EP0685567B1 - Ferritic stainless steel with improved machinability - Google Patents
Ferritic stainless steel with improved machinability Download PDFInfo
- Publication number
- EP0685567B1 EP0685567B1 EP95400951A EP95400951A EP0685567B1 EP 0685567 B1 EP0685567 B1 EP 0685567B1 EP 95400951 A EP95400951 A EP 95400951A EP 95400951 A EP95400951 A EP 95400951A EP 0685567 B1 EP0685567 B1 EP 0685567B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- ferritic
- steels
- composition
- calcium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 34
- 239000010935 stainless steel Substances 0.000 claims abstract description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 121
- 239000010959 steel Substances 0.000 claims description 121
- 239000011575 calcium Substances 0.000 claims description 43
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 26
- 229910052717 sulfur Inorganic materials 0.000 claims description 23
- 229910052791 calcium Inorganic materials 0.000 claims description 22
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 19
- 238000003754 machining Methods 0.000 claims description 18
- 229910052804 chromium Inorganic materials 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910001678 gehlenite Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052661 anorthite Inorganic materials 0.000 claims description 3
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005864 Sulphur Substances 0.000 claims 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 2
- 239000000292 calcium oxide Substances 0.000 claims 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims 1
- 229940087373 calcium oxide Drugs 0.000 claims 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims 1
- 235000012255 calcium oxide Nutrition 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 229910052882 wollastonite Inorganic materials 0.000 claims 1
- 239000010456 wollastonite Substances 0.000 claims 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 23
- 239000011651 chromium Substances 0.000 description 19
- 229910000734 martensite Inorganic materials 0.000 description 19
- 239000011593 sulfur Substances 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 14
- 230000007797 corrosion Effects 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 239000011572 manganese Substances 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000013467 fragmentation Methods 0.000 description 5
- 238000006062 fragmentation reaction Methods 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 101150034785 gamma gene Proteins 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- -1 Al Ti) O Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- 229910004534 SiMn Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XRHMEPCFHSDEDS-UHFFFAOYSA-N [S--].[S--].[Mn++].[Mn++] Chemical class [S--].[S--].[Mn++].[Mn++] XRHMEPCFHSDEDS-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
Definitions
- the present invention relates to a structural stainless steel ferritic and improved machinability, usable in particular in the field bar turning.
- stainless steels we mean iron alloys containing at least 10.5% chromium.
- Document FR-A-2 456 785 discloses a free-cutting stainless steel having excellent machinability and which can contain up to 40% Ni and Te, so that the% Te /% S ratio is greater than 0.04 .
- Ferritic stainless steels are characterized by a determined composition, the ferritic structure being notably ensured, after lamination and cooling of the composition, by treatment thermal annealing giving them said structure.
- the structure of the steel can be two-phase, ferritic and austenitic. If the cooling is, by energetic example, the final structure is ferritic and martensitic. If he is slower, the austenite partially decomposes into ferrite and carbides, but with a richer carbide content than the surrounding matrix, the austenite having solubilized hot more carbon than the ferrite. In the two cases, an income or annealing must therefore be practiced on steels hot rolled and cooled to generate a fully structured ferritic. Tempering can be done at a temperature of around 820 ° C lower than the transition temperature alpha ⁇ gamma A1, which generates a precipitation of carbides.
- the carbon combines with stabilizing elements such as titanium and / or niobium and no longer participates in the formation of the gamma-gene phase, no longer present in the matrix. In this case, it is possible to obtain after hot rolling a steel whose structure is completely ferritic.
- the thermal conductivity of ferritic steels is very low. It is between that of martensitic steels and that of steels austenitics at room temperature. It is equivalent to the thermal conductivity of austenitic steels at temperatures between 800 ° C and 1000 ° C, temperatures which correspond to steel temperatures during machining.
- the expansion coefficient thermal of ferritic steels is about 60% higher than that austenitic steels.
- ferritic steels have characteristics significantly lower than those of martensitic steels and austenitics.
- the following table presents a series of stainless, ferritic, martensitic, austenitic steels and the corresponding mechanical characteristics (Rm).
- Stainless steel Standardized RM MPa
- Ferritic AISI 430 Z8 C17
- 440 - 640 AISI 430F Z20 CF17
- 440 - 640 Martensitic AISI 420A Z20 C13
- 700 - 850 AISI 420B Z33 C13
- 850 - 1000 F16 H (Z7CNU16-04) (hardened) 930 - 1100 Austenitic AISI 304 (Z6 CNT18 10) 510 - 710
- the flow stress at a rolling temperature of 1100 ° C and for a deformation speed of 1 s -1 is 110 MPa for martensitic steel of type AISI 420 A, of 130 MPa for an austenitic steel of type AISI 304 whereas it is 30 MPa for a ferritic steel of type AISI 430.
- Steels of ferritic structure are not subjected to a rapid quenching or quenching type cooling like steels martensitic or austenitic. However, they are generally subject very specific delayed heat treatments which give them their structure. Deferred heat treatments also aim to homogenize the chromium element and avoid the creation of carbide chromium and the appearance of chromium-depleted areas.
- steels of ferritic structure with 17% chromium non-stabilized have, after rolling, a ferritic and martensitic structure.
- Heat treatment on the one hand ensures the transformation of the martensite made of ferrite and carbides and on the other hand, a distribution uniform chrome.
- stainless steels ferritics pose very different machinability problems than those encountered with stainless steels of austenitic structure or martensitic.
- ferritic steels a big drawback of ferritic steels is the poor chip conformation. They produce long chips and tangled, which are very difficult to fragment. It is then necessary operators to stay close to the machine to clear tools. This disadvantage can become very disadvantageous in machining modes where the chip is confined, such as in deep drilling, the cutting ...
- Another solution to overcome machining problems ferritic steels is to introduce sulfur into their composition.
- the sulfur forms with manganese manganese sulfides which have a favorable effect on chip fragmentation and incidentally on tool life.
- sulfur degrades the properties of ferritic steel, in particular hot and cold deformability, and corrosion resistance.
- Said ferritic steels usually contain hard inclusions of chromite (Cr Mn, Al Ti) O, alumina (AlMg) O, silicate (SiMn) O type, abrasives for cutting tools. It has been found that resulphurized ferritic steels have good machinability, however, in addition to corrosion resistance, the mechanical properties in the cross direction are greatly degraded.
- the object of the invention is to propose a ferritic steel with machinability improved with characteristics far superior to those, for example, resulphurized ferritic steels and, in another form, to present a machinable ferritic steel containing little or no sulfur.
- Figures 1 and 2 show a conformation diagram of the chips depending on the machining conditions respectively for a known non-resulfurized AISI 430 ferritic steel, designated by the reference A and for an AISI 304 austenitic steel.
- Figure 3 shows different chip conformations machining results when turning different metals.
- Figure 4 is a ternary diagram defining the compositions of the malleable oxides introduced into the composition of ferritic steel according to the invention.
- Figures 5 and 6 show a conformation diagram of chips depending on the machining conditions respectively for a known ferritic steel C AISI 430F resulfurized and for a ferritic steel resulfurized S according to the invention.
- Figure 7 is a diagram showing three curves machinability test characteristics, one of which corresponds to steel of reference A, the other two corresponding to two steels in the the invention C1 and C2 and containing little sulfur.
- Figure 8 presents a diagram schematically the conformation of chips depending on the tool feed and the depth of the machining pass for a C2 steel according to the invention.
- austenitic stainless steels have the disadvantage of being hardenable and of wearing out the cutting tools very quickly, the conformation of the chips is bad, but without comparison with that of ferritic steels.
