 and 420 ° C, was freed of HCI by washing with ammoniacal solution. It then had a Cl content of 400 ppm.
  • This pretreated condensate was subjected to a catalytic dechlorination process in a continuously operating apparatus.
  • the condensate was first compressed to 50 bar and then subjected to hydrogen, so that a gas / condensate ratio of 1000 l / kg was maintained.
  • the mixture was heated and reacted on a NiMo catalyst in a fixed bed reactor. After leaving the reactor, the reaction mixture was quenched with ammoniacal water so that the HCl formed completely passed into the aqueous phase. Before the reaction mixture was let down, a gas / liquid phase separation was carried out, so that the gas and liquid phases could be released separately. After relaxation, the liquid phase was broken down into an aqueous and an organic phase.
  • the organic phase which represented more than 90% by weight of the condensate used, showed the following Cl contents [ppm] depending on the chosen reaction conditions:
  • these condensate qualities correspond to the input specifications of a mineral oil refinery and can be fed there to top distillation or specific processing plants (eg a steam cracker).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PCT No. PCT/EP94/00954 Sec. 371 Date Dec. 27, 1995 Sec. 102(e) Date Dec. 27, 1995 PCT Filed Mar. 25, 1994 PCT Pub. No. WO94/22979 PCT Pub. Date Oct. 13, 1994A process is disclosed for processing used or waste plastic materials in order to recover chemical raw materials and liquid fuel components by depolymerisation of the used materials, which are transformed into a pumpable and into a volatile phase. The volatile phase is separated into a gaseous phase and a condensate or condensable depolymerisation product, which are refined by standard usual procedures. The pumpable phase remaining once the volatile phase is separated is subjected to liquid phase hydrogenation, gasification, low temperature carbonisation or to a combination of said processes.

