EP0684859B1 - Procede d'elimination des dechets du p4s10 - Google Patents

Procede d'elimination des dechets du p4s10 Download PDF

Info

Publication number
EP0684859B1
EP0684859B1 EP94931626A EP94931626A EP0684859B1 EP 0684859 B1 EP0684859 B1 EP 0684859B1 EP 94931626 A EP94931626 A EP 94931626A EP 94931626 A EP94931626 A EP 94931626A EP 0684859 B1 EP0684859 B1 EP 0684859B1
Authority
EP
European Patent Office
Prior art keywords
process according
waste
sodium hydroxide
solution
phosphates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94931626A
Other languages
German (de)
English (en)
Other versions
EP0684859A1 (fr
Inventor
Paul Bourdauducq
L. Bâtiment Bahamas PENEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Publication of EP0684859A1 publication Critical patent/EP0684859A1/fr
Application granted granted Critical
Publication of EP0684859B1 publication Critical patent/EP0684859B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/35Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by hydrolysis
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/45Inorganic substances containing nitrogen or phosphorus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/47Inorganic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/02Combined processes involving two or more distinct steps covered by groups A62D3/10 - A62D3/40

Definitions

  • the present invention relates to a process for eliminating waste formed during the manufacture, packaging and use of phosphorus polysulphides and in particular of P 4 S 10 .
  • P 4 S 10 is prepared from liquid sulfur and liquid phosphorus in substantially stoichiometric quantities at temperatures between 300 ° C and 515 ° C.
  • the products obtained generally pass through a packed column allowing to retain the impurities likely to come from the reagents as well as by-products likely to form during the reaction.
  • P 4 S 10 consist mainly of P 4 S 10 associated with small quantities of phosphorus polysulphides such as P 4 S 9 , P 4 S 7 . It also detects organic impurities and metallic impurities such as iron, arsenic, nickel, chromium, antimony.
  • This waste is more or less sensitive to hydrolysis and cannot be stored in landfills or buried because the slow hydrolysis of this waste is likely to produce significant quantities of gas (H 2 S) and toxic materials likely to irreparably contaminate groundwater.
  • gas H 2 S
  • Patent DD 122 058 teaches that the waste originating from the synthesis of P 4 S 10 can be treated with a sodium hydroxide solution and then injection of chlorine.
  • This treatment makes it possible to transform the waste essentially consisting of P 4 S 10 into a mixture of products consisting of phosphates, phosphites, thiophosphates, sulfates and chlorides.
  • the waste is treated with sodium hydroxide solution and then undergoes a chlorine treatment in order to obtain a pH close to 7-8. Chlorination is continued while adding sodium hydroxide to maintain said pH at 7-8.
  • this method has the disadvantage of generating quantities significant elemental sulfur and also has the disadvantage of using chlorine.
  • US Patent 4,301,014 relates to the treatment of water resulting from the elimination of waste from the manufacture of P 4 S 10 .
  • This waste is hydrolyzed with water, then brought into contact with lime in order to precipitate the sulphides, sulphites, sulphates and phosphates in the form of calcium salts, then to treat the solution freed from these salts by an oxidant such as calcium chlorine or hypochlorite at a pH close to 9 in order to reduce the "chemical oxygen demand" (DOC) before discharge.
  • DOC chemical oxygen demand
  • this process requires many filtration operations: filtration after hydrolysis, filtration after precipitation with lime, filtration after chlorination, which are likely to increase the cost and complexity of the operation of the process.
  • This process is particularly applicable to waste from the manufacture, packaging and use of P 4 S 10 .
  • the waste can be dissolved alkaline in different ways depending on the one hand, their origin and, on the other hand their physical state.
  • vents and / or gaseous effluents originating in particular from the reactor and from the conditioning consisting essentially of suspended powders and traces of H 2 S are generally killed by an alkaline solution which consists of backwashing with an alkaline solution (A) .
  • Waste from washing containers with pressurized water are introduced into an alkaline solution (B).
  • Solid waste in different forms plus blocks or less coarse, powders, scales