- Figures 1 and 2 show a conformation diagram of shavings depending on the feed and the depth of the machining pass determined respectively for non-resulfurized AISI 430 ferritic steel corresponding to the reference A and an AISI 304 austenitic steel.
- the Figure 3 is a table which associates with different chip conformations a coefficient comprising several successive digits, the first digit defining different general images of the chip, forming the columns of the table such as 1: ribbon chip; 2: tubular chip; 3: chip spiral ..., 4: helical chip in washer; 5: conical helical chip; 6: arched chip; 7: elementary chip; 8: needle chip, the second figure defining a dimension and shape characteristic classified in each of the columns such as: 1: long; 2: short .; 3: tangled ; 4: flat; 5: conical; 6: attached; 7: detached.
- Martensitic stainless steels have characteristics high mechanical properties, which generates high cutting temperatures and rapid tool wear.
- ferritic stainless steel with improved machinability usable in particular in the field of bar turning, comprises in its composition by weight, less than 0.17% of carbon, less than 2% of silicon, less than 2% of manganese, 11 to 20% chromium, less than 1% nickel, less than 0.55% sulfur, more than 30 10 -4 % calcium and more than 70 10 -4 % oxygen, steel being subjected, after preparation, to an annealing treatment to give it a ferritic structure.
- the rolling temperatures of ferritic steels are lower than the rolling temperatures of steels of another structure, and the flow stress of ferritic steels remains very low at these rolling temperatures.
- FIGS. 5 and 6 represent a diagram of conformation of chips as a function of a feed of the tool and a depth of machining pass determined, respectively for a steel referenced C of the type AISI 430F resulfurized and for a steel S , resulfurized according to the invention.
- the composition of the reference steel C is presented in Table 1.
- steel VS Yes Mn Or Cr Ref. C 0.062 0.505 0.680 0.273 16.1 steel Mo Cu S P N2 Ref. C 0.214 0.091 0.298 0.022 0.037
- Table 2 The composition of the steel S according to the invention is given in table 2.
- the phenomenon of removal of the chip is very special. Without being clearly marked on the chip, fragmentation is significantly increased.
- the controlled introduction of calcium and oxygen has also carried out in a ferritic steel having, in its composition, a sulfur content of less than 0.035%
- the steels according to the invention may also contain less than 3% molybdenum, an element improving resistance to corrosion. It has been found that a steel of ferritic structure according to the invention does not containing little or no sulfur, has greatly improved machining of in such a way that this steel can be used industrially in bar turning, while having good resistance to corrosion.
- a machinability comparison is presented between the steel referenced A, non-resulfurized ferritic and not containing an oxide of the anorthite, gehlenite and pseudowollastonite type and two steels C1 and C2, C2 being in the field of the invention.
- Table 3 shows the composition of the reference steel A.
- Table 4 shows the composition of steels C1 and C2, C2 being in the field of the invention.
- comparative steel C1 because of its composition does not contain enough so-called malleable oxides of the anothite, gehlenite type, pseudowollostonite, due to the lack of calcium in the metal.
- the steel C2 according to the invention has a clearly higher fragmentation zone than steel reference A, and even close to the reference steel C which is a steel resulphurized ferritic.
- malleable oxides are likely to deform in the rolling direction, while the hard oxides they replace have the shape of grains.
- the inclusions chosen according to the invention reduce so consequent the rate of breakage of the drawn wire.
- ferritic stainless steels in the form of wires comprising malleable inclusions, subjected to shaving have characteristics which ensure the formation of steel wool strands of longer average length and allow shaving with wires much lower residuals, which saves on material.
- Ferritic steel, according to the invention comprising inclusions malleable can be polished much more easily to obtain an improved polished surface finish.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Powder Metallurgy (AREA)
- Catalysts (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Transmission Devices (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
Description
La présente invention concerne un acier inoxydable de structure ferritique et à usinabilité améliorée, utilisable notamment dans le domaine du décolletage.The present invention relates to a structural stainless steel ferritic and improved machinability, usable in particular in the field bar turning.
On désigne par aciers inoxydables, les alliages de fer contenant au moins 10,5 % de chrome. Le document FR-A-2 456 785 divulgue un acier inoxydable de décolletage présentant une excellente usinabilité et pouvant contenir jusqu'à 40% de Ni et du Te, de telle sorte que le rapport %Te/%S soit supérieur à 0,04.By stainless steels, we mean iron alloys containing at least 10.5% chromium. Document FR-A-2 456 785 discloses a free-cutting stainless steel having excellent machinability and which can contain up to 40% Ni and Te, so that the% Te /% S ratio is greater than 0.04 .
D'autres éléments entrent dans la composition des aciers afin de modifier leur structure et leurs propriétés. Il est connu quatre familles-types d'aciers inoxydables différenciées par leur structure. Ce sont :
- les aciers inoxydables de structure martensitiques,
- les aciers inoxydables de structure austénitiques,
- les aciers inoxydables de structure austéno-ferritiques,
- les aciers inoxydables de structure ferritiques.
- stainless steels with martensitic structure,
- stainless steels of austenitic structure,
- stainless steels with an austenitic-ferritic structure,
- stainless steels with ferritic structure.
Les aciers inoxydables ferritiques se caractérisent par une composition déterminée, la structure ferritique étant notamment assurée, après laminage et refroidissement de la composition, par un traitement thermique de recuit leur conférant ladite structure.Ferritic stainless steels are characterized by a determined composition, the ferritic structure being notably ensured, after lamination and cooling of the composition, by treatment thermal annealing giving them said structure.
Parmi les quatre grandes familles d'aciers inoxydables ferritiques définies notamment en fonction de leur teneur en chrome et en carbone, nous citons :
- les aciers inoxydables ferritiques pouvant contenir jusqu'à 0,17 % de carbone. Ces aciers, après le refroidissement qui suit leur élaboration, ont une structure biphasée austéno-ferritique. Ils sont transformés en aciers inoxydables ferritiques après recuit malgré une teneur en carbone relativement élevée.
- les aciers inoxydables ferritiques dont la teneur en chrome varie de 11 à 12 %. Ils sont assez proches des aciers martensitiques contenant 12 % de chrome, mais différent par leur teneur en carbone qui est nettement plus faible.
- ferritic stainless steels which may contain up to 0.17% carbon. These steels, after the cooling which follows their development, have a two-phase austeno-ferritic structure. They are transformed into ferritic stainless steels after annealing despite a relatively high carbon content.
- ferritic stainless steels whose chromium content varies from 11 to 12%. They are quite close to martensitic steels containing 12% chromium, but different in their carbon content which is significantly lower.
Par exemple, le tableau qui suit présente une série d'aciers
ferritiques et martensitiques avec la teneur en carbone imposée par la
norme.
- les aciers inoxydables ferritiques à 17 % de chrome. Ce sont les plus courants. Il en existe de nombreuses variantes, en particulier au niveau de la teneur en carbone. L'addition de molybdène permet d'améliorer leur résistance à la corrosion.
- ferritic stainless steels with 17% chromium. These are the most common. There are many variations, especially in terms of carbon content. The addition of molybdenum improves their resistance to corrosion.
De manière générale, la structure ferritique des aciers est de préférence obtenue en limitant la quantité de carbure de chrome, c'est pour cela que la plupart des aciers inoxydables ferritiques ont une teneur en carbone inférieure à 0,12 % voire 0,08 %.
- les aciers inoxydables ferritiques à 17 % de chrome stabilisés par addition d'éléments ayant une forte affinité pour le carbone ou l'azote, tels que le titane, le niobium, le zirconium.