Description

Verfahren zur Verarbeitung von Alt- oder AbfallkunststoffenProcess for processing old or waste plastics
Die Erfindung betrifft ein Verfahren zur Verarbeitung von Alt- oder Abfallkunststoffen zwecks Gewinnung von Chemierohstoffen und flüssigen Kraftstoffkomponenten.The invention relates to a method for processing old or waste plastics for the purpose of obtaining chemical raw materials and liquid fuel components.
Die Erfindung geht aus von einem Verfahren zur Hydrobehandlung von kohlenstoff- haltigem Material, bei dem einem hochsiedenden öl Polymere, insbesondere Poly¬ merabfälle in zerkleinerter oder gelöster Form zugesetzt werden und dieses Ge¬ misch in Gegenwart von Wasserstoff zur Gewinnung von Kraftstoffkomponenten und Chemierohstoffen hydrierend behandelt wird (vgl. DD 254 207 A1).The invention is based on a process for the hydrotreatment of carbon-containing material, in which polymers, in particular polymer wastes in comminuted or dissolved form, are added to a high-boiling oil and this mixture is hydrogenated in the presence of hydrogen in order to obtain fuel components and chemical raw materials (see DD 254 207 A1).
Ein Verfahren zur Umwandlung von Altreifen, Gummi und/oder anderen Kunststof¬ fen in flüssige, gasförmige und feste Produkte durch depolymerisierende Behand¬ lung in einem Lösungsmittel unter erhöhtem Druck und erhöhter Temperatur ist in DE-A-25 30 229 beschrieben worden. Insbesondere sollten bei diesem Verfahren keine schädlichen Stoffe wie SO2, Ruß oder dergleichen in die Atmosphäre gelan- gen. Beispielsweise Altreifen wurden nach Zerkleinerung und Vermischen mit einem Recycle-Öl aus dem Hydrierprodukt unter Wasserstoffanlagerung bei einem Was¬ serstoffdruck von 150 bar und einer Temperatur von 450 °C in Anwesenheit von die Spalt- und Hydrierreaktionen katalysierenden Stoffen einem Hydrierreaktor zuge¬ führt.A process for converting used tires, rubber and / or other plastics into liquid, gaseous and solid products by depolymerizing treatment in a solvent under elevated pressure and elevated temperature has been described in DE-A-25 30 229. In particular, no harmful substances such as SO2, soot or the like should enter the atmosphere in this process. For example, after crushing and mixing with a recycle oil from the hydrogenation product, hydrogenation was carried out at a hydrogen pressure of 150 bar and a temperature of 450 ° C in the presence of substances catalyzing the cleavage and hydrogenation reactions is fed to a hydrogenation reactor.
In DE-A-2 205 001 ist ein Verfahren zur thermischen Aufbereitung von Abfällen und Kautschuk beschrieben, bei dem die Abfälle bei Temperaturen von 250 bis 450 °C in Gegenwart einer bei der Reaktionstemperatur flüssigen Hilfsphase gespalten werden.DE-A-2 205 001 describes a process for the thermal treatment of waste and rubber, in which the waste is split at temperatures from 250 to 450 ° C. in the presence of an auxiliary phase which is liquid at the reaction temperature.
Ferner wird verwiesen auf einen Aufsatz von Ronald H. Wölk, Michael C. Chervenak und Carmine A. Battista in Rubber Age, Juni 1974, Seiten 27 bis 38, be¬ treffend die Hydrierung von Abfallreifen zwecks Gewinnung im Gasölbereich siedender flüssiger Produkte auf Kohlenwasserstoffbasis sowie von als Füllmittel wiederverwendbarem Kohlenstoffruß.Reference is also made to an article by Ronald H. Wölk, Michael C. Chervenak and Carmine A. Battista in Rubber Age, June 1974, pages 27 to 38, relating to the hydrogenation of waste tires for the purpose of obtaining hydrocarbon-based liquid products boiling in the gas oil range and of carbon black that can be reused as a filler.
Weiterhin ist ein Verfahren bekannt, bei dem Polymerabfälle, insbesondere Alt¬ gummi, in den Rückstandsprodukten der Erdölverarbeitung aufgelöst werden. Das entstandene Gemisch wird danach einer Verkokung zu Koks unterworfen. DabeiA method is also known in which polymer waste, in particular waste rubber, is dissolved in the residue products of petroleum processing. The resulting mixture is then coked to coke. there
ORIGINAL UNTERLAGEN fallen gasförmige und flüssige Produkte an. Letztere seien bei entsprechender Auf¬ arbeitung als Kraftstoffkomponenten geeignet, vgl. DD 0 144 171.ORIGINAL DOCUMENTS there are gaseous and liquid products. The latter are suitable as fuel components if appropriately refurbished, cf. DD 0 144 171.
Die Polymerkonzentration im Einsatzprodukt der Hydrierung liegt beispielsweise nach dem Verfahren gemäß DD 254207 zwischen 0,01 bis 20 Gew.-%. Die gemein¬ same hydrierende Behandlung von Schwerölen mit gelösten und/oder suspen¬ dierten Polymeren sei auf Hydrierverfahren beschränkt, bei denen die Hydrierung in Rohrreaktoren mit oder ohne suspendiertem Katalysator durchgeführt wird. Würden Reaktoren mit fest angeordneten Katalysatoren betrieben, so sei der Einsatz von Polymeren nur bedingt möglich, insbesondere dann, wenn Polymere zugesetzt wür¬ den, die schon in der Aufheizphase bis ca. 420 °C vor dem Reaktoreintritt depoly- merisieren.The polymer concentration in the hydrogenation feed is, for example, between 0.01 and 20% by weight according to the process according to DD 254207. The common hydrogenating treatment of heavy oils with dissolved and / or suspended polymers is limited to hydrogenation processes in which the hydrogenation is carried out in tubular reactors with or without a suspended catalyst. If reactors were operated with fixedly arranged catalysts, the use of polymers was only possible to a limited extent, in particular if polymers were added which depolymerize already in the heating phase up to approximately 420 ° C. before the reactor enters.
Hier setzt die Aufgabe an, sich bei Verfahren zur Verarbeitung von Altkunststoffen nicht nur auf Zusätze von bis zu 20 Gew.-% von Altkunststoffen zu raffinerie¬ üblichen Verfahren der Schwerölkonversion zu beschränken.This is where the task begins with processes for processing used plastics not just to add up to 20% by weight of used plastics to conventional refining processes for heavy oil conversion.
Es stellt sich ferner das Problem, daß bei der chemischen Umwandlung kunststoff- haltiger Abfallprodukte auch chlorhaltige Kunststoffe mitverarbeitet werden müssen. Die bei der Depolymerisation gemäß den Verfahren nach dem Stand der Technik als gasförmige Spaltprodukte auftretenden korrosiven Halogenwasserstoffe er¬ fordern besondere Vorkehrungen.There is also the problem that chlorine-containing plastics also have to be processed in the chemical conversion of waste products containing plastics. The corrosive hydrogen halides which occur as gaseous fission products in the depolymerization according to the prior art methods require special precautions.
Ein weiteres Problem stellt sich dadurch, daß die eingesetzten Alt- oder Abfall- kunststoffe zum Teil in nicht unerheblichem Maße anorganische Nebenbestandteile, wie Pigmente, Metalle und Füllstoffe enthalten, die bei einigen Depolymerisations- verfahren bzw. bei der Aufarbeitung von Depolymerisationsprodukten zu Schwierigkeiten führen können.Another problem arises from the fact that some of the used or waste plastics used contain inorganic secondary constituents, such as pigments, metals and fillers, which can lead to difficulties in some depolymerization processes or in the processing of depolymerization products .
Es ist daher auch Aufgabe der vorliegenden Erfindung ein Verfahren zur Verfügung zu stellen, das diese Inhaltstoffe toleriert. Sie werden in einer Phase aufkonzen¬ triert, von der sie dann diese Inhaltstoffe ebenfalls tolerierenden Aufarbeitungsver¬ fahren zugeführt werden können, während andere Phasen, die frei von diesen an¬ organischen Nebenbestandteilen sind, weniger aufwendig aufgearbeitet werden müssen. Eine weitere Aufgabe besteht darin, komplexe und kapitalintensive Verfahrens- schritte wie Schwelung, Vergasung oder Sumpfphasenhydrierung hinsichtlich der geforderten Durchsatzmengen zu entlasten bzw. besser auszunutzen.It is therefore also an object of the present invention to provide a method which tolerates these ingredients. They are concentrated in a phase from which they can then be fed to processing processes which also tolerate these ingredients, while other phases which are free of these inorganic secondary constituents have to be worked up less expensively. Another task is to relieve or better utilize complex and capital-intensive process steps such as smoldering, gasification or bottom phase hydrogenation with regard to the required throughput quantities.
Die Erfindung besteht in einem Verfahren zur Verarbeitung von Alt- oder Abfall¬ kunststoffen zwecks Gewinnung von Chemierohstoffen und flüssigen Kraftstoff¬ komponenten durch Depolymerisieren der Einsatzstoffe zu einer pumpbaren sowie einer flüchtigen Phase, Auftrennen der flüchtigen Phase in eine Gasphase und ein Kondensat bzw. kondensierbare Depolymerisationsprodukte, die raffinerieüblichen Standardprozeduren unterworfen werden, wobei die nach Abtrennen der flüchtigen Phase verbleibende pumpbare Phase einer Sumpfphasenhydrierung, Vergasung, Schwelung oder einer Kombination dieser Verfahrensschritte unterworfen wird.The invention consists in a method for processing old or waste plastics for the purpose of obtaining chemical raw materials and liquid fuel components by depolymerizing the starting materials into a pumpable and a volatile phase, separating the volatile phase into a gas phase and a condensate or condensable depolymerization products which are subjected to standard refinery procedures, the pumpable phase remaining after separation of the volatile phase being subjected to a bottom phase hydrogenation, gasification, smoldering or a combination of these process steps.
Bei diesem Verfahren werden die entstehenden gasförmigen Depolymerisations- produkte (Gas), die entstehenden kondensierbaren Depolymerisationsprodukte (Kondensat) und die pumpbare, viskose Depolymerisationsprodukte enthaltende, Sumpfphase (Depolymerisat) in separaten Teilströmen abgezogen und Kondensat sowie Depolymerisat voneinander getrennt aufgearbeitet. Dabei werden vorzugs¬ weise die Verfahrensparameter so gewählt, daß ein möglichst hoher Anteil an dem so genannten Kondensat entsteht.In this process, the resulting gaseous depolymerization products (gas), the resulting condensable depolymerization products (condensate) and the pumpable, viscous depolymerization products containing, bottom phase (depolymerized product) are drawn off in separate substreams and condensate and depolymerized product are worked up separately from one another. The process parameters are preferably selected so that the highest possible proportion of the so-called condensate is produced.
Zusätzliche vorteilhafte Ausgestaltungen der Erfindung sind in den Unteran¬ sprüchen beschrieben.Additional advantageous embodiments of the invention are described in the subclaims.
Die in dem vorliegenden Verfahren einzusetzenden Kunststoffe sind z. B. Misch¬ fraktionen aus Abfallsammlungen, u. a. durch die Duale System Deutschland GmbH (DSD). In diesen Mischfraktionen sind z. B. Polyethylen, Polypropylen, Po¬ lyvinylchlorid, Polystyrol, Polymer-Blends wie ABS sowie Polykondensate enthalten. Einsetzbar sind auch Kunststoffproduktionsabfälle, gewerbliche Verpackungsabfälle aus Kunststoff, Rest-, Misch- und Reinfraktionen aus der kunststoffverarbeitenden Industrie, wobei für die Eignung, in dem vorliegenden Verfahren einsetzbar zu sein, die chemische Zusammensetzung dieser Kunststoffabfälle nicht kritisch ist. Geeignete Einsatzprodukte sind auch Elastomere, technische Gummiartikel oder Altreifen in geeignet vorzerkleinerter Form. Die eingesetzten Alt- oder Abfallkunststoffe stammen beispielsweise aus Form¬ teilen, Laminaten, Verbundwerkstoffen, Folien oder synthetischen Fasern. Beispiele für halogenhaltige Kunststoffe sind chloriertes Polyethylen (PEC), Polyvinylchlorid (PVC), Polyvinylidenchlorid (PVDC), Chloropren-Kautschuk, um nur einige wichtige Vertreter zu nennen. Aber auch insbesondere schwefelhaltige Kunststoffe, bei¬ spielsweise Polysulfone oder mit Schwefelbrücken vernetzte Kautschuke wie in Alt¬ reifen fallen in großen Mengen an und sind bei Vorhandensein der entsprechenden Ausrüstungen für die Vorzerkleinerung und Vorsortierung in Kunststoff- und Metall¬ bestandteile einer Depolymerisation und weiteren Aufarbeitung zur Gewinnung von Chemierohstoffen oder auch Kraftstoffkomponenten zugänglich. Der bei diesen Vor¬ behandlungsstufen oder chemischen Umwandlungsverfahren unter Wasserstoffan¬ lagerung im Verfahren anfallende sulfidische Schwefel geht ebenso wie der Chlor¬ wasserstoff überwiegend in das Abgas über, das abgetrennt und einer weiteren Verwertung zugeführt wird.The plastics to be used in the present process are e.g. B. Mixed fractions from waste collections, including by Duale System Deutschland GmbH (DSD). In these mixed fractions z. B. polyethylene, polypropylene, polyvinyl chloride, polystyrene, polymer blends such as ABS and polycondensates. Plastic production waste, commercial packaging waste made of plastic, residual, mixed and pure fractions from the plastic processing industry can also be used, the chemical composition of this plastic waste not being critical for the suitability for use in the present process. Suitable insert products are also elastomers, technical rubber articles or used tires in a suitable pre-shredded form. The used plastics or waste plastics come, for example, from molded parts, laminates, composite materials, foils or synthetic fibers. Examples of halogen-containing plastics are chlorinated polyethylene (PEC), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), chloroprene rubber, to name just a few important representatives. But also in particular sulfur-containing plastics, for example polysulfones or rubbers crosslinked with sulfur bridges, such as in old tires, are produced in large quantities and, in the presence of the appropriate equipment for pre-comminution and pre-sorting in plastic and metal components, are used for depolymerization and further processing Extraction of chemical raw materials or fuel components accessible. The sulfidic sulfur obtained in these pretreatment stages or chemical conversion processes with hydrogen accumulation in the process, like the hydrogen chloride, predominantly passes into the exhaust gas, which is separated off and sent for further use.
Unter den in dem vorliegenden Verfahren einzusetzenden Alt- oder Abfallkunststof¬ fen sind synthetische Kunststoffe, Elastomere, daneben aber auch abgewandelte Naturstoffe einsetzbar. Hierunter fallen neben den bereits erwähnten Polymerisaten, insbesondere Thermoplasten, auch Duroplaste und Polyaddukte sowie Produkte auf Basis von Cellulose wie Zellstoff und Papier. Die hieraus gefertigten Erzeugnisse umfassen Halbzeuge, Einzelteile, Bauelemente, Verpackungen, Lager- und Trans¬ portbehälter sowie Konsumwaren. Unter die Halbzeuge fallen auch Tafeln und Plat¬ ten (Leiterplatten) sowie Schichtpreßstoffplatten, die teilweise noch Metallbeschich- tungen enthalten können und die wie die übrigen einzusetzenden Produkte nach Vorzerkleinerung auf Teilchen- bzw. Stückgrößen von 0,5 bis 50 mm ggf. von Metall-, Glas- oder Keramikbestandteilen mittels geeigneter Klassierverfahren ab¬ getrennt werden können.Among the old or waste plastics to be used in the present process, synthetic plastics, elastomers, but also modified natural substances can also be used. In addition to the polymers already mentioned, in particular thermoplastics, this also includes thermosets and polyadducts and products based on cellulose such as cellulose and paper. The products made from this include semi-finished products, individual parts, components, packaging, storage and transport containers and consumer goods. The semifinished products also include boards and boards (printed circuit boards) and laminated boards, some of which may still contain metal coatings and which, like the other products to be used, after comminution to particle or piece sizes of 0.5 to 50 mm, possibly of metal -, Glass or ceramic components can be separated using a suitable classification process.
Die genannten Alt- und Abfallkunststoffe enthalten in der Regel auch anorganische Nebenbestandteile wie Pigmente, Glasfasern, Füllstoffe wie Titan- oder Zinkoxyd, Flammschutzmittel, pigmententhaltende Druckfarben, Ruß und auch Metalle wie z. B. metallisches Aluminium. Die genannten Alt- und Abfallkunststoffe, die z. B. durch die Sammlungen des DSD in Gemischen oder Gemengen unterschiedlicher Zu¬ sammensetzung anfallen, können bis zu 10, ggf. bis zu 20 Gew.-% anorganische Nebenbestandteile enthalten. Üblicherweise werden diese Kunststoffgemische in zerkleinerter oder auch vorkonditionierter Form z. B. als Granulat oder Chips oder dgl. in das vorliegende Verfahren eingesetzt:The waste and waste plastics mentioned generally also contain inorganic secondary components such as pigments, glass fibers, fillers such as titanium or zinc oxide, flame retardants, pigment-containing printing inks, carbon black and also metals such as e.g. B. metallic aluminum. The old and waste plastics mentioned, the z. B. from the collections of the DSD in mixtures or batches of different compositions may contain up to 10, possibly up to 20% by weight of inorganic secondary components. These plastic mixtures are usually used in shredded or preconditioned form z. B. used as granules or chips or the like in the present process:
Die Verfahresprodukte der Depolymerisation werden im wesentlichen in drei Hauptproduktströme aufgeteilt:The process products of depolymerization are essentially divided into three main product streams:
1.) Ein Depolymerisat in einer Menge zwischen 15 und 85 Gew.-%, bezogen auf die eingesetzte Kunststoffmischung, das je nach Zusammensetzung und den jeweiligen Erfordernissen in die der Sumpfphasenhydrierung, der Druckvergasung und/oder ggf. der Schwelung (Pyrolyse) zuzuführenden1.) A depolymerizate in an amount between 15 and 85% by weight, based on the plastic mixture used, which, depending on the composition and the particular requirements, is to be fed into the bottom phase hydrogenation, the pressure gasification and / or possibly the smoldering (pyrolysis)
Produktteilströme aufgeteilt werden kann.Product streams can be divided.
Es handelt sich dabei überwiegend um > 480 °C siedende schwere Kohlen¬ wasserstoffe, die alle mit den Alt- und Abfallkunststoffen in den Prozeß eingetragenen Inertstoffe, wie Aluminium-Folien, Pigmente, Füllstoffe,These are predominantly heavy hydrocarbons boiling at> 480 ° C., all of which contain inert materials, such as aluminum foils, pigments, fillers, which are introduced into the process with the waste and waste plastics.
Glasfasern, enthalten.Glass fibers included.
2.) Ein Kondensat in einer Menge von 10 bis 80, vorzugsweise 20 bis 50 Gew.-% , bezogen auf die eingesetzte Kunststoffmischung, das in einem Bereich zwischen 25 °C und 520 °C siedet und bis zu ca. 1.000 ppm organisch gebundenes Chlor enthalten kann.2.) A condensate in an amount of 10 to 80, preferably 20 to 50 wt .-%, based on the plastic mixture used, which boils in a range between 25 ° C and 520 ° C and up to about 1,000 ppm organically bound May contain chlorine.
Das Kondensat läßt sich z. B. durch Hydrotreating an fest angeordneten handelsüblichen Co-Mo- oder Ni-Mo-Katalysatoren in ein hochwertiges synthetisches Rohöl (Syncrude) umwandeln oder auch direkt in Chlor tole¬ rierende chemisch-technische oder raffinerieübliche Verfahren als kohlen- wasserstoffhaltige Basissubstanz einbringen.The condensate can be z. B. by hydrotreating on firmly arranged commercial Co-Mo or Ni-Mo catalysts in a high-quality synthetic crude oil (Syncrude) or also directly in chlorine-tolerating chemical-technical or refining processes as a hydrocarbon-containing base substance.
3.) Ein Gas in Mengen von etwa 5 bis zu 20 Gew.-% bezogen auf die eingesetzte Kunststoff-Mischung, das neben Methan, Ethan, Propan und3.) A gas in amounts of about 5 to 20 wt .-% based on the plastic mixture used, which in addition to methane, ethane, propane and
Butan auch gasförmige Halogenwasserstoffe, wie hauptsächlich Chlor¬ wasserstoff sowie leichtflüchtige, chlorhaltige Kohlenwasserstoff-Ver¬ bindungen enthalten kann.Butane can also contain gaseous hydrogen halides, such as mainly hydrogen chloride and volatile, chlorine-containing hydrocarbon compounds.
Der Chlorwasserstoff läßt sich z. B. mit Wasser aus dem Gasstrom zur Ge¬ winnung einer 30 %igen wäßrigen Salzsäure herauswaschen. Das Restgas kann hydrierend in einer Sumpfphasenhydrierung oder in einem Hydrotreater vom organisch gebundenen Chlor befreit und z. B. der Raffineriegas-Verar¬ beitung zugeführt werden.The hydrogen chloride can, for. B. wash out with water from the gas stream to obtain a 30% aqueous hydrochloric acid. The residual gas can be hydrogenated in a bottom phase hydrogenation or in a hydrotreater from organically bound chlorine and z. B. the refinery gas processing.
Die einzelnen Produktströme, insbesondere das Kondensat, können im Zuge ihrer weiteren Aufarbeitung anschließend im Sinne einer rohstofflichen Wiederverwer¬ tung, z. B. als Rohstoffe für die Olefinherstellung in Ethylenanlagen eingesetzt werden.The individual product streams, in particular the condensate, can subsequently be further processed in the sense of raw material recycling, e.g. B. used as raw materials for olefin production in ethylene plants.
Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß anorganische Nebenbestandteile der Alt- bzw. Abfallkunststoffe in der Sumpfphase aufkonzen¬ triert werden, während das diese Inhaltsstoffe nicht enthaltende Kondensat durch weniger aufwendige Verfahren weiter verarbeitet werden kann. Insbesondere über die optimale Einstellung der Prozeßparameter Temperatur und Verweilzeit kann erreicht werden, daß einerseits ein relativ hoher Anteil von Kondensat entsteht und andererseits das viskose Depolymerisat der Sumpfphase unter den Ver¬ fahrensbedingungen pumpbar bleibt. Als brauchbare Näherung kann dabei gelten, daß eine Erhöhung der Temperatur um 10 °C bei einer mittleren Verweilzeit die Ausbeute an den in die flüchtige Phase übergehenden Produkten um mehr als 50 % erhöht. Die Verweilzeitabhängigkeit für zwei typische Temperaturen zeigt Fig. 3.An advantage of the process according to the invention is that inorganic secondary constituents of the old or waste plastics are concentrated in the sump phase, while the condensate not containing these constituents can be processed further by less complex processes. In particular, by optimally setting the process parameters temperature and residence time, it can be achieved that, on the one hand, a relatively high proportion of condensate is formed and, on the other hand, the viscous depolymerizate of the bottom phase remains pumpable under the process conditions. A useful approximation is that an increase in temperature by 10 ° C. with an average residence time increases the yield of the products passing into the volatile phase by more than 50%. The residence time dependency for two typical temperatures is shown in FIG. 3.
Durch die weiteren bevorzugten Verfahrensmaßnahmen des Zusatzes von Kataly¬ satoren, des Strippens mit Wasserdampf, Leichtsiedern oder Kohlenwasserstoff¬ gasen, turbulenten Rührens oder Umpumpens kann die Kondensatausbeute zu- sätzlich optimiert werden.The condensate yield can be additionally optimized by the further preferred procedural measures of adding catalysts, stripping with steam, low boilers or hydrocarbon gases, turbulent stirring or pumping over.
Typisch für das vorliegende Verfahren ist eine Kondensatausbeute von etwa 50 Gew.-% und mehr bezogen auf die Gesamtmenge der bei der Depolymerisation eingesetzten Kunststoffe. Dadurch wird vorteilhafterweise eine erhebliche Entla- stung der kostenintensiven Verfahrensstufen Druckvergasung, Sumpfphasenhy¬ drierung sowie Schwelung (Pyrolyse) erreicht.Typical of the present process is a condensate yield of about 50% by weight and more based on the total amount of the plastics used in the depolymerization. This advantageously considerably relieves the pressure-intensive process stages of pressure gasification, bottom phase hydrogenation and smoldering (pyrolysis).
Der für das erfindungsgemäße Verfahren bevorzugte Temperaturbereich für die Depolymerisation beträgt 150 bis 470 °C. Besonders geeignet ist ein Bereich von 250 bis 450 °C. Die Verweilzeit kann 0,1 bis 20 h betragen. Als im allgemeinen aus¬ reichend hat sich ein Bereich von 1 bis 10 h erwiesen. Der Druck ist bei dem er- findungsgemäßen Verfahren eine weniger kritische Größe. So kann es durchaus bevorzugt sein, das Verfahren bei Unterdruck durchzuführen, z. B. wenn flüchtige Bestandteile aus verfahrensbedingten Gründen abgezogen werden müssen. Aber auch relativ hohe Drücke sind praktikabel, erfordern jedoch einen höheren apparativen Aufwand. Im allgemeinen dürfte der Druck im Bereich von 0,01 bis 300 bar, insbesondere 0,1 bis 100 bar liegen. Das Verfahren läßt sich vorzugsweise gut bei Normaldruck oder leicht darüber z. B. bis etwa 2 bar ausführen, was den apparativen Aufwand deutlich reduziert. Um das Depolymerisat möglichst voll¬ ständig zu entgasen und um den Kondensatanteil noch zu erhöhen, wird das Ver- fahren vorteilhafterweise bei leichtem Unterdruck bis herunter zu etwa 0,2 bar durchgeführt.The preferred temperature range for the depolymerization for the process according to the invention is 150 to 470 ° C. A range from 250 to 450 ° C. is particularly suitable. The residence time can be 0.1 to 20 hours. A range from 1 to 10 h has proven to be generally sufficient. The pressure is inventive method a less critical size. So it may be preferable to carry out the process under negative pressure, e.g. B. if volatile components have to be deducted for procedural reasons. Relatively high pressures are also practicable, however, they require more equipment. In general, the pressure should be in the range from 0.01 to 300 bar, in particular 0.1 to 100 bar. The method can preferably be good at normal pressure or slightly above z. B. run up to about 2 bar, which significantly reduces the outlay on equipment. In order to degas the depolymerizate as completely as possible and to further increase the proportion of condensate, the process is advantageously carried out with a slight negative pressure down to about 0.2 bar.
Das Depolymerisieren kann vorzugsweise unter Zusatz eines Katalysators, bei¬ spielsweise einer Lewis-Säure wie Aluminiumchlorid, einer radikalbildenden Sub- stanz wie eines Peroxids oder einer Metallverbindung, beispielsweise eines mit einer Schwermetallsalzlösung imprägnierten Zeoliths, erfolgen.The depolymerization can preferably be carried out with the addition of a catalyst, for example a Lewis acid such as aluminum chloride, a radical-forming substance such as a peroxide or a metal compound, for example a zeolite impregnated with a heavy metal salt solution.
Das Depolymerisieren kann unter turbulenten Strömungsbedingungen, z. B. mittels mechanischer Rührer, aber auch durch Umpumpen des Reaktorinhalts durchgeführt werden.The depolymerization can take place under turbulent flow conditions, e.g. B. by mechanical stirrer, but also by pumping around the reactor contents.
Weitere bevorzugte Ausgestaltungen des Verfahrens bestehen in der Depolymeri¬ sation unter Inertgas, d. h. Gas, das sich gegenüber den Einsatzstoffen und De- polymerisationsprodukten im wesentlichen inert verhält, z. B. N2, CO2, CO oder Kohlenwasserstoffe. Das Verfahren kann auch unter Einleitung von Strippgasen und Strippdämpfen, wie Stickstoff, Wasserdampf oder Kohlenwasserstoffgasen durchgeführt werden.Further preferred refinements of the method consist in depolymerization under inert gas, ie. H. Gas that is essentially inert to the feedstocks and depolymerization products, e.g. B. N2, CO2, CO or hydrocarbons. The process can also be carried out with the introduction of stripping gases and stripping vapors, such as nitrogen, water vapor or hydrocarbon gases.
Grundsätzlich kann es als ein Vorteil des Verfahrens angesehen werden, daß in diesem Verfahrensschritt kein Wasserstoff zugesetzt werden muß.In principle, it can be regarded as an advantage of the process that no hydrogen has to be added in this process step.
Als flüssige Hilfsphase bzw. Lösungsmittel oder Lösungsmittelgemisch eignen sich beispielsweise gebrauchte organische Lösungsmittel, also Lösungsmittelabfälle, Produktionsfehlchargen organischer Flüssigkeiten, Altöle oder Fraktionen aus der Erdölraffination, beispielsweise Vakuumrückstand. Auf die Zugabe von Lösungsmitteln oder Fremdölen oder rezirkulierten Eigenölen kann aber auch verzichtet werden.Suitable liquid auxiliary phases or solvents or solvent mixtures are, for example, used organic solvents, that is to say waste solvents, incorrect production batches of organic liquids, waste oils or fractions from petroleum refining, for example vacuum residues. The addition of solvents or foreign oils or recirculated own oils can also be dispensed with.
Die Depolymerisation kann in einem üblichen Reaktor, z. B. einem Rührkessel- reaktor mit externem Umlauf, durchgeführt werden, der auf die entsprechenden Prozeßparameter, wie Druck und Temperatur, ausgelegt ist und dessen Behälter¬ material gegen die eventuell entstehenden sauren Bestandteile wie Chlorwasser¬ stoff resistent ist. Insbesondere wenn das Depolymerisieren unter Zusatz eines Katalysators erfolgt, können als hierfür geeignete "unit operations" Verfahren in Betracht kommen, wie sie zum sogenannten Visbreaking schwerer Rohöle oder von Rückstandsölen der Mineralölverarbeitung in Gebrauch sind. Ggf. müssen sie ent¬ sprechend den Anforderungen des erfindungsgemäßen Verfahren angepaßt werden. Mit Vorteil wird diese Verfahrensstufe für eine kontinuierliche Betriebsweise ausgelegt, d. h. der Kunststoff wird kontinuierlich in die Flüssigphase des De- polymerisationsreaktors eingebracht und es wird kontinuierlich Depolymerisat sowie Kopfprodukt entnommen.The depolymerization can be carried out in a conventional reactor, e.g. B. a stirred tank reactor with external circulation, which is designed for the corresponding process parameters, such as pressure and temperature, and whose container material is resistant to the acidic components that may arise, such as hydrogen chloride. In particular, if the depolymerization is carried out with the addition of a catalyst, suitable "unit operations" methods can be considered, such as those used for the so-called visbreaking of heavy crude oils or of residual oils from mineral oil processing. Possibly. they must be adapted accordingly to the requirements of the method according to the invention. This process stage is advantageously designed for continuous operation, i. H. the plastic is continuously introduced into the liquid phase of the depolymerization reactor and the depolymerizate and top product are continuously removed.
Im Vergleich zu den nachfolgenden Aufarbeitungsschritten Schwelung, Sumpf¬ phasenhydrierung oder Vergasung, ist der apparative Aufwand für das Depolymeh- sieren vergleichsweise gering. Dies gilt insbesondere, wenn das Verfahren in Nähe des Normaldrucks, also im Bereich von 0,2 bis 2 bar, ausgeführt wird. Auch im Vergleich zu hydrierenden Vorbehandlungen ist der apparative Aufwand deutlich geringer. Bei optimaler Prozeßführung der Depolymerisation können die nach¬ folgenden Verfahrensschritte um bis zu 50 % und mehr entlastet werden. Gleich- zeitig entsteht bei der Depolymerisation gewollt ein hoher Anteil kondensierbarer Kohlenwasserstoffe, der durch bekannte und vergleichsweise wenig aufwendige Verfahren zu wertvollen Produkten aufgearbeitet werden kann.Compared to the subsequent work-up steps of smoldering, swamp phase hydrogenation or gasification, the outlay on equipment for depolymerizing is comparatively low. This applies in particular if the process is carried out in the vicinity of normal pressure, ie in the range from 0.2 to 2 bar. In comparison to hydrogenating pretreatments, the expenditure on equipment is also significantly lower. If the depolymerization process is carried out optimally, the subsequent process steps can be relieved by up to 50% and more. At the same time, a large proportion of condensable hydrocarbons is deliberately generated during depolymerization, which can be worked up to valuable products by known and comparatively inexpensive processes.
Das Depolymerisat ist nach Abtrennung von Gas und Kondensat einfach zu hand- haben, da es pumpbar bleibt und in dieser Form ein gutes Einsatzmaterial für die nachfolgenden Verfahrensstufen darstellt.After the gas and condensate have been separated off, the depolymerizate is easy to handle, since it remains pumpable and in this form represents a good starting material for the subsequent process stages.
Erfindungsgemäß werden Depolymerisat und Kondensat getrennt voneinander auf- gearbeit. Die kondensierbaren Depolymerisationsprodukte werden vorzugsweise einer hydrierenden Raffination an fest angeordnetem körnigen Katalysator unterworfen. So kann das Kondensat beispielsweise einem üblichen Hydrotreating unter Ver¬ wendung handelsüblicher Nickel/Molybdän- oder Cobalt/Molybdän-Kontakte bei Wasserstoffpartialdrucken von 10 bis 250 bar und Temperaturen von 200 bis 430°C unterworfen werden. Hierbei wird zweckmäßig in Abhängigkeit von der Zu¬ sammensetzung des angefallenen Kondensats ein Guard-Bett zum Abfangen mitgerissener Aschebestandteile oder koksbildender Bestandteile vorgeschaltet. Der Kontakt ist wie üblich auf festen Böden angeordnet und die Fließrichtung des Kondensats kann vom Boden in Richtung Kopf der Hydrotreating-Kolonne oder auch in umgekehrter Richtung vorgesehen werden. Zur Eliminierung von sauren Bestandteilen wie Halogenwasserstoff, Schwefelwasserstoff u. dgl. ist die Ein¬ speisung von Wasser, Alkaliverbindungen und evtl. Korrosionsinhibitoren in den Kondensationsteil entsprechender Abscheider zweckmäßig.According to the invention, the depolymerizate and the condensate are worked up separately from one another. The condensable depolymerization products are preferably subjected to a hydrogenating refining on fixed granular catalyst. For example, the condensate can be subjected to conventional hydrotreating using commercially available nickel / molybdenum or cobalt / molybdenum contacts at hydrogen partial pressures of 10 to 250 bar and temperatures of 200 to 430 ° C. A guard bed for trapping entrained ash components or coke-forming components is expediently connected upstream, depending on the composition of the condensate obtained. The contact is arranged on solid trays as usual and the direction of flow of the condensate can be provided from the tray towards the top of the hydrotreating column or in the opposite direction. To eliminate acidic components such as hydrogen halide, hydrogen sulfide and. The like. The feeding of water, alkali compounds and possibly corrosion inhibitors into the condensation part of appropriate separators is expedient.
