EP0689263A1 - Absorber for a device for testing the electromagnetic compatibility of electric and electronic systems - Google Patents

Absorber for a device for testing the electromagnetic compatibility of electric and electronic systems Download PDF

Info

Publication number
EP0689263A1
EP0689263A1 EP95109649A EP95109649A EP0689263A1 EP 0689263 A1 EP0689263 A1 EP 0689263A1 EP 95109649 A EP95109649 A EP 95109649A EP 95109649 A EP95109649 A EP 95109649A EP 0689263 A1 EP0689263 A1 EP 0689263A1
Authority
EP
European Patent Office
Prior art keywords
working medium
absorber
absorber according
suspension
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95109649A
Other languages
German (de)
French (fr)
Inventor
Wilfried Dr. Daehn
Thomas Proepper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICAN F&E GmbH SIBET
Original Assignee
Sibet Sican Forschungs- und Entwicklungsbetriebsgesellschaft Mbh GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sibet Sican Forschungs- und Entwicklungsbetriebsgesellschaft Mbh GmbH filed Critical Sibet Sican Forschungs- und Entwicklungsbetriebsgesellschaft Mbh GmbH
Publication of EP0689263A1 publication Critical patent/EP0689263A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the determination of the electromagnetic compatibility usually takes place in halls shielded as Faraday cages, which are lined with a large number of absorbers made of or with radiation-absorbing materials and are referred to as absorber halls.
  • the absorbers have the task of suppressing reflections of the electromagnetic fields generated in the hall, which can reach very high field strengths if the systems examined are affected by interference, back on the hall walls as far as possible.
  • the waves reflected on the walls overlap with the incoming waves to standing waves with strong knots and bellies, which makes the spatial field distribution very inhomogeneous and the results of emission and immunity measurements in a non-manageable, frequency-dependent manner from the arrangement of the test objects and antennas become dependent.
  • By suppressing such reflections conditions arise in the hall that are similar to or at least close to those of a free field measurement.
  • the energy absorbed by the absorbers is ultimately converted into heat. This can be done in different ways predominantly by generating dielectric losses, by generating eddy current losses and / or according to the principle of destructive interference. In any case, the removal of the heat generated in the absorbers constitutes a considerable problem. It is customary to take the absorber halls out of operation to cool the absorbers, but this can lead to the very long downtimes of the very expensive absorber halls.
  • a type of absorber that has long been used extensively in absorber technology is the pyramid absorber made of open-cell polyurethane foam interspersed with graphite and salts.
  • This absorber can be used within a wide frequency range and has the advantage of being light in weight.
  • heat dissipation is particularly problematic with this type, because the absorbed energy can only reach the surface very slowly due to the low thermal conductivity of the polyurethane and can be dissipated from there.
  • Polyurethane foam is also flammable. Although the added salts are said to reduce the flammability, smoldering fires with environmentally harmful emissions have nevertheless occurred in absorber halls with flame-retardant polyurethane absorbers, particularly in the case of high local field strengths. Therefore, expensive, automatically working carbon dioxide extinguishing systems have to be installed in such absorber halls. Furthermore, the material properties are subject to a progressive change, since the constant heating and cooling leads to a gradual embrittlement of the material.
  • Pyramid absorbers made of ceramic material are also known, which have the great advantage of non-flammability, but because of their high weight can only be used in special cases.