- les aciers inoxydables ferritiques à haute teneur en chrome, généralement supérieure à 24 %.
- ferritic stainless steels with 17% chromium stabilized by the addition of elements having a strong affinity for carbon or nitrogen, such as titanium, niobium, zirconium.
- ferritic stainless steels with a high chromium content, generally greater than 24%.
Du point de vue métallurgique, il est connu que certains éléments contenus dans la composition de l'acier favorisent l'apparition de la phase ferritique de structure cubique centrée. Ces éléments sont dits alpha-gènes. Parmi ceux-ci figurent le chrome et le molybdène. D'autres éléments dits gamma-gènes favorisent l'apparition de la phase gamma-austénitique de structure cubique à faces centrées. Parmi ces éléments figurent le nickel ainsi que le carbone et l'azote.From a metallurgical point of view, it is known that certain elements contained in the composition of the steel favor the appearance of the ferritic phase with a centered cubic structure. These elements are said alpha-genes. Among these are chromium and molybdenum. Others so-called gamma-gene elements favor the appearance of the gamma-austenitic phase of cubic structure with centered faces. Among these elements include nickel as well as carbon and nitrogen.
Lors du laminage des aciers à chaud, la structure de l'acier peut être biphasée, ferritique et austénitique. Si le refroidissement est, par exemple énergique, la structure finale est ferritique et martensitique. S'il est plus lent, l'austénite se décompose partiellement en ferrite et carbures, mais avec une teneur en carbure plus riche que la matrice environnante, l'austénite ayant solubilisé à chaud plus de carbone que la ferrite. Dans les deux cas, un revenu ou recuit doit donc être pratiqué sur les aciers laminés à chaud et refroidis pour générer une structure totalement ferritique. Le revenu peut se faire à une température d'environ 820 ° C inférieure à la température A1 de transition alpha → gamma, ce qui engendre une précipitation de carbures.When hot rolling, the structure of the steel can be two-phase, ferritic and austenitic. If the cooling is, by energetic example, the final structure is ferritic and martensitic. If he is slower, the austenite partially decomposes into ferrite and carbides, but with a richer carbide content than the surrounding matrix, the austenite having solubilized hot more carbon than the ferrite. In the two cases, an income or annealing must therefore be practiced on steels hot rolled and cooled to generate a fully structured ferritic. Tempering can be done at a temperature of around 820 ° C lower than the transition temperature alpha → gamma A1, which generates a precipitation of carbides.
On peut également effectuer un recuit à une température plus élevée comme par exemple 870°C qui conduit à un adoucissement plus marqué de la martensite mais provoque une transformation partielle en austénite. Un refroidissement lent est alors nécessaire pour décomposer l'austénite formée en ferrite et carbures, évitant ainsi la formation de nouvelle martensite.It is also possible to anneal at a higher temperature. high such as 870 ° C which leads to more softening marked with martensite but causes a partial transformation into austenite. Slow cooling is then necessary to decompose austenite formed of ferrite and carbides, thus avoiding the formation of new martensite.
Dans l'élaboration des aciers ferritiques, dits stabilisés, le carbone se combine avec les éléments stabilisants tels que le titane et/ou la niobium et ne participe plus à la formation de phase gamma-gène, n'étant plus présent dans la matrice. Dans ce cas, il est possible d'obtenir après le laminage à chaud un acier dont la structure soit totalement ferritique.In the development of so-called stabilized ferritic steels, the carbon combines with stabilizing elements such as titanium and / or niobium and no longer participates in the formation of the gamma-gene phase, no longer present in the matrix. In this case, it is possible to obtain after hot rolling a steel whose structure is completely ferritic.
Du point de vue des propriétés physiques, la différence la plus apparente entre aciers ferritiques et aciers austénitiques est le comportement ferromagnétique des premiers.From the point of view of physical properties, the most significant difference apparent between ferritic steels and austenitic steels is the ferromagnetic behavior of the former.
La conductibilité thermique des aciers ferritiques est très basse. Elle se situe entre celle des aciers martensitiques et celle des aciers austénitiques à la température ambiante. Elle est équivalente à la conductibilité thermique des aciers austénitiques à des températures comprises entre 800°C et 1000°C, températures qui correspondent aux températures des aciers lors de l'usinage.The thermal conductivity of ferritic steels is very low. It is between that of martensitic steels and that of steels austenitics at room temperature. It is equivalent to the thermal conductivity of austenitic steels at temperatures between 800 ° C and 1000 ° C, temperatures which correspond to steel temperatures during machining.
Au point de vue de l'usinage, le coefficient de dilatation thermique des aciers ferritiques est d'environ 60 % plus élevé que celui des aciers austénitiques.From a machining point of view, the expansion coefficient thermal of ferritic steels is about 60% higher than that austenitic steels.
En outre, les aciers ferritiques ont des caractéristiques mécaniques nettement plus basses que celles des aciers martensitiques et austénitiques.In addition, ferritic steels have characteristics significantly lower than those of martensitic steels and austenitics.
Dans un exemple, le tableau qui suit présente une série d'aciers
inoxydables, ferritiques, martensitiques, austénitiques et les
caractéristiques mécaniques (Rm) correspondantes.
Dans l'élaboration des aciers de structures ferritiques, les contraintes d'écoulement aux températures de laminage sont nettement plus faibles que celles des aciers austénitiques ou des aciers martensitiques. De ce fait, le laminage est effectué à des températures relativement plus basses.In the development of steels of ferritic structures, the flow stresses at rolling temperatures are markedly weaker than those of austenitic steels or steels martensitics. Therefore, lamination is carried out at temperatures relatively lower.
A titre d'exemple indicatif, la contrainte d'écoulement à une température de laminage de 1100°C et pour une vitesse de déformation de 1 s -1 est de 110 MPa pour un acier martensitique de type AISI 420 A, de 130 MPa pour un acier austénitique de type AISI 304 alors qu'elle est de 30 MPa pour un acier ferritique de type AISI 430.As an example, the flow stress at a rolling temperature of 1100 ° C and for a deformation speed of 1 s -1 is 110 MPa for martensitic steel of type AISI 420 A, of 130 MPa for an austenitic steel of type AISI 304 whereas it is 30 MPa for a ferritic steel of type AISI 430.
Les aciers de structure ferritique ne sont pas soumis à un refroidissement rapide de type trempe ou hypertrempe comme les aciers martensitiques ou austénitiques. Par contre, ils sont soumis généralement à des traitements thermiques différés bien spécifiques qui leur confèrent leur structure. Les traitements thermiques différés ont aussi pour but d'homogénéiser l'élément chrome et éviter la création de carbure de chrome et l'apparition de zones appauvries en chrome.Steels of ferritic structure are not subjected to a rapid quenching or quenching type cooling like steels martensitic or austenitic. However, they are generally subject very specific delayed heat treatments which give them their structure. Deferred heat treatments also aim to homogenize the chromium element and avoid the creation of carbide chromium and the appearance of chromium-depleted areas.
Par exemple, les aciers de structure ferritique à 17 % de chrome non stabilisés ont après laminage, une structure ferritique et martensitique. Un traitement thermique assure d'une part la transformation de la martensite en ferrite et en carbures et d'autre part, une répartition uniforme du chrome.For example, steels of ferritic structure with 17% chromium non-stabilized have, after rolling, a ferritic and martensitic structure. Heat treatment on the one hand ensures the transformation of the martensite made of ferrite and carbides and on the other hand, a distribution uniform chrome.