Die kondensierbaren Depolymerisationsprodukte bzw. das Kondensat können an¬ statt einem üblichen Hydrotreating auch einer hydrierenden Raffination an einem bewegten Katalysator oder in einem wallenden Katalysatorbett unterworfen werden.Instead of conventional hydrotreating, the condensable depolymerization products or the condensate can also be subjected to hydrogenating refining on a moving catalyst or in a flowing catalyst bed.
Das bei der Depolymerisation anfallende Kondensat stellt nach Durchlaufen durch den Hydrotreater beispielsweise einen vorzüglichen Einsatzstoff für einen Steam- cracker dar.The condensate obtained during the depolymerization is, for example, an excellent feedstock for a steam cracker after it has passed through the hydrotreater.
Das z. B. im Hydrotreater gewonnene Flüssigprodukt wird als synthetisches Rohöl (Syncrude) in üblichen Raffineriestrukturen zur Gewinnung von Kraftstoffkomponen¬ ten weiterverarbeitet oder als Chemierohstoff, beispielsweise zur Ethylenerzeugung in Ethylenanlagen eingesetzt.The Z. B. Liquid product obtained in hydrotreater is processed as synthetic crude oil (syncrude) in conventional refinery structures for the production of fuel components or as a chemical raw material, for example for ethylene production in ethylene plants.
Die beim Hydrotreating anfallenden gasförmigen Bestandteile sind geeignet bei- spielsweise den Einsatzprodukten für das Steam-Reforming beigegeben zu werden.The gaseous constituents resulting from hydrotreating are suitable, for example, to be added to the products used for steam reforming.
In einer weiteren bevorzugten Ausführungsform wird zumindest ein Teilstrom des Depolymerisats einer Druckvergasung unterworfen.In a further preferred embodiment, at least a partial stream of the depolymerizate is subjected to pressure gasification.
Als Einrichtungen zur Druckvergasung geeignet sind prinzipiell alle Flugstrom-Ver¬ gaser (Texaco, Shell, Prenflo), Festbettvergaser (Lurgi, Espag) sowie Ziwi-Ver- gaser. Insbesondere sind geeignet Verfahren zur thermischen Spaltung von Kohlenwasserstoffen mit Sauerstoff wie sie bei Verfahren der ölvergasung durch partielle Oxidation der Kohlenwasserstoffe als Flammenreaktion in einer Brennkam¬ mer durchgeführt werden. Die Reaktionen verlaufen autotherm - nicht katalytisch.In principle, all entrained-flow gasifiers (Texaco, Shell, Prenflo), fixed-bed gasifiers (Lurgi, Espag) and Ziwi gasifiers are suitable as devices for pressure gasification. gas. Processes for the thermal cracking of hydrocarbons with oxygen are particularly suitable, as are carried out in processes of oil gasification by partial oxidation of the hydrocarbons as a flame reaction in a combustion chamber. The reactions are autothermal - not catalytic.
Das bei der Druckvergasung anfallende im wesentlichen aus CO und H2 beste¬ hende Rohgas kann zu Synthesegas aufgearbeitet oder zur Wasserstofferzeugung herangezogen werden.The crude gas consisting essentially of CO and H2 in the pressure gasification can be worked up to synthesis gas or used for the production of hydrogen.
In einer weiteren bevorzugten Ausführungsform wird zumindestens ein Teilstrom des Depolymerisats einer Sumpfphasenhydrierung zugeführt. Die Sumpfphasen¬ hydrierung ist insbesondere dann bevorzugt, wenn aus dem Depolymerisat ein hoher Anteil flüssiger Kohlenwasserstoffe gewonnen werden soll. Hinsichtlich einer ausführlichen Beschreibung der Anwendung einer Sumpfphasenhydrierung zur Herstellung von Benzing und gegenenfalls von Dieselöl aus Rohöl wird verwiesen auf dei deutsche Patentschrift Nr. 933 826.In a further preferred embodiment, at least a partial stream of the depolymerizate is fed to a bottom phase hydrogenation. The bottom phase hydrogenation is particularly preferred when a high proportion of liquid hydrocarbons is to be obtained from the depolymerizate. For a detailed description of the use of a bottom phase hydrogenation for the production of benzing and, if appropriate, of diesel oil from crude oil, reference is made to German Patent No. 933 826.
Die Sumpfphasenhydrierung des pumpbaren flüssig-viskosen Depolymerisats wird beispielsweise so durchgeführt, daß ggf. erdölstämmiger Vakuumrückstand zuge- mischt wird und nach Kompression auf 300 bar Hydriergas zugesetzt wird. Zur Vorwärmung durchläuft das Reaktionsgut hintereinandergeschaltete Wärmeaus¬ tauscher, in denen der Wärmeaustausch gegen Produktströme beispielsweise Heißabscheider-Kopfprodukt erfolgt.The bottom phase hydrogenation of the pumpable liquid-viscous depolymerizate is carried out, for example, in such a way that any petroleum-derived vacuum residue is added and, after compression to 300 bar, hydrogenation gas is added. For preheating, the reaction material passes through heat exchangers connected in series, in which the heat exchange with product streams takes place, for example, a hot separator top product.
Die auf typisch 400°C vorgewärmte Reaktionsmischung wird weiter bis auf die ge¬ wünschte Reaktionstemperatur aufgeheizt und anschließend dem Reaktor oder ei¬ ner Reaktorkaskade, worin die Sumpfphasenhydrierung abläuft, zugeführt.The reaction mixture, which has been preheated to typically 400 ° C., is further heated to the desired reaction temperature and then fed to the reactor or a reactor cascade in which the bottom phase hydrogenation takes place.
In einem nachgeschalteten Heißabscheider erfolgt unter Prozeßdruck die Abtren- nung der bei Reaktionstemperatur gasförmigen Komponenten von flüssigen und fe¬ sten Bestandteilen. Letztere enthalten auch die anorganischen Nebenbestandteile.The components which are gaseous at reaction temperature are separated from liquid and solid components in a downstream hot separator under process pressure. The latter also contain the inorganic minor components.
Aus der gasförmigen Fraktion werden zunächst die schwereren Ölkomponenten in einem Abscheider abgetrennt, die nach Entspannung einer atmosphärischen Destil- lation zugeführt werden können. Aus dem dabei nicht kondensierten Anteil werden in einem nachgeschalteten Ab¬ scheidersystem zunächst die Prozeßgase entfernt, die in einer Gaswäsche aufgear¬ beitet und als Kreislaufgas zurückgeführt werden. Die Restmenge des Heißabschei¬ derproduktes wird beispielsweise nach weiterer Abkühlung vom Prozeßwasser be- freit und einer atmosphärischen Kolonne zur weiteren Aufarbeitung zugeführt.The heavier oil components are separated from the gaseous fraction in a separator, which can be fed to an atmospheric distillation after expansion. In a downstream separator system, the process gases are first removed from the uncondensed portion, which are worked up in a gas scrubber and returned as recycle gas. The remaining amount of the hot separator product is freed from the process water, for example after further cooling, and fed to an atmospheric column for further work-up.
Der Sumpf abzug des Heißabscheiders kann zweckmäßig zweistufig entspannt und zur Restölabtrennung einer Vakuumdestillation unterworfen werden. Der einge¬ dickte Rückstand, der auch die anorganischen Nebenbestandteile enthält, kann in flüssiger oder fester Form zwecks Synthesegaserzeugung der Vergasungsein¬ richtung zugeführt werden.The bottom draw of the hot separator can conveniently be expanded in two stages and subjected to vacuum distillation to remove residual oil. The thickened residue, which also contains the inorganic secondary constituents, can be fed to the gasification device in liquid or solid form for the purpose of generating synthesis gas.
Die bei der Sumpfphasenhydrierung anfallenden Rückstände (Heißabscheiderrück¬ stand) sowie der bei einer Schwelung des Depolymerisats anfallende Schwelkoks, jeweils die anorganischen Nebenbestandteile enthaltend, können durch einen weiteren thermischen Verfahrensschritt verwertet werden, wobei die dort anfallen¬ den die anorganischen Nebenbestandteile enthaltenden Rückstände z. B. zwecks Metallrückgewinnung weiter aufgearbeitet werden können.The residues obtained in the bottom phase hydrogenation (hot separator residue) and the smoldering coke obtained when the depolymerizate smells, each containing the inorganic secondary constituents, can be utilized by a further thermal process step, the residues arising there containing the inorganic secondary constituents e.g. B. can be further processed for the purpose of metal recovery.
Die gewonnenen Leicht- und Mittelölfraktionen aus der Sumpfphasenhydrierung können in raffinerieüblichen Strukturen als wertvolle Rohstoffe für die Erzeugung von Kraftstoffen oder von Kunststoffvorläufern wie Olefine oder Aromaten dienen. Soweit diese Produkte aus der Sumpfphasenhydrierung nicht lagerstabil sein soll¬ ten, können sie der in dem vorliegenden Verfahren für Kondensat bzw. kondensier- bare Bestandteile vorgesehenen Hydrotreating-Behandlung unterworfen werden.The light and medium oil fractions obtained from the bottom phase hydrogenation can be used in refinery structures as valuable raw materials for the production of fuels or plastic precursors such as olefins or aromatics. If these products from the bottom phase hydrogenation should not be stable in storage, they can be subjected to the hydrotreating treatment provided for condensate or condensable components in the present process.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß das pumpbare viskose Depolymerisat nach Abtrennung der gasförmigen und kondensierbaren Depolymerisationsprodukte als Flüssigprodukt je in einen einer Druckvergasung sowie in einen einer Sumpfphasenhydrierung zuzuführenden Teilstrom aufgeteilt wird.A preferred embodiment of the process according to the invention consists in that the pumpable viscous depolymerizate, after separating off the gaseous and condensable depolymerization products as a liquid product, is each divided into a partial gasification which is to be pressurized and also a partial stream to be fed to a bottom phase hydrogenation.
Die erfindungsgemäße Aufteilung des pumpbaren viskosen Depolymerisats je in ei¬ nen einer Druckvergasung sowie in einen einer Sumpfphasenhydrierung und ggf. einer Pyrolyse zuzuführenden Teilstrom in Verbindung mit der getrennten Aufarbei¬ tung der kondensierbaren Bestandteile in einem Hydrotreating-Schritt führt zu einer erheblich verbesserten Anlagennutzung. Bei Einrichtungen, wie sie zur Druckverga¬ sung fester Brennstoffe oder zur thermischen Spaltung von Kohlenwasserstoffen mit Sauerstoff entwickelt worden sind bzw. bei Anlagen zur Sumpfphasenhydrierung von kohlenstoffenthaltenden Materialien unter hohem Druck handelt es sich um sehr kapitalintensive Anlagenteile, deren Durchsatzkapazität dann optimal ausgenutzt wird, wenn sie von Einsatzmaterialien entlastet sind, wie sie bei dem vorliegenden Verfahren als Kondensatstoffstrom vorher abgetrennt und einer gesonderten Aufar¬ beitung in einem Hydrotreater unter vergleichsweise milden Verfahrensbedingungen unterworfen werden.The division according to the invention of the pumpable viscous depolymerizate into a pressure gasification and into a partial stream to be fed to a bottom phase hydrogenation and possibly pyrolysis in connection with the separate processing of the condensable components in one hydrotreating step leads to one significantly improved plant utilization. Devices such as those developed for the pressure reduction of solid fuels or for the thermal cracking of hydrocarbons with oxygen or in plants for the sump phase hydrogenation of carbon-containing materials under high pressure are very capital-intensive plant parts, the throughput capacity of which is optimally utilized when they are relieved of feed materials, as previously separated in the present process as a condensate stream and subjected to a separate processing in a hydrotreater under comparatively mild process conditions.
Eine weitere bevorzugte Option des vorliegenden Verfahrens besteht darin, von dem Depolymerisat zumindest einen Teilstrom einer Schwelung unter Gewinnung von Schwelgas, Schwelteer und Schwelkoks zu unterwerfen.Another preferred option of the present method is to subject at least a partial stream of the depolymerization to a smoldering process to obtain smoldering gas, smoldering tar and smoked coke.
Das beim Depolymerisieren anfallende gasförmige bzw. in Form einer wäßrigen Lö¬ sung kondensierbare Chlorwasserstoffgas kann einer gesonderten Verwendung im Sinne einer stofflichen Verwertung zugeführt werden. Restliche Fraktionen, die nicht Bestandteile der gasförmig übergehenden und als Flüssigproduktausbeute konden¬ sierbaren Depolymerisationsprodukte sind und die u. a. chlororganische sowie schwefel- und stickstoffhaltige Verbindungen enthalten können, werden im Zuge der Sumpfphasenhydrierung bzw. der in dieselbe integrierten Rückstandsaufarbeitung von den Heteroatomen Chlor, Schwefel, Stickstoff oder auch Sauerstoff befreit, die als Wasserstoffverbindungen abgetrennt werden.The gaseous hydrogen chloride gas obtained during depolymerization or condensable in the form of an aqueous solution can be used separately in the sense of material recycling. Remaining fractions which are not components of the gaseous depolymerization products which can be converted into a liquid product yield and which u. a. chlorine-organic as well as sulfur- and nitrogen-containing compounds can be freed from the heteroatoms chlorine, sulfur, nitrogen or oxygen in the course of the bottom phase hydrogenation or the residue processing integrated into the same, which are separated off as hydrogen compounds.
Wegen des teilweise signifikanten Halogengehalts der eingesetzten Altkunststoffe ist es vorteilhaft, die abgezogenen gasförmigen Depolymerisationsprodukte einer Wäsche zu unterziehen, wobei insbesondere die gebildeten Halogenwasserstoffe als wäßrige Halogenwasserstoffsäuren abgetrennt und einer stofflichen Verwertung zugeführt werden können.Because of the partially significant halogen content of the waste plastics used, it is advantageous to subject the drawn-off gaseous depolymerization products to washing, in particular the hydrogen halides formed being able to be separated off as aqueous hydrohalic acids and recycled.
Die ggf. von sauren Bestandteilen wie Halogenwasserstoffen befreiten gasförmigen Depolymerisationsprodukte können vorzugsweise dem Wasserstoffeinsatzgas oder dem Wasserstoffkreislaufgas der Sumpfphasenhydrierung zugeführt werden. Das gleiche gilt für die bei einer Schwelung abgetrennten Schwelgase. Durch die Kombination von Depolymerisation, hydrierender Behandlung der bevor¬ zugt erzeugten Destillatbestandteile, Sumpfphasenhydrierung, Vergasung (partielle Oxidation) und/oder Schwelung des Depolymerisats der Sumpfphase können die letztgenannten technologisch besonders aufwendigen und komplexen aber anorga- nische Inhaltsstoffe tolerierenden Behandlungsstufen kapazitätsmäßig entlastet werden. Das erfindungsgemäße Verfahren bietet ein hohes stoffliches Wiederver- wertungspotential der eingesetzten Kunststoffe.The gaseous depolymerization products, if appropriate freed from acidic components such as hydrogen halides, can preferably be fed to the hydrogen feed gas or the hydrogen cycle gas of the bottom phase hydrogenation. The same applies to the carbonization gases separated during smoldering. The combination of depolymerization, hydrogenating treatment of the preferred distillate constituents, bottom phase hydrogenation, gasification (partial oxidation) and / or smoldering of the depolymerizate of the bottom phase means that the latter treatment stages, which are technologically particularly complex and complex but tolerate inorganic ingredients, can be relieved in terms of capacity. The method according to the invention offers a high material recycling potential of the plastics used.
