EP0690780B1 - Three-dimensional object production process - Google Patents

Three-dimensional object production process Download PDF

Info

Publication number
EP0690780B1
EP0690780B1 EP94912502A EP94912502A EP0690780B1 EP 0690780 B1 EP0690780 B1 EP 0690780B1 EP 94912502 A EP94912502 A EP 94912502A EP 94912502 A EP94912502 A EP 94912502A EP 0690780 B1 EP0690780 B1 EP 0690780B1
Authority
EP
European Patent Office
Prior art keywords
process according
layer
subregions
solidified
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94912502A
Other languages
German (de)
French (fr)
Other versions
EP0690780A1 (en
Inventor
Hans J. Langer
Johannes Reichle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
EOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EOS GmbH filed Critical EOS GmbH
Publication of EP0690780A1 publication Critical patent/EP0690780A1/en
Application granted granted Critical
Publication of EP0690780B1 publication Critical patent/EP0690780B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/59Processes in which a partial cure is involved

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional object according to the generic term of Claim 1.
  • EP-A-0 429 196 describes a method according to the preamble of Claim 1 known. Avoiding the occurrence of delay and deformation in the formed object is however in the in described in this document achieved by a layer is exposed in such a way that a boundary vector is exposed and the interior by means of different Techniques is partially exposed.
  • WO 92/20505 also describes a method for manufacturing of a three-dimensional object.
  • WO 92/08200 also describes a method according to the preamble of claim 1 known. Stages by successive Layers are created on the surface through special techniques of additional exposure of the step area balanced.
  • the invention is further illustrated by an embodiment explained with reference to the figure, which is in schematic Representation of a section through part of the object shows in a layer plane.
  • FIG. 1 A partial view of an example of a selected layer is shown in the figure on the basis of which the invention The procedure should first be described in principle.
  • line 1 the contour of the to be manufactured Object in the layer.
  • the area of the layer is grid-like in a variety of square or rectangular Individual areas or voxels i, j .... i + 6, j + 6 with one Side length from 0.1 to 5mm, preferably 0.5 to 2mm, divided.
  • the coordinate data of contour 1 and the individual Individual areas are available in a computer that receives the radiation the shift controls. A comparison is made in the computer the contour data with the coordinate data of the individual areas.
  • this individual area becomes a core area 2 assigned; however, it is found that a single area, for example the individual area i, j, of the contour 1 is cut, then this single area becomes an envelope area 3 assigned. This results in a narrower Envelope area 3, which along the contour line 1 with a on average approximately corresponding to the side length of the individual areas Width extends.
  • the calculation is preferably carried out exclusively in the computer the core area 2; the envelope area 3 is then through Subtraction of the individual areas of core area 2 from the whole body calculated.
  • the core area 2 all individual areas are marked which are fully inside the Body section, i.e. the contour line 1.
  • the individual areas are assigned to Shell or core, however, not just two-dimensional, like Explained in principle above, but three-dimensionally, in order to defined thickness of the envelope area 3 in all three spatial directions to obtain.
  • contour line 1 corresponds to a contour surface and when calculating the core area all individual areas marked that fully inside this contour area lie.
  • Each individual area i, j contains in addition to the Information about the current shift including the corresponding one Information about previous shifts.
  • the predetermined number depends on the desired number Shell thickness and the spatial distance between the individual areas; with layer thicknesses of 0.1mm and a shell thickness of 0.5mm For example, this number is 5.
  • the same consideration also applies to subsequent layers: it only those individual areas are included in the core that in a given number of subsequent layers also belong to the core or would belong to it.
  • the individual areas in the core area 2 only along closed Solidify lines, so that hollow structures such as Honeycomb structures result in which are still liquid or powdery material is included, which after the Solidification of the object either drained or by post-hardening is solidified.
  • This method is particularly suitable to avoid thermal expansion, for example for melting molds, and also for direct production of molds.
  • the inverted object is converted into a enveloping cuboid. This creates a negative form on the one in the manner described above Disassembly into shell and core is made.
  • the radiation is carried out in such a way that that there is a high degree of polymerization and thus a high Strength with low tendency to warp results.
  • the envelope area 3 there is high accuracy and quality of the surface on the contour 1. This is done the radiation or solidification in the envelope area 3 all over either in the form of side by side Hatching lines or one or more side by side Contour lines, i.e. the contour 1 for example as Polyline following line groups. Also a combination of these line types in a layer or in one on top of the other Layering is possible.
  • the radiation in the core area 2 and in the envelope area 3 one single layer can be simultaneously or in succession by appropriate control using a single or also several light beams or laser beams take place, whereby the layer thickness in core area 2 and envelope area 3 is equal to.
  • a number N of layers of the envelope region 3 solidify, where N is an integer.
  • the material in the core area 2 initially remains liquid or powdery with a layer thickness that is N times the layer thickness of the Envelope area 3 corresponds. With the Nth layer too this thick layer of the core area by correspondingly intense Irradiation solidified. This can save time for the production of the core and thus for the production of the object can be significantly reduced.
  • the core is not fully solidified, it is advantageous to provide openings in the shell through which the Core remaining liquid or powdery material after the solidification of the object can flow off. For example so that in every nth layer Breakthroughs of the envelope area 3 are provided, so are large enough to allow material to flow out, but do not affect the surface quality.
  • the particular advantage of the described method lies in that through the superimposed envelope areas 3 a relatively stable shell is made that it allowed the core area by means of a default minimizing technique without losing stability of the object suffers. For example, it's only because of this Cover possible on the connecting webs between the individual Dispense with cells or hollow structures in the core area. Furthermore, the manufacturing time is significantly reduced that at the core, which covers the vast majority of the Object volume forms, is only partially solidified.