Dans le domaine de leur utilisation, les aciers inoxydables ferritiques posent des problèmes d'usinabilité très différents de ceux rencontrés avec les aciers inoxydables de structure austénitique ou martensitique.In the field of their use, stainless steels ferritics pose very different machinability problems than those encountered with stainless steels of austenitic structure or martensitic.
En effet, un gros inconvénient des aciers ferritiques est la mauvaise conformation du copeau. Ils produisent des copeaux longs et enchevêtrés, qui sont très difficiles à fragmenter. Il est alors nécessaire aux opérateurs de rester près de la machine pour dégager les outils. Cet inconvénient peut devenir très pénalisant dans des modes d'usinages où le copeau est confiné, comme par exemple dans le perçage profond, le tronçonnage...Indeed, a big drawback of ferritic steels is the poor chip conformation. They produce long chips and tangled, which are very difficult to fragment. It is then necessary operators to stay close to the machine to clear tools. This disadvantage can become very disadvantageous in machining modes where the chip is confined, such as in deep drilling, the cutting ...
Une solution pour résoudre ce problème est l'usinage à vitesse de coupe élevée pour provoquer la fragmentation du copeau, mais d'une part, l'augmentation de la vitesse de coupe diminue de façon critique la durée de vie des outils, d'autre part les machines ne permettent pas toujours d'atteindre des vitesses suffisamment élevées, en particulier lors de la réalisation de petits diamètres notamment en décolletage. One solution to solve this problem is speed machining high cutting to cause chip fragmentation, but hand, increasing the cutting speed critically decreases the lifetime of tools, on the other hand machines do not allow always reach sufficiently high speeds, especially when the production of small diameters, especially in bar turning.
Une autre solution apportée pour pallier aux problèmes d'usinage des aciers ferritiques est d'introduire du soufre dans leur composition. Le soufre forme avec le manganèse des sulfures de manganèse qui ont un effet favorable sur la fragmentation des copeaux et accessoirement sur la durée de vie des outils. Cependant, le soufre dégrade les propriétés de l'acier ferritique, notamment la déformabilité à chaud et à froid, et la résistance à la corrosion.Another solution to overcome machining problems ferritic steels is to introduce sulfur into their composition. The sulfur forms with manganese manganese sulfides which have a favorable effect on chip fragmentation and incidentally on tool life. However, sulfur degrades the properties of ferritic steel, in particular hot and cold deformability, and corrosion resistance.
Lesdits aciers ferritiques contiennent habituellement des
inclusions dures de type chromite (Cr Mn, Al Ti)O, alumine (AlMg)O,
silicate (SiMn)O, abrasives pour les outils de coupe.
Il s'est avéré que les aciers ferritiques resulfurés avaient une bonne
usinabilité, cependant, en plus de la résistance à la corrosion, les propriétés
mécaniques en sens travers, se trouvent grandement dégradées.Said ferritic steels usually contain hard inclusions of chromite (Cr Mn, Al Ti) O, alumina (AlMg) O, silicate (SiMn) O type, abrasives for cutting tools.
It has been found that resulphurized ferritic steels have good machinability, however, in addition to corrosion resistance, the mechanical properties in the cross direction are greatly degraded.
L'invention a pour but de proposer un acier ferritique à usinabilité améliorée ayant des caractéristiques bien supérieures à celles, par exemple, des aciers ferritiques resulfurés et, dans une autre forme, de présenter un acier ferritique usinable ne contenant pas ou peu de soufre.The object of the invention is to propose a ferritic steel with machinability improved with characteristics far superior to those, for example, resulphurized ferritic steels and, in another form, to present a machinable ferritic steel containing little or no sulfur.
L'invention a pour objet un acier inoxydable de structure ferritique et à usinabilité améliorée utilisable notamment dans le domaine du décolletage et qui comprend dans sa composition pondérale :
- carbone ≤ 0,17 %
- silicium ≤ 2 %
- manganèse ≤ 2 %
- chrome : 11 - 20 %
- nickel < 1 %
- soufre ≤ 0,55 %
- calcium ≥ 30 x 10 - 4 %
- oxygène ≥ 70 x 10-4 %
reste Fe et les impuretés inévitables,
le rapport de la teneur en calcium et en oxygène Ca/
De préférence, l'acier inoxydable de structure ferritique comprend dans sa composition :
- carbone ≤ 0,12 %
- silicium ≤ 2 %
- manganèse ≤ 2 %
- chrome 15 - 19 %
- nickel < 1 %
- soufre ≤ 0,55 %
- calcium ≥ 35 x 10-4 %
- oxygène ≥ 70 x 10-4 %
- carbon ≤ 0.17%
- silicon ≤ 2%
- manganese ≤ 2%
- chromium: 11 - 20%
- nickel <1%
- sulfur ≤ 0.55%
- calcium ≥ 30 x 10 - 4%
- oxygen ≥ 70 x 10 -4 %
remains Fe and the inevitable impurities,
the ratio of calcium and oxygen content Ca / O being 0.2 ≤ Ca / O ≤ 0.6.
Preferably, the ferritic structure stainless steel comprises in its composition:
- carbon ≤ 0.12%
- silicon ≤ 2%
- manganese ≤ 2%
- chromium 15 - 19%
- nickel <1%
- sulfur ≤ 0.55%
- calcium ≥ 35 x 10 -4 %
- oxygen ≥ 70 x 10 -4 %
Dans une forme de l'invention :
- l'acier inoxydable de struture ferritique comprend dans sa composition :
- C ≤ 0,08 %
- Si ≤ 2,0 %
- Mn ≤ 2,0 %
- Cr 15 - 19 %
- Ni < 1 %
- S ≤ 0,55 %
- Ca ≥ 35 x 10-4 %
- O ≥ 70 x 10-4 %
- stainless steel with ferritic structure includes in its composition:
- C ≤ 0.08%
- If ≤ 2.0%
- Mn ≤ 2.0%
- Cr 15 - 19%
- Ni <1%
- S ≤ 0.55%
- Ca ≥ 35 x 10 -4 %
- O ≥ 70 x 10 -4 %
Les autres caractéristiques de l'invention sont :
- l'acier ferritique comprend de 0,15 % à 0,45 % de soufre,
- ferritic steel comprises from 0.15% to 0.45% sulfur,
Dans une autre forme de l'invention :
- l'acier ferritique comprend moins de 0,035 % de soufre,
- l'acier ferritique comprend de 0,05 à 0,15 % de soufre,
- l'acier ferritique peut contenir dans sa composition moins de 3 % de mobybdène.
- ferritic steel contains less than 0.035% sulfur,
- ferritic steel comprises from 0.05 to 0.15% sulfur,
- ferritic steel may contain less than 3% mobybdenum in its composition.
La description qui suit et les dessins annexés le tout donné à titre d'exemple non limitatif, fera bien comprendre l'invention.The following description and the attached drawings, all given to by way of nonlimiting example, will make the invention well understood.
Les figures 1 et 2 présentent un diagramme de conformation des copeaux en fonction des conditions d'usinage respectivement pour un acier ferritique connu AISI 430 non resulfuré, désigné par la référence A et pour un acier austénitique AISI 304.Figures 1 and 2 show a conformation diagram of the chips depending on the machining conditions respectively for a known non-resulfurized AISI 430 ferritic steel, designated by the reference A and for an AISI 304 austenitic steel.
La figure 3 présente différentes conformations de copeaux issues d'usinage lors du décolletage de différents métaux.Figure 3 shows different chip conformations machining results when turning different metals.
La figure 4 est un diagramme ternaire définissant les compositions des oxydes malléables introduits dans la composition de l'acier ferritique selon l'invention. Figure 4 is a ternary diagram defining the compositions of the malleable oxides introduced into the composition of ferritic steel according to the invention.
