EP0687185A1 - Process for producing an implant from cell cultures - Google Patents

Process for producing an implant from cell cultures

Info

Publication number
EP0687185A1
EP0687185A1 EP94908950A EP94908950A EP0687185A1 EP 0687185 A1 EP0687185 A1 EP 0687185A1 EP 94908950 A EP94908950 A EP 94908950A EP 94908950 A EP94908950 A EP 94908950A EP 0687185 A1 EP0687185 A1 EP 0687185A1
Authority
EP
European Patent Office
Prior art keywords
cells
support structure
carrier structure
implant
nutrient solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94908950A
Other languages
German (de)
French (fr)
Inventor
Michael Sittinger
Jesus Bujia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0687185A1 publication Critical patent/EP0687185A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30242Three-dimensional shapes spherical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0071Three-dimensional shapes spherical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/76Agarose, agar-agar

Definitions

  • the invention relates to a method for producing an implant from cell cultures, in particular an implant with cartilage cells, these cells being applied to a resorbable carrier structure and then being implanted.
  • the required tissue can be removed from corpses, preserved and then implanted. In some cases, immune reactions occur.
  • the patient's own tissue can be used, which is removed from the patient at a different location that is not visible from the outside and implanted at the location of the removed tissue. No immune reactions are to be feared here.
  • a third method has therefore been proposed, namely cells which have been isolated and propagated in a conventional manner on a polymer fiber bundle made of resorbable material apply and implant the bundles; see. CAVacanti et al. , Plastic and Reconstructive Surgery, Vol. 8, No. 5, Nov. 1991, pp. 753-759.
  • the implant By stacking the bundles on top of and next to each other, the implant could be modeled three-dimensionally.
  • the polymer material is resorbed, and at the same time the intercellular matrix, in particular collagen, is to be built up between the individual cells, so that in the final stage, a fully functional tissue structure is integrated into the surrounding tissue.
  • Difficulties with this method should arise when modeling the desired implant, since the shape of the fiber bundles placed one above the other and next to one another is not to be expected during the resorption of the fiber material. In addition, larger implants would have difficulty feeding the individual cells located inside the implant.
  • the invention is based on the object of specifying a method with which cell tissue, in particular cartilage tissue, is made available in a configuration which is favorable for implantation.
  • the implant should have good formability and shape retention in the implanted state and ensure the nutrition of the individual cells in the implant.
  • the basic idea of the invention is accordingly a three-dimensional, stable support structure with the desired implant shape made of a material with a coherent inner surface and a small one Volume, for example a polymer fleece, to introduce cells into the inner cavity of the carrier structure and to flow through the carrier structure receiving the cells with a nutrient solution. As soon as the intercellular matrix has at least partially formed, the entire three-dimensional support structure can be implanted.
  • the three-dimensional support structure ensures that the cells with their intercellular matrix remain dimensionally stable even during absorption and that the desired shape of the implant is maintained even after the implantation.
  • Perfusion ensures that the cells located within the support structure are also adequately supplied with nutrient solution and that this supply is maintained when the intercellular matrix has at least partially built up.
  • the nutrient solution enters the support structure and penetrates it essentially only by diffusion, which also corresponds to the situation in vivo.
  • the nourishment of the cells accommodated in the carrier structure by diffusion can also be ensured by coating the entire carrier structure with a material that essentially only allows diffusion. Such a material is e.g. Agarose.
  • the patient's own cartilage cells are grown in a conventional manner on a culture medium.
  • a carrier structure is produced from a resorbable, dimensionally stable polymer fiber fleece, the shape of which corresponds to the later implant.
  • Suitable nonwoven materials are e.g. Polyglycols or polylactides. From this, nonwovens can be produced that have a large inner coherent surface with a minimal material volume.
  • the continuous inner surface of the support structure is covered with an adhesion factor, e.g. Poly-L-lysine coated or wetted. This wetting takes place e.g. by immersing the support structure in a polylysine solution and subsequent lyophilization, i.e. Freeze drying so that the adhesion factor covers essentially the entire inner surface of the support structure.
  • a resorbable, viscosity-increasing substance for example the agarose mentioned, can be added.
  • the carrier structure receiving the cell is then coated with agarose, e.g. the support structure is immersed in a 2% agarose solution.
  • the support structure is then subjected to a cold shock, e.g. by immersion in a cold water bath at about 4 ° C., whereby the agarose of the jacket and also the agarose, if any, added to the suspension solidify.
  • a cold shock e.g. by immersion in a cold water bath at about 4 ° C.
  • This carrier structure prepared in this way is designated 1 in the figure and is inserted into a perfusion apparatus 2.
  • This apparatus 2 consists of a housing 3, in which a perfusion chamber 4 is provided, into which the carrier structure is inserted.
  • a feed line 5 for a nutrient solution opens into the housing 3 and initially enters a mixing chamber 6, in which the flow is evened out before it enters the perfusion chamber 4.
  • An outflow chamber 7 then adjoins the perfusion chamber 4, from which an outflow line 8 leads to a collecting container 9.
  • the housing 3 of the perfusion chamber 4 is covered with a cover 10 and is kept at a constant temperature corresponding to the mean body temperature of 37 ° C. by a heater 11.
  • the actual perfusion chamber 4 can still be at least partially filled with agarose.
  • a nutrient solution for example the solution commercially available under the name Hams F12, is slowly passed through the perfusion chamber 4.
  • This nutrient solution is transported by a pump 12, for example a peristaltic pump, which is arranged in the feed line 5 and nutrient solution from one Sucks reservoir 13.
  • This reservoir 13 is located, for example, in a water bath 14 at a temperature of 4 ° C.
  • the amount of time that the peristaltic pump 12 is transported is very small and, in the present case, is set at approximately one milliliter per hour for the production of cartilage tissue.
  • Some support structures - three such support structures 1 in the perfusion chamber 4 are shown in the drawing - can thus be sufficiently nourished, these support structures having a cross-section of at most one thumb nail size.
  • the peristaltic pump 12 is controlled at intervals by a timer 15, the intervals being adjustable depending on the size of the support structures and the perfusion chamber: in practice, the pumping and pausing intervals will be in the minute or hour range. Good results were achieved at pump and break intervals of approx. 30 minutes each.
  • Perfusion devices are known per se. They are otherwise used to grow cell cultures that are attached to a membrane with continuous conditions, thus replacing the conventional petri dishes. The membranes with the applied cell cultures can be inserted through slots into the perfusion chamber.
  • the nutrient solution passed through the perfusion apparatus 2 diffuses through the agarose jacket into the carrier structure 1, so that the cells taken up therein are fed.
  • the flow of the nutrient solution and the interval control are set so that the cell products necessary for the construction of the intercellular matrix are not washed away, but remain in place. Over time, the intercellular matrix with its collagen fibers forms between the cells, so that the cells are bound together.
  • the support structure and the agarose can at least partially dissolve during this long process. Due to the formation of the intercellular matrix, however, the predetermined shape and thus also the desired shape of the later implant is retained.
  • the support structure is removed from the perfusion chamber and implanted. Over time, the matrix continues to develop as the support structure is reabsorbed.
  • tissue orphogenic factors to the fleece of the support structure.
  • Such morphogenic factors stimulate cell formation and the formation of the intercellular matrix and thus cartilage formation.
  • Such factors can either be introduced into the support structure during the formation of the intercellular matrix in the perfusion chamber or after the implantation into the support structure.
  • An elegant solution is to couple the tissue-morphogenic factor directly to the nonwoven material or to an antibody and to provide the nonwoven material of the carrier structure with haptens to which the antibodies attach. As a result, these factors only act locally in the area of the support structure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Rheumatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The process attempts to produce especially cargilage cells in vitro. The cells are placed in a three-dimensional supporting structure, preferably of a polymer nonwoven, with the shape of the supporting structure corresponding to that of the implant to be obtained. The supporting structure is then perfused with a nourishing solution for a long period so that the intercellular matrix bonding the cells together can form at least partially within the supporting structure. The supporting structure with the at least partially formed intercellular matrix is then implanted. On the subsequent resorption of the supporting structure, the shape of the implant is preserved thanks to the intercellular matrix then formed.