Abstract

A process for producing a three-dimensional object by successively solidifying individual layers of the object made of a liquid or powdery material by electromagnetic radiation has the disadvantage that the object either is deformed because of material shrinkage or has a lower quality surface when it is designed so as to reduce material shrinkage. To solve this problem, each layer is subdivided into an inner core zone (2) and into an outer enveloping zone (3). Exposure to radiation is differently controlled in the core zone and in the enveloping zone in order to generate different properties in each zone.

Description

Die vorliegende Erfindung betrifft ein verfahren zum Herstellen eines dreidimensionalen Objekts nach dem Oberbegriff des Anspruchs 1.The present invention relates to a method for manufacturing a three-dimensional object according to the generic term of Claim 1.

Ein derartiges verfahren ist aus der EP 0 171 069 A bekannt. Bei einem derartigen Verfahren kann zwar eine gute Oberfläche erhalten werden, es tritt aber das Problem auf, daß eine Maßhaltigkeit des Objekts wegen der Verformung der einzelnen Schichten aufgrund von Schrumpfung des Materials nicht gewährleistet ist. Auch ist die Herstellungszeit lang.Such a method is known from EP 0 171 069 A. With such a method, a good surface can be used can be obtained, but the problem arises that a Dimensional accuracy of the object due to the deformation of the individual Layers not guaranteed due to material shrinkage is. The manufacturing time is also long.

Aus der EP 0 362 982 A ist es bekannt, zur Reduzierung der Verformungen entweder zunächst einzelne Streifen zu verfestigen, die mit benachbarten und darunterliegenden Streifen nur über eine Stützkonstruktion verbunden sind, oder die Schicht nur bereichsweise zu verfestigen, wobei im Objekt Spalten zwischen den Bereichen entstehen. In beiden Fällen kann jedoch keine hohe Oberflächenqualität erhalten werden. From EP 0 362 982 A it is known to reduce the Deformation either initially to individual strips solidify that with neighboring and underlying Stripes are connected only via a support structure, or to solidify the layer only in areas, whereby in the object Columns arise between the areas. In both cases however, high surface quality cannot be obtained.

Aus der EP-A-0 429 196 ist ein Verfahren nach dem Oberbegriff des Patentanspruches 1 bekannt. Das Vermeiden des Auftretens von Verzug und Verformung in dem gebildeten Objekt wird jedoch bei dem in dieser Druckschrift beschriebenen Verfahren dadurch erreicht, indem die Belichtung einer Schicht derart erfolgt, daß ein Begrenzungsvektor belichtet wird und das Innere mittels unterschiedlicher Techniken jeweils teilweise belichtet wird.EP-A-0 429 196 describes a method according to the preamble of Claim 1 known. Avoiding the occurrence of delay and deformation in the formed object is however in the in described in this document achieved by a layer is exposed in such a way that a boundary vector is exposed and the interior by means of different Techniques is partially exposed.

Aus der WO 92/20505 ist ebenfalls ein Verfahren zum Herstellen eines dreidimensionalen Objektes bekannt.WO 92/20505 also describes a method for manufacturing of a three-dimensional object.

Aus der WO 92/08200 ist ebenfalls ein Verfahren nach dem Oberbegriff des Patentanspruches 1 bekannt. Stufen, die durch aufeinanderfolgende Schichten an der Oberfläche erzeugt werden, werden durch spezielle Techniken der zusätzlichen Belichtung des Stufenbereiches ausgeglichen. WO 92/08200 also describes a method according to the preamble of claim 1 known. Stages by successive Layers are created on the surface through special techniques of additional exposure of the step area balanced.

Es ist Aufgabe der Erfindung, ein Verfahren der oben genannten Art derart zu verbessern, daß eine geringe Verformung des Objekts bei gleichzeitiger hoher Oberflächenqualität erhalten wird. Ferner soll die Genauigkeit der Oberfläche erhöht und der Materialverbrauch sowie die Bauzeit verringert werden.It is an object of the invention, a method of the above Art to improve such that a small deformation of the Object with high surface quality at the same time becomes. Furthermore, the accuracy of the surface should be increased and material consumption and construction time are reduced.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Weiterbildungen sind in den abhängigen Ansprüchen gekennzeichnet. This object is achieved by a method with solved the features of claim 1. Further training is in the dependent claims.

Die Erfindung wird im weiteren anhand eines Ausführungsbeispiels unter Bezug auf die Figur erläutert, die in schematischer Darstellung einen Schnitt durch einen Teil des Objekts in einer Schichtebene zeigt.The invention is further illustrated by an embodiment explained with reference to the figure, which is in schematic Representation of a section through part of the object shows in a layer plane.

Das erfindungsgemäße Verfahren arbeitet nach dem unter dem Begriff "Stereographie" oder "Stereolithographie" bekannten Verfahren, wie es beispielsweise in der EP-A-0 171 069 dargestellt ist. Hierbei wird auf einen Träger bzw. eine bereits verfestigte Schicht eine Schicht eines flüssigen oder pulverförmigen Materials aufgetragen und durch Bestrahlen mit einem gerichteten Lichtstrahl, beispielsweise einem Laser, an dem Objekt entsprechenden Stellen verfestigt. Durch entsprechendes Verfestigen einer Vielzahl von Schichten wird das Objekt schichtweise erstellt. Zur genaueren Beschreibung dieses Verfahrens wird auf die genannte EP-A-0 171 069 Bezug genommen, die insoweit Teil dieser Anmeldung sein soll.The inventive method works according to the The term "stereography" or "stereolithography" is known Processes as described, for example, in EP-A-0 171 069 is. This is done on a carrier or one already solidified layer a layer of a liquid or powdered material applied and by irradiation with a directed light beam, for example a laser places corresponding to the object. By doing so Solidify a multitude of layers of the object created in layers. For a more detailed description of this The method is referred to the aforementioned EP-A-0 171 069, which should be part of this application.