Les figures 5 et 6 présentent un diagramme de conformation de copeaux en fonction des conditions d'usinage respectivement pour un acier C ferritique connu AISI 430F resulfuré et pour un acier ferritique resulfuré S selon l'invention.Figures 5 and 6 show a conformation diagram of chips depending on the machining conditions respectively for a known ferritic steel C AISI 430F resulfurized and for a ferritic steel resulfurized S according to the invention.
La figure 7 est un schéma présentant trois courbes caractéristiques d'essai d'usinabilité dont une correspond à l'acier de référence A, les deux autres correspondant à deux aciers du domaine de l'invention C1 et C2 et contenant peu de soufre.Figure 7 is a diagram showing three curves machinability test characteristics, one of which corresponds to steel of reference A, the other two corresponding to two steels in the the invention C1 and C2 and containing little sulfur.
La figure 8 présente un diagramme schématisant la conformation de copeaux en fonction de l'avance de l'outil et de la profondeur de la passe d'usinage pour un acier C2 selon l'invention.Figure 8 presents a diagram schematically the conformation of chips depending on the tool feed and the depth of the machining pass for a C2 steel according to the invention.
Dans le domaine de l'usinabilité des aciers inoxydables en général et en fonction des différentes structures des aciers utilisés, les problèmes rencontrés s'avèrent être d'une part, différents, mais également particulièrement spécifiques. Les problèmes rencontrés lors de l'usinage des aciers ferritiques sont sans lien avec les problèmes rencontrés lors de l'usinage des aciers austénitiques ou martensitiques.In the field of machinability of stainless steels in general and according to the different structures of the steels used, the problems encountered turn out to be different, but also particularly specific. Problems encountered during machining ferritic steels are unrelated to the problems encountered during the machining of austenitic or martensitic steels.
Par exemple, les aciers inoxydables austénitiques ont l'inconvénient d'être écrouissables et d'user très vite les outils de coupe, la conformation des copeaux est mauvaise, mais sans comparaison avec celle des aciers ferritiques.For example, austenitic stainless steels have the disadvantage of being hardenable and of wearing out the cutting tools very quickly, the conformation of the chips is bad, but without comparison with that of ferritic steels.
Les figures 1 et 2 présentent un diagramme de conformation de copeaux en fonction de l'avance et de la profondeur de la passe d'usinage déterminées respectivement pour un acier ferritique AISI 430 non resulfuré correspondant à la référence A et un acier austénitique AISI 304.Figures 1 and 2 show a conformation diagram of shavings depending on the feed and the depth of the machining pass determined respectively for non-resulfurized AISI 430 ferritic steel corresponding to the reference A and an AISI 304 austenitic steel.
Afin de pouvoir comparer les conformations de copeaux, la figure 3 est un tableau qui associe à différentes conformations de copeaux un coefficient comportant plusieurs chiffres successifs, le premier chiffre définissant différentes images générales du copeau, formant les colonnes du tableau telles que 1 : copeau ruban ; 2 :copeau tubulaire ; 3 : copeau spirale..., 4 : copeau hélicoídal en rondelle ; 5 : copeau hélicoïdal conique ; 6 : copeau en arc ; 7 : copeau élémentaire ; 8 : copeau aiguille, le second chiffre définissant une caractéristique de dimension et de forme classée dans chacune des colonnes telles que : 1 : long ; 2 : court.; 3 : enchevêtré ; 4 : plat ; 5 : coniques ; 6 : attaché ; 7 : détaché. In order to be able to compare chip conformations, the Figure 3 is a table which associates with different chip conformations a coefficient comprising several successive digits, the first digit defining different general images of the chip, forming the columns of the table such as 1: ribbon chip; 2: tubular chip; 3: chip spiral ..., 4: helical chip in washer; 5: conical helical chip; 6: arched chip; 7: elementary chip; 8: needle chip, the second figure defining a dimension and shape characteristic classified in each of the columns such as: 1: long; 2: short .; 3: tangled ; 4: flat; 5: conical; 6: attached; 7: detached.
Les aciers inoxydables martensitiques ont des caractéristiques mécaniques élevées, ce qui génère des températures de coupe importantes et une usure rapide des outils.Martensitic stainless steels have characteristics high mechanical properties, which generates high cutting temperatures and rapid tool wear.
Du fait des faibles caractéristiques mécaniques des aciers inoxydables de structure ferritique, lesdits aciers n'ont pas les mêmes modes d'usinage et de dégradation des outils de coupe que ceux des aciers martensitiques.Due to the poor mechanical properties of steels of ferritic structure, said steels do not have the same modes of machining and degradation of cutting tools than those of martensitic steels.
Il existe deux types d'aciers inoxydables ferritiques, en fonction de leur teneur en soufre :
- des aciers de décolletage qui ont une teneur en soufre
comprise entre 0,15 % et 0,55 %. Ce type d'acier utilisé en décolletage présente une bonne usinabilité, au détriment de la résistance à la corrosion, - des aciers standard qui ont une teneur en soufre inférieure à 0,035 %. Ce type d'acier présente une bonne résistance à la corrosion, mais est peu ou pas usiné, justement à cause des difficultés rencontrées lors du décolletage.
- les aciers ayant des niveaux intermédiaires de soufre correspondant à
une teneur comprise entre 0,05
% et 0,15 % ne sont pas commercialisés. En effet, leur usinabilité n'est que très modérément améliorée pour ces teneurs en soufre, en comparaison avec les aciers dits resulfurés. Ils ne présentent pas un avantage réel à côté de l'inconvévient qui reste la dégradation de la résistance à la corrosion.
- free-cutting steels which have a sulfur content of between 0.15% and 0.55%. This type of steel used in bar turning has good machinability, to the detriment of corrosion resistance,
- standard steels which have a sulfur content of less than 0.035%. This type of steel has good corrosion resistance, but is hardly or not machined, precisely because of the difficulties encountered during bar turning.
- steels with intermediate sulfur levels corresponding to a content between 0.05% and 0.15% are not sold. In fact, their machinability is only very moderately improved for these sulfur contents, in comparison with so-called resulfurized steels. They do not present a real advantage beside the disadvantage which remains the degradation of the resistance to corrosion.
Selon l'invention, l'acier inoxydable ferritique à usinabilité améliorée, utilisable notamment dans le domaine du décolletage, comprend dans sa composition en poids, moins de 0,17 % de carbone, moins de 2 % de silicium, moins de 2 % de manganèse, de 11 à 20 % de chrome, moins de 1 % de nickel, moins de 0,55 % de soufre, plus de 30 10-4 % de calcium et plus de 70 10-4 % d'oxygène, l'acier étant soumis, après élaboration, à un traitement de recuit pour lui conférer une structure ferritique.According to the invention, ferritic stainless steel with improved machinability, usable in particular in the field of bar turning, comprises in its composition by weight, less than 0.17% of carbon, less than 2% of silicon, less than 2% of manganese, 11 to 20% chromium, less than 1% nickel, less than 0.55% sulfur, more than 30 10 -4 % calcium and more than 70 10 -4 % oxygen, steel being subjected, after preparation, to an annealing treatment to give it a ferritic structure.
La présence du nickel dans la composition due à l'élaboration industrielle de l'acier n'est qu'un élément résiduel qu'on cherche à réduire et même à éliminer.The presence of nickel in the composition due to the preparation steel industry is only a residual element that we seek to reduce and even to eliminate.