Description

ii
Verfahren zum Herstellen eines Implantates aus ZellkulturenProcess for producing an implant from cell cultures
Die Erfindung' bezieht sich auf ein Verfahren zum Herstellen eines Implantates aus Zellkulturen, insbesondere eines Implantates mit Knorpelzellen, wobei diese Zellen auf eine resorbierbare Trägerstruktur aufgebracht und anschließend implantiert werden.The invention relates to a method for producing an implant from cell cultures, in particular an implant with cartilage cells, these cells being applied to a resorbable carrier structure and then being implanted.
Soll entferntes körpereigenes Gewebe, z.B. Knorpelgewebe ersetzt werden, so ist man bisher auf im wesentlichen zwei Möglichkeiten angewiesen:Should the body's own tissue be removed, e.g. Cartilage tissue is replaced, so far there are essentially two options:
1. Das benötigte Gewebe kann Leichen entnommen, konserviert und dann implantiert werden. Hierbei treten in einigen Fällen Immunreaktionen auf.1. The required tissue can be removed from corpses, preserved and then implanted. In some cases, immune reactions occur.
2. Zum Ersatz des entfernten Gewebes kann Eigengewebe verwendet werden, das dem Patienten an anderer, nach außen nicht sichtbarer Stelle entnommen und an dem Ort des entfernten Gewebes implantiert wird. Hier sind keine Immunreaktionen zu befürchten.2. To replace the removed tissue, the patient's own tissue can be used, which is removed from the patient at a different location that is not visible from the outside and implanted at the location of the removed tissue. No immune reactions are to be feared here.
Ein entscheidender Nachteil dieser beiden Verfahren liegt jedoch darin, daß wegen der immer größeren Anzahl von Implantationen insgesamt zu wenig Material vorhanden ist, so daß der gewünschte Ersatz des Gewebes häufig nur unvollständig erfolgt.A decisive disadvantage of these two methods, however, is that, due to the ever increasing number of implantations, there is too little material overall, so that the desired replacement of the tissue is often incomplete.
Man hat daher ein drittes Verfahren vorgeschlagen, nämlich auf einem Polymerfaserbündel aus resorbierbarem Material in herkömmlicher Weise isolierte und vermehrte Zellen aufzubringen und die Bündel zu implantieren; vgl. C.A.Vacanti et al. , Plastic and Reconstructive Surgery, Vol. 8, No. 5, Nov. 1991, S. 753-759. Durch Übereinander- und Nebeneinanderschichtung der Bündel könnte das Implantat quasi dreidimensional modelliert werden. Nach der Implantation wird das Polymermaterial resorbiert, wobei gleichzeitig zwischen den einzelnen Zellen die interzelluläre Matrix aus insbesondere Kollagen aufgebaut werden soll, so daß sich im Endstadium eine in das umliegende Gewebe integrierte und voll funktionsfähige Gewebestruktur ergibt.A third method has therefore been proposed, namely cells which have been isolated and propagated in a conventional manner on a polymer fiber bundle made of resorbable material apply and implant the bundles; see. CAVacanti et al. , Plastic and Reconstructive Surgery, Vol. 8, No. 5, Nov. 1991, pp. 753-759. By stacking the bundles on top of and next to each other, the implant could be modeled three-dimensionally. After the implantation, the polymer material is resorbed, and at the same time the intercellular matrix, in particular collagen, is to be built up between the individual cells, so that in the final stage, a fully functional tissue structure is integrated into the surrounding tissue.
Dieses Verfahren ist noch im Versuchsstadium, an Tieren erprobt, jedoch in der Humanmedizin noch nicht angewendet.This method is still in the experimental stage, tested on animals, but has not yet been used in human medicine.
Schwierigkeiten dürften sich bei diesem Verfahren bei der Modellierung des gewünschten Implantates ergeben, da eine Formstabilität der übereinander und nebeneinander gelegten Faserbündel während der Resorption des Fasermaterials nicht zu erwarten ist. Außerdem würden sich bei größeren Implantaten Schwierigkeiten mit der Ernährung der einzelnen Zellen ergeben, die im Inneren des Implantates gelegen sind.Difficulties with this method should arise when modeling the desired implant, since the shape of the fiber bundles placed one above the other and next to one another is not to be expected during the resorption of the fiber material. In addition, larger implants would have difficulty feeding the individual cells located inside the implant.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, mit der Zellgewebe, insbesondere Knorpelgewebe, in einer für die Implantation günstigen Konfiguration zur Verfügung gestellt wird. Insbesondere soll das Implantat eine gute Formbarkeit und Formerhaltung im implantierten Zustand aufweisen und die Ernährung der einzelnen Zellen im Implantat sicher gewährleisten.The invention is based on the object of specifying a method with which cell tissue, in particular cartilage tissue, is made available in a configuration which is favorable for implantation. In particular, the implant should have good formability and shape retention in the implanted state and ensure the nutrition of the individual cells in the implant.
Diese Aufgabe ist gemäß der Erfindung durch die im Patentanspruch 1 angegebenen kennzeichnenden Merkmale gelöst.This object is achieved according to the invention by the characterizing features specified in claim 1.