Eine Teilansicht einer beispielhaft herausgegriffenen Schicht ist in der Figur dargestellt, anhand der das erfindungsgemäße Verfahren zunächst im Prinzip beschrieben werden soll. In der Figur bezeichnet die Linie 1 die Kontur des herzustellenden Objekts in der Schicht. Die Fläche der Schicht ist rasterförmig in eine Vielzahl von quadratischen oder rechteckigen Einzelbereichen bzw. Voxels i,j....i+6,j+6 mit einer Seitenlänge von 0.1 bis 5mm, vorzugsweise 0.5 bis 2mm, aufgeteilt. Die Koordinatendaten der Kontur 1 sowie der einzelnen Einzelbereiche liegen in einem Rechner vor, der die Bestrahlung der Schicht steuert. Im Rechner erfolgt ein Vergleich der Konturdaten mit den Koordinatendaten der Einzelbereiche. Stellt der Rechner fest, daß ein Einzelbereich, beispielsweise der Einzelbereich i+1,j, vollständig innerhalb der Kontur 1 liegt, dann wird dieser Einzelbereich einem Kernbereich 2 zugeordnet; wird dagegen festgestellt, daß ein Einzelbereich, beispielsweise der Einzelbereich i,j, von der Kontur 1 geschnitten wird, dann wird dieser Einzelbereich einem Hüllbereich 3 zugeordnet. Damit ergibt sich ein schmaler Hüllbereich 3, der sich entlang der Konturlinie 1 mit einer im Mittel etwa der Seitenlänge der Einzelbereiche entsprechenden Breite erstreckt.A partial view of an example of a selected layer is shown in the figure on the basis of which the invention The procedure should first be described in principle. In the Figure denotes line 1 the contour of the to be manufactured Object in the layer. The area of the layer is grid-like in a variety of square or rectangular Individual areas or voxels i, j .... i + 6, j + 6 with one Side length from 0.1 to 5mm, preferably 0.5 to 2mm, divided. The coordinate data of contour 1 and the individual Individual areas are available in a computer that receives the radiation the shift controls. A comparison is made in the computer the contour data with the coordinate data of the individual areas. If the computer determines that a single area, for example the individual area i + 1, j, completely within the contour 1, then this individual area becomes a core area 2 assigned; however, it is found that a single area, for example the individual area i, j, of the contour 1 is cut, then this single area becomes an envelope area 3 assigned. This results in a narrower Envelope area 3, which along the contour line 1 with a on average approximately corresponding to the side length of the individual areas Width extends.

Vorzugsweise erfolgt im Rechner ausschließlich die Berechnung des Kernbereiches 2; der Hüllbereich 3 wird danach durch Subtraktion der Einzelbereiche des Kernbereiches 2 vom Gesamtkörper berechnet. Bei der Berechnung des Kernbereiches 2 werden alle Einzelbereiche markiert, die voll im Innern des Körperschnittes, also der Konturlinie 1, liegen.The calculation is preferably carried out exclusively in the computer the core area 2; the envelope area 3 is then through Subtraction of the individual areas of core area 2 from the whole body calculated. When calculating the core area 2 all individual areas are marked which are fully inside the Body section, i.e. the contour line 1.

Im Einzelnen erfolgt die Zuordnung der Einzelbereiche zur Hülle oder zum Kern allerdings nicht nur zweidimensional, wie oben im Prinzip erläutert, sondern dreidimensional, um eine definierte Dicke des Hüllbereichs 3 in allen drei Raumrichtungen zu erhalten.The individual areas are assigned to Shell or core, however, not just two-dimensional, like Explained in principle above, but three-dimensionally, in order to defined thickness of the envelope area 3 in all three spatial directions to obtain.

In diesem Fall entspricht der Konturlinie 1 eine Konturfläche und bei der Berechnung des Kerngebietes werden alle Einzelbereiche markiert, die voll im Inneren dieser Konturfläche liegen. Jeder Einzelbereich i,j beinhaltet dabei neben der Information über die aktuelle Schicht auch die entsprechende Information der vorangegangenen Schichten. Hierbei werden nur diejenigen Einzelbereiche als zum Kern gehörend markiert, die in einer vorbestimmten Anzahl von vorausgehenden Schichten ebenfalls Kerngebiete darstellten bzw. darstellen würden. Die vorbestimmte Anzahl hängt dabei von der erwünschten Hüllendicke un dem räumlichen Abstand der Einzelbereiche ab; bei Schichtdicken von 0.1mm und einer Hüllendicke von 0.5mm werden beispielsweise beträgt diese Anzahl beispielsweise 5. Dieselbe Betrachtung gilt auch für nachfolgende Schichten: es werden nur diejenigen Einzelbereiche zum Kern gerechnet, die in einer vorgegebenen Anzahl von nachfolgenden Schichten ebenfalls zum Kern gehören bzw. gehören würden.In this case, contour line 1 corresponds to a contour surface and when calculating the core area all individual areas marked that fully inside this contour area lie. Each individual area i, j contains in addition to the Information about the current shift including the corresponding one Information about previous shifts. Here, only those individual areas marked as belonging to the core, the in a predetermined number of previous shifts also represented or would represent core areas. The predetermined number depends on the desired number Shell thickness and the spatial distance between the individual areas; with layer thicknesses of 0.1mm and a shell thickness of 0.5mm For example, this number is 5. The same consideration also applies to subsequent layers: it only those individual areas are included in the core that in a given number of subsequent layers also belong to the core or would belong to it.