L'introduction de façon contrôlée et volontaire de calcium et d'oxygène à des teneurs élevées et vérifiant la relation 0,2 ≤ Ca/O ≤ 0,6 favorise dans l'acier ferrique, la formation d'oxydes malléables, choisis dans un diagramme ternaire Al2O3 ; SiO2 ; CaO, dans la zone du point triple anorthite, gehlenite, pseudowollastonite comme représenté sur la figure 4.The controlled and voluntary introduction of calcium and oxygen at high levels and verifying the relationship 0.2 ≤ Ca / O ≤ 0.6 promotes in ferric steel, the formation of malleable oxides, chosen in a Al 2 O 3 ternary diagram; SiO 2 ; CaO, in the area of the triple point anorthite, gehlenite, pseudowollastonite as shown in Figure 4.
La présence de calcium et oxygène réduit de façon conséquente la formation des inclusions dures et abrasives de type chromite, alumine, silicate.The presence of calcium and oxygen significantly reduces the formation of hard and abrasive inclusions such as chromite, alumina, silicate.
On a constaté que l'introduction d'oxydes à base de calcium et d'oxygène dans un acier de structure ferritique, en remplacement des oxydes durs existants, ne modifie aucunement les autres caractéristiques de l'acier ferritique dans le domaine de la déformation à chaud ou à froid ou encore dans le domaine de la résistance à la corrosion.It has been found that the introduction of calcium-based oxides and of oxygen in a steel of ferritic structure, replacing the existing hard oxides, does not affect other characteristics in any way of ferritic steel in the field of hot or cold deformation or in the field of corrosion resistance.
Alors que les aciers ferritiques résulfurés ont une bonne usinabilité, la fragmentation du copeau étant assurée par la présence de soufre dans la composition dudit acier, de manière surprenante, l'introduction d'oxydes malléables dans la structure de l'acier améliore encore de façon spectaculaire l'usinabilité.While resulphurized ferritic steels have good machinability, chip fragmentation being ensured by the presence of sulfur in the composition of said steel, surprisingly, the introduction of malleable oxides in the steel structure improves yet dramatically machinability.
Les inclusions dites malléables contenues dans l'acier également malléable, ne peuvent avoir le même comportement que des inclusions malléables dans un acier non malléable de structure austénitique ou martensitique.The so-called malleable inclusions also contained in the steel malleable, cannot behave like inclusions malleable in non-malleable steel of an austenitic structure or martensitic.
En effet, les températures de laminage des aciers ferritiques sont inférieures aux températures de laminage des aciers d'une autre structure, et la contrainte d'écoulement des aciers ferritiques reste très faible à ces températures de laminage.In fact, the rolling temperatures of ferritic steels are lower than the rolling temperatures of steels of another structure, and the flow stress of ferritic steels remains very low at these rolling temperatures.
Il est effectivement inattendu, du fait de la faiblesse des contraintes d'écoulement que les oxydes dits malléables puissent être déformés pour influencer la conformation et le comportement du copeau lors de l'usinage.It is indeed unexpected, due to the weakness of flow constraints that so-called malleable oxides can be distorted to influence conformation and chip behavior during machining.
Les figures 5 et 6 représentent un diagramme de conformation
de copeaux en fonction d'une avance de l'outil et d'une profondeur de
passe d'usinage déterminées, respectivement pour un acier référencé C du
type AISI 430F resulfuré et pour un acier S, résulfuré selon l'invention.
La composition de l'acier C de référence est présentée dans le tableau 1.
Pour un acier selon l'invention, le phénomène d'enlèvement du copeau est très particulier. Sans être marqué de façon nette sur le copeau, la fragmentation est augmentée significativement.For a steel according to the invention, the phenomenon of removal of the chip is very special. Without being clearly marked on the chip, fragmentation is significantly increased.
L'introduction de façon contrôlée de calcium et d'oxygène a également été effectuée dans un acier ferritique ayant, dans sa composition, une teneur en soufre inférieure à 0,035 %The controlled introduction of calcium and oxygen has also carried out in a ferritic steel having, in its composition, a sulfur content of less than 0.035%
Les aciers selon l'invention peuvent également contenir moins de 3 % de molybdène, élément améliorant la résistance à la corrosion. Il s'est avéré qu'un acier de structure ferritique selon l'invention, ne contenant pas ou très peu de soufre, a un usinage grandement amélioré de façon telle que cet acier peut être utilisé industriellement en décolletage, tout en présentant une bonne résistance à la corrosion.The steels according to the invention may also contain less than 3% molybdenum, an element improving resistance to corrosion. It has been found that a steel of ferritic structure according to the invention does not containing little or no sulfur, has greatly improved machining of in such a way that this steel can be used industrially in bar turning, while having good resistance to corrosion.
Dans un exemple d'application, il est présenté une comparaison
d'usinabilité entre l'acier référencé A, ferritique non résulfuré et ne
contenant pas d'oxyde de type anorthite, gehlenite et pseudowollastonite et
deux aciers C1 et C2, C2 étant du domaine de l'invention.
Le tableau 3 présente la composition de l'acier A de référence.
Le tabelau 4 présente la composition des aciers C1 et C2, C2 étant du domaine de
l'invention.
Table 3 shows the composition of the reference steel A.
Table 4 shows the composition of steels C1 and C2, C2 being in the field of the invention.
Dans un essai d'usinabilité présenté sur la figure 7, nous constatons lors de l'usinage de l'acier de référence A, de l'acier C1 et de l'acier C2, les différents taux d'usure d'un outil en carbure revêtu. L'essai est réalisé sans lubrification afin d'être plus sévère. Nous constatons une diminution de l'usure en dépouille de l'outil lorsque nous comparons l'acier de référence A (courbe A), de l'acier C1 (courbe C1) et l'acier C2 (courbe C2) selon l'invention.In a machinability test presented in Figure 7, we during the machining of reference steel A, steel C1 and C2 steel, the different wear rates of a coated carbide tool. The essay is carried out without lubrication in order to be more severe. We see a less wear and tear on the tool when we compare steel reference A (curve A), steel C1 (curve C1) and steel C2 (curve C2) according to the invention.
En effet, l'acier comparatif C1 du fait de sa composition ne comporte pas suffisamment d'oxydes dits malléables du type anothite, gehlenite, pseudowollostonite, de part le manque de calcium dans le métal. En outre, nous observons sur les diagrammes de la figure 8, que l'acier C2 selon l'invention a une zone de fragmentation nettement supérieure à l'acier de référence A, et même, proche de l'acier de référence C qui est un acier ferritique résulfuré.Indeed, comparative steel C1 because of its composition does not contain enough so-called malleable oxides of the anothite, gehlenite type, pseudowollostonite, due to the lack of calcium in the metal. In addition, we observe on the diagrams of figure 8, that the steel C2 according to the invention has a clearly higher fragmentation zone than steel reference A, and even close to the reference steel C which is a steel resulphurized ferritic.
Concernant les aciers ayant des teneurs intermédiaires en soufre, comprises entre 0,05 % et 0,15 %, nous constatons que les aciers selon l'invention ont une usinabilité comparable à celles des aciers resulfurés tout en ayant une meilleure résistance à la corrosion.Concerning steels with intermediate contents in sulfur, between 0.05% and 0.15%, we find that steels according to the invention have a machinability comparable to that of steels resulfurized while having better resistance to corrosion.
Dans une autre application, il s'est avéré que la présence d'oxydes dits malléables dans un acier ferritique, avait des avantages particuliers.In another application, it turned out that the presence of so-called malleable oxides in ferritic steel, had advantages individuals.