  • Farther Combination absorbers are known which consist of ferrite tiles with attached pyramid absorbers.
  • an absorber which consists of a hollow body which has a wall which is permeable to the electromagnetic field and whose cavity contains a liquid working medium which extracts the energy from the electromagnetic field. It is particularly advantageous to design such that the hollow body is designed as a hollow wall body, the cavity wall interior of which is flowed through by the working medium.
  • a first group of such liquids are (preferably aqueous) electrolyte solutions, for example saline solutions, in which the penetrating electric field induces a line current, which is converted into heat.
  • a second group comprises aqueous or non-aqueous suspensions of ferrite particles, which may be kept in suspension by protective colloids.
  • a third group are emulsions of water and liquid polymers (oils), which have a dielectric constant that is different from that of pure water.
  • electrolyte solutions with suspended ferrite particles or emulsions from an electrolyte solution and oils or else emulsions from one Electrolyte solution and oils or emulsions from an electrolyte solution and oils with additionally suspended ferrite particles can be combined with one another, for example using electrolyte solutions with suspended ferrite particles or emulsions from an electrolyte solution and oils or else emulsions from one Electrolyte solution and oils or emulsions from an electrolyte solution and oils with additionally suspended ferrite particles.
  • a particular advantage of the liquid working medium is that the absorbed energy dissipates very quickly, which, unlike the solid absorber, prevents local overheating even at high field strengths.
  • the absorber is designed as a hollow wall body with a working medium flowing through it, there is also the fact that the working medium can be guided outside and passed outside of the absorber hall via a heat exchanger, so that it remains permanently at a constant temperature even under extreme radiation exposure and acts as a cooling liquid to a certain extent . Hall usage can be increased by up to 300% because there is almost no downtime to cool the absorbers.
  • Another important advantage is the possibility that the parameters of the working medium can be changed or changed in its composition even during operation of the hall to adapt to changed measuring conditions in the hall. The absorber can therefore be parameterized, which has not yet been possible.
  • a hollow body 1 is filled with a liquid working medium.
  • the wall 2 of the hollow body consists of a radiation-resistant and radiation-permeable plastic, for example polystyrene, so that the penetrating radiation energy from the working medium located within the cavity 3 for example, a saline solution.
  • the hollow body is pyramid-shaped, but can also have a different outer shape and forms one of the absorber bodies which are arranged on the inner wall of an absorber hall.
  • a hollow wall body 1 ' is provided which, as shown, can again have a pyramid shape, but does not have to, and forms one of the absorber bodies arranged on the inner wall of an absorber hall.
  • the hollow medium interior 4 of this hollow body is flowed through by the working medium in a predetermined layer thickness and is provided with connections 5, via which the working medium can be guided to the outside and returned again.
  • a circulation circuit 6 (indicated only schematically) is expediently provided outside the absorber hall, which contains a circulation pump and a heat exchanger in block 7 and supplies all or at least one group of the hollow wall bodies within the hall with the flowing working medium. Valves and connections can also be assigned to block 7 in order to enable a change in the working medium or a change in its composition and to parameterize the absorber (s).