Nach der Zuordnung aller Einzelbereiche einer Schicht erfolgt die Verfestigung durch Bestrahlen der Schicht innerhalb der Einzelbereiche an den dem Objekt entsprechenden Stellen. Diese Bestrahlung erfolgt nun in unterschiedlicher Art und Weise, je nachdem ob es sich um einen Einzelbereich im Kernbereich oder einen solchen im Hüllbereich handelt. Da es im Kernbereich 2 (im Vergleich zum schmalen Hüllbereich 3) auf einen geringen Verzug, einen geringen Materialverbrauch und geringe Bauzeiten ankommt, werden dort die Einzelbereiche nicht vollflächig, sondern in Form einzelner Zellen bestrahlt bzw. verfestigt, die untereinander entweder durch schmale Stege oder vorzugsweise überhaupt nicht verbunden, sondern durch Trennfugen getrennt sind. Alternativ ist es möglich, die Einzelbereiche im Kernbereich 2 nur entlang geschlossener Linienzüge zu verfestigen, sodaß sich Hohlstrukturen wie z.B. Wabenstrukturen ergeben, in denen noch flüssiges oder pulverförmiges Material eingeschlossen ist, das nach der Verfestigung des Objekts entweder abgelassen oder durch Nachhärten verfestigt wird. Dieses Verfahren eignet sich besonders zur Vermeidung von thermischen Ausdehnungen, beispielsweise bei Ausschmelzformen, und auch zur direkten Herstellung von Gußformen. Hierbei wird das invertierte Objekt in einen einhüllenden Quader gesetzt. Hieraus ergibt sich eine Negativform, an der in der oben beschriebenen Weise eine Zerlegung in Hülle und Kern vorgenommen wird.After assigning all individual areas to a shift the solidification by irradiating the layer within the Individual areas at the locations corresponding to the object. This radiation is now carried out in different ways and Way, depending on whether it is a single area in the core area or one in the envelope area. Since it is in Core area 2 (compared to the narrow envelope area 3) low warpage, low material consumption and If the construction times are short, the individual areas are there not irradiated over the entire area but in the form of individual cells or solidified, either by narrow Bridges or preferably not connected at all, but are separated by parting lines. Alternatively, it is possible the individual areas in the core area 2 only along closed Solidify lines, so that hollow structures such as Honeycomb structures result in which are still liquid or powdery material is included, which after the Solidification of the object either drained or by post-hardening is solidified. This method is particularly suitable to avoid thermal expansion, for example for melting molds, and also for direct production of molds. Here, the inverted object is converted into a enveloping cuboid. This creates a negative form on the one in the manner described above Disassembly into shell and core is made.

Im Kernbereich 2 wird die Bestrahlung derart durchgeführt, daß sich ein hoher Polymerisationsgrad und damit eine hohe Festigkeit bei geringer Verzugstendenz ergibt.In core area 2, the radiation is carried out in such a way that that there is a high degree of polymerization and thus a high Strength with low tendency to warp results.

Im Hüllbereich 3 kommt es dagegen auf eine hohe Genauigkeit und Qualität der Oberfläche an der Kontur 1 an. Hierzu erfolgt die Bestrahlung bzw. Verfestigung im Hüllbereich 3 vollflächig entweder in Form nebeneinanderliegender Schraffurlinien oder einer bzw. mehrerer nebeneinanderliegenden Konturlinien, d.h. der Kontur 1 beispielsweise als Polygonzug folgenden Liniengruppen. Auch eine Kombination dieser Linientypen in einer Schicht oder in übereinanderliegenden Schichten ist möglich. In the envelope area 3, on the other hand, there is high accuracy and quality of the surface on the contour 1. This is done the radiation or solidification in the envelope area 3 all over either in the form of side by side Hatching lines or one or more side by side Contour lines, i.e. the contour 1 for example as Polyline following line groups. Also a combination of these line types in a layer or in one on top of the other Layering is possible.

Die Bestrahlung im Kernbereich 2 und im Hüllbereich 3 einer einzigen Schicht kann gleichzeitig oder auch nacheinander durch entsprechende Steuerung mittels eines einzigen oder auch mehrerer Lichtstrahlen bzw. Laserstrahlen erfolgen, wobei die Schichtdicke im Kernbereich 2 und Hüllbereich 3 gleich ist. Es ist jedoch besonders vorteilhaft, zunächst eine Anzahl N von Schichten des Hüllbereichs 3 zu verfestigen, wobei N eine ganze Zahl darstellt. Das Material im Kernbereich 2 bleibt zunächst flüssig bzw. pulverförmig mit einer Schichtdicke, die dem N-fachen der Schichtdicke des Hüllbereichs 3 entspricht. Bei der N-ten Schicht wird auch diese dicke Schicht des Kernbereichs durch entsprechend intensives Bestrahlen verfestigt. Dadurch kann der Zeitaufwand für die Herstellung des Kerns und damit für die Herstellung des Objekts erheblich reduziert werden.The radiation in the core area 2 and in the envelope area 3 one single layer can be simultaneously or in succession by appropriate control using a single or also several light beams or laser beams take place, whereby the layer thickness in core area 2 and envelope area 3 is equal to. However, it is particularly advantageous initially a number N of layers of the envelope region 3 solidify, where N is an integer. The material in the core area 2 initially remains liquid or powdery with a layer thickness that is N times the layer thickness of the Envelope area 3 corresponds. With the Nth layer too this thick layer of the core area by correspondingly intense Irradiation solidified. This can save time for the production of the core and thus for the production of the object can be significantly reduced.