En effet, les oxydes malléables sont susceptibles de se déformer dans le sens du laminage, alors que les oxydes durs qu'ils remplacent ont la forme de grains.Indeed, malleable oxides are likely to deform in the rolling direction, while the hard oxides they replace have the shape of grains.
Dans le domaine du tréfilage de fils d'acier ferritique de faible diamètre, les inclusions choisies selon l'invention réduisent de manière conséquente le taux de casse du fil tréfilé. In the field of low-ferritic steel wire drawing diameter, the inclusions chosen according to the invention reduce so consequent the rate of breakage of the drawn wire.
Dans le domaine de la fabrication de laine d'acier par rasage de fil d'aciers inoxydables ferritiques, les inclusions dures qui usent rapidement les outils de rasage provoquent également du fait de leur forme en grain des ruptures importantes qui nuisent à la qualité de la laine d'acier.In the field of steel wool shaving ferritic stainless steel wire, hard inclusions that wear out shaving tools also quickly provoke due to their shape in grain important breaks which affect the quality of the wool of steel.
Selon l'invention, les aciers inoxydables ferritiques sous forme de fils comportant des inclusions malléables, soumis au rasage, présentent des caractéristiques qui assurent la formation de brins de laine d'acier de plus grande longueur moyenne et autorisent des rasages avec des fils résiduels beaucoup plus réduits, ce qui permet une économie de matière.According to the invention, ferritic stainless steels in the form of wires comprising malleable inclusions, subjected to shaving, have characteristics which ensure the formation of steel wool strands of longer average length and allow shaving with wires much lower residuals, which saves on material.
Dans un autre domaine d'application, par exemple dans des opérations de polissage, les inclusions dures s'incrustent dans l'acier ferritique et provoquent des sillons en surface.In another field of application, for example in polishing operations, hard inclusions become embedded in the steel ferritic and cause grooves on the surface.
L'acier ferritique, selon l'invention comportant des inclusions malléables peut être poli avec beaucoup plus d'aisance pour l'obtention d'un état de surface poli amélioré.Ferritic steel, according to the invention comprising inclusions malleable can be polished much more easily to obtain an improved polished surface finish.
Claims (7)
- Stainless steel of ferritic structure and with improved machinability which can be used, especially, in the field of screw-machining, characterized in that it comprises, in its composition by weight:C < 0.17%Si ≤ 2.0%Mn ≤ 2.0%Cr 11 - 20%Ni ≤ 1%S ≤ 0.55%Ca ≥ 30 x 10-4%O ≥ 70 x 10-4%
the Ca/O ratio, between the calcium content and the oxygen content, being given by 0.2 ≤ Ca/O ≤ 0.6. - Steel of ferritic structure according to Claim 1, characterized in that it comprises, in its composition by weight:C < 0.12%Si < 2.0%Mn < 2.0%Cr 15 - 19%Ni < 1%S ≤ 0.55%Ca ≥ 35 x 10-4%O ≥ 70 x 10-4%
the Ca/O ratio, between the calcium content and the oxygen content, satisfying the relationship: 0.35 ≤ Ca/O ≤ 0.6. - Stainless steel of ferritic structure according to Claims 1 and 2, characterized in that it comprises, in its composition by weight:C ≤ 0.08%Si ≤ 2.0%Mn ≤ 2.0%Cr 15 - 19%Ni < 1%S ≤ 0.55%Ca ≥ 35x10-4%O ≥ 70 x 10-4%
the Ca/O ratio, between the calcium content and the oxygen content, satisfying the relationship 0.35 ≤ Ca/O ≤ 0.6. - Steel of ferritic structure according to Claims 1 and 3, characterized in that it includes less than 0.035% of sulphur.
- Steel of ferritic structure according to Claims 1 and 3, characterized in that it includes between 0.15% and 0.45% of sulphur.
- Steel of ferritic structure according to Claims 1 to 3, characterized in that it includes between 0.05% and 0.15% of sulphur.
- Steel of ferritic structure according to Claims 1 to 6, characterized in that it contains silica/alumina/calcium-oxide inclusions of the anorthite and/or pseudo-wollastonite and/or gehlenite type.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9406590A FR2720410B1 (en) | 1994-05-31 | 1994-05-31 | Ferritic stainless steel with improved machinability. |
FR9406590 | 1994-05-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0685567A1 EP0685567A1 (en) | 1995-12-06 |
EP0685567B1 true EP0685567B1 (en) | 2000-05-17 |
Family
ID=9463677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95400951A Expired - Lifetime EP0685567B1 (en) | 1994-05-31 | 1995-04-27 | Ferritic stainless steel with improved machinability |
Country Status (23)
Country | Link |
---|---|
US (1) | US5496515A (en) |
EP (1) | EP0685567B1 (en) |
JP (1) | JPH07331391A (en) |
KR (1) | KR100316543B1 (en) |
AT (1) | ATE193064T1 (en) |
CA (1) | CA2150445C (en) |
CZ (1) | CZ288539B6 (en) |
DE (1) | DE69516937T2 (en) |
DK (1) | DK0685567T3 (en) |
EG (1) | EG20895A (en) |
ES (1) | ES2147824T3 (en) |
FI (1) | FI111557B (en) |
FR (1) | FR2720410B1 (en) |
GR (1) | GR3034002T3 (en) |
IL (1) | IL113508A (en) |
NO (1) | NO310244B1 (en) |
PL (1) | PL179042B1 (en) |
PT (1) | PT685567E (en) |
RO (1) | RO116416B1 (en) |
RU (1) | RU2132886C1 (en) |
SI (1) | SI9500179B (en) |
TW (1) | TW364018B (en) |
UA (1) | UA39190C2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2740783B1 (en) * | 1995-11-03 | 1998-03-06 | Ugine Savoie Sa | FERRITIC STAINLESS STEEL USABLE FOR THE PRODUCTION OF STEEL WOOL |
US5707586A (en) * | 1995-12-19 | 1998-01-13 | Crs Holdings, Inc. | Free machining stainless steel and components for automotive fuel and exhaust systems made therefrom |
JP3777756B2 (en) * | 1997-11-12 | 2006-05-24 | 大同特殊鋼株式会社 | Electronic equipment parts made of ferritic free-cutting stainless steel |
FR2805829B1 (en) * | 2000-03-03 | 2002-07-19 | Ugine Savoie Imphy | AUSTENITIC STAINLESS STEEL WITH HIGH MACHINABILITY, RESULFURIZING, AND COMPRISING IMPROVED CORROSION RESISTANCE |
FR2811683B1 (en) * | 2000-07-12 | 2002-08-30 | Ugine Savoie Imphy | FERRITIC STAINLESS STEEL FOR USE IN FERROMAGNETIC PARTS |
DE10143390B4 (en) * | 2001-09-04 | 2014-12-24 | Stahlwerk Ergste Westig Gmbh | Cold-formed corrosion-resistant chrome steel |
FR2832734B1 (en) * | 2001-11-26 | 2004-10-08 | Usinor | SULFUR FERRITIC STAINLESS STEEL, USEFUL FOR FERROMAGNETIC PARTS |
US7842434B2 (en) * | 2005-06-15 | 2010-11-30 | Ati Properties, Inc. | Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells |
US7981561B2 (en) * | 2005-06-15 | 2011-07-19 | Ati Properties, Inc. | Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells |
US8158057B2 (en) * | 2005-06-15 | 2012-04-17 | Ati Properties, Inc. | Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells |
DE102004063161B4 (en) * | 2004-04-01 | 2006-02-02 | Stahlwerk Ergste Westig Gmbh | Cold forming chromium steel |
SE528680C2 (en) * | 2004-06-30 | 2007-01-23 | Sandvik Intellectual Property | Ferritic lead-free stainless steel alloy |
JP5387057B2 (en) * | 2008-03-07 | 2014-01-15 | Jfeスチール株式会社 | Ferritic stainless steel with excellent heat resistance and toughness |
DE102009038386A1 (en) | 2009-08-24 | 2011-03-03 | Stahlwerk Ergste Gmbh | Soft magnetic ferritic chrome steel |
UA111115C2 (en) | 2012-04-02 | 2016-03-25 | Ейкей Стіл Пропертіс, Інк. | cost effective ferritic stainless steel |