  • washing devices such as scaly, conveyor screw, reactor, condensers and products outside specifications are collected and then introduced into an alkaline solution (C).
  • the different alkaline solutions (A), (B) and (C) are generally soda, potash or ammonia solutions. These solutions may have the same or different concentrations of alkaline agent. Of preferably, sodium hydroxide solutions with a weight concentration will be used in NaOH of between 5% and 30% and preferably between 10% and 20%.
  • the molar ratio Rm P 4 S 10 NaOH is at least 13 and preferably between 15 and 32.
  • the waste is treated separately or simultaneously, we operate preferably by introducing the waste into the alkaline solution with stirring at a temperature between 20 ° C and 80 ° C and preferably between 25 ° C and 60 ° C.
  • the duration of the dissolution can vary to a large extent. She is generally based on the physical state of the waste.
  • the buffer tank solution consists of sodium thiophosphates of formula Na 3 PS x O 4-x ; x being an integer ranging from 1 to 4, Na 2 S, sodium phosphates and sodium phosphite.
  • the final solution obtained must be at a pH greater than 7 in order to avoid any release of H 2 S.
  • This alkaline solution operation is generally carried out in reactors with stirring system, temperature measurement, heating and cooling systems.
  • the alkaline solution thus obtained is then biologically oxidized.
  • the solution is introduced into a so-called "activated sludge” reactor.
  • a biological station treating wastewater coming in particular from a site industrial.
  • activated sludges are made up of microorganisms and bacteria which, in an aerobic environment, destroy the carbon pollution of industrial effluent (decrease in COD) and also oxidize sulfides and thiophosphates.
  • the "activated sludge" reactor is supplied with air or pure oxygen thus allowing the ventilation of the medium.
  • the pH of the medium must be as stable as possible and as close as possible of neutrality, see slightly basic.
  • the effluent After passing through the reactor, the effluent is separated from the sludge which is made up of micro-organisms and bacteria, in a clarifier before rejection.
  • the decanted sludge is largely recycled in the reactor, a part of the settled sludge is conveyed to a thickener where the maximum water.
  • the water is recycled to the reactor while the sludge is disposed of in a landfill.
  • the advantage of the process according to the present invention is that it eliminates waste in the form of aqueous effluents consisting essentially of sulfates and phosphates in accordance with the standards in force concerning discharges.
  • the introduction of the waste is regulated in such a way that the temperature does not exceed 50 ° C.
  • the duration of the operation is approximately 6 hours.
  • water is introduced to complete the level up to 15 m 3 .
  • the quantity of sodium hydroxide used is greater than the stoichiometric quantity of sodium hydroxide necessary for the hydrolysis so as to obtain an effluent containing free sodium hydroxide making it possible to avoid any release of H 2 S.
  • Each aqueous effluent (1) previously prepared is sent to a biological treatment station. It is deposited in a tank (2) continuously supplied with effluents of the same nature (3) (sodium hydroxide solutions consisting of Na 2 S). The content of this tank is then injected continuously (4) into the "active" sludge reactor (5) at the same time as all of the wastewater from an industrial site (6).
  • effluents of the same nature (3) sodium hydroxide solutions consisting of Na 2 S
  • Activated sludge consists of microorganisms and bacteria evolving in aerobic environment.
  • the ventilation of the medium is ensured by an air supply (7) and also by a supply of pure oxygen (8).
  • Oxidation takes place at atmospheric pressure, at room temperature and at a pH of around 8.
  • Decanted sludge is largely recycled to the reactor (5) via (12). Part of these go to a thickener (13) in which we extract a maximum amount of water which is recycled to the reactor (5) via (14), the sludge thickened are disposed of in a landfill (15).
  • Soluble phosphates are analyzed regularly during biological oxidation operations and 15 days after the treatment of the last effluent (No. 8) in the releases (11) from the biological station.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Removal Of Specific Substances (AREA)
  • Activated Sludge Processes (AREA)
  • Processing Of Solid Wastes (AREA)