Wird der Kern nicht vollständig verfestigt, so ist es vorteilhaft, in der Hülle Öffnungen vorzusehen, durch die das im Kern verbliebene flüssige oder pulverförmige Material nach der Verfestigung des Objekts abfließen kann. Dies kann beispielsweise so erfolgen, daß in jeder n-ten Schicht Durchbrechungen des Hüllbereichs 3 vorgesehen werden, die so groß bemessen sind, daß sie ein Ausströmen des Materials zulassen, aber die Oberflächenqualität nicht beeinträchtigen.If the core is not fully solidified, it is advantageous to provide openings in the shell through which the Core remaining liquid or powdery material after the solidification of the object can flow off. For example so that in every nth layer Breakthroughs of the envelope area 3 are provided, so are large enough to allow material to flow out, but do not affect the surface quality.

Der besondere Vorteil des beschriebenen Verfahrens liegt darin, daß durch die übereinanderliegenden Hüllbereiche 3 eine verhältnismäßig stabile Hülle hergestellt wird, die es erlaubt, den Kernbereich mittels einer einen Verzug minimierenden Technik herzustellen, ohne daß die Stabilität des Objekts leidet. Beispielsweise ist es nur wegen dieser Hülle möglich, auf die Verbindungsstege zwischen den einzelnen Zellen oder Hohlstrukturen des Kernbereichs zu verzichten. Ferner wird die Herstellungszeit dadurch erheblich reduziert, daß im Kern, der den ganz überwiegenden Teil des Objektvolumens bildet, nur partiell verfestigt wird.The particular advantage of the described method lies in that through the superimposed envelope areas 3 a relatively stable shell is made that it allowed the core area by means of a default minimizing technique without losing stability of the object suffers. For example, it's only because of this Cover possible on the connecting webs between the individual Dispense with cells or hollow structures in the core area. Furthermore, the manufacturing time is significantly reduced that at the core, which covers the vast majority of the Object volume forms, is only partially solidified.

Claims (17)

  1. Process for producing a three-dimensional object, in which the object is created by successive solidifying of individual layers of liquid or powdered, solidifiable material by the action of an electromagnetic radiation, each layer being broken down into an inner core region (2) and an outer shell region (3) and that the action of radiation in the core region (2) and in the shell region (3) is controlled differently to create different properties of the two regions, characterized in that the shell region (3) is determined by subtraction in a three-dimensional way of individual regions of the core region (2) from the overall body.
  2. Process according to Claim 1, characterized in that the action of radiation in the core region (2) takes place in such a way that the deformation of the object during and after the solidification is minimal, and in that the action of radiation in the shell region (3) takes place to create as smooth and accurate a surface as possible.
  3. Process according to Claim 2, characterized in that, in the core region (2), individual spaced-apart subregions are solidified, and in that, if appropriate, the intermediate regions between the subregions are likewise solidified after solidifying the subregions of one layer or after solidifying all the subregions of the object.
  4. Process according to Claim 2 or 3, characterized in that, in the core region (2), individual strips are solidified which are joined to neighbouring strips and strips lying underneath by means of a supporting structure are solidified.
  5. Process according to Claim 2, characterized in that, in the core region (2), first of all subregions of one layer are solidified and are thereby joined to subregions lying underneath of the previously solidified layer to form multi-layered cells, in that thereafter the subregions are joined to the neighbouring subregions of the same layer by solidifying of narrow joining regions between the subregions in the form of joining webs, and in that finally the intermediate regions between the subregions are solidified.
  6. Process according to Claim 5, characterized in that the joining regions are solidified only after a waiting time, which corresponds to a shrinkage of the subregions by at least a given amount.
  7. Process according to Claim 3, characterized in that the subregions are formed to create hollow structures, preferably honeycomb structures.
  8. Process according to one of the preceding claims, characterized in that, in the shell region (3), sub-regions lying closely next to one another are solidified.
  9. Process according to one of the preceding claims, characterized in that the action of radiation in the shell region (3) takes place along one or more lines, which describe the outer edge of the shell region or are parallel to the latter.
  10. Process according to one of the preceding claims, characterized in that the layer thickness in the shell region (3) is chosen to be less than in the core region.
  11. Process according to Claim 10, characterized in that first of all a whole number N of layers of the shell region (3) are solidified and thereafter a layer of the core region (2) is solidified with a layer thickness corresponding to N times the thickness of the shell region layers.
  12. Process according to one of the preceding claims, characterized in that, for the shell region (3), there are defined in a layer volume elements of the object which lie within a given distance from the edge of the object in this layer.
  13. Process according to Claim 12, characterized in that those volume elements which are touched or intersected by the edge or the contour of the object in a layer and/or in a predetermined number of preceding and/or subsequent layers of this layer are defined.
  14. Process according to one of the preceding claims, characterized in that, for the shell region (3), a thickness of 0.1 to 5 mm, preferably 0.5 to 2 mm, is chosen.
  15. Process according to one of the preceding claims, characterized in that, in the shell region (3), openings through which the unsolidified material can flow out of the core region (2) are formed.
  16. Process according to one of Claims 1 to 15, characterized in that the shell region (3) has a defined thickness, its width in a layer corresponding on average to approximately the side length of the individual regions.
  17. Use of a process according to one of Claims 1 to 15 for producing casting moulds, the inverted object being placed into an enveloping block and a negative mould obtained from it, on which the breakdown into shell and core is performed.
EP94912502A 1993-03-24 1994-03-22 Three-dimensional object production process Expired - Lifetime EP0690780B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4309524A DE4309524C2 (en) 1993-03-24 1993-03-24 Method of making a three-dimensional object
DE4309524 1993-03-24
PCT/EP1994/000900 WO1994021446A1 (en) 1993-03-24 1994-03-22 Three-dimensional object production process