US20140065005A1 (en) * | 2012-08-31 | 2014-03-06 | Eizo Yoshitake | Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3018537A1 (en) * | 1979-05-17 | 1980-11-27 | Daido Steel Co Ltd | CONTROLLED INCLUDING AUTOMATIC STEEL AND METHOD FOR THE PRODUCTION THEREOF |
JPH0215143A (en) * | 1988-06-30 | 1990-01-18 | Aichi Steel Works Ltd | Soft magnetic stainless steel for cold forging |
FR2648477B1 (en) * | 1989-06-16 | 1993-04-30 | Ugine Savoie Sa | AUSTENITIC RESULFUR STAINLESS STEEL WITH IMPROVED MACHINABILITY |
FR2690169B1 (en) * | 1992-04-17 | 1994-09-23 | Ugine Savoie Sa | Austenitic stainless steel with high machinability and improved cold deformation. |
FR2706489B1 (en) * | 1993-06-14 | 1995-09-01 | Ugine Savoie Sa | Martensitic stainless steel with improved machinability. |
-
1994
- 1994-05-31 FR FR9406590A patent/FR2720410B1/en not_active Expired - Fee Related
-
1995
- 1995-04-11 TW TW084103470A patent/TW364018B/en not_active IP Right Cessation
- 1995-04-12 US US08/420,484 patent/US5496515A/en not_active Expired - Lifetime
- 1995-04-26 IL IL11350895A patent/IL113508A/en not_active IP Right Cessation
- 1995-04-27 PT PT95400951T patent/PT685567E/en unknown
- 1995-04-27 AT AT95400951T patent/ATE193064T1/en not_active IP Right Cessation
- 1995-04-27 ES ES95400951T patent/ES2147824T3/en not_active Expired - Lifetime
- 1995-04-27 DK DK95400951T patent/DK0685567T3/en active
- 1995-04-27 EP EP95400951A patent/EP0685567B1/en not_active Expired - Lifetime
- 1995-04-27 DE DE69516937T patent/DE69516937T2/en not_active Expired - Lifetime
- 1995-05-03 KR KR1019950010879A patent/KR100316543B1/en not_active IP Right Cessation
- 1995-05-15 EG EG38795A patent/EG20895A/en active
- 1995-05-18 CZ CZ19951290A patent/CZ288539B6/en not_active IP Right Cessation
- 1995-05-19 PL PL95308694A patent/PL179042B1/en unknown
- 1995-05-29 RO RO95-01051A patent/RO116416B1/en unknown
- 1995-05-29 UA UA95058457A patent/UA39190C2/en unknown
- 1995-05-29 CA CA002150445A patent/CA2150445C/en not_active Expired - Lifetime
- 1995-05-29 NO NO19952106A patent/NO310244B1/en not_active IP Right Cessation
- 1995-05-30 RU RU95108546/02A patent/RU2132886C1/en active
- 1995-05-31 SI SI9500179A patent/SI9500179B/en unknown
- 1995-05-31 FI FI952660A patent/FI111557B/en not_active IP Right Cessation
- 1995-05-31 JP JP7156765A patent/JPH07331391A/en active Pending
-
2000
- 2000-07-24 GR GR20000401688T patent/GR3034002T3/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0685567B1 (en) | Ferritic stainless steel with improved machinability | |
EP0629714B1 (en) | Martensitic stainless steel with improved machinability | |
EP0859064B1 (en) | Stainless steel for manufacturing drawn wire, especially tyre reinforcement wire, and process of manutacturing said wire | |
US8137484B2 (en) | Method of production of steel superior in machinability | |
EP0787812B1 (en) | Process for manufacturing steel forging | |
KR100683923B1 (en) | Steel excellent in machinability | |
EP2465963A1 (en) | High strength spring steel and steel wire | |
FR2920784A1 (en) | MARTENSITIC STAINLESS STEEL, PROCESS FOR MANUFACTURING WORKPIECES PRODUCED IN THIS STEEL AND PARTS PRODUCED THEREBY | |
FR2726287A1 (en) | LOW-ALLOY STEEL FOR THE MANUFACTURE OF MOLDS FOR PLASTICS OR RUBBER | |
WO2003083153A1 (en) | Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals | |
WO2004048618A1 (en) | Method for making an abrasion resistant steel plate and steel plate obtained | |
BRPI0607042B1 (en) | HIGH-RESISTANCE SPRING STEEL | |
CA2984131A1 (en) | Steel, product made of said steel, and manufacturing method thereof | |
EP1299569B1 (en) | Ferritic stainless steel for ferromagnetic parts | |
FR2832734A1 (en) | SULFUR FERRITIC STAINLESS STEEL, USEFUL FOR FERROMAGNETIC PARTS | |
EP0567365B1 (en) | Austenitic stainless steel with high machine ability and improved cold work ability | |
FR2583778A1 (en) | HIGH STRENGTH STAINLESS STEEL | |
EP1099769B1 (en) | Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing | |
WO2006062053A1 (en) | Low carbon free-cutting steel | |
JP2002194480A (en) | Steel having excellent machinability and cold workability and machine parts | |
JP2007146212A (en) | Tool steel having high strength and excellent resistance to torsional breakage | |
JPH11199982A (en) | Highly clean rolled steel | |
JP2004176177A (en) | Steel superior in machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
17P | Request for examination filed |
Effective date: 19951222 |
|
17Q | First examination report despatched |
Effective date: 19980824 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UGINE-SAVOIE IMPHY |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
REF | Corresponds to: |
Ref document number: 193064 Country of ref document: AT Date of ref document: 20000615 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69516937 Country of ref document: DE Date of ref document: 20000621 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000727 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2147824 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20000720 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: UGITECH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: UGITECH Free format text: UGINE-SAVOIE IMPHY#AVENUE PAUL GIROD#73400 UGINE (FR) -TRANSFER TO- UGITECH#AVENUE PAUL GIROD#73400 UGINE (FR) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PD4A Owner name: UGITECH, FR Effective date: 20070409 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100318 Year of fee payment: 16 Ref country code: AT Payment date: 20100317 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20110323 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20111101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 193064 Country of ref document: AT Kind code of ref document: T Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110427 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20000401688 Country of ref document: GR Effective date: 20121102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121102 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20140324 Year of fee payment: 20 Ref country code: LU Payment date: 20140318 Year of fee payment: 20 Ref country code: DK Payment date: 20140317 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20140320 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140422 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140417 Year of fee payment: 20 Ref country code: DE Payment date: 20140411 Year of fee payment: 20 Ref country code: SE Payment date: 20140414 Year of fee payment: 20 Ref country code: ES Payment date: 20140422 Year of fee payment: 20 Ref country code: CH Payment date: 20140414 Year of fee payment: 20 Ref country code: FR Payment date: 20140417 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140429 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69516937 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20150427 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: MAXIMUM VALIDITY LIMIT REACHED Effective date: 20150427 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20150426 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150506 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150426 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150428 |