Die grundlegende Idee der Erfindung besteht demnach darin, eine dreidimensionale formstabile Trägerstruktur mit der gewünschten Implantationsform aus einem Material mit einer zusammenhängenden inneren Oberfläche und einem geringen Volumen, z.B. einem Polymervlies, vorzufor en, in den inneren Hohlraum der Trägerstruktur Zellen einzubringen und die die Zellen aufnehmende Trägerstruktur mit einer Nährlösung zu durchströmen. Sobald sich dann die interzelluläre Matrix zumindest teilweise ausgebildet hat, kann die gesamte dreidimensionale Trägerstruktur implantiert werden.The basic idea of the invention is accordingly a three-dimensional, stable support structure with the desired implant shape made of a material with a coherent inner surface and a small one Volume, for example a polymer fleece, to introduce cells into the inner cavity of the carrier structure and to flow through the carrier structure receiving the cells with a nutrient solution. As soon as the intercellular matrix has at least partially formed, the entire three-dimensional support structure can be implanted.
Durch die dreidimensionale Trägerstruktur wird sichergestellt, daß auch während der Resorption die Zellen mit ihrer interzellulären Matrix formstabil bleiben und die gewünschte Form des Implantats auch nach der Implantation beibehalten wird.The three-dimensional support structure ensures that the cells with their intercellular matrix remain dimensionally stable even during absorption and that the desired shape of the implant is maintained even after the implantation.
Durch die Perfusion wird sichergestellt, daß auch die innerhalb der Trägerstruktur gelegenen Zellen ausreichend mit Nährlösung versorgt werden und daß diese Versorgung aufrechterhalten bleibt, wenn sich die interzelluläre Matrix zumindest teilweise aufgebaut hat. Durch den Aufbau der Trägerstruktur und gegebenenfalls eine entsprechende Präparation erfolgt der Eintritt der Nährlösung in die Trägerstruktur und deren Durchdringung im wesentlichen nur durch Diffusion, was im übrigen auch der Situation in vivo entspricht. Die Ernährung der in der Trägerstruktur aufgenommenen Zellen durch Diffusion kann im übrigen noch dadurch sichergestellt werden, daß die gesamte Trägerstruktur mit einem Material ummantelt wird, das im wesentlichen nur eine Diffusion zuläßt. Ein solches Material ist z.B. Agarose.Perfusion ensures that the cells located within the support structure are also adequately supplied with nutrient solution and that this supply is maintained when the intercellular matrix has at least partially built up. As a result of the structure of the support structure and, if appropriate, a corresponding preparation, the nutrient solution enters the support structure and penetrates it essentially only by diffusion, which also corresponds to the situation in vivo. The nourishment of the cells accommodated in the carrier structure by diffusion can also be ensured by coating the entire carrier structure with a material that essentially only allows diffusion. Such a material is e.g. Agarose.
Durch die Ernährung der Zellen in der Trägerstruktur über die Diffusion wird verhindert, daß die Zellenprodukte, insbesondere die für den Aufbau der interzellulären Matrix notwendigen Kollagene und Proteoglycane aus dem Zellverband ausgeschwemmt werden. Das Zurückhalten dieser notwendigen Faktoren, d.h. deren Retention kann noch dadurch verbessert und unterstützt werden, wenn die Perfusion der Trägerstrukturen mit der Nährlösung intervallartig erfolgt. In den Perfusionspausen werden dann die Zellprodukte am Ort gehalten und bilden die Verbindungen mit den Zellen, wohingegen in den Perfusionsphasen auch unerwünschte Zellprodukte aus der Trägerstruktur und der Matrix ausgeschwemmt werden können.By feeding the cells in the carrier structure via diffusion, it is prevented that the cell products, in particular the collagens and proteoglycans necessary for the construction of the intercellular matrix, are washed out of the cell structure. The retention of these necessary factors, ie their retention, can be improved and supported if the support structures are perfused with the nutrient solution at intervals. The cell products are then on site during the perfusion breaks held and form the connections with the cells, whereas in the perfusion phases also undesired cell products can be washed out of the carrier structure and the matrix.
Weitere Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.Further embodiments of the invention emerge from the subclaims.
Die Erfindung ist in einem Ausführungsbeispiel anhand der Figur näher erläutert, in der das Verfahren hinsichtlich der verwendeten Geräte schematisch dargestellt ist.The invention is explained in more detail in an exemplary embodiment with reference to the figure, in which the method is shown schematically with regard to the devices used.
In der Beschreibung wird nur auf die Herstellung von Knorpelgewebe in vitro Bezug genommen; es ist jedoch selbstverständlich, daß hier auch andere Zellgewebe entsprechend behandelt werden können.The description only refers to the production of cartilage tissue in vitro; however, it goes without saying that other cell tissues can also be treated accordingly.
Für eine Implantation werden patienteneigene Knorpelzellen in herkömmlicher Weise auf einem Kulturmedium vermehrt.For implantation, the patient's own cartilage cells are grown in a conventional manner on a culture medium.