Description

La présente invention concerne un procédé d'élimination des déchets formés au cours de la fabrication, du conditionnement et de l'utilisation de polysulfures de phosphore et en particulier de P4S10.
Le P4S10 est préparé à partir du soufre liquide et de phosphore liquide en des quantités sensiblement stoechiométriques à des températures comprises entre 300°C et 515°C.
Les produits obtenus traversent généralement une colonne garnie permettant de retenir les impuretés susceptibles de provenir des réactifs ainsi que des sous-produits susceptibles de se former lors de la réaction.
Ensuite les produits sont condensés dans un échangeur tubulaire et sortent sous forme liquide lequel peut subir un refroidissement rapide pour conduire à un solide qui peut être broyé et finalement conditionné dans des containers métalliques ou fûts.
Les déchets formés lors de la préparation et du conditionnement de P4S10 proviennent essentiellement du nettoyage des appareils tels que écailleuse, vis transporteuse, condenseurs,.... et se trouvent être sous forme de poudres ou d'écailles qui représentent au moins 10 % de la totalité des déchets ; de la vidange périodique du réacteur et se trouvent être sous forme de gros blocs qui représentent environ 25 % de la totalité des déchets ; du lavage des conteneurs de retour et se présentent sous forme initiale d'écailles ou poudres qui représentent la quantité la plus importante des déchets estimée à environ 55 % et des évents et effluents qui se trouvent être initialement sous forme de gaz contenant des poussières de P4S10, des traces de H2S. Cette dernière provenance représente quelques 10 % de la totalité des déchets.
Initialement, la majorité des déchets se trouvent être sous forme solide. C'est le cas notamment des déchets provenant de la vidange du réacteur, du nettoyage des appareils et des conteneurs. Ces déchets ne peuvent être recyclés dans le cycle de fabrication pour des raisons notamment de qualité.
Ils sont constitués en majorité par du P4S10 associé à de faibles quantités de polysulfures de phosphore tels que P4S9, P4S7. On y décèle également des impuretés organiques et des impuretés métalliques tels que fer, arsenic, nickel, chrome, antimoine.
Ces déchets sont plus ou moins sensibles à l'hydrolyse et ne peuvent être stockés dans des décharges ou enfouis car l'hydrolyse lente de ces déchets est de nature à produire des quantités importantes de gaz (H2S) et de matières toxiques susceptibles de contaminer irrémédiablement les nappes phréatiques.
Aussi, pour une meilleure protection de l'environnement des normes rigoureuses concernant l'élimination des déchets phosphorés et soufrés ont été établies afin d'éviter, voire interdire tout stockage abusif de déchets non traités dans des décharges ou leur élimination, dans les lacs, rivières ou mers.
Le brevet DD 122 058 enseigne que l'on peut traiter les déchets provenant de la synthèse de P4S10 par une lessive de soude puis injection de chlore.
Ce traitement permet de transformer les déchets essentiellement constitués de P4S10 en un mélange de produits constitués de phosphates, phosphites, thiophosphates, sulfates et chlorures.
Cependant, ce procédé présente un certain nombre d'inconvénients.
Il nécessite notamment l'utilisation de quantités importantes de réactifs. En effet, pour une tonne de P4S10 à traiter, il est nécessaire d'utiliser pas moins de 35 m3 de lessive de soude à 20 % (soit environ 42 tonnes) et 6,3 tonnes de chlore.
Dans le brevet DD 156 902 on opère de façon similaire si ce n'est qu'il est utilisé moins de réactifs notamment moins de soude.
Les déchets sont traités avec de la lessive de soude puis subissent un traitement au chlore de façon à obtenir un pH voisin de 7-8. La chloration est poursuivie tout en ajoutant de la soude afin de maintenir ledit pH à 7-8.
Ainsi pour une tonne de P4S10 à traiter, on utilise 1,3 à 1,6 tonnes de chlore et 10 m3 de soude à 20 %.
Cependant, ce procédé présente l'inconvénient de générer des quantités importantes de soufre élémentaire et présente également le désavantage d'utiliser du chlore.
Le brevet US 4 301 014, concerne le traitement des eaux résultant de l'élimination des déchets de fabrication de P4S10. Ces déchets sont hydrolysés par de l'eau, puis mis en contact avec de la chaux afin de précipiter les sulfures, sulfites, sulfates et phosphates sous forme de sels de calcium, puis de traiter la solution débarrassée de ces sels par un oxydant tel que le chlore ou l'hypochlorite de calcium à un pH voisin de 9 afin de réduire la "demande chimique en oxygène" (COD) avant rejet.