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Equipment for determination of electromagnetic compatibility of electrical and electronic system comprises a hollow walled body (1') filled with an electrolyte soln. and/or a suspension of ferrite particles, which may be held in suspension by protective colloids, nd/or aq. emulsion of liquid polymers. The wall of the hollow body is transparent to electromagnetic fields. The cavity is connected to a circulation circuit via connections (5), the circuit including a heat exchanger (7) to extract heat built up in the medium and/or equipment for changing the compsn. of the medium.

Description

Die Ermittlung der elektromagnetischen Verträglichkeit, also beispielsweise der Störeinstrahlfestigkeit, Störabstrahlung oder Strahlungscharakteristik von elektrischen und elektronischen Systemen geschieht üblicherweise in als Faraday-Käfig abgeschirmten Hallen, die innen mit einer Vielzahl von Absorbern aus oder mit strahlungsabsorbierenden Materialien ausgekleidet sind und als Absorberhallen bezeichnet werden. Die Absorber haben dabei die Aufgabe, Reflexionen der in der Halle erzeugten elektromagnetischen Felder, die bei einer Störbeeinflussung der untersuchten Systeme sehr hohen Feldstärken erreichen können, an den Hallenwänden in die Halle zurück so weit wie möglich zu unterdrücken. Die an den Wänden reflektierten Wellen überlagern sich nämlich mit den ankommenden Wellen zu stehenden Wellen mit stark ausgeprägten Knoten und Bäuchen, wodurch die räumliche Feldverteilung sehr stark inhomogen wird und die Ergebnisse von Emissions- und Störfestigkeitsmessungen in nicht überschaubarer, frequenzabhängiger Weise von der Anordnung der Prüfobjekte und Antennen abhängig werden. Durch die Unterdrückung solcher Reflexionen entstehen in der Halle Bedingungen, die denen einer Freifeldmessung gleichen oder zumindest nahekommen.The determination of the electromagnetic compatibility, for example the immunity to interference, radiation or radiation characteristics of electrical and electronic systems, usually takes place in halls shielded as Faraday cages, which are lined with a large number of absorbers made of or with radiation-absorbing materials and are referred to as absorber halls. The absorbers have the task of suppressing reflections of the electromagnetic fields generated in the hall, which can reach very high field strengths if the systems examined are affected by interference, back on the hall walls as far as possible. The waves reflected on the walls overlap with the incoming waves to standing waves with strong knots and bellies, which makes the spatial field distribution very inhomogeneous and the results of emission and immunity measurements in a non-manageable, frequency-dependent manner from the arrangement of the test objects and antennas become dependent. By suppressing such reflections, conditions arise in the hall that are similar to or at least close to those of a free field measurement.

Die von den Absorbern aufgenommene Energie wird letztlich in Wärme umgewandelt. Dies kann auf unterschiedliche Weise geschehen und erfolgt vorwiegend durch Erzeugung von dielektrischen Verlusten, durch Erzeugung von Wirbelstromverlusten und/oder nach dem Prinzip der destruktiven Interferenz. In jedem Fall bildet dabei die Abführung der in den Absorbern erzeugten Wärme ein erhebliches Problem. Üblich ist es, die Absorberhallen zur Abkühlung der Absorber außer Betrieb zu nehmen, was aber unter Umständen zu sehr langen Standzeiten der sehr teuren Absorberhallen führen kann.The energy absorbed by the absorbers is ultimately converted into heat. This can be done in different ways predominantly by generating dielectric losses, by generating eddy current losses and / or according to the principle of destructive interference. In any case, the removal of the heat generated in the absorbers constitutes a considerable problem. It is customary to take the absorber halls out of operation to cool the absorbers, but this can lead to the very long downtimes of the very expensive absorber halls.

Ein seit langem in großem Umfang in der Absorbertechnik eingesetzter-Absorbertyp ist der Pyramidenabsorber aus offenzelligem, mit Graphit und Salzen durchsetzten Polyurethanschaum. Dieser Absorber kann innerhalb eines breiten Frequenzbereichs eingesetzt werden und hat den Vorteil eines geringen Gewichts. Allerdings ist die Wärmeabfuhr bei diesem Typ besonders problematisch, denn die absorbierte Energie kann aufgrund der geringen Wärmeleitfähigkeit des Polyurethans nur sehr langsam an die Oberfläche gelangen und von dort abgeführt werden. Außerdem ist Polyurethanschaum brennbar. Zwar sollen die zugesetzten Salze die Entflammbarkeit verringern, aber es sind trotzdem in Absorberhallen mit schwer entflammbaren Polyurethan-Absorbern insbesondere bei hohen lokalen Feldstärken Schwelbrände mit umweltschädlichen Emissionen aufgetreten. Deshalb müssen teure, automatisch arbeitende Kohlendioxid-Löschanlagen in solchen Absorberhallen installiert werden. Weiterhin unterliegen die Materialeigenschaften einer fortschreitenden Veränderung, da das ständige Erwärmen und Abkühlen zu einer allmählichen Versprödung des Materials führt.A type of absorber that has long been used extensively in absorber technology is the pyramid absorber made of open-cell polyurethane foam interspersed with graphite and salts. This absorber can be used within a wide frequency range and has the advantage of being light in weight. However, heat dissipation is particularly problematic with this type, because the absorbed energy can only reach the surface very slowly due to the low thermal conductivity of the polyurethane and can be dissipated from there. Polyurethane foam is also flammable. Although the added salts are said to reduce the flammability, smoldering fires with environmentally harmful emissions have nevertheless occurred in absorber halls with flame-retardant polyurethane absorbers, particularly in the case of high local field strengths. Therefore, expensive, automatically working carbon dioxide extinguishing systems have to be installed in such absorber halls. Furthermore, the material properties are subject to a progressive change, since the constant heating and cooling leads to a gradual embrittlement of the material.