Aus einem resorbierbaren formstabilen Polymerfaservlies wird eine Trägerstruktur hergestellt, deren Form dem späteren Implantat entspricht. Geeignet Vliesmaterialien sind z.B. Polyglykole oder Polylactide. Hieraus lassen sich Vliese herstellen, die eine große innere zusammenhängende Oberfläche bei gleichzeitig minimalem Materialvolumen aufweisen. Die zusammenhängende innere Oberfläche der Trägerstruktur wird mit einem Adhäsionsfaktor, z.B. Poly-L-Lysin beschichtet bzw. benetzt. Diese Benetzung erfolgt z.B. durch Eintauchen der Trägersturktur in eine Polylysinlösung und anschließende Lyophilisation, d.h. Gefriertrocknung, so daß der Adhäsionsfaktor im wesentlichen die gesamte innere Oberfläche der Trägerstruktur bedeckt.A carrier structure is produced from a resorbable, dimensionally stable polymer fiber fleece, the shape of which corresponds to the later implant. Suitable nonwoven materials are e.g. Polyglycols or polylactides. From this, nonwovens can be produced that have a large inner coherent surface with a minimal material volume. The continuous inner surface of the support structure is covered with an adhesion factor, e.g. Poly-L-lysine coated or wetted. This wetting takes place e.g. by immersing the support structure in a polylysine solution and subsequent lyophilization, i.e. Freeze drying so that the adhesion factor covers essentially the entire inner surface of the support structure.
Wenn in der oben erwähnten Zellkultur eine ausreichende Anzahl von Zellen vorliegt, werden diese in der Suspension mit dem Kulturmedium in die dreidimensionale entsprechend präparierte Trägerstruktur gefüllt. Zur Erhöhung der Viskosität der Suspension kann dieser noch ein resorbierbarer, die Viskosität erhöhender Stoff, z.B. die erwähnte Agarose zugesetzt werden.If there is a sufficient number of cells in the above-mentioned cell culture, these will be correspondingly three-dimensional in the suspension with the culture medium prepared carrier structure filled. To increase the viscosity of the suspension, a resorbable, viscosity-increasing substance, for example the agarose mentioned, can be added.
Die die Zelle aufnehmende Trägerstruktur wird anschließend mit Agarose ummantelt, indem z.B. die Trägerstruktur in eine 2%ige Agaroselösung eingetaucht wird. Anschließend wird die Trägerstruktur einem Kälteschock unterworfen, z.B. durch Eintauchen in ein kaltes Wasserbad von etwa 4°C, wobei sich die Agarose des Mantels und ebenso die gegebenenfalls die der Suspension zugefügte Agarose verfestigt. Eine derartige Maßnahme erleichtert die folgende Handhabung.The carrier structure receiving the cell is then coated with agarose, e.g. the support structure is immersed in a 2% agarose solution. The support structure is then subjected to a cold shock, e.g. by immersion in a cold water bath at about 4 ° C., whereby the agarose of the jacket and also the agarose, if any, added to the suspension solidify. Such a measure facilitates the following handling.
Diese derart präparierte Trägerstruktur ist in der Figur mit 1 bezeichnet und wird in eine Perfusionsapparatur 2 eingesetzt. Diese Apparatur 2 besteht aus einem Gehäuse 3, in dem eine Perfusionskammer 4 vorgesehen ist, in die die Trägerstruktur eingesetzt wird. In das Gehäuse 3 mündet eine Zuführleitung 5 für eine Nährlösung, die zunächst in eine Mischkammer 6 eintritt, in- der die Strömung vergleichmäßigt wird, bevor sie in die Perfusionska mer 4 eintritt. An die Perfusionskammer 4 schließt sich dann eine Abflußkammer 7 an, aus der eine Abflußleitung 8 zu einem Auffangbehälter 9 führt. Das Gehäuse 3 der Perfusionskammer 4 ist mit einer Abdeckung 10 überdacht und wird durch eine Heizung 11 auf gleichbleibender Temperatur entsprechend der mittleren Körpertemperatur von 37°C gehalten.This carrier structure prepared in this way is designated 1 in the figure and is inserted into a perfusion apparatus 2. This apparatus 2 consists of a housing 3, in which a perfusion chamber 4 is provided, into which the carrier structure is inserted. A feed line 5 for a nutrient solution opens into the housing 3 and initially enters a mixing chamber 6, in which the flow is evened out before it enters the perfusion chamber 4. An outflow chamber 7 then adjoins the perfusion chamber 4, from which an outflow line 8 leads to a collecting container 9. The housing 3 of the perfusion chamber 4 is covered with a cover 10 and is kept at a constant temperature corresponding to the mean body temperature of 37 ° C. by a heater 11.
Die eigentliche Perfusionskammer 4 kann noch mit Agarose zumindest teilweise aufgefüllt sein.The actual perfusion chamber 4 can still be at least partially filled with agarose.
Durch die Perfusionskammer 4 wird langsam eine Nährlösung, z.B. die im Handel unter der Bezeichnung Hams F12 erhältliche Lösung geführt. Diese Nährlösung wird durch eine Pumpe 12, z.B. eine peristaltische Pumpe transportiert, die in der Zuleitung 5 angeordnet ist und Nährlösung aus einem Vorratsbehälter 13 ansaugt. Dieser Vorratsbehälter 13 befindet sich z.B. in einem Wasserbad 14 bei einer Temperatur von 4°C. Die zeitliche Transportmenge der peristaltischen Pumpe 12 ist sehr gering und in dem hier vorliegenden Fall für die Herstellung von Knorpelgewebe auf etwa ein Milliliter pro Stunde eingestellt. Damit lassen sich einige Trägerstrukturen - in der Zeichnung sind drei derartige Trägerstrukturen 1 in der Perfusionskammer 4 dargestellt - ausreichend ernähren, wobei diese Trägerstrukturen einen Querschnitt von maximal einer Daumennagelgröße aufweisen.A nutrient solution, for example the solution commercially available under the name Hams F12, is slowly passed through the perfusion chamber 4. This nutrient solution is transported by a pump 12, for example a peristaltic pump, which is arranged in the feed line 5 and nutrient solution from one Sucks reservoir 13. This reservoir 13 is located, for example, in a water bath 14 at a temperature of 4 ° C. The amount of time that the peristaltic pump 12 is transported is very small and, in the present case, is set at approximately one milliliter per hour for the production of cartilage tissue. Some support structures - three such support structures 1 in the perfusion chamber 4 are shown in the drawing - can thus be sufficiently nourished, these support structures having a cross-section of at most one thumb nail size.