Ce procédé présente de nombreux inconvénients. D'abord, l'hydrolyse nécessite des quantités importantes d'eau, environ 235 m3 par tonne de P4S10 à traiter, ce qui nécessite des réacteurs très importants, rédhibitoire pour un procédé industriel économique. Par ailleurs, cette hydrolyse engendre des quantités importantes de H2S nécessitant un appareillage spécifique pour sa destruction.
Ensuite, ce procédé nécessite de nombreuses opérations de filtration : filtration après hydrolyse, filtration après précipitation à la chaux, filtration après chloration, qui sont de nature à augmenter le coût et la complexité de l'exploitation du procédé.
Il a maintenant été trouvé un procédé simple et économique d'élimination des déchets formés au cours de la fabrication, du conditionnement et de l'utilisation de polysulfures de phosphore, ledit procédé étant caractérisé en ce qu'il consiste à :
  • mettre en solution lesdits déchets par attaque alcaline, à
  • collecter les différentes solutions obtenues dans un bac tampon, et à
  • oxyder biologiquement les solutions ainsi obtenues maintenues à un pH supérieur à 7, contenant des thiophosphates de formule Me3 PSx O4-x dans laquelle Me représente NH4, un métal alcalin tel que Na, K et x est un nombre entier allant de 1 à 4, des phosphates, des sulfures et des phosphites avant rejet sous forme de solution constituée essentiellement par des sulfates et des phosphates.
Ce procédé s'applique tout particulièrement aux déchets provenant de la fabrication, du conditionnement et de l'utilisation du P4S10.
Selon la présente invention, les déchets peuvent être mis en solution alcaline de différentes façons selon d'une part, leur provenance et, d'autre part leur état physique.
Les évents et/ou effluents gazeux provenant notamment du réacteur et du conditionnement constitués essentiellement de poudres en suspension et de traces de H2S sont généralement abattus par une solution alcaline qui consiste en un lavage à contre-courant par une solution alcaline (A).
Les déchets provenant du lavage des conteneurs par de l'eau sous pression sont introduits dans une solution alcaline (B).
Les déchets "solides" se présentant sous différentes formes (blocs plus ou moins grossiers, poudres, écailles) provenant à la fois du lavage des appareils tels que écailleuse, vis transporteuse, réacteur, condenseurs et produits hors spécifications sont rassemblés puis introduits dans une solution alcaline (C).
Les différentes solutions alcalines (A), (B) et (C) sont généralement des solutions de soude, de potasse ou des solutions ammoniacales. Ces solutions peuvent avoir des concentrations identiques ou différentes en agent alcalin. De préférence, on utilisera des solutions de soude ayant une concentration pondérale en NaOH comprise entre 5 % et 30 % et, de préférence, comprise entre 10 % et 20 %.
Le rapport molaire Rm = P4S10 NaOH est au moins égal à 13
et, de préférence, compris entre 15 et 32.
Que les déchets soient traités séparément ou simultanément, on opère de préférence en introduisant les déchets dans la solution alcaline sous agitation à une température comprise entre 20°C et 80°C et, de préférence, entre 25°C et 60°C.
La durée de la mise en solution peut varier dans une large mesure. Elle est généralement fonction de l'état physique des déchets.
Elle est au moins égale à 30 minutes et, de préférence, comprise entre 2 et 6 heures.
Les différentes solutions (A), (B) et (C) sont collectées, notamment dans un bac dit "tampon".
La solution obtenue est généralement limpide.
Dans le cas où la mise en solution a été effectuée par des solutions de soude, la solution du bac tampon est constituée de thiophosphates de sodium de formule Na3 PSx O4-x ; x étant un nombre entier allant de 1 à 4, de Na2S, de phosphates de sodium et de phosphite de sodium.
La solution finale obtenue doit être à un pH supérieur à 7 afin d'éviter tout dégagement d'H2S.
Ceci est réalisé avantageusement en utilisant au moment de la mise en solution alcaline un léger excès de soude qui est au plus égal à 5 %.
Cette opération de mise en solution alcaline s'effectue généralement dans des réacteurs munis de système d'agitation, d'une prise de température, de systèmes de chauffage et de refroidissement.
Dans l'éventualité d'un léger insoluble, on peut réaliser une séparation par des méthodes connues telles que filtration ou centrifugation.
La solution alcaline ainsi obtenue est ensuite oxydée biologiquement.
A cette fin, la solution est introduite dans un réacteur dit à "boues activées" d'une station biologique traitant les eaux usées provenant notamment d'un site industriel.
Ces boues activées sont constituées de micro-organismes et de bactéries qui, en milieu aérobie, détruisent la pollution carbonée de l'effluent industriel (diminution de la DCO) et également oxydent les sulfures et les thiophosphates.