So kann bei geeigneter Kombination der beschriebenen Verfahrensschritte eine praktisch vollständige stoffliche Verwertung des in den eingesetzten Kunststoffen enthaltenen organischen Kohlenstoffs erreicht werden. Zum großen Teil wird sogar der Erhalt und die stoffliche Verwertung der in den eingesetzten Kunststoffabfällen enthaltenen Kohlenstoff- bzw. Kohlenwasserstoffketten realisiert. Selbst die verbleibenden anorganischen Bestandteile können einer Wiederverwertung, z. B. einer Metallrückgewinnung, zugeführt werden. Sie können auch zumindest teilweise in aufgemahlener Form als Katalysatoren wieder in die Sumpfphasenhydrierung eingesetzt werden.With a suitable combination of the process steps described, virtually complete material recycling of the organic carbon contained in the plastics used can be achieved. For the most part, the preservation and recycling of the carbon or hydrocarbon chains contained in the plastic waste used is realized. Even the remaining inorganic components can be recycled, e.g. B. a metal recovery. They can also be used at least partially in ground form as catalysts again in the bottom phase hydrogenation.
Das erfindungsgemäße Verfahren mit den Hauptanlagenteilen einer Depolymerisa- tionseinrichtung, eines Hydrotreaters, einer Druckvergasung, einer Sumpfphasen¬ hydrierung einer Schwelanlage und den Anlagenteilen für die Aufarbeitung der gas¬ förmigen Depolymerisationsprodukte ist in dem Schema der Figur 1 veranschau¬ licht. In der Figur ist die Anlagenkonfiguration mit einer Schwelanlage als wahlweise vorzusehender Anlagenbestandteil gestrichelt dargestellt. Die Aufteilung der zuge- hörigen Stoffströme ist mittels der dargestellten Leitungsführung schematisch ver¬ anschaulicht. Die Bezugszeichen in Fig. 1 haben folgende Bedeutung:The process according to the invention with the main plant parts of a depolymerization device, a hydrotreater, pressure gasification, a bottom phase hydrogenation of a carbonization plant and the plant parts for working up the gaseous depolymerization products is illustrated in the diagram in FIG. In the figure, the system configuration with a smoldering system is shown in dashed lines as an optional system component. The distribution of the associated material flows is illustrated schematically by means of the line routing shown. The reference symbols in FIG. 1 have the following meaning:
1 Depolymerisationsreaktor1 depolymerization reactor
2 Hydrotreater 3 Sumpfphasenhydrierung2 Hydrotreater 3 Swamp phase hydrogenation
4 Vergasungsanlage4 gasification plant
5 Schwelanlage5 smoldering plant
6 Altkunststoff6 waste plastic
7 Vakuumrückstand 8 Salzsäure7 Vacuum residue 8 hydrochloric acid
9 Gase (Methan, Ethan, Propan, H2, etc.) 10 Kondensat9 gases (methane, ethane, propane, H2, etc.) 10 condensate
11 Depolymerisat11 depolymerizate
12 Gase (Methan, Ethan, Propan, H2S, NH3, H2, etc.), (z. B. zum Steam-Refor- ming) 13 Syncrude II (z. B. zur Olefinanlage)12 gases (methane, ethane, propane, H2S, NH3, H2, etc.), (e.g. for steam reforming) 13 Syncrude II (e.g. for olefin plants)
14 Synthesegas (CO/H2)14 synthesis gas (CO / H2)
15 Schlacke, Ruß (z. B. zur Metallrückgewinnung)15 slag, soot (e.g. for metal recovery)
16 Gase (Methan, Ethan, Propan, H2S, NH3, H2, etc.), (z. B. zum Steam-Refor- ming) 17 Syncrude I (z. B. zur Raffinerie)16 gases (methane, ethane, propane, H2S, NH3, H2, etc.), (e.g. for steam reforming) 17 Syncrude I (e.g. for refinery)
18 Hydrierrückstand (z. B. zur Vergasungsanlage)18 hydrogenation residue (e.g. to the gasification plant)
19 Gase (z. B. zur Sumpfphasenhydrierung)19 gases (e.g. for phase hydration)
20 Teer (z. B. zur Sumpfphasenhydrierung)20 tar (e.g. for phase hydration)
21 Koks (z. B. zur Vergasungsanlage)21 coke (e.g. to the gasification plant)
Ein Mengenschema für die Anlagenkonfiguration gemäß Figur 1 wird im Sinne eines Ausführungsbeispiels für die angegebenen Einsatzprodukte wie folgt angegeben.A flow chart for the system configuration according to FIG. 1 is given as follows in the sense of an exemplary embodiment for the specified feed products.
Der entsprechend zerkleinerte, ggf. gewaschene und getrocknete Altkunststoff wird Depolymerisationsreaktor 1 , der mit Heizungs-, Rühr-, Druckhaltevorrichtungen, zugehörigen Ein- und Auslaßventilen sowie Meß- und Regeleinrichtungen für die Standkontrolle versehen ist, kontinuierlich zugeführt.The appropriately comminuted, possibly washed and dried waste plastic is continuously fed to the depolymerization reactor 1, which is provided with heating, stirring, pressure-maintaining devices, associated inlet and outlet valves and measuring and control devices for checking the level.
In einer typischen Variante werden, bezogen auf das gesamte Reaktionsprodukt, 50,0 Gew.-% Depolymerisat, 40,0 Gew.-% Kondensat, 5,0 Gew.-% gasförmiger Chlorwasserstoff und 5,0 Gew.-% sonstiger Gase abgezogen. Das Kondensat wird Hydrotreater 2 zugeführt, von welchem über Kopf 35,0 Gew.-% eines Syncrudes, das einer Olefinanlage zugeführt wird, sowie 5,0 Gew.-% gasförmiger Reaktions¬ produkte, die einem Steamreforming zugeführt werden, abgezogen werden.In a typical variant, based on the entire reaction product, 50.0% by weight of depolymerizate, 40.0% by weight of condensate, 5.0% by weight of gaseous hydrogen chloride and 5.0% by weight of other gases are taken off . The condensate is fed to hydrotreater 2, from which 35.0% by weight of a syncrude which is fed to an olefin plant and 5.0% by weight of gaseous reaction products which are fed to a steam reforming are withdrawn overhead.
Von dem Depolymerisat werden 25,0 Gew.-% der Sumpfphasenhydrierung 3 und 25,0 Gew.-% der Vergasungseinrichtung 4 zugeführt. Der Sumpfphasenhydrierung 3 werden noch 25,0 Gew.-% Vakuumrückstand als Recyclestrom zugeführt. Es werden 10,0 Gew. -% gasförmiger Reaktionsprodukte, die dem Steamreforming zugeführt werden, 40,0 Gew.-% eines Syncrudes, das einer üblichen Raffi¬ neriestruktur zugeführt wird und 5,0 Gew.-% Rückstand, der der Vergasung 4 zuge- führt werden kann, abgezogen. Das Reaktionsprodukt der Vergasungseinrichtung besteht in einer typischen Fahrweise zu 24,0 Gew.-% eines Synthesegases sowie etwa 1 ,0 Gew.-% eines aschehaltigen Rußes.25.0% by weight of the bottom phase hydrogenation 3 and 25.0% by weight of the gasification device 4 are fed in from the depolymerizate. 25.0% by weight of vacuum residue are fed to the bottom phase hydrogenation 3 as a recycle stream. There are 10.0% by weight of gaseous reaction products which are fed to steam reforming, 40.0% by weight of a syncrude which is fed to a conventional refinery structure and 5.0% by weight of residue which are gasified 4 Trains- can be deducted. The reaction product of the gasification device consists in a typical procedure of 24.0% by weight of a synthesis gas and about 1.0% by weight of an ash-containing soot.
Wahlweise kann der Produktstrom des Depolymerisats aus Reaktor 1 teilweise Pyrolyse- bzw. Schwel-Anlage 5 zur Gewinnung von Pyrolysekoks, Schwelteer und Schwelgas zugeführt werden. Der Pyrolysekoks wird der Vergasungseinrichtung, der Schwelteer und das Schwelgas der Sumpfphasenhydrierung zugeführt.Optionally, the product stream of the depolymerizate from reactor 1 can be partly fed to pyrolysis or smoldering plant 5 for the production of pyrolysis coke, smoldering tar and smoldering gas. The pyrolysis coke is fed to the gasification device, the smoldering tar and the smoldering gas of the bottom phase hydrogenation.
Die im Depolymerisat angereicherten anorganischen Nebenbestandteile werden in der anschließenden Aufarbeitung noch weiter aufkonzentriert. Wird das Depolymeri¬ sat einer Vergasung zugeführt, finden sich die anorganischen Nebenbestandteile anschließend in der ausgetragenen Schlacke. Bei der Sumpfphasenhydrierung sind sie im Hydrierrückstand und bei der Schwelung im Schwelkoks enthalten. Werden Hydrierrückstand und/oder Schwelkoks ebenfalls der Vergasung zugeführt, verlas¬ sen sämtliche in das erfindungsgemäße Verfahren eingetragenen anorganischen Nebenbestandteile die Aufarbeitung als Vergaserschlacke.The inorganic secondary constituents enriched in the depolymerizate are further concentrated in the subsequent workup. If the depolymerizate is fed to gasification, the inorganic secondary constituents are subsequently found in the discharged slag. In the case of the bottom phase hydrogenation, they are contained in the hydrogenation residue and in the smoldering in the smoked coke. If the hydrogenation residue and / or the smoked coke are also fed to the gasification, all the inorganic secondary constituents entered in the process according to the invention leave the product to be processed as gasification slag.
In der Figur 2 ist eine vorzugsweise Ausgestaltung des Eintragteils für die Alt- oder Abfallkunststoffe in die Depolymerisationsanlage mit zugehörigem Aufarbeitungsteil für die gasförmigen sowie die kondensierbaren Depolymerisationsprodukte gezeigt. Die Bezugszeichen in Fig. 2 haben folgende Bedeutung:FIG. 2 shows a preferred embodiment of the entry part for the old or waste plastics into the depolymerization plant with an associated work-up part for the gaseous and the condensable depolymerization products. The reference symbols in FIG. 2 have the following meaning:
I Silo für Altkunststoff 2 DepolymerisationsreaktorI silo for waste plastic 2 depolymerization reactor
3 Ofen3 oven
4 Umlaufpumpe4 circulation pump
5 Suspensionspumpe5 suspension pump
6 Einsatzbehälter 7 Hochdruckpumpe6 Insert container 7 high pressure pump
8 Kondensator8 capacitor
9 Salzsäure-Wäscher9 hydrochloric acid washers
10 Gase10 gases
I I Frisch-Wasser 12 Wäßrige SalzsäureI I Fresh water 12 Aqueous hydrochloric acid
13 Kondensat, (z. B. zum Hydrotreater) 14 Vakuumrückstand13 condensate, (e.g. for hydrotreater) 14 Vacuum residue
15 Mischung Depolymerisat/Vakuumrückstand (z. B. zur Sumpfphasenhydrierung)15 mixture of depolymerizate / vacuum residue (e.g. for the bottom phase hydrogenation)
16 Fördervorrichtung16 conveyor
Über Fördervorrichtung 16 gelangt der Alt- oder Abfallkunststoff in Silo 1 und von dort in Reaktor 2. Die Aufheizung des Reaktorinhalts erfolgt über ein Umlaufsystem bestehend aus Umlaufpumpe 4 und Ofen 3. Über Suspensionspumpe 5 wird diesem Umlauf ein Strom entnommen, der in Einsatzbehälter 6 mit über Leitung 14 zugeführtem Vakuumrückstand vermischt und dann über Hochdruckpumpe 7 einer weiteren Verarbeitung zugeführt wird. Die in Reaktor 2 entstehenden Gase und kondensierbaren Anteile werden über Kondensator 8 geleitet und aufgetrennt. Nach Durchlaufen von Salzsäurewäscher 9 werden die gereinigten Gase 10 der weiteren Verwendung zugeführt. Die vorher enthaltenen sauren Bestandteile werden nach der Wäsche als wäßrige Salzsäure 12 entfernt. Das in Kondensator 8 abge- schiedene Kondensat wird von dort der weiteren Verwendung zugeführt.The old or waste plastic enters the silo 1 and from there into the reactor 2 via the conveying device 16. The reactor contents are heated by means of a circulation system consisting of a circulation pump 4 and a furnace 3. A stream is withdrawn from the circulation via the suspension pump 5, which flows into the insert container 6 Vacuum residue supplied via line 14 is mixed and then fed to further processing via high pressure pump 7. The gases and condensable components formed in reactor 2 are passed through condenser 8 and separated. After passing through hydrochloric acid washer 9, the cleaned gases 10 are passed on for further use. The acid components previously contained are removed after washing as aqueous hydrochloric acid 12. The condensate separated in condenser 8 is fed from there for further use.
Beispiel 1example 1
Depolymerisation von AltkunststoffenDepolymerization of old plastics
In einen Rührkessel-Reaktor mit 80 m3 Inhalt, der mit einem Umlaufsystem mit einer Kapazität von 150 m3/h versehen ist, wurden kontinuierlich 5 t/h gemischte agglo¬ merierte Kunststoff-Partikel mit einem mittleren Korndurchmesser von 8 mm pneu¬ matisch eingetragen. Bei dem Mischkunststoff handelte es sich um Material, das aus der Haushaltssammlung des Dualen Systems Deutschland stammt und typischerweise 8 % PVC enthielt.In a stirred tank reactor with 80 m 3 content, which is provided with a circulation system with a capacity of 150 m 3 / h, 5 t / h mixed agglomerated plastic particles with an average grain diameter of 8 mm were pneu¬ matically registered. The mixed plastic was material that came from the household collection of the Dual System Germany and typically contained 8% PVC.
Das Kunststoffgemisch wurde im Reaktor bei Temperaturen zwischen 360 °C und 420 °C depolymerisiert. Es entstanden dabei vier Fraktionen, deren Mengenver¬ teilung in Abhängigkeit von der Reaktortemperatur in nachfolgender Tabelle zu¬ sammengestellt ist:The plastic mixture was depolymerized in the reactor at temperatures between 360 ° C and 420 ° C. Four fractions were formed, the distribution of which is shown in the table below as a function of the reactor temperature:
I II III IVI II III IV
T Gas Kondensat Depolymerisat HCI rci [Gew.-%] [Gew.-%] [Gew.-%] [Gew.-%]T gas condensate depolymerizate HCI rci [% by weight] [% by weight] [% by weight] [% by weight]
360 4 13 81 2 380 8 27 62 3360 4 13 81 2 380 8 27 62 3
400 11 39 46 4400 11 39 46 4
420 13 47 36 4420 13 47 36 4
Der Depolymerisat-Strom (III) wurde kontinuierlich abgezogen und zusammen mit Erdöl-stämmigem Vakuumrückstand einer Sumpfphasenhydrieranlage zur weiteren Spaltung zugeführt. Die Viskosität des Depolymerisats lag bei 200 mPas bei 175 °C.The depolymerized material stream (III) was drawn off continuously and fed to a bottom phase hydrogenation plant together with petroleum-derived vacuum residue for further cleavage. The viscosity of the depolymerizate was 200 mPas at 175 ° C.
In einer separaten Anlage wurden die Kohlenwasserstoff-Kondensate (Strom II) kon¬ densiert und einer geeigneten Weiterverarbeitung in einem Hydrotreater zugeführt. Der gasförmige Chlorwasserstoff (Strom IV) wurde mit Wasser aufgenommen und als 30 %ige wäßrige Salzsäure abgegeben. Die Kohlenwasserstoffgase (Strom I) wurden der Sumpfphasenhydrieranlage zur Konditionierung zugeführt.The hydrocarbon condensates (stream II) were condensed in a separate plant and fed to a suitable further processing in a hydrotreater. The gaseous hydrogen chloride (stream IV) was taken up with water and released as 30% aqueous hydrochloric acid. The hydrocarbon gases (stream I) were fed to the bottom phase hydrogenation plant for conditioning.
Beispiel 2Example 2
Dechlorierung des KondensatesDechlorination of the condensate
Kondensat aus einer Depolymerisationsanlage, das bei einer Temperatur zwischen 400 und 420 °C aus einer Kunststoff-Mischung (DSD-Haussammlung) gewonnen wurde, wurde durch Waschen mit ammoniakalischer Lösung von HCI befreit. Es wies anschließend einen Cl-Gehalt von 400 ppm auf.Condensate from a depolymerization plant, which was obtained from a plastic mixture (DSD house collection) at a temperature between 400 and 420 ° C, was freed of HCI by washing with ammoniacal solution. It then had a Cl content of 400 ppm.
Dieses so vorbehandelte Kondensat wurde in einer kontinuierlich arbeitenden Apparatur einem katalytischen Dechlorierungsprozeß unterworfen. Dabei wurde das Kondensat zunächst auf 50 bar verdichtet und anschließend mit Wasserstoff beauf¬ schlagt, so daß ein Gas / Kondensat-Verhältnis von 1000 l/kg eingehalten wurde. Das Gemisch wurde aufgeheizt und in einem Festbett-Reaktor an einem NiMo- Katalysator umgesetzt. Nach Verlassen des Reaktors wurde das Reaktionsgemisch mit ammoniakalischem Wasser gequencht, so daß das gebildete HCI vollständig in die wäßrige Phase überging. Vor dem Entspannen des Reaktionsgemisches wurde eine Gas-/ Flüssig-Phasentrennung durchgeführt, so daß Gas- und Flüssigphase ge¬ trennt entspannt werden konnten. Die flüssige Phase wurde nach dem Entspannen in eine wäßrige und eine organische Phase zerlegt. Die organische Phase, die mengenmäßig mehr als 90 Gew.-% des eigesetzten Kondensates repräsentierte, zeigte in Abhängigkeit von den gewählten Reaktions¬ bedingungen folgende Cl-Gehalte [ppm]:This pretreated condensate was subjected to a catalytic dechlorination process in a continuously operating apparatus. The condensate was first compressed to 50 bar and then subjected to hydrogen, so that a gas / condensate ratio of 1000 l / kg was maintained. The mixture was heated and reacted on a NiMo catalyst in a fixed bed reactor. After leaving the reactor, the reaction mixture was quenched with ammoniacal water so that the HCl formed completely passed into the aqueous phase. Before the reaction mixture was let down, a gas / liquid phase separation was carried out, so that the gas and liquid phases could be released separately. After relaxation, the liquid phase was broken down into an aqueous and an organic phase. The organic phase, which represented more than 90% by weight of the condensate used, showed the following Cl contents [ppm] depending on the chosen reaction conditions:
Diese Kondensatqualitäten entsprechen bei allen Reaktionsbedingungen den Ein¬ gangsspezifikationen einer Mineralölraffinerie und können dort der Top-Destillation oder spezifischen Verarbeitungsanlagen (z. B. einem Steamcracker) zugeführt werden. Under all reaction conditions, these condensate qualities correspond to the input specifications of a mineral oil refinery and can be fed there to top distillation or specific processing plants (eg a steam cracker).