Die peristaltische Pumpe 12 wird durch einen Zeitgeber 15 intervallartig gesteuert, wobei die Intervalle je nach Größe der Trägerstrukturen und der Perfusionskammer einstellbar sind: In der Praxis werden die Pump- und Pausenintervalle sich im Minuten- bzw. Stundenbereich befinden. Gute Ergebnisse wurden bei Pump- und Pausenintervallen von jeweils ca. 30 Minuten erreicht.The peristaltic pump 12 is controlled at intervals by a timer 15, the intervals being adjustable depending on the size of the support structures and the perfusion chamber: in practice, the pumping and pausing intervals will be in the minute or hour range. Good results were achieved at pump and break intervals of approx. 30 minutes each.
Perfusionsapparaturen sind an sich bekannt. Sie dienen ansonsten dazu, Zellkulturen, die auf einer Membran angeheftet werden, mit kontinuierlichen Bedingungen zu züchten, und ersetzen damit die herkömmlichen Petri-Schalen. Die Membranen mit den aufgebrachten Zellkulturen können hierbei durch Schlitze in die Perfusionskammer eingesetzt werden.Perfusion devices are known per se. They are otherwise used to grow cell cultures that are attached to a membrane with continuous conditions, thus replacing the conventional petri dishes. The membranes with the applied cell cultures can be inserted through slots into the perfusion chamber.
Die durch die Perfusionsapparatur 2 geführte Nährlösung diffundiert durch den Mantel aus Agarose in die Trägerstruktur 1, so daß die darin aufgenommenen Zellen ernährt werden. Die Strömung der Nährlösung und die Intervallsteuerung sind so eingestellt, daß die für den Aufbau der interzellulären Matrix notwendigen Zellprodukte nicht weggeschwemmt werden, sondern an ihrem Platz verbleiben. Im Laufe der Zeit bildet sich die interzelluläre Matrix mit ihren Kollagenfasern zwischen den Zellen aus, so daß die Zellen aneinander gebunden werden. Die Trägerstruktur und die Agarose können sich während dieses langdauernden Prozesses zumindest teilweise auflösen. Durch die Ausbildung der interzellulären Matrix bleibt jedoch die vorgegebene Form und damit auch die gewünschte Form des späteren Implantates erhalten.The nutrient solution passed through the perfusion apparatus 2 diffuses through the agarose jacket into the carrier structure 1, so that the cells taken up therein are fed. The flow of the nutrient solution and the interval control are set so that the cell products necessary for the construction of the intercellular matrix are not washed away, but remain in place. Over time, the intercellular matrix with its collagen fibers forms between the cells, so that the cells are bound together. The support structure and the agarose can at least partially dissolve during this long process. Due to the formation of the intercellular matrix, however, the predetermined shape and thus also the desired shape of the later implant is retained.
Ist die interzelluläre Matrix ausreichend ausgebildet, was etwa ab 10 Tagen bis in einigen Wochen der Fall ist, wird die Trägerstruktur aus der Perfusionskammer herausgenommen und implantiert. Im Laufe der Zeit wird die Matrix weitergebildet, während die Trägerstruktur resorbiert wird.If the intercellular matrix is sufficiently developed, which is the case from about 10 days to a few weeks, the support structure is removed from the perfusion chamber and implanted. Over time, the matrix continues to develop as the support structure is reabsorbed.
Es konnte gezeigt werden, daß mit einem derartigen Verfahren tatsächlich die interzelluläre Matrix in vitro aufgebaut wird, was bis dato soweit bekannt noch nicht beobachtet wurde.It could be shown that such a method actually builds the intercellular matrix in vitro, which has not been observed to date, as far as is known.
Es ist des weiteren möglich, sogenannte gewebs orphogene Faktoren an das Vlies der Trägerstruktur anzulagern. Derartige morphogene Faktoren regen die Zellbildung und die Bildung der interzellulären Matrix und damit die Knorpelbildung an. Derartige Faktoren können entweder bereits in die Trägerstruktur während der Bildung der interzellulären Matrix in der Perfusionskammer oder nach der Implantation in die Trägerstruktur eingebracht werden. Eine elegante Lösung besteht darin, den gewebsmorphogenen Faktor direkt an das Vliesmaterial zu koppen oder an einen Antikörper zu koppeln und das Vliesmaterial der Trägerstruktur mit Haptenen zu versehen, an die sich die Antikörper anlagern. Dadurch wirken diese Faktoren nur lokal im Bereich der Trägerstruktur. It is also possible to add so-called tissue orphogenic factors to the fleece of the support structure. Such morphogenic factors stimulate cell formation and the formation of the intercellular matrix and thus cartilage formation. Such factors can either be introduced into the support structure during the formation of the intercellular matrix in the perfusion chamber or after the implantation into the support structure. An elegant solution is to couple the tissue-morphogenic factor directly to the nonwoven material or to an antibody and to provide the nonwoven material of the carrier structure with haptens to which the antibodies attach. As a result, these factors only act locally in the area of the support structure.