Weitere bekannte Absorbertypen sind die Ferritabsorber, die als flache Ferritkacheln ausgebildet sind. Diese Typen sind jedoch mechanisch empfindlich, müssen äußerst genau justiert werden, haben ein hohes Gewicht und erfordern damit hohe Investitionskosten. Sie besitzen den Vorteil einer höheren Belastbarkeit für hohe Prüffeldstärken, jedoch ist der wirksame Frequenzbereich schmaler als bei den Pyramidenabsorbern. Problematisch ist außerdem die Temperaturabhängigkeit der magnetischen Suszeptibilität und das allmähliche Verschwinden der Magnetisierung infolge von Ummagnetisierungsverlusten.Other known absorber types are the ferrite absorbers, which are designed as flat ferrite tiles. However, these types are mechanically sensitive, have to be adjusted extremely precisely, are heavy and therefore require high investment costs. They have the advantage of a higher load capacity for high test field strengths, but the effective frequency range is narrower than that of the pyramid absorbers. The temperature dependency of the magnetic susceptibility and the gradual disappearance of the magnetization due to magnetic reversal losses are also problematic.

Es sind auch Pyramidenabsorber aus keramischem Material bekannt, die den großen Vorteil der Nichtentflammbarkeit besitzen, aber wegen ihres hohen Gewichtes nur in Spezialfällen eingesetzt werden können. Weiterhin sind Kombinationsabsorber bekannt, die aus Ferritkacheln mit aufgesetzten Pyramidenabsorbern bestehen.Pyramid absorbers made of ceramic material are also known, which have the great advantage of non-flammability, but because of their high weight can only be used in special cases. Farther Combination absorbers are known which consist of ferrite tiles with attached pyramid absorbers.

Allen diesen Absorbern ist gemeinsam, daß sie durch ihr Material und ihre Form auf den zu absorbierenden Frequenzbereich abgestimmt werden müssen. Dadurch ist es nur mit großem Aufwand möglich, das Abschirmverhalten der Meßumgebung flexibel anzupassen.All these absorbers have in common that their material and their shape have to be tuned to the frequency range to be absorbed. As a result, it is only possible with great effort to flexibly adapt the shielding behavior to the measurement environment.

Es ist die Aufgabe der Erfindung, einen umweltfreundlichen, dauerhaften Absorber zur Verfügung zu stellen, der elektromagnetische Energie innerhalb eines breiten Frequenzbereichs optimal absorbiert, schnell und einfach auf die für den Anwendungsfall erforderlichen Dämpfungseigenschaften eingestellt werden kann und eine gute Wärmeumsetzung ermöglicht, so daß die Brandgefahr beseitigt ist und die durch Abkühlungsphasen der Absorber bedingten Standzeiten der Halle minimiert oder ganz entbehrlich werden.It is the object of the invention to provide an environmentally friendly, permanent absorber which optimally absorbs electromagnetic energy within a wide frequency range, can be quickly and easily adjusted to the damping properties required for the application and allows good heat conversion, so that the risk of fire is eliminated and the downtimes of the hall caused by the cooling phases of the absorbers are minimized or become entirely unnecessary.

Gelöst wird diese Aufgabe durch einen Absorber, der aus einem Hohlkörper besteht, der eine für das elektromagnetische Feld durchlässige Wandung besitzt und dessen Hohlraum ein flüssiges Arbeitsmedium enthält, welches dem elektromagnetischen Feld die Energie entzieht. Besonders vorteilhaft ist dabei eine Ausbildung derart, daß der Hohlkörper als Hohlwandkörper ausgebildet ist, dessen Hohlwand-Innenraum von dem Arbeitsmedium durchströmt ist.This object is achieved by an absorber which consists of a hollow body which has a wall which is permeable to the electromagnetic field and whose cavity contains a liquid working medium which extracts the energy from the electromagnetic field. It is particularly advantageous to design such that the hollow body is designed as a hollow wall body, the cavity wall interior of which is flowed through by the working medium.