Le réacteur à "boues activées" est alimenté en air ou en oxygène pur permettant ainsi l'aération du milieu.
Le pH du milieu doit être le plus stable possible et aussi proche que possible de la neutralité, voir légèrement basique.
De ce fait, bien que l'effluent à traiter ne constitue généralement qu'une faible partie de l'alimentation de la station biologique, il faut éviter une teneur en soude libre de cet effluent trop élevée.
Après passage dans le réacteur, l'effluent est séparé des boues qui sont constituées de micro-organismes et bactéries, dans un clarificateur avant rejet.
Les boues décantées sont recyclées en grande partie dans le réacteur, une partie des boues décantées est acheminée vers un épaississeur où on extrait le maximum d'eau. Les eaux sont recyclées vers le réacteur tandis que les boues sont éliminées dans une décharge.
L'avantage du procédé selon la présente invention est d'éliminer les déchets sous forme d'effluents aqueux constitués essentiellement de sulfates et de phosphates en accord avec les normes en vigueur concernant les rejets.
L'exemple suivant illustre l'invention.
Nous avons réalisé un essai industriel ayant conduit au traitement d'une quantité égale à 6,4 tonnes constitués de déchets solides formés lors de la préparation de P4 S10 provenant du nettoyage des appareils tels que réacteur, écailleuse, vis transporteuse et de produits hors spécifications.
Pour ce faire on prépare 8 effluents de 15 m3 environ.
Préparation de l'effluent
On introduit progressivement et manuellement 650 kg à 850 kg de déchets ci-dessus mentionnés dans un bac agité de 15 m3 contenant environ 5,4 m3 de soude à 20 % en poids.
L'introduction des déchets est réglée d'une façon telle que la température n'excède pas 50°C.
La durée de l'opération est d'environ 6 heures.
L'introduction terminée on introduit de l'eau afin de compléter le niveau jusqu'à 15 m3.
On s'assure pendant toute la durée de l'opération que la quantité de soude utilisée est supérieure à la quantité stoéchiométrique de soude nécessaire pour l'hydrolyse de façon à obtenir un effluent contenant de la soude libre permettant d'éviter tout dégagement d'H2S.
Sur chaque effluent on détermine :
  • la concentration en phosphates totaux
  • la concentration en soude libre.
Le tableau ci-après rassemble les résultats obtenus.
EFFLUENT N° CONCENTRATION EN PHOSPHATES TOTAUX (g/l) CONCENTRATION EN SOUDE LIBRE (g/l)
1 42,9 50,8
2 36 13,4
3 32 22,7
4 52 16,9
5 50 16,9
6 37,5 25,8
7 48,8 25,6
8 47,5 11,6
L'analyse RMN du P31 indique que les effluents sont constitués essentiellement de :
  • Na3PSxO4-x avec x allant de 1 à 4,
  • Phosphates de sodium
  • Na2S
  • Na3PO3
Oxydation biologique des effluents (Planche 1/2)
Chaque effluent aqueux (1) précédemment préparé est envoyé à une station biologique de traitement. Il est dépoté dans un bac (2) alimenté en continu par des effluents de même nature (3) (solutions de soude constituées de Na2S). Le contenu de ce bac est ensuite injecté en continu (4) dans le réacteur à boues "activitées" (5) en même temps que l'ensemble des eaux usées d'un site industriel (6).
Les boues "activées" sont constituées de microorganismes et de bactéries évoluant en milieu aérobie.
L'aération du milieu est assurée par une alimentation d'air (7) et également par une alimentation en oxygène pur (8).
L'oxydation s'effectue à pression atmosphérique, à température ambiante et à un pH d'environ 8.
Après passage dans le réacteur (5) l'effluent (9) est séparé des boues dans un clarificateur (10) avant rejet (11).
Les boues décantées sont recyclées en grande partie vers le réacteur (5) via (12). Une partie de celles-ci vont vers un épaississeur (13) dans lequel on extrait une quantité maximale d'eau qui est recyclée vers le réacteur (5) via (14), les boues épaissies sont éliminées dans une décharge (15).
Les phosphates solubles sont analysés régulièrement pendant les opérations d'oxydation biologique et 15 jours après le traitement du dernier effluent (N° 8) dans les rejets (11) de la station biologique.
Le graphique unique ci-après visualise les résultats obtenus.
Sur ce graphique :
P désigne la teneur en phosphates exprimée en mg/l,
J designe la durée des opérations en jour,
les astériques correspondent aux injections des effluents à traiter,
la ligne portant des carrés noirs désigne les phosphates totaux,
la ligne portant des carrés blancs désigne les phosphates solubles.
En effectuant un bilan phosphore sur la station biologique on retrouve environ 70 % du phosphore dans le rejet aqueux, le reste étant entraíné par les boues envoyées à la décharge.
Nous n'avons pas observé par ailleurs une quelconque incidence sur le fonctionnement de la station biologique.