Claims

Patentansprüche Claims
1. Verfahren zur Verarbeitung von Alt- oder Abfallkunststoffen zwecks Ge¬ winnung von Chemierohstoffen und flüssigen Kraftstoffkomponenten durch Depolymerisieren der Einsatzstoffe zu einer pumpbaren sowie einer flüchtigen Phase, Auftrennen der flüchtigen Phase in eine Gasphase und ein Kondensat bzw. kondensierbare Depolymerisationsprodukte, die raffinerieüblichen Standardprozeduren unterworfen werden, wobei die nach Abtrennen der flüchtigen Phase verbleibende pumpbare Phase einer Sumpfphasen¬ hydrierung, Vergasung, Schwelung oder einer Kombination dieser Ver¬ fahrensschritte unterworfen wird.1. Process for processing old or waste plastics for the purpose of obtaining chemical raw materials and liquid fuel components by depolymerizing the starting materials into a pumpable and a volatile phase, separating the volatile phase into a gas phase and a condensate or condensable depolymerization products, which are subjected to standard refinery procedures are, the pumpable phase remaining after separation of the volatile phase being subjected to a bottom phase hydrogenation, gasification, smoldering or a combination of these process steps.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Depolymeri¬ sation bei einem Druck von 0,01 bis 300 bar, vorzugsweise 0,1 bis 100 bar, insbesondere 0,2 bis 2 bar, einer Temperatur von 150 bis 470 °C, vorzugs¬ weise 250 bis 450 °C und einer Verweilzeit von 0,1 bis 10 h, vorzugsweise 0,5 bis 5 h durchgeführt wird und drei Teilströme in Mengen von 1.) 15 bis 85,0 Gew.-% eines Depolymerisats, von 2.) 10,0 bis 80,0 Gew.-% eines Konden¬ sats sowie von 3.) 5,0 bis 20,0 Gew.-% eines Gasgemisches, jeweils bezogen auf die eingesetzte Kunststoffmischung, abgezogen werden.2. The method according to claim 1, characterized in that the depolymerization at a pressure of 0.01 to 300 bar, preferably 0.1 to 100 bar, in particular 0.2 to 2 bar, a temperature of 150 to 470 ° C. , preferably 250 to 450 ° C. and a residence time of 0.1 to 10 h, preferably 0.5 to 5 h, and three partial streams in amounts of 1.) 15 to 85.0% by weight of a depolymerizate, from 2.) 10.0 to 80.0% by weight of a condensate and from 3.) 5.0 to 20.0% by weight of a gas mixture, based in each case on the plastic mixture used.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Depoly- merisation unter Zusatz eines Katalysators durchgeführt wird.3. The method according to claim 1 and 2, characterized in that the depolymerization is carried out with the addition of a catalyst.
4. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch ge¬ kennzeichnet, daß die Depolymerisation unter turbulenten Strömungsbedin¬ gungen durchgeführt wird.4. The method according to at least one of the preceding claims, characterized ge indicates that the depolymerization is carried out under turbulent flow conditions.
5. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch ge¬ kennzeichnet, daß die Depolymerisation unter Inertgas durchgeführt wird.5. The method according to at least one of the preceding claims, characterized ge indicates that the depolymerization is carried out under inert gas.
6. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch ge- kennzeichnet, daß die Depolymerisation unter Einsatz von Strippmedien wie Stickstoff, Wasserdampf, kohlenwasserstoffhaltigen Gasen oder anderen Leichtsiedern durchgeführt wird.6. The method according to at least one of the preceding claims, characterized in that the depolymerization using stripping media such as Nitrogen, water vapor, hydrocarbon gases or other low boilers is carried out.
7. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch ge- kennzeichnet, daß den eingesetzten Alt- oder Abfallkunststoffen eine flüssige7. The method according to at least one of the preceding claims, characterized in that the used plastics or waste plastics are liquid
Hilfsphase zugesetzt wird.Auxiliary phase is added.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kondensierbaren Depolymerisationsprodukte einer hydrierenden Raffination an einem Festbettkatalysator unterworfen werden.8. The method according to at least one of the preceding claims, characterized in that the condensable depolymerization products are subjected to hydrogenating refining on a fixed bed catalyst.
9. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kondensierbaren Depolymerisationsprodukte oder das Kondensat einer hydrierenden Raffination an einem bewegten Katalysator oder in einem wallenden Katalysatorbett unterworfen werden.9. The method according to at least one of the preceding claims, characterized in that the condensable depolymerization products or the condensate are subjected to a hydrogenating refining on a moving catalyst or in a flowing catalyst bed.
10. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch ge¬ kennzeichnet, daß die gasförmigen Depolymerisationsprodukte, ggf. unter Zwi¬ schenschaltung einer Wäsche zum Entfernen von sauren Bestandteilen wie Chlorwasserstoff, der Sumpfphasenhydrierung zugeführt werden. 10. The method according to at least one of the preceding claims, characterized ge indicates that the gaseous depolymerization products, optionally with interposition of a wash for removing acidic components such as hydrogen chloride, are fed to the bottom phase hydrogenation.
EP94913053A 1993-04-03 1994-03-25 Process for processing used or waste plastic material Expired - Lifetime EP0692009B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4311034 1993-04-03
DE4311034A DE4311034A1 (en) 1993-04-03 1993-04-03 Process for the extraction of chemical raw materials and fuel components from old or waste plastic
PCT/EP1994/000954 WO1994022979A1 (en) 1993-04-03 1994-03-25 Process for processing used or waste plastic material