Als Arbeitsmedium kommen alle Flüssigkeiten in Betracht, die die einfallende Strahlungsenergie aufnehmen und in Wärme umwandeln können. Eine erste Gruppe solcher Flüssigkeiten sind (vorzugsweise wässrige) Elektrolytlösungen, beispielsweise Kochsalzlösungen, in denen das eindringende elektrische Feld einen Leitungsstrom induziert, der in Wärme umgesetzt wird. Eine zweite Gruppe umfaßt wässrige oder nicht-wässrige Suspensionen von Ferritpartikeln, die ggfs. durch Schutzkolloide in Suspension gehalten werden. Eine dritte Gruppe sind Emulsionen aus Wasser und Flüssigpolymeren (Ölen), die eine von reinem Wasser unterschiedliche Dielektrizitätskonstante besitzen. Natürlich können auch einzelne oder alle dieser Gruppen von Flüssigkeiten miteinander kombiniert werden, also beispielsweise Elektrolytlösungen mit suspendierten Ferritpartikeln eingesetzt werden oder Emulsionen aus einer Elektrolytlösung und Ölen oder aber Emulsionen aus einer Elektrolytlösung und Ölen oder aber Emulsionen aus einer Elektrolytlösung und Ölen mit zusätzlich darin suspendierten Ferritpartikeln. Durch Auswahl der verwendeten Substanzen, ihrer Konzentration und ihrer Kombination lassen sich die für die Strahlungsabsorption erforderlichen Eigenschaften des Arbeitsmediums hinsichtlich Leitfähigkeit, Permeabilität und Permittivität problemlos auf jeden Anwendungsfall abstimmen.All liquids that can absorb the incident radiation energy and convert it into heat can be considered as the working medium. A first group of such liquids are (preferably aqueous) electrolyte solutions, for example saline solutions, in which the penetrating electric field induces a line current, which is converted into heat. A second group comprises aqueous or non-aqueous suspensions of ferrite particles, which may be kept in suspension by protective colloids. A third group are emulsions of water and liquid polymers (oils), which have a dielectric constant that is different from that of pure water. Of course, individual or all of these groups of liquids can also be combined with one another, for example using electrolyte solutions with suspended ferrite particles or emulsions from an electrolyte solution and oils or else emulsions from one Electrolyte solution and oils or emulsions from an electrolyte solution and oils with additionally suspended ferrite particles. By selecting the substances used, their concentration and their combination, the properties of the working medium required for radiation absorption with regard to conductivity, permeability and permittivity can be matched to any application without any problems.

Ein besonderer Vorteil des flüssigen Arbeitsmediums besteht darin, daß die aufgenommene Energie sehr schnell dissipiert, wodurch anders als beim Feststoffabsorber auch bei hohen Feldstärken lokale überhitzungen vermieden werden. Wenn der Absorber als Hohlwandkörper mit durchströmendem Arbeitsmedium ausgebildet ist, kommt noch hinzu, daß das Arbeitsmedium nach außen geführt und außerhalb der Absorberhalle über einen Wärmetauscher geleitet werden kann, so daß es dauerhaft selbst bei extremer Strahlungsbelastung auf einer konstanten Temperatur bleibt und gewissermaßen als Kühlflüssigkeit wirkt. Die Hallennutzung kann dadurch um bis zu 300 % gesteigert werden, weil Standzeiten zur Abkühlung der Absorber weitgehend entfallen. Ein weiterer wesentlicher Vorteil ist die Möglichkeit, daß die Parameter des Arbeitsmediums selbst während des Hallenbetriebs zur Anpassung an geänderte Meßbedingungen in der Halle wechseln oder in seiner Zusammensetzung verändern zu können. Der Absorber ist also, was bislang noch nicht möglich gewesen ist, parametrierbar.A particular advantage of the liquid working medium is that the absorbed energy dissipates very quickly, which, unlike the solid absorber, prevents local overheating even at high field strengths. If the absorber is designed as a hollow wall body with a working medium flowing through it, there is also the fact that the working medium can be guided outside and passed outside of the absorber hall via a heat exchanger, so that it remains permanently at a constant temperature even under extreme radiation exposure and acts as a cooling liquid to a certain extent . Hall usage can be increased by up to 300% because there is almost no downtime to cool the absorbers. Another important advantage is the possibility that the parameters of the working medium can be changed or changed in its composition even during operation of the hall to adapt to changed measuring conditions in the hall. The absorber can therefore be parameterized, which has not yet been possible.