Publications (2)

Publication Number Publication Date
EP0690780A1 EP0690780A1 (en) 1996-01-10
EP0690780B1 true EP0690780B1 (en) 1998-07-01

Family

ID=6483701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94912502A Expired - Lifetime EP0690780B1 (en) 1993-03-24 1994-03-22 Three-dimensional object production process

Country Status (5)

Country Link
US (1) US5932059A (en)
EP (1) EP0690780B1 (en)
JP (1) JPH08504139A (en)
DE (2) DE4309524C2 (en)
WO (1) WO1994021446A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016007817A1 (en) 2016-06-23 2017-12-28 Daimler Ag Method for smoothing a surface of a component
US10625374B2 (en) 2013-02-27 2020-04-21 SLM Solutions Group AG Method for producing work pieces having a tailored microstructure

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440397C2 (en) * 1994-11-11 2001-04-26 Eos Electro Optical Syst Methods of making molds
PT711213E (en) * 1994-05-27 2000-10-31 Eos Electro Optical Syst PROCESS FOR USE IN FOUNDATION
DE4436695C1 (en) * 1994-10-13 1995-12-21 Eos Electro Optical Syst Stereolithography, the making of a three dimensional object by irradiation of powder or liquid layers
WO1997014549A1 (en) * 1995-10-13 1997-04-24 Eos Gmbh Electro Optical Systems Process for producing a three-dimensional object
DE19606128A1 (en) * 1996-02-20 1997-08-21 Eos Electro Optical Syst Device and method for producing a three-dimensional object
DE19929199A1 (en) * 1999-06-25 2001-01-18 Hap Handhabungs Automatisierun Method and device for producing a three-dimensional object
JP3687475B2 (en) * 2000-03-28 2005-08-24 松下電工株式会社 Method for modeling solid objects
DE10042134C2 (en) * 2000-08-28 2003-06-12 Concept Laser Gmbh Process for the production of three-dimensional sintered workpieces
US6699424B2 (en) 2001-06-29 2004-03-02 3D Systems, Inc. Method for forming three-dimensional objects
WO2003039844A1 (en) * 2001-10-30 2003-05-15 Concept Laser Gmbh Method for the production of three-dimensional sintered workpieces
DE10219984C1 (en) * 2002-05-03 2003-08-14 Bego Medical Ag Device for producing freely formed products through a build-up of layers of powder-form material, has powder spread over a lowerable table, and then solidified in layers by a laser energy source
DE10219983B4 (en) * 2002-05-03 2004-03-18 Bego Medical Ag Process for manufacturing products using free-form laser sintering
EP1536395A4 (en) * 2002-05-10 2012-08-01 Nagoya Ind Science Res Inst Three-dimensional model
SE524420C2 (en) * 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
SE524439C2 (en) * 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
SE524421C2 (en) * 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
GB0317387D0 (en) * 2003-07-25 2003-08-27 Univ Loughborough Method and apparatus for combining particulate material
DE10336561B4 (en) 2003-08-07 2019-05-02 Lim Laserinstitut Mittelsachsen Gmbh Method for producing a miniature body or microstructured body
US20050087897A1 (en) * 2003-10-23 2005-04-28 Nielsen Jeffrey A. Systems and methods for reducing waste in solid freeform fabrication
US7569174B2 (en) * 2004-12-07 2009-08-04 3D Systems, Inc. Controlled densification of fusible powders in laser sintering
US7829000B2 (en) * 2005-02-25 2010-11-09 Hewlett-Packard Development Company, L.P. Core-shell solid freeform fabrication
US8044437B1 (en) 2005-05-16 2011-10-25 Lsi Logic Corporation Integrated circuit cell architecture configurable for memory or logic elements
DE102005027311B3 (en) * 2005-06-13 2006-11-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Toolmaking process to fabricate a form by successive application of powder layers solidified by laser beam
DE102005030067A1 (en) * 2005-06-27 2006-12-28 FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen Apparatus for producing objects using generative method, e.g. selective laser sintering, has system for generating mist of fluid between electromagnetic component and process chamber
DE102006008332B4 (en) * 2005-07-11 2009-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of a functional structural unit and functional structural unit
DE102005049886A1 (en) * 2005-10-17 2007-04-19 Sirona Dental Systems Gmbh Tooth replacement part manufacturing method involves energy beam sintering powder material at the edge area to a greater density than in inner region by varying process parameters during sintering
DE102005050665A1 (en) * 2005-10-20 2007-04-26 Bego Medical Gmbh Layer-wise production process with grain size influencing