Claims

Patentansprüche Claims
1. Verfahren zum Herstellen eines Implantates aus Zellkulturen, insbesondere Knorpelzellen, wobei die Zellen auf einer resorbierbaren Trägerstruktur aufgebracht und anschließend gemeinsam mit dieser implantiert werden, gekennzeichnet durch folgende Merkmale:1. A method for producing an implant from cell cultures, in particular cartilage cells, the cells being applied to a resorbable support structure and then implanted together with the latter, characterized by the following features:
es wird eine dreidimensionale, im wesentlichen formstabile entsprechend der gewünschten Form des Implantats vorgeformte Trägerstruktur mit einer zusammenhängenden inneren Oberfläche und einem geringen Volumen verwendet;a three-dimensional, essentially dimensionally stable support structure preformed according to the desired shape of the implant is used with a coherent inner surface and a small volume;
in den inneren Hohlraum der Trägerstruktur werden die Zellen eingebracht;the cells are introduced into the inner cavity of the support structure;
die die Zellen aufnehmende Trägerstruktur wird mit einer Nährlösung zumindest so lange perfundiert, d.h. durchströmt, bis sich zumindest teilweise eine die Zellen aneinander bindende interzelluläre Matrix ausgebildet hat, wonach die Trägerstruktur implantiert werden kann.the carrier structure receiving the cells is perfused with a nutrient solution at least as long, i.e. flows through until an intercellular matrix binding the cells to one another has formed, after which the carrier structure can be implanted.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Trägerstruktur ein Vlies aus Polymerfasern, insbesondere Polyglykolen oder Polylactiden ist.2. The method according to claim 1, characterized in that the carrier structure is a nonwoven made of polymer fibers, in particular polyglycols or polylactides.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Trägerstruktur, bevor die Zellen in diese eingebracht werden, mit Adhäsionsfaktoren, insbesondere Poly-L-Lysin, versehen wird.3. The method according to claim 1 or 2, characterized in that the carrier structure, before the cells are introduced into it, is provided with adhesion factors, in particular poly-L-lysine.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Adhäsionsfaktoren durch Lyophilisation auf die iϊinere Oberfläche der Trägerstruktur aufgebracht werden. 4. The method according to claim 3, characterized in that the adhesion factors are applied by lyophilization to the iϊinere surface of the support structure.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der innere Hohlraum der Trägerstruktur so gestaltet und dimensioniert ist, daß die Nährlösung durch die Trägerstruktur diffundiert.5. The method according to any one of the preceding claims, characterized in that the inner cavity of the support structure is designed and dimensioned so that the nutrient solution diffuses through the support structure.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die die Zellen aufnehmende Trägerstruktur mit einem Material, insbesondere Agarose, ummantelt wird, durch das die Nährlösung hindurchdiffundieren kann.6. The method according to claim 5, characterized in that the carrier structure receiving the cells is coated with a material, in particular agarose, through which the nutrient solution can diffuse.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die- Trägerstruktur mit den darin aufgenommenen Zellen intervallartig durchströmt wird, so daß sich an eine Perfusionsphase jeweils eine Pause anschließt.7. The method according to any one of the preceding claims, characterized in that the carrier structure with the cells accommodated therein is flowed through at intervals, so that there is a pause after each perfusion phase.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trägerstruktur mit den darin aufgenommenen Zellen zur Perfusion in eine Perfusionskammer eingesetzt wird.8. The method according to any one of the preceding claims, characterized in that the carrier structure with the cells accommodated therein is used for perfusion in a perfusion chamber.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zellen in der Suspension mit dem Kulturmedium in die Trägerstruktur eingebracht werden, wobei zusätzlich die Suspension mit einem die Viskosität erhöhenden Stoff, vorzugsweise Agarose, versetzt wird.9. The method according to any one of the preceding claims, characterized in that the cells in the suspension with the culture medium are introduced into the support structure, the suspension being additionally mixed with a viscosity-increasing substance, preferably agarose.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß an die Trägerstruktur ein gewebsmorphogener Faktor angelagert wird, der die Zellbildung und die Bildung einer interzellulären Matrix unterstützt.10. The method according to any one of the preceding claims, characterized in that a tissue morphogenic factor is added to the support structure, which supports the cell formation and the formation of an intercellular matrix.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der gewebsmorphogene Faktor an einen Antikörper gekoppelt wird, der sich an dem Material der TrägerStruktur, vorzugsweise an dort aufgebrachten Haptenen anlagert. 11. The method according to claim 10, characterized in that the tissue-morphogenic factor is coupled to an antibody which attaches to the material of the support structure, preferably to haptens applied there.
EP94908950A 1993-03-03 1994-03-03 Process for producing an implant from cell cultures Withdrawn EP0687185A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4306661A DE4306661C2 (en) 1993-03-03 1993-03-03 Process for producing an implant from cell cultures
DE4306661 1993-03-03
PCT/DE1994/000235 WO1994020151A1 (en) 1993-03-03 1994-03-03 Process for producing an implant from cell cultures