Ausführungsbeispiele werden nachfolgend anhand der Zeichnung näher erläutert. Dabei zeigen

Fig. 1
im Querschnitt einen Hohlkörper, der mit einem flüssigen Arbeitsmedium gefüllt ist, und
Fig. 2
im Querschnitt einen Hohlwandkörper, der von dem Arbeitsmedium durchströmt und an einen äußeren Kreislauf angeschlossen ist.
Exemplary embodiments are explained in more detail below with reference to the drawing. Show
Fig. 1
in cross section a hollow body which is filled with a liquid working medium, and
Fig. 2
in cross section a hollow wall body through which the working medium flows and is connected to an external circuit.

Die Fig. 1 stellt die einfachste Ausführungsform der Erfindung dar. Ein Hohlkörper 1 ist mit flüssigem Arbeitsmedium gefüllt. Die Wandung 2 des Hohlkörpers besteht aus einem strahlungsbeständigen und strahlungsdurchlässigen Kunststoff, beispielsweise Polystyrol, so daß die eindringende Strahlungsenergie von dem innerhalb des Hohlraums 3 befindlichen Arbeitsmedium, beispielsweise einer Kochsalzösung aufgenommen werden kann. Der Hohlkörper ist in der Darstellung der Fig. 1 pyramidenförmig, kann aber auch eine andere Außenform besitzen und bildet einen der Absorberkörper, die an der Innenwand einer Absorberhalle angeordnet sind.1 shows the simplest embodiment of the invention. A hollow body 1 is filled with a liquid working medium. The wall 2 of the hollow body consists of a radiation-resistant and radiation-permeable plastic, for example polystyrene, so that the penetrating radiation energy from the working medium located within the cavity 3 for example, a saline solution. 1, the hollow body is pyramid-shaped, but can also have a different outer shape and forms one of the absorber bodies which are arranged on the inner wall of an absorber hall.

In der bevorzugten Ausführungsform der Erfindung ist ein Hohlwandkörper 1' vorgesehen, der ebenfalls, wie dargestellt, wieder eine Pyramidenform haben kann, aber nicht haben muß und einen der an der Innenwand einer Absorberhalle angeordneten Absorberkörper bildet. Der Hohlwand-Innenraum 4 dieses Hohlkörpers wird in vorbestimmter Schichtdicke von dem Arbeitsmedium durchströmt und ist mit Anschlüssen 5 versehen, über die das Arbeitsmedium nach außen geführt und wieder zurückgeführt werden kann. Zweckmäßig ist dabei außerhalb der Absorberhalle ein (nur schematisch angedeuteter) Umwälz-Kreislauf 6 vorgesehen, der in dem Block 7 eine Umwälzpumpe und einen Wärmetauscher enthält und alle oder zumindest eine Gruppe der Hohlwandkörper innerhalb der Halle mit dem strömenden Arbeitsmedium versorgt. Dem Block 7 können noch Ventile und Anschlüsse zugeordnet sein, um einen Wechsel des Arbeitsmediums oder eine Änderung seiner Zusammensetzung zu ermöglichen und den/die Absorber zu parametrieren.In the preferred embodiment of the invention, a hollow wall body 1 'is provided which, as shown, can again have a pyramid shape, but does not have to, and forms one of the absorber bodies arranged on the inner wall of an absorber hall. The hollow medium interior 4 of this hollow body is flowed through by the working medium in a predetermined layer thickness and is provided with connections 5, via which the working medium can be guided to the outside and returned again. A circulation circuit 6 (indicated only schematically) is expediently provided outside the absorber hall, which contains a circulation pump and a heat exchanger in block 7 and supplies all or at least one group of the hollow wall bodies within the hall with the flowing working medium. Valves and connections can also be assigned to block 7 in order to enable a change in the working medium or a change in its composition and to parameterize the absorber (s).