ES2328430B1 (en) * 2006-04-06 2010-09-16 Moises Mora Garcia MANUFACTURING MACHINE FOR DENTAL AND MAXILOFACIAL PROTESIS FROM A THREE-DIGITAL DIGITAL MODEL THROUGH DIRECT APPLICATION OF LASER AND SINTERIZATION, AND PROCEDURE OF OPERATION OF THE MACHINE SAID.
EP1880830B1 (en) * 2006-07-19 2011-12-21 Envisiontec GmbH Method and device for producing a three-dimensional object, and computer and data carrier useful thereof
DK2052693T4 (en) 2007-10-26 2021-03-15 Envisiontec Gmbh Process and free-form manufacturing system to produce a three-dimensional object
DE102007057129B4 (en) 2007-11-24 2010-07-22 Hochschule Mittweida (Fh) Method and apparatus for high performance micromachining a body or powder layer with a high brilliance laser
EP2402097A4 (en) 2009-02-24 2014-04-09 Panasonic Corp Process for producing three-dimensional shape and three-dimensional shape obtained thereby
ES2663554T5 (en) 2009-04-28 2022-05-06 Bae Systems Plc Layered additive manufacturing method
WO2010125381A1 (en) 2009-04-28 2010-11-04 Bae Systems Plc Additive layer fabrication method
WO2010150805A1 (en) 2009-06-23 2010-12-29 パナソニック電工株式会社 Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
DE102009043597A1 (en) * 2009-09-25 2011-04-07 Siemens Aktiengesellschaft Method for producing a marked object
GB201016169D0 (en) * 2010-09-27 2010-11-10 Materialise Nv Method for reducing differential shrinkage in stereolithography
DE102011089194A1 (en) * 2011-12-20 2013-06-20 BAM Bundesanstalt für Materialforschung und -prüfung Method of manufacturing a compact component and component that can be produced by the method
DE102012212587A1 (en) 2012-07-18 2014-01-23 Eos Gmbh Electro Optical Systems Apparatus and method for layering a three-dimensional object
DE102013212803A1 (en) 2013-07-01 2015-01-08 Eos Gmbh Electro Optical Systems Method for producing a three-dimensional object
JP6229155B2 (en) * 2013-10-03 2017-11-15 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
EP2875897B1 (en) * 2013-11-21 2016-01-20 SLM Solutions Group AG Method of and device for controlling an irradiation system for producing a three-dimensional workpiece
JP6146294B2 (en) * 2013-12-25 2017-06-14 トヨタ自動車株式会社 Manufacturing method of three-dimensional shaped object
CN106061718B (en) 2014-03-05 2018-01-02 松下知识产权经营株式会社 The manufacture method of three dimensional structure
TWI609769B (en) * 2014-06-03 2018-01-01 三緯國際立體列印科技股份有限公司 Three dimensional structure and three dimensional printing method
WO2015196149A1 (en) 2014-06-20 2015-12-23 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
GB201500607D0 (en) * 2015-01-14 2015-02-25 Digital Metal Ab Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured object
DE102015201775A1 (en) 2015-02-02 2016-08-04 Gkn Sinter Metals Engineering Gmbh Method and device for the additive production of components
DE102015217469A1 (en) * 2015-09-11 2017-03-16 Eos Gmbh Electro Optical Systems Method and device for producing a three-dimensional object
CN108367498A (en) 2015-11-06 2018-08-03 维洛3D公司 ADEPT 3 D-printings
EP3386662A4 (en) 2015-12-10 2019-11-13 Velo3d Inc. Skillful three-dimensional printing
US20170239719A1 (en) 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
EP3263316B1 (en) 2016-06-29 2019-02-13 VELO3D, Inc. Three-dimensional printing and three-dimensional printers
US20180126460A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US20180186082A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10695865B2 (en) 2017-03-03 2020-06-30 General Electric Company Systems and methods for fabricating a component with at least one laser device
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
EP3482853A1 (en) 2017-11-13 2019-05-15 Renishaw PLC Additive manufacturing apparatus and methods
WO2019063999A1 (en) 2017-09-29 2019-04-04 Renishaw Plc Additive manufacturing apparatus and methods
US11292071B2 (en) * 2017-11-15 2022-04-05 Kobe Steel, Ltd. Method for producing molded article, production device, and molded article
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10518356B2 (en) 2018-02-05 2019-12-31 General Electric Company Methods and apparatus for generating additive manufacturing scan paths using thermal and strain modeling
JP6956044B2 (en) * 2018-06-04 2021-10-27 株式会社日立製作所 Powdered additive manufacturing and its manufacturing method
JP7322145B2 (en) * 2018-11-09 2023-08-07 レイヤーワイズ エヌヴェ Alternating double layer contouring and hatching for 3D manufacturing
CN110654028B (en) * 2019-10-12 2021-03-05 上海联泰科技股份有限公司 Three-dimensional object data layering processing method and 3D printing equipment