Publications (1)

Publication Number Publication Date
EP0687185A1 true EP0687185A1 (en) 1995-12-20

Family

ID=6481857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94908950A Withdrawn EP0687185A1 (en) 1993-03-03 1994-03-03 Process for producing an implant from cell cultures

Country Status (5)

Country Link
US (1) US5891455A (en)
EP (1) EP0687185A1 (en)
JP (1) JP3567268B2 (en)
DE (1) DE4306661C2 (en)
WO (1) WO1994020151A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431598C2 (en) * 1993-03-03 1997-03-20 Michael Sittinger Process for producing an implant from cell cultures
DE19505070C2 (en) * 1995-02-15 1997-03-27 Axel Prof Dr Med Haverich Artificial vascular systems and processes for their manufacture
WO1997015655A2 (en) * 1995-10-20 1997-05-01 Michael Sittinger New artificial tissue, method for the production and the use thereof
ATE250666T1 (en) 1996-06-04 2003-10-15 Sulzer Orthopedics Ltd METHOD FOR PRODUCING CARTILAGE TISSUE AND IMPLANTS
US20060025786A1 (en) * 1996-08-30 2006-02-02 Verigen Transplantation Service International (Vtsi) Ag Method for autologous transplantation
US5989269A (en) * 1996-08-30 1999-11-23 Vts Holdings L.L.C. Method, instruments and kit for autologous transplantation
US6569172B2 (en) * 1996-08-30 2003-05-27 Verigen Transplantation Service International (Vtsi) Method, instruments, and kit for autologous transplantation
US20020173806A1 (en) * 1996-08-30 2002-11-21 Verigen Transplantation Service International (Vtsi) Ag Method for autologous transplantation
DE19648876C2 (en) * 1996-11-16 1999-10-07 Will Minuth Method of making a natural implant
US6187053B1 (en) 1996-11-16 2001-02-13 Will Minuth Process for producing a natural implant
DE69714035T2 (en) 1997-08-14 2003-03-06 Sulzer Innotec Ag, Winterthur Composition and device for repairing cartilage tissue in vivo consisting of nanocapsules with osteoinductive and / or chondroinductive factors
DE19803673A1 (en) 1998-01-30 1999-08-05 Norbert M Dr Meenen Biohybrid joint replacement
US6171610B1 (en) 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
US20020116063A1 (en) * 1999-08-02 2002-08-22 Bruno Giannetti Kit for chondrocyte cell transplantation
US6737270B1 (en) 1999-12-07 2004-05-18 University Of Pittsburgh Of The Commonwealth System Of Higher Education Long-term three dimensional tissue culture system
US20030096411A1 (en) * 1999-12-07 2003-05-22 George Michalopoulos Novel long-term three-dimensional tissue culture system
DE19959088A1 (en) * 1999-12-08 2001-06-13 Inst Textil & Faserforschung Medical device, process for its manufacture and use
JP3865354B2 (en) 2000-03-02 2007-01-10 高木産業株式会社 Cell or tissue culture method
US20030060695A1 (en) * 2001-03-07 2003-03-27 Connelly Patrick R. Implantable artificial organ devices
US7252982B2 (en) 2001-03-15 2007-08-07 Massachusetts Institute Of Technology Tissue engineering enhanced by the transfer of a growth factor gene
AU2003218572B2 (en) 2002-04-08 2009-08-20 Octane Biotech, Inc. Automated tissue engineering system
US20050159820A1 (en) * 2002-05-13 2005-07-21 Hideki Yoshikawa Member for regenerating joint cartilage and process for producing the same, method of regenerating joint cartilage and artificial cartilage for transplantation
US7622562B2 (en) 2002-06-26 2009-11-24 Zimmer Orthobiologics, Inc. Rapid isolation of osteoinductive protein mixtures from mammalian bone tissue
JP4353510B2 (en) * 2002-09-09 2009-10-28 株式会社カネカ Tissue regeneration support and method for producing the same
US20040136968A1 (en) * 2002-09-27 2004-07-15 Verigen Ag Autologous cells on a support matrix for tissue repair
US20040151729A1 (en) * 2002-10-28 2004-08-05 George Michalopoulos Novel long-term three-dimensional culture system
DE10333901A1 (en) * 2003-07-21 2005-03-10 Transtissue Technologies Gmbh Use of chemokines to recruit human mesenchymal progenitor cells for the regeneration of joint defects
DE10349484A1 (en) * 2003-10-21 2005-05-25 Universität Leipzig Method and bioreactor for culturing and stimulating three-dimensional, vital and mechanically resistant cell transplants
WO2005058207A1 (en) * 2003-12-11 2005-06-30 Isto Technologies, Inc. Particulate cartilage system
US8512730B2 (en) 2004-07-12 2013-08-20 Isto Technologies, Inc. Methods of tissue repair and compositions therefor
DE102005021509A1 (en) * 2005-05-04 2006-11-09 Matthias Schreiber Tissue culture allowing production of spaced vessels, vessel dressings or hollow organs involves colonization of a biodegradable or permanent carrier
DE102005030614B4 (en) 2005-06-30 2014-05-08 Biotissue Ag Cell-free graft, its use, process for its preparation, matrix thus produced with gel and process for the preparation of this matrix with gel
WO2007020713A1 (en) 2005-08-18 2007-02-22 Koken Co., Ltd. Cell culture support embeddable in vivo
US8480757B2 (en) 2005-08-26 2013-07-09 Zimmer, Inc. Implants and methods for repair, replacement and treatment of disease
EP1764117A1 (en) 2005-09-20 2007-03-21 Zimmer GmbH Implant for the repair of a cartilage defect and method for manufacturing the implant
DE102006047346A1 (en) 2006-10-06 2008-04-10 Transtissue Technologies Gmbh Matrix gel graft without cells
US8163549B2 (en) 2006-12-20 2012-04-24 Zimmer Orthobiologics, Inc. Method of obtaining viable small tissue particles and use for tissue repair
CA2684040C (en) 2007-04-12 2016-12-06 Isto Technologies, Inc. Method of forming an implant using a mold that mimics the shape of the tissue defect site and implant formed therefrom
AT506826B1 (en) * 2008-05-23 2010-03-15 Greiner Bio One Gmbh BIOREACTOR AND METHOD FOR CULTURING CELLS AND FABRICS
KR20100056718A (en) * 2008-11-20 2010-05-28 한국과학기술연구원 High resilient and biodegradable block copolymer scaffold with shape recovery effect and treatment of articular cartilage damage using the same
US8551775B2 (en) 2009-11-12 2013-10-08 Vbi Technologies, L.L.C. Subpopulations of spore-like cells and uses thereof
US10245306B2 (en) 2012-11-16 2019-04-02 Isto Technologies Ii, Llc Flexible tissue matrix and methods for joint repair
US20140178343A1 (en) 2012-12-21 2014-06-26 Jian Q. Yao Supports and methods for promoting integration of cartilage tissue explants
US10179191B2 (en) 2014-10-09 2019-01-15 Isto Technologies Ii, Llc Flexible tissue matrix and methods for joint repair
CA3185343A1 (en) 2017-09-01 2019-03-07 Lonza Walkersville, Inc. End-to-end cell therapy automation
EP3898994A4 (en) 2018-12-21 2022-12-14 Lonza Walkersville, Inc. Automated production of viral vectors
CA3123314A1 (en) 2018-12-21 2020-06-25 Octane Biotech Inc. Carousel for modular biologic production units
SG11202106652WA (en) 2018-12-28 2021-07-29 Octane Biotech Inc Cell culture and tissue engineering systems with controlled environmental zones
CA3128387A1 (en) 2019-02-08 2020-08-13 Lonza Walkersville, Inc. Cell concentration methods and devices for use in automated bioreactors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609551A (en) * 1984-03-20 1986-09-02 Arnold Caplan Process of and material for stimulating growth of cartilage and bony tissue at anatomical sites
US5041138A (en) * 1986-11-20 1991-08-20 Massachusetts Institute Of Technology Neomorphogenesis of cartilage in vivo from cell culture
CA1340581C (en) * 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
EP0282746A1 (en) * 1987-02-19 1988-09-21 Takeda Chemical Industries, Ltd. Method for producing artificial cultured tissue
US4846835A (en) * 1987-06-15 1989-07-11 Grande Daniel A Technique for healing lesions in cartilage
WO1991001720A1 (en) * 1989-08-07 1991-02-21 Herman Wade Schlameus Composition and method of promoting hard tissue healing
EP0470681A3 (en) * 1990-08-08 1992-04-22 W.R. Grace & Co.-Conn. Cell clusters or sheets comprising a plurality of cell species and preparations thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9420151A1 *