Publications (2)

Publication Number Publication Date
EP0692009A1 true EP0692009A1 (en) 1996-01-17
EP0692009B1 EP0692009B1 (en) 1997-05-28

Family

ID=6484696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94913053A Expired - Lifetime EP0692009B1 (en) 1993-04-03 1994-03-25 Process for processing used or waste plastic material

Country Status (23)

Country Link
US (1) US5849964A (en)
EP (1) EP0692009B1 (en)
JP (2) JP3385025B2 (en)
KR (2) KR100293752B1 (en)
CN (1) CN1049237C (en)
AT (1) ATE153692T1 (en)
AU (1) AU681652B2 (en)
BG (1) BG62572B1 (en)
CA (1) CA2158032A1 (en)
CZ (1) CZ292837B6 (en)
DE (3) DE4311034A1 (en)
DK (1) DK0692009T3 (en)
ES (1) ES2104375T3 (en)
FI (1) FI954685A0 (en)
GR (1) GR3024422T3 (en)
HU (1) HU218853B (en)
NO (1) NO953758D0 (en)
NZ (1) NZ265043A (en)
PL (1) PL178639B1 (en)
RU (1) RU2127296C1 (en)
SK (1) SK280953B6 (en)
UA (2) UA39203C2 (en)
WO (1) WO1994022979A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425856B2 (en) 2008-04-25 2013-04-23 Technische Werke Ludwigshafen Ag Device for producing starting materials, combustible substances and fuels from organic substances
WO2019016416A1 (en) 2017-07-17 2019-01-24 Hidalgo Navas Jeronimo Method for recovering and transforming liquid abs plastic

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4323320C2 (en) * 1993-07-06 2003-05-08 Hendrickx Heinz Process for the separation, cleaning, sorting and recycling of mixtures and / or composites of plastics with one another and / or with other materials with solvent processes
DE4328188C2 (en) * 1993-08-21 1996-04-18 Hoechst Ag Process for the production of synthesis gas
DE4344311A1 (en) * 1993-12-23 1995-06-29 Linde Ag Process and device for the thermal depolymerization of plastics
DE4428355A1 (en) * 1994-05-20 1996-02-15 Veba Oel Ag Device for the depolymerization of old and waste plastics
RO118134B1 (en) * 1994-10-04 2003-02-28 Veba Oel Ag Process for obtaining chemical raw materials and liquid combustible components
DE19504595A1 (en) * 1995-02-11 1996-08-14 Basf Ag Process for the joint hydrogenation of hydrocarbon-containing gases and condensates
DE19516379A1 (en) * 1995-05-04 1996-11-07 Veba Oel Ag Process for processing old or waste plastics
NL1006179C2 (en) * 1997-05-30 1998-12-01 Alcoa Nederland Bv Method for processing material from aluminum and plastic.
HU218968B (en) * 1997-12-05 2001-01-29 Tvk-Ecocenter Kft. Process for conversion of assorted plastic waste
NL1007710C2 (en) * 1997-12-05 1999-06-08 Gibros Pec Bv Method for processing waste or biomass material.
KR100322663B1 (en) * 2000-03-20 2002-02-07 곽호준 Continuous Preparing Method for Gasoline, Kerosene and Diesel Using Waste Plastics and System thereof
ATE285422T1 (en) * 2000-07-27 2005-01-15 Du Pont OXIDATIVE CONVERSION OF POLYMERS TO APPLICABLE CHEMICALS
DE10049377C2 (en) * 2000-10-05 2002-10-31 Evk Dr Oberlaender Gmbh & Co K Catalytic generation of diesel oil and petrol from hydrocarbon-containing waste and oils
PL351272A1 (en) * 2001-12-19 2003-06-30 Igor Skworcow Method of and an apparatus for obtaining ronnage carbon and engine fuel while processing used tyres and other polymeric wastes
US6774272B2 (en) 2002-04-18 2004-08-10 Chevron U.S.A. Inc. Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils
US6822126B2 (en) * 2002-04-18 2004-11-23 Chevron U.S.A. Inc. Process for converting waste plastic into lubricating oils
US6703535B2 (en) 2002-04-18 2004-03-09 Chevron U.S.A. Inc. Process for upgrading fischer-tropsch syncrude using thermal cracking and oligomerization
DE10356245B4 (en) * 2003-12-02 2007-01-25 Alphakat Gmbh Process for the production of diesel oil from hydrocarbon-containing residues and an apparatus for carrying out this process
EA010464B1 (en) * 2004-02-26 2008-08-29 Игорь Антонович Рожновский Apparatus for processing carbon-containing wastes
WO2005087897A1 (en) 2004-03-14 2005-09-22 Ozmotech Pty Ltd Process and plant for conversion of waste material to liquid fuel
DE102004038220B4 (en) 2004-08-05 2009-07-23 Proton Technology Gmbh I.Gr. Thermal biomass oiling
DE102005010151B3 (en) * 2005-03-02 2006-09-14 Clyvia Technology Gmbh Process for the catalytic depolymerization of hydrocarbon-containing residues and apparatus for carrying out this process
MX2009001040A (en) * 2006-08-01 2009-06-26 Reclaim Resources Ltd Recycling of waste material.
US8192586B2 (en) 2010-03-31 2012-06-05 Agilyx Corporation Devices, systems, and methods for recycling plastic
US7758729B1 (en) 2006-08-24 2010-07-20 Plas2Fuel Corporation System for recycling plastics
US8193403B2 (en) 2006-08-24 2012-06-05 Agilyx Corporation Systems and methods for recycling plastic
WO2008055149A2 (en) * 2006-10-30 2008-05-08 University Of Utah Research Foundation Blending plastic and cellulose waste products for alternative uses
ITBO20070104A1 (en) * 2007-02-21 2008-08-22 Kdvsistemi Brevetti S R L APPARATUS FOR THE PRODUCTION OF SYNTHETIC FUEL
US20080295390A1 (en) * 2007-05-04 2008-12-04 Boykin Jack W System for the production of synthetic fuels
US7626062B2 (en) 2007-07-31 2009-12-01 Carner William E System and method for recycling plastics
ITBO20070770A1 (en) * 2007-11-22 2009-05-23 Vuzeta Brevetti S R L METHOD AND APPARATUS FOR THE TREATMENT OF REFUSAL MATERIALS
DE102008003837B4 (en) * 2008-01-04 2010-10-07 Wolf Eberhard Nill Process for the purification of organic residues in a preliminary stage of the thermolysis and apparatus for carrying out the process
EP2082857B1 (en) 2008-01-25 2011-07-13 Ekotoner Ltd. Method and apparatus for handling ink containers and cartridges as dangerous office waste for the purposes of recycling
GB0801787D0 (en) * 2008-01-31 2008-03-05 Reclaim Resources Ltd Apparatus and method for treating waste
WO2009145884A1 (en) * 2008-05-30 2009-12-03 Natural State Research, Inc. Method for converting waste plastic to hydrocarbon fuel materials
PL218781B1 (en) 2009-05-25 2015-01-30 Bl Lab Spółka Z Ograniczoną Odpowiedzialnością Method for production of high-quality hydrocarbon products from waste plastics and a system for the method for production of high-quality hydrocarbon products from waste plastics
FR2946054B1 (en) * 2009-06-02 2012-09-28 Alfyma Ind PROCESS FOR TRANSFORMING RUBBER GRANULATES TO PRODUCE SEMI-ACTIVE CARBONIZATION AND PLASTICIZER
GB2488302B (en) * 2009-12-22 2013-11-20 Cynar Plastics Recycling Ltd Conversion of waste plastics material to fuel
JP2013523944A (en) * 2010-03-31 2013-06-17 アジリックス コーポレイション System and method for recycling plastic
BR112012027180A2 (en) * 2010-04-23 2016-07-19 Regenerative Sciences Patents Ltd hydrocarbon extraction method and system
US8664458B2 (en) * 2010-07-15 2014-03-04 Greenmantra Recycling Technologies Ltd. Method for producing waxes and grease base stocks through catalytic depolymerisation of waste plastics
WO2012010223A1 (en) * 2010-07-19 2012-01-26 Rl Finance System and method for thermal conversion of carbon based materials
RU2556934C2 (en) * 2010-08-26 2015-07-20 Ахд Вадьонкезелё Эш Таначадо Кфт, Method for thermal decomposition of polyvinylchloride waste
US8969638B2 (en) * 2010-11-02 2015-03-03 Fina Technology, Inc. Depolymerizatin of plastic materials
US8480880B2 (en) 2011-01-18 2013-07-09 Chevron U.S.A. Inc. Process for making high viscosity index lubricating base oils
MY150550A (en) * 2011-07-22 2014-01-30 Shamsul Bahar Bin Mohd Nor Thermal de-polymerization process of plastic waste materials
DE102011111526B4 (en) 2011-08-31 2014-06-26 Georg Bogdanow Process for the conversion of valuable materials
DE202011105051U1 (en) 2011-08-31 2011-10-28 Georg Bogdanow Plant for the conversion of valuable materials
WO2014106650A2 (en) 2013-01-03 2014-07-10 EZER, Argun Methods and apparatuses for the thermal depolymeriaztion of hydrocarbon-containing starting material
CA3129563C (en) 2013-01-17 2024-03-26 Greenmantra Recycling Technologies Ltd. Catalytic depolymerisation of polymeric materials
EP2981593B1 (en) 2013-04-06 2021-03-24 Agilyx Corporation Method for conditioning synthetic crude oil
PL229433B1 (en) 2014-09-05 2018-07-31 Realeco Spolka Z Ograniczona Odpowiedzialnoscia Mineral additive, preferably to be used in the process of continuous processing of plastic scrap, method in which this additive is used and the said additive and the device for the execution of this method
WO2016142807A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. Process for preparation of hydrocracking catalyst for use in hydrocracking of hydrocarbon streams
WO2016142805A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. Process for dechlorination of hydrocarbon streams and pyrolysis oils
WO2016142808A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. An integrated process for conversion of waste plastics to final petrochemical products
WO2016142806A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. Process for hydrocracking of hydrocarbon streams and pyrolysis oils
WO2016142809A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. A robust integrated process for conversion of waste plastics to final petrochemical products
SI3040638T1 (en) 2015-07-23 2018-06-29 Hoval Aktiengesellschaft Heat transfer pipe and boiler comprising one such heat transfer pipe
RU2617213C2 (en) * 2015-08-18 2017-04-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" (ТвГТУ) Method of utilisation of polymer wastes by method of low-temperature catalytic pyrolysis
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
JP6880051B2 (en) 2016-02-13 2021-06-02 グリーンマントラ リサイクリング テクノロジーズ リミテッド Polymer modified asphalt with wax additives
AU2017239181B2 (en) 2016-03-24 2020-12-10 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
EP3484980A1 (en) * 2016-07-13 2019-05-22 SABIC Global Technologies B.V. A process which does simultaneous dehydrochlorination and hydrocracking of pyrolysis oils from mixed plastic pyrolysis while achieving selective hydrodealkylation of c9+ aromatics
US10829696B2 (en) * 2016-08-01 2020-11-10 Sabic Global Technologies B.V. Dechlorination of mixed plastics pyrolysis oils using devolatilization extrusion and chloride scavengers
US10717936B2 (en) * 2016-08-01 2020-07-21 Sabic Global Technologies B.V. Catalytic process of simultaneous pyrolysis of mixed plastics and dechlorination of the pyrolysis oil
MX2019003575A (en) 2016-09-29 2019-06-03 Greenmantra Recycling Tech Ltd Reactor for treating polystyrene material.
CN109844070B (en) * 2016-10-11 2022-01-04 沙特基础全球技术有限公司 Method for producing olefins and aromatics from mixed plastics
EP3565870B1 (en) * 2017-01-06 2021-03-03 Smart Tire Recycling, Inc. Continuous recycling of rubber and organic polymers using supercritical water oxidation closed system
PL231852B1 (en) * 2017-05-03 2019-04-30 Handerek Adam Tech Recyklingu Method for producing hydrocarbon fuels from polyolefine wastes and plastics
CN108203588B (en) * 2018-01-30 2021-02-09 中国石油大学(华东) Method for treating waste tire by nitrogen atmosphere low-temperature pyrolysis
NO345506B1 (en) * 2018-07-06 2021-03-15 Quantafuel As Production of hydrocarbon fuels from waste plastic
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction
DE102019001696A1 (en) * 2019-03-11 2020-09-17 Olaf Heimbürge Plant and process for the catalytic production of diesel oils from organic materials
JP2023508356A (en) 2019-12-23 2023-03-02 シェブロン ユー.エス.エー. インコーポレイテッド Circular economy of waste plastics into polyethylene via refineries and crude units
JP2023508354A (en) 2019-12-23 2023-03-02 シェブロン ユー.エス.エー. インコーポレイテッド Circular Economy of Waste Plastics into Polypropylene Via Refining FCC and Alkylation Units
MX2022007240A (en) 2019-12-23 2022-10-27 Chevron Usa Inc Circular economy for plastic waste to polyethylene and lubricating oil via crude and isomerization dewaxing units.
EP4081619B1 (en) 2019-12-23 2024-10-09 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery fcc and alkylation units
EP4081618A4 (en) 2019-12-23 2024-01-03 Chevron U.S.A. Inc. Circular economy for plastic waste to polypropylene via refinery fcc unit
EP4081616A4 (en) 2019-12-23 2024-02-28 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit
CN114846117B (en) 2019-12-23 2023-12-12 雪佛龙美国公司 Recycling economy for converting plastic waste into polypropylene and lube oils by refinery FCC and isomerization dewaxing units
WO2021151071A1 (en) * 2020-01-23 2021-07-29 Premirr Plastics Inc. Process and system for depolymerizing waste plastic
US11306253B2 (en) 2020-03-30 2022-04-19 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery FCC or FCC/alkylation units
US11566182B2 (en) 2020-03-30 2023-01-31 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery FCC feed pretreater and FCC units
US11359147B2 (en) 2020-04-22 2022-06-14 Chevron U.S.A. Inc. Circular economy for plastic waste to polypropylene via oil refinery with filtering and metal oxide treatment of pyrolysis oil
KR20230004713A (en) 2020-04-22 2023-01-06 셰브런 유.에스.에이.인크. Circular economy of plastic waste to polyethylene through filtration of pyrolysis oil and oil refining with metal oxide treatment
JP2023541114A (en) 2020-09-14 2023-09-28 エコラボ ユーエスエー インコーポレイティド Cold flow additive for synthetic raw materials derived from plastics
CA3194184A1 (en) 2020-09-28 2022-03-31 Chevron Phillips Chemical Company Lp Circular chemicals or polymers from pyrolyzed plastic waste and the use of mass balance accounting to allow for crediting the resultant products as circular
EP4259749A2 (en) 2020-12-10 2023-10-18 Agilyx Corporation Systems and methods for recycling waste plastics
FI130057B (en) 2020-12-30 2023-01-13 Neste Oyj Method for processing liquefied waste polymers
FI130067B (en) 2020-12-30 2023-01-31 Neste Oyj Method for processing liquefied waste polymers
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks
CN116355643B (en) * 2021-12-29 2024-07-05 深圳清研紫光检测技术有限公司 Method for hydrothermally treating polyolefin plastics
IT202200000365A1 (en) * 2022-01-12 2023-07-12 Itelyum Regeneration S P A PROCEDURE FOR DISPOSAL OF TIRES
US11939532B2 (en) 2022-01-25 2024-03-26 Braskem S.A. Methods and systems for co-feeding waste plastics into a refinery
JP2023109380A (en) * 2022-01-27 2023-08-08 Eneos株式会社 Production method of chemical product
JP2023109381A (en) * 2022-01-27 2023-08-08 Eneos株式会社 Production method of chemical product and carbide
JPWO2023153381A1 (en) * 2022-02-08 2023-08-17
CN118715271A (en) * 2022-02-08 2024-09-27 株式会社普利司通 Method for decomposing crosslinked rubber
CN118647659A (en) * 2022-02-08 2024-09-13 株式会社普利司通 Method for decomposing crosslinked rubber
GB2618830B (en) * 2022-05-19 2024-09-11 Quantafuel Asa Processing of plastic
US11802250B1 (en) * 2022-11-10 2023-10-31 Chevron Phillips Chemical Company Lp Systems and processes for processing pyrolysis oil