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
ES2063737T3 (en) * 1986-06-03 1995-01-16 Cubital Ltd APPARATUS AND METHOD FOR THREE-DIMENSIONAL MODELING.
IL79007A (en) * 1986-06-03 1989-09-10 Scitex Corp Ltd Apparatus and method for three-dimensional mapping and modeling
KR0178873B1 (en) * 1988-04-18 1999-05-15 찰스 윌리엄 헐 Stereolithographic curl reduction
US5130064A (en) * 1988-04-18 1992-07-14 3D Systems, Inc. Method of making a three dimensional object by stereolithography
DE362982T1 (en) * 1988-04-18 1996-06-27 3D Systems Inc Reduce stereolithographic bending.
US5182056A (en) * 1988-04-18 1993-01-26 3D Systems, Inc. Stereolithography method and apparatus employing various penetration depths
US5256340A (en) * 1988-04-18 1993-10-26 3D Systems, Inc. Method of making a three-dimensional object by stereolithography
EP0338751B1 (en) * 1988-04-18 1996-03-20 3D Systems, Inc. Stereolithographic supports
US5182055A (en) 1988-04-18 1993-01-26 3D Systems, Inc. Method of making a three-dimensional object by stereolithography
US5015424A (en) * 1988-04-18 1991-05-14 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
JPH0757531B2 (en) * 1988-10-01 1995-06-21 松下電工株式会社 Three-dimensional shape forming method
JPH0757532B2 (en) * 1988-10-19 1995-06-21 松下電工株式会社 Three-dimensional shape forming method
DE69034126T2 (en) * 1989-10-30 2004-10-28 3D Systems, Inc., Valencia Stereolithographic shaping techniques
JP2671534B2 (en) * 1989-12-25 1997-10-29 松下電工株式会社 3D shape forming method
DE555369T1 (en) * 1990-10-30 1996-10-10 3D Systems Inc LAYER COMPARISON TECHNIQUES IN STEREOLITHOGRAPHY.
US5238639A (en) * 1990-10-31 1993-08-24 3D Systems, Inc. Method and apparatus for stereolithographic curl balancing
JPH0745196B2 (en) * 1990-11-02 1995-05-17 三菱商事株式会社 Light solidification modeling device
JP3170832B2 (en) * 1991-12-26 2001-05-28 ソニー株式会社 Optical molding method
JPH06114948A (en) * 1992-10-01 1994-04-26 Shiimetsuto Kk Optically curable molded form with uncured liquid outlet and molding method therefor
DE4233812C1 (en) * 1992-10-07 1993-11-04 Eos Electro Optical Syst METHOD AND DEVICE FOR PRODUCING THREE-DIMENSIONAL OBJECTS
JP2853497B2 (en) * 1993-01-12 1999-02-03 ソニー株式会社 Optical molding equipment
JP3422039B2 (en) * 1993-03-19 2003-06-30 ソニー株式会社 Optical shaping method and optical shaping apparatus
JPH0757532A (en) * 1993-08-09 1995-03-03 Tosoh Corp Ion conductor and manufacture thereof
JP3331017B2 (en) * 1993-08-18 2002-10-07 松下電工株式会社 Lighting equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10625374B2 (en) 2013-02-27 2020-04-21 SLM Solutions Group AG Method for producing work pieces having a tailored microstructure
DE102016007817A1 (en) 2016-06-23 2017-12-28 Daimler Ag Method for smoothing a surface of a component

Also Published As

Publication number Publication date
EP0690780A1 (en) 1996-01-10
DE59406372D1 (en) 1998-08-06
US5932059A (en) 1999-08-03
WO1994021446A1 (en) 1994-09-29
DE4309524C2 (en) 1998-05-20
DE4309524C1 (en) 1993-11-25
JPH08504139A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
EP0690780B1 (en) Three-dimensional object production process
DE4436695C1 (en) Stereolithography, the making of a three dimensional object by irradiation of powder or liquid layers
DE19507881B4 (en) Method of supporting an object made by stereolithography or another rapid prototype manufacturing method
DE4233812C1 (en) METHOD AND DEVICE FOR PRODUCING THREE-DIMENSIONAL OBJECTS
EP1993812B1 (en) Method and device for the production of a three-dimensional object
DE60115136T2 (en) Production of three-dimensional objects by controlled photocuring
EP0821647B1 (en) Device and method for producing three-dimensional objects
DE60021440T2 (en) Method and apparatus for stereolithographically forming three-dimensional objects with reduced curvature
EP2275247B1 (en) Apparatus and method for producing three dimensional objects by means of a generative production method
DE102017126624A1 (en) LAYERED LIGHT EXPOSURE IN GENERATIVE MANUFACTURING
DE102007039035B3 (en) Method for producing a component and use of the component produced by the method
DE10235434A1 (en) Device for producing a three-dimensional object by e.g. selective laser sintering comprises a support and a material-distributing unit which move relative to each other
EP2386405A1 (en) Device and method for generative manufacturing of a three dimensional object with construction area limit
EP2576191A2 (en) Building-space changing device and an apparatus for producing a three-dimensional object with a building-space changing device
DE102016209933A1 (en) Apparatus and method for generatively producing a three-dimensional object
DE60031317T2 (en) Stereolithographic method and apparatus for producing three-dimensional objects, wherein smoothing parameters apply to layer groups
DE102017213720A1 (en) Optimized segmentation process
DE102015207306A1 (en) Method and device for producing a three-dimensional object
DE102015219866A1 (en) Device and method for producing a three-dimensional object
EP3297813B1 (en) Method and device for producing a three-dimensional object
DE102018202506A1 (en) Controlled solidification additive manufacturing process and associated apparatus
EP3579998B1 (en) Increase in surface quality
WO2018172079A1 (en) Overlap optimization
DE10042132A1 (en) Production of sintered workpieces involves binding layers of material by irradiation, where each layer comprises core and coating, and irradiation is controlled to produce complete fusion of material in coating in at least its surface area
DE4326986C1 (en) Method and device for producing three-dimensional objects

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19961204

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980703

REF Corresponds to:

Ref document number: 59406372

Country of ref document: DE

Date of ref document: 19980806

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990324

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

EUG Se: european patent has lapsed

Ref document number: 94912502.5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120329

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130321

Year of fee payment: 20

Ref country code: FR

Payment date: 20130408

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59406372

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140321

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140325