Also Published As

Publication number Publication date
JP3567268B2 (en) 2004-09-22
JPH08511679A (en) 1996-12-10
DE4306661A1 (en) 1994-09-08
US5891455A (en) 1999-04-06
WO1994020151A1 (en) 1994-09-15
DE4306661C2 (en) 1995-04-20

Similar Documents

Publication Publication Date Title
DE4306661C2 (en) Process for producing an implant from cell cultures
DE69535324T2 (en) Medium penetrating cell culture carrier and its uses in a culture method and apparatus
DE10021627B4 (en) Method for producing a vascularized bioartificial tissue and associated experimental reactor
DE69014125T2 (en) ARTIFICIAL SALIVARY Glands PERFUSION DEVICE.
DE69531821T2 (en) MULTILAYER ALGINATE COATINGS OF BIOLOGICAL TISSUE FOR TRANSPLANTATION
DE69231485T2 (en) Use of porous calcium carbonate as a carrier material for in vitro cell cultures.
DE60213432T2 (en) METHOD AND ANLYSE FOR BREEDING ORGANIC TISSUE CULTURES
EP0801676A2 (en) New artificial tissue, method for the production and the use thereof
CH657786A5 (en) METHOD FOR ENCapsulating A CORE MATERIAL WITHIN A SEMIPERMEABLE MEMBRANE.
WO2005040332A2 (en) Method and bioreactor for the cultivation and stimulation of three-dimensional vital and mechanically-resistant cell transplants
AT506826B1 (en) BIOREACTOR AND METHOD FOR CULTURING CELLS AND FABRICS
EP2569141B1 (en) Method for producing an organ replica, in particular a functional model
WO2009118140A2 (en) Perfusable bioreactor for the production of human or animal tissues
DE19529036A1 (en) Biocompatible composite material for use on implants, esp. dental implants
DE69211342T2 (en) Artificial pancreatic perfusion device with rechargeable matrix
DE10061704A1 (en) Method and device for producing biological tissue in a growth chamber
WO2021023708A1 (en) Method for 3d printing of vascularized tissues and organs
WO1986000293A1 (en) Method and plant for continuously producing biological humus-forming fertilizer
DE60120127T2 (en) INJECTABLE MICRO BEADS FOR TISSUE CONSTRUCTION
DE19648876C2 (en) Method of making a natural implant
DE19540487A1 (en) Cell interaction system for induction of artificial 3-dimensional tissue
EP1287118B1 (en) Method for producing a recipient-specific tissue transplant or tissue implant
DE60132923T2 (en) TISSUE CULTURE AND DEVICE
EP1362092B1 (en) Method for the production of a biological tissue using a collagen support and corresponding tissue construct
EP1500697A2 (en) Bioartifical, primarily vascularized tissue for pharmaceutical tests, method for its production, test using said tissue and use of it in a bioreactor.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB LI NL

17Q First examination report despatched

Effective date: 19990204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990817