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE597086C (en) * 1932-08-24 1934-05-16 I G Farbenindustrie Akt Ges Process for the production of high molecular weight hydrogenation products of natural or synthetic rubber, cyclo-rubber, polymerization products of olefins, natural or synthetic resins or similar high polymer substances of solid or highly viscous to lubricating oil-like nature
DE2530229A1 (en) * 1975-07-07 1977-01-27 Helmut Dr Ing Wuerfel Tyre, rubber and or plastic waste depolymerisation - in solvent at high temps. and press. pref. with hydrogenation
US4384150A (en) * 1981-08-20 1983-05-17 Lyakhevich Genrikh D Method of making either a softener for rubber mixtures or a furnace fuel oil
FR2512032B1 (en) * 1981-09-01 1983-12-16 Bruss Ti Kirova PROCESS FOR OBTAINING A SOFTENER FOR RUBBER AND FUEL OIL MIXTURES
DE3442506C2 (en) * 1984-11-22 1987-04-16 Union Rheinische Braunkohlen Kraftstoff AG, 5000 Köln Process for the processing of carbon-containing waste
DE3602041C2 (en) * 1986-01-24 1996-02-29 Rwe Entsorgung Ag Improved process for processing carbon-containing waste
US5079385A (en) * 1989-08-17 1992-01-07 Mobil Oil Corp. Conversion of plastics
US5070109A (en) * 1989-12-20 1991-12-03 Rubber Waste, Inc. Recovery of hydrocrabon products from elastomers
DE4107046A1 (en) * 1991-03-06 1992-09-10 Menges Georg Method for using organic wastes contg. macromolecules
DE4129885A1 (en) * 1990-12-06 1993-03-11 Georg Menges Reprocessing powders and granulates - from polymeric wastes, by mixing with starting materials and treating
ATE141294T1 (en) * 1991-03-05 1996-08-15 Bp Chem Int Ltd CRACKING OF POLYMERS
US5158983A (en) * 1991-10-04 1992-10-27 Iit Research Institute Conversion of automotive tire scrap to useful oils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9422979A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425856B2 (en) 2008-04-25 2013-04-23 Technische Werke Ludwigshafen Ag Device for producing starting materials, combustible substances and fuels from organic substances
WO2019016416A1 (en) 2017-07-17 2019-01-24 Hidalgo Navas Jeronimo Method for recovering and transforming liquid abs plastic

Also Published As

Publication number Publication date
EP0692009B1 (en) 1997-05-28
CA2158032A1 (en) 1994-10-13
HU218853B (en) 2001-02-28
WO1994022979A1 (en) 1994-10-13
CN1049237C (en) 2000-02-09
JP2003129066A (en) 2003-05-08
DE4311034A1 (en) 1994-10-06
PL310893A1 (en) 1996-01-08
KR100390236B1 (en) 2003-10-04
CZ254695A3 (en) 1996-03-13
JP3385025B2 (en) 2003-03-10
FI954685A (en) 1995-10-02
SK121695A3 (en) 1996-05-08
ES2104375T3 (en) 1997-10-01
FI954685A0 (en) 1995-10-02
DE59402926D1 (en) 1997-07-03
RU2127296C1 (en) 1999-03-10
JPH08508520A (en) 1996-09-10
CZ292837B6 (en) 2003-12-17
UA48954C2 (en) 2002-09-16
US5849964A (en) 1998-12-15
AU6536194A (en) 1994-10-24
DE4435238A1 (en) 1996-04-11
PL178639B1 (en) 2000-05-31
NO953758L (en) 1995-09-22
HU9502874D0 (en) 1995-11-28
ATE153692T1 (en) 1997-06-15
KR960701970A (en) 1996-03-28
NZ265043A (en) 1997-06-24
KR970706371A (en) 1997-11-03
SK280953B6 (en) 2000-10-09
BG100108A (en) 1996-07-31
DK0692009T3 (en) 1997-07-14
NO953758D0 (en) 1995-09-22
GR3024422T3 (en) 1997-11-28
BG62572B1 (en) 2000-02-29
UA39203C2 (en) 2001-06-15
CN1120347A (en) 1996-04-10
AU681652B2 (en) 1997-09-04
KR100293752B1 (en) 2001-10-24

Similar Documents

Publication Publication Date Title
EP0692009B1 (en) Process for processing used or waste plastic material
EP0182309B1 (en) Process for the hydrotreatment of carbon-containing wastes of primarily synthetic origin
EP0132612B1 (en) Process for the production of liquid hydrocarbons
WO1995003375A1 (en) Process for recycling plastics in a steam cracker
DE69205164T2 (en) By vacuum pyrolysis recovery of motor vehicle residues.
DE69422027T2 (en) METHOD FOR RECYCLING RECYCLED PLASTIC
WO1995032262A1 (en) Device for depolymerising old and waste plastics
EP0713906B1 (en) Process for recycling of plastics in a steamcracker
EP0784661B1 (en) Process for recovering synthetic raw materials and fuel components from used or waste plastics
CN114507541A (en) Method and system for preparing low-carbon olefin from waste plastic
US4448665A (en) Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes
DE19512029A1 (en) Paraffin, wax and base oil prodn. from plastics
EP0123161B1 (en) Process for the hydrogenation of coal
EP0249748B1 (en) Process for the destructive hydrogenation of carbon-containing wastes in a fluidized bed
US4146459A (en) Treatment of coal liquefaction effluent
DE4417721A1 (en) Depolymerisation plant for scrap and waste plastics
EP3085755A1 (en) Method and system for generating syngas and pyrolysis from coal of different grain sizes
EP0291698A1 (en) Improved process for the hydrocracking of carbon containing synthetic wastes
US20240218257A1 (en) Systems and methods for processing mixed plastic waste
EP0290002A2 (en) Process for the production of pyrolysis oil
CH591555A5 (en) Pyrolysis of carbon-contg materials esp waste products - in a turbulent carrier gas stream, to yield gaseous hydrocarbons, esp ethylene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960701

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 153692

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970528

REF Corresponds to:

Ref document number: 59402926

Country of ref document: DE

Date of ref document: 19970703

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970528

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2104375

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3024422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20000120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20000210

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000303

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20000308

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20000310

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000530

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20010930

NLS Nl: assignments of ep-patents

Owner name: DER GRUENE PUNKT-DUALES SYSTEM DEUTSCHLAND A.G.;RO

BECA Be: change of holder's address

Owner name: *DUALES SYSTEM DEUTDCHLAND A.G.FRANKFURTER STRASSE

Effective date: 20030225

BECH Be: change of holder

Owner name: *DUALES SYSTEM DEUTDCHLAND A.G.

Effective date: 20030225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030318

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030325

Year of fee payment: 10

Ref country code: ES

Payment date: 20030325

Year of fee payment: 10

Ref country code: DE

Payment date: 20030325

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030326

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040913

Year of fee payment: 11

BERE Be: lapsed

Owner name: *DUALES SYSTEM DEUTDCHLAND A.G.

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050325

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050325

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040326

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050325