Claims (8)

Absorber für Einrichtungen zur Messung der elektromagnetischen Verträglichkeit elektrischer oder elektronischer Systeme, dadurch gekennzeichnet, daß ein Hohlkörper (1) vorgesehen ist, der eine für das elektromagnetische Feld durchlässige Wandung (2) besitzt und dessen Hohlraum (3) ein flüssiges Arbeitsmedium enthält, welches dem elektromagnetischen Feld die Energie entzieht.Absorber for devices for measuring the electromagnetic compatibility of electrical or electronic systems, characterized in that a hollow body (1) is provided which has a wall (2) which is permeable to the electromagnetic field and whose cavity (3) contains a liquid working medium which is suitable for the electromagnetic field that deprives energy. Absorber nach Anspruch 1, dadurch gekennzeichnet, daß der Hohlkörper als Hohlwandkörper (1') ausgebildet ist, dessen Hohlwand-Innenraum (4) von dem Arbeitsmedium durchströmt ist.Absorber according to claim 1, characterized in that the hollow body is designed as a hollow wall body (1 '), the hollow wall interior (4) of which the working medium flows. Absorber nach Anspruch 2, dadurch gekennzeichnet, daß der Hohlwand-Innenraum (4) des Hohlwandkörpers (1') über Anschlüsse (5) mit einem Umwälz-Kreislauf (6) verbunden ist.Absorber according to claim 2, characterized in that the cavity wall interior (4) of the cavity wall body (1 ') is connected to a circulation circuit (6) via connections (5). Absorber nach Anspruch 3, dadurch gekennzeichnet, daß der Umwälz-Kreislauf (6) einen Wärmetauscher zur Abfuhr der vom Arbeitsmedium aufgenommenen Wärme und/oder Einrichtungen zum Wechsel des Arbeitsmediums bzw. zur Änderung seiner Zusammensetzung enthält.Absorber according to claim 3, characterized in that the circulating circuit (6) contains a heat exchanger for dissipating the heat absorbed by the working medium and / or devices for changing the working medium or for changing its composition. Absorber nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß das Arbeitsmedium eine Elektrolyt-Lösung ist.Absorber according to one of claims 1-4 , characterized in that the working medium is an electrolyte solution. Absorber nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß das Arbeitsmedium eine Suspension von Ferritpartikeln ist, die ggfs. durch Schutzkolloide in Suspension gehalten sind.Absorber according to one of claims 1 to 4, characterized in that the working medium is a suspension of ferrite particles, which may be kept in suspension by protective colloids. Absorber nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß das Arbeitsmedium eine wässrige Emulsion von Flüssigpolymeren ist.Absorber according to one of claims 1-4 , characterized in that the working medium is an aqueous emulsion of liquid polymers. Absorber nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Arbeitsmedium eine Elektrolyt-Lösung und/oder eine Suspension von Ferritpartikeln und/oder eine Emulsion von Flüssigpolymeren enthält.Absorber according to one of the preceding claims, characterized in that the working medium contains an electrolyte solution and / or a suspension of ferrite particles and / or an emulsion of liquid polymers.
EP95109649A 1994-06-21 1995-06-21 Absorber for a device for testing the electromagnetic compatibility of electric and electronic systems Withdrawn EP0689263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944423332 DE4423332A1 (en) 1994-06-21 1994-06-21 Absorber for devices for measuring electromagnetic compatibility
DE4423332 1994-06-21