Claims (11)

  1. Procédé d'élimination des déchets formés au cours de la fabrication, du conditionnement et de l'utilisation de polysulfures de phosphore, caractérisé en ce qu'il consiste à :
    mettre en solution lesdits déchets par attaque alcaline, à
    collecter les différentes solutions obtenues dans un bac tampon, et à
    oxyder biologiquement les solutions ainsi obtenues, maintenues à un pH supérieur à 7, contenant des thiophosphates de formule Me3 PSx O4-x dans laquelle
    Me représente NH4, un métal alcalin tel que Na, K et
    x est un nombre entier allant de 1 à 4, des phosphates, des sulfures et des phosphites avant rejet sous forme de solution constituée essentiellement par des sulfates et des phosphates.
  2. Procédé selon la revendication 1, caractérisé en ce que le polysulfure de phosphore est P4S10.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'attaque alcaline des déchets est effectuée par une solution de soude, de potasse ou une solution ammoniacale.
  4. Procédé selon la revendication 3, caractérisé en ce que la solution alcaline est une solution de soude.
  5. Procédé selon la revendication 4, caractérisé en ce que la solution de soude a une concentration pondérale en hydroxyde de sodium (NaOH) comprise entre 5 % et 30 % et, de préférence, entre 10 % et 20 %.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les déchets sont introduits dans la solution alcaline sous agitation à une température comprise entre 20°C et 80°C et, de préférence, entre 25°C et 60°C.
  7. Procédé selon les revendications 1 à 6, caractérisé en ce que les solutions alcalines collectées sont des solutions de soude.
  8. Procédé selon la revendication 7, caractérisé en ce que les solutions de soude sont constituées essentiellement de thiophosphate de sodium de formule Na3PSxO4-x dans laquelle x est un nombre entier allant de 1 à 4, de Na2S, de phosphates de sodium et de phosphites de sodium.
  9. Procédé selon l'une des revendications 7 ou 8 caractérisé en ce que les solutions de soude sont introduites dans un réacteur à boues activées constituées de micro-organismes et de bactéries évoluant en milieu aérobie.
  10. Procédé selon la revendication 9, caractérisé en ce que le réacteur à boues activées est alimenté en air.
  11. Procédé selon l'une quelconque des revendications 1 à 10 caractérisé en ce que les déchets sont rejetés sous forme d'une solution contenant des sulfates et des phosphates.
EP94931626A 1993-10-22 1994-10-24 Procede d'elimination des dechets du p4s10 Expired - Lifetime EP0684859B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9312633 1993-10-22
FR9312633A FR2711558B1 (fr) 1993-10-22 1993-10-22 Procédé d'élimination des déchets du P4S10.
PCT/FR1994/001236 WO1995011061A1 (fr) 1993-10-22 1994-10-24 Procede d'elimination des dechets du p4s¿10?

Publications (2)

Publication Number Publication Date
EP0684859A1 EP0684859A1 (fr) 1995-12-06
EP0684859B1 true EP0684859B1 (fr) 1998-07-29

Family

ID=9452133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94931626A Expired - Lifetime EP0684859B1 (fr) 1993-10-22 1994-10-24 Procede d'elimination des dechets du p4s10

Country Status (4)

Country Link
EP (1) EP0684859B1 (fr)
DE (1) DE69412070T2 (fr)
FR (1) FR2711558B1 (fr)
WO (1) WO1995011061A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980557A (en) * 1974-12-18 1976-09-14 University Patents, Inc. Phosphorus removal from wastewater
US4301014A (en) * 1980-06-05 1981-11-17 Hooker Chemicals & Plastics Corp. Phosphorus pentasulfide waste water treatment
US4956094A (en) * 1988-12-22 1990-09-11 Biospherics Incorporated Enhanced phosphate removal from bod-containing wastewater

Also Published As

Publication number Publication date
DE69412070T2 (de) 1999-04-15
EP0684859A1 (fr) 1995-12-06
FR2711558A1 (fr) 1995-05-05
DE69412070D1 (de) 1998-09-03
FR2711558B1 (fr) 1996-01-05
WO1995011061A1 (fr) 1995-04-27

Similar Documents

Publication Publication Date Title
EP0413356B1 (fr) Procédé pour le traitement d'eau usée
US7166227B2 (en) Method of treating digested sludge
US3939068A (en) Process for treating waste water containing cellulose nitrate particles
ITMI940245A1 (it) Processo per il trattamento di rifiuti con impiego di ossidazione
US6802976B2 (en) Organic sulfur reduction in wastewater
EP0512660A1 (fr) Méthode et installation d'élimination par combinaison chimique-biologique des résidus contenant des explosives
US6077431A (en) Process for decomposition and removal of dioxins contained in sludge
CZ278195A3 (en) Process of treating waste water containing both organic and inorganic compounds, particularly waste water formed during preparation of epichlorhydrine
US4490257A (en) Process for purification of waste waters accumulated from pulp production, particularly from chlorine bleaching of pulp
US5348724A (en) Method of decomposing hydrogen peroxide
EP0684859B1 (fr) Procede d'elimination des dechets du p4s10
US10730770B2 (en) Method for treating sulfides in waste streams
EP0564386B1 (fr) Procédé de traitement des boues par oxydation combinée chimique et biologique et installations pour la mise en oeuvre d'un tel procédé
US4301014A (en) Phosphorus pentasulfide waste water treatment
EP0952116A1 (fr) Procédé de décomposition et d'élimination des dioxines contenus dans des boues
US5549833A (en) Method of decomposing hydrogen peroxide
IE67375B1 (en) Water purification process
EP2427407B1 (fr) Procédé de récupération et de recyclage d'ammoniac
EP0336929B1 (fr) Procede de purification d'eau
EP0634370A1 (fr) Procédé de traitement d'effluents azotés avec des boues comme substrat
JPS591120B2 (ja) 有機性排水の高度処理方法
JP2627953B2 (ja) 廃水の処理方法
Boronin et al. Electrochemical and Biological Approach to the Destruction of Lewisite and ‘Mustard’
GB2155453A (en) Treatment of "Stretford" redox solutions
JP2005186023A (ja) 有機性排水の処理方法及び装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19951229

17Q First examination report despatched

Effective date: 19970520

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980810

REF Corresponds to:

Ref document number: 69412070

Country of ref document: DE

Date of ref document: 19980903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011010

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011024

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011105

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051024