Publications (1)

Publication Number Publication Date
EP0689263A1 true EP0689263A1 (en) 1995-12-27

Family

ID=6522165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95109649A Withdrawn EP0689263A1 (en) 1994-06-21 1995-06-21 Absorber for a device for testing the electromagnetic compatibility of electric and electronic systems

Country Status (2)

Country Link
EP (1) EP0689263A1 (en)
DE (1) DE4423332A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026894A1 (en) * 2014-10-07 2016-04-08 Peugeot Citroen Automobiles Sa DEVICE FOR ADJUSTING ELECTROMAGNETIC LOSSES OF A CAVITY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325808A (en) * 1965-09-07 1967-06-13 North American Aviation Inc Electromagnetic energy attenuator
EP0370421A1 (en) * 1988-11-22 1990-05-30 Akzo Kashima Limited Electromagnetic wave absorber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325808A (en) * 1965-09-07 1967-06-13 North American Aviation Inc Electromagnetic energy attenuator
EP0370421A1 (en) * 1988-11-22 1990-05-30 Akzo Kashima Limited Electromagnetic wave absorber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COZZENS ET AL.: "MICROWAVE ABSORBING,OPTICALLY TRANSPARENT MATERIALS", NAVY TECHNICAL DISCLOSURE BULLETIN, vol. 15, no. 1, ARLINGTON US, pages 36 - 41, XP000126607 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026894A1 (en) * 2014-10-07 2016-04-08 Peugeot Citroen Automobiles Sa DEVICE FOR ADJUSTING ELECTROMAGNETIC LOSSES OF A CAVITY

Also Published As

Publication number Publication date
DE4423332A1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
DE3245945C2 (en)
DE4335848A1 (en) Cooling arrangement for an AC machine
EP1831896B1 (en) Multi-layered radiation protection wall and radiation protection chamber
DE102019117431A1 (en) Arrangement of stator modules for a planar drive system
DE102007043012A1 (en) Radiation detector i.e. gamma radiation detector, component for use in motor vehicle, has light detecting unit connected with radiation detector unit, and wave shaped springs provided along outside periphery of radiation detector unit
DE3015391A1 (en) METHOD FOR MONITORING PHYSICAL STATE CHANGES IN COMPONENTS
DE102011089445B4 (en) Method and gradient system for reducing mechanical vibrations in a magnetic resonance imaging system
DE2220486C3 (en) Pressurized water reactor
DE3908572C2 (en)
DE60103963T2 (en) Shielding process with ferrite protective layer
DE2850646C2 (en) Magnetic bubble storage module with a device for heat dissipation
EP0689263A1 (en) Absorber for a device for testing the electromagnetic compatibility of electric and electronic systems
DE19646583C2 (en) Flow monitor
DE102009004899A1 (en) Superconducting actively shielded magnet
DE10228829B4 (en) Connecting device for fixing the position of a gradient coil assembly of a magnetic resonance tomograph, magnetic resonance tomograph with the connecting device and use of the connecting device
DE102013215843B3 (en) Shielding arrangement for cooling electrical components and magnetic resonance tomograph with it
DE10151668B4 (en) Gradient coil system for a magnetic resonance apparatus
EP0177869B1 (en) Magnet arrangement with a screen device for a nuclear spin tomography installation
DE1951919C3 (en) Device for measuring the flow rate of an electrically conductive liquid
DE3043711A1 (en) HYDRAULIC SHOCK ABSORBER
DE1167459B (en) Neutron screen
DE102012105650B4 (en) Device for improving the electromagnetic compatibility of electrically operated components used in a motor vehicle
DE10151575B4 (en) Method and arrangement for measuring the power loss of an electrical device
DE102020120124A1 (en) Device for thermal and electromagnetic management for an electronic module
EP0143229B1 (en) Nuclear reactor with a simplified leakage protection of the cooling circuits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19960607

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SICAN F&E GMBH (SIBET